

Electromagnetic Compatibility Test Report

Tests Performed on an Aclara Technologies, LLC
Enhanced Base Station, Model: 601-1000-E3F1FECL1
Radiometrics Document RP-9899A

Product Detail: FCC ID: LLB9985T491 IC: 4546A-9985T491 Equipment type: 466-468, 930-941 MHz Transceiver Test Standards:
US CFR Title 47, Chapter I, FCC Part 24 and 90 FCC Parts 2, 15, and 90 CFR Title 47: 2024 Test Facility:
Radiometrics Midwest Corporation Tests Performed For: Aclara Technologies, LLC 77 Westport Plaza Drive, Suite 500 12 Devonwood Avenue Saint Louis, MO 63146 Romeoville, IL 60446 Phone: (815) 293-0772 Test Dates: January 3 to 27, 2024 Document RP-9899A Revisions: Rev. Issue Date Revised By May 21, 2024 0

Table of Contents

1.0 ADMINISTRATIVE DATA	
2.0 TEST SUMMARY AND RESULTS	3
3.0 EQUIPMENT UNDER TEST (EUT) DETAILS	3
3.1 EUT Description	
4.0 TESTED SYSTEM DETAILS	4
4.1 Tested System Configuration	4
4.2 Operating Conditions of EUT	4
4.3 Special Accessories	5
4.4 Equipment Modifications	5
5.0 TEST SPECIFICATIONS AND RELATED DOCUMENTS	5
6.0 RADIOMETRICS' TEST FACILITIES	5
7.0 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS	6
8.0 CERTIFICATION	6
9.0 TEST EQUIPMENT TABLE	
10.0 TEST SECTIONS	
10.1 Peak Output Power	
10.2 Emissions Masks	
10.2.1 FCC Part 90 Masks	
10.2.2 FCC Part 24 Masks	
10.2.3 Conducted Spurious Emissions	
10.2.4 Conducted Spurious Emissions (Part 24)	
10.3 Occupied Bandwidth	
10.4 Field Strength of Unwanted Spurious Radiation	
10.4.1 Test Procedures	
Figure 1. Drawing of Radiated Emissions Setup	27
10.4.2 Test Limits	
10.4.3 Spurious Radiated Emissions Test Results	28
10.4.4 Spurious Radiated Emissions Test Results (Part 24)	29
10.5 Frequency Stability	
10.5.1 Frequency Stability Vs Temperature	
10.5.2 Frequency Stability Vs Supply Voltage	
10.5.3 Test Results for Frequency Stability	
10.6 Transient Frequency Behavior	
10.6.1 Test method	_
10.6.2 Limits of transient frequency	
10.6.3 Test Results	
10.6.4 Results for Time Periods t1, t2, and t3	
10.6.5 Results for Time Period between t2 and t3	
10.6.6 Results for Time Period t3	
10.7 Radiated Emissions (Receive Mode)	
10.7.1 Radiated Emissions Field Strength Sample Calculation	37
10.7.2 Spurious Radiated Emissions Test Results (Receive Mode)	
11.0 MEASUREMENT INSTRUMENTATION UNCERTAINTY	
レ ロ K E VI うしい ロンコンド Y	41

Notice: This report must not be reproduced (except in full) without the written approval of Radiometrics Midwest Corporation.

Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1

1.0 ADMINISTRATIVE DATA

Equipment Under Test:	
An Aclara Technologies LLC., Enhanced Base	Station
Model: 601-1000-E3F1FECL1; Serial Numbers:	00:1D:24:00:03:8F:44:04
These will be referred to as the EUT in this Rep	ort
Date EUT Received at Radiometrics:	Test Dates:
October 19, 2023	January 3 to 27, 2024
Test Report Written and Authorized By:	Test Witnessed By:
Joseph Strzelecki	The tests were not witnessed by personnel from
Senior EMC Engineer	Aclara Technologies, LLC
Dadiamatrias' Davagnal Dagagnaikla for Toot	
Radiometrics' Personnel Responsible for Test:	
Joseph Strzelecki 05/21/2024	
05/21/2024	_
Date	
Joseph Strzelecki	
Senior EMC Engineer	
NARTE EMC-000877-NE	
Chris E. Dalessio	
EMC Technician	

2.0 TEST SUMMARY AND RESULTS

The EUT (Equipment Under Test) is an Enhanced Base Station, Model 601-1000-E3F1FECL1, manufactured by Aclara Technologies, LLC. The detailed test results are presented in a separate section. The following is a summary of the test results.

Transmitter Requirements

Environmental Phenomena	Frequency Range	FCC Sections	Test Result
RF Power Output	450-470 MHz	2.1046 & 90.205	Pass
Occupied Bandwidth Test;	450-470 MHz	2.1049, 24.133 & 90.209	Pass
Emissions Masks			
Spurious RF Conducted Emissions	1-9400 MHz	2.1051, 24.133 & 90.210	Pass
Field Strength of Spurious Radiation	30-9400 MHz	2.1053, 24.133 & 90	Pass
Frequency Vs. Temperature	450-470 MHz	2.1055 & 90.213	Pass
Frequency Vs. Voltage	450-470 MHz	2.1055 & 90.213	Pass
Transient Frequency Behavior	450-470 MHz	90.214	Pass

3.0 EQUIPMENT UNDER TEST (EUT) DETAILS

3.1 EUT Description

The EUT is an Enhanced Base Station. The EUT is a 466-468 & 930-941 MHz transceiver, manufactured by Aclara Technologies, LLC. The RF communications link is encrypted in both directions. The EUT was in good working condition during the tests, with no known defects.

RP-9899A Rev. 0 Page 3 of 41

Modulated Signal Parameters:

		930-931 &
Modulated Signal Parameters	466-468 MHz Band	940-941 MHz Band
Data Rate (symbols/second)	5000	20000
Inner Deviation (Hz)	800	3200
Transmission Duration (seconds)	0.8528	0.4138
Modulation Type	4GFSK	4GFSK
Encoding Type (Bits/Symbol)	2	2
Outer Deviation (Hz)	2400	9600
Number of Data Bits	8528	16552
Bit Rate (Bits/second)	10000	40000
Licensed Bandwidth (Hz)	12500	50000

Antenna:

Manufacturer	Model	Gain	Description/ Type
dbSpectra	SPF9S06D3	5.1 dBi for 450-470MHz 8.1 dBi for 901-941MHz	Linearly polarized antenna, 50- ohm, multiband

The maximum allowed gain for 450-470 MHz is 7.1 dBi

Transmit Range of operation:

Frequency Range (MHz)
466 – 468
930 - 931
940 - 941

4.0 TESTED SYSTEM DETAILS

4.1 Tested System Configuration

The system was configured for testing in a typical fashion. The testing was performed in conditions as close as possible to installed conditions. The wiring was consistent with the manufacturer's recommendations. The identification for all equipment, used in the tested system, is:

Tested System Configuration List

Item	Description	Type*	Manufacturer	Model Number	Serial Number
1	Enhanced Base Station	Е	Aclara Technologies, LLC	601-1000- E3F1FECL1	EBS-6

Model Number	Firmware
601-1000-E3F1FECL1	V4.00.55

The firmware of the EUT during the tests is identical to what would be released, except it allows for transmissions to continue for longer periods of time, as required for the regulatory tests.

4.2 Operating Conditions of EUT

The EUT was in a normal operating mode during the tests. All circuits were activated during the tests. Power was supplied with a new battery.

RP-9899A Rev. 0 Page 4 of 41

Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1

The EUT operational software was Tera Term version 4.105 in conjunction with a windows PC. The settings used are as follows: The max power setting was 36 and the modulation was set to 4GFSK. The EUT was set to the max power of 36, unless noted.

4.3 Special Accessories

No special accessories were used during the tests in order to achieve compliance.

4.4 Equipment Modifications

The following modifications were made to the EUT at Radiometrics' test facility in order to comply with the standards listed in this report: A 28A0807-0A2 ferrite was placed on AC input power.

5.0 TEST SPECIFICATIONS AND RELATED DOCUMENTS

Document	Date	Title
FCC CFR Title 47	2023	Code of Federal Regulations Title 47, Chapter 1, Federal Communications Commission, Part 15 & 90 - Radio Frequency Devices
ANSI C63.4-2014	2014	Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
TIA-603-E	2016	Land Mobile FM or PM Communications Equipment – Measurement and Performance Standards
ANSI C63.26	2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

6.0 RADIOMETRICS' TEST FACILITIES

The results of these tests were obtained at Radiometrics Midwest Corp. in Romeoville, Illinois, USA. Radiometrics is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025: 2017 "General Requirements for the Competence of Calibration and Testing Laboratories". Radiometrics' Lab Code is 121191 and Certification Number is 1495.01. A copy of the accreditation can be accessed on our web site (www.radiomet.com). Radiometrics accreditation status can be verified at A2LA's web site (www.a2la2.org).

The following is a list of shielded enclosures located in Romeoville, Illinois used during the tests:

- Chamber A: Is an anechoic chamber that measures 24' L X 12' W X 12' H. The walls and ceiling are fully lined with ferrite absorber tiles. The floor has a 10' x 10' section of ferrite absorber tiles located in the center. Panashield of Rowayton, Connecticut manufactured the chamber. The enclosure is NAMAS certified.
- Chamber B: Is a shielded enclosure that measures 20' L X 12' W X 8' H. Erik A. Lindgren & Associates of Chicago, Illinois manufactured the enclosure.
- Chamber E: Is a custom-made anechoic chamber that measures 52' L X 30' W X 18' H. The walls and ceiling are fully lined with RF absorbers. Pro-shield of Collinsville, Oklahoma manufactured the chamber.
- Test Station F: Is an area that measures approximately 10' D X 12' W X 10' H. The floor and back wall are metal shielded. This area is used for conducted emissions measurements.

RP-9899A Rev. 0 Page 5 of 41

Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1

A separate ten-foot long, brass plated, steel ground rod attached via a 6-inch copper braid grounds each of the above chambers. Each enclosure is also equipped with low-pass power line filters.

The FCC has accepted these sites as test site number US1065. The FCC test site Registration Number is 732175. Details of the site characteristics are on file with the Industry Canada as site number IC3124A.

7.0 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS

There were no deviations or exclusions from the test specifications.

8.0 CERTIFICATION

Radiometrics Midwest Corporation certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specification. The results relate only to the EUT listed herein. Any modifications made to the EUT subsequent to the indicated test date will invalidate the data and void this certification.

9.0 TEST EQUIPMENT TABLE

					Frequency	Cal	Cal
RMC ID	Manufacturer	Description	Model No.	Serial No.	Range	Period	Date
AMP-05	RMC/Celeritek	Pre-amplifier	MW110G	1001	1.0-12GHz	12 Mo.	01/04/23
ANT-13	EMCO	Horn Antenna	3115	2502	1.0-18GHz	24 Mo.	03/01/23
ANT-66	ETS-Lindgren	Horn Antenna	3115	62580	1.0-18GHz	24 Mo.	03/16/23
		Log Periodic					
ANT-68	EMCO	Antenna	93146	9604-4456	200-1000MHz	24 Mo.	02/07/22
ANT-79	AH Systems	Bicon Antenna	SAS-540	793	20-330MHz	24 Mo.	01/26/23
ANT-80	AH Systems	Bicon Antenna	SAS-540	294	20-330MHz	24 Mo.	01/26/23
ATT-58	Weinschel	Attenuator (20 dB)	23-20-34	CG7866	DC-18 GHz	24 Mo	12/15/23
CDT-01	Wiltron	Crystal RF Detector	75N50	CDT-01	DC-18GHz	N/A	NCR
COM-01	Anaren	Coupler	10023-3	COM-01	250-1000MHz	N/A	NCR
DIR-19	Narda	Directional Coupler	3000-10	01174	200-500MHz	N/A	NCR
DMM-09	Fluke	DMM	15B	12220951	DC-500 Hz	24 Mo.	02/02/23
HPF-07	Mini-Circuits	High Pass Filter	VHF-1500+	31121	1.7-10 GHz	24 Mo.	05/23/22
HPF-09	Mini-Circuits	High Pass Filter	SHP-700+	RUU75101737	700-5000MHz	24 Mo.	10/05/22
PWM-01	Boonton	Power Meter	4230	22503	50kHz-18GHz	24 Mo.	02/12/22
REC-11	HP / Agilent	Spectrum Analyzer	E7405A	US39110103	9Hz-26.5GHz	24 Mo.	05/05/22
REC-44	Agilent	Spectrum Analyzer	E4440A	US40420673	3Hz-26.5GHz	24 Mo.	03/31/22
SCP-02	Tektronix	Oscilloscope	TDS784A	B040258	DC-1GHz	24 Mo.	02/06/23
SIG-30	Rohde Schwarz	Signal Generator	SMC100A	102914	9k-3.2GHz	36 Mo.	12/18/23
SIG-21	HP / Agilent	Signal Generator	8341B	2910A02352	0.01-20 GHz	36 Mo.	12/18/23
		Vector Signal					
SIG-31	Rohde Schwarz	Generator	SMJ 100A	101395	100kHz-6GHz	36 Mo.	09/22/23
	GS Blue M	Temperature					
TC-01	Electric	Chamber	ETC-04S-E	0003-ETC-201	-40 to 100 Deg C	24 Mo.	10/14/22
THM-02	Fluke	Temp/Humid Meter	971	93490471	N/A	24 Mo.	11/22/22

Note: All calibrated equipment is subject to periodic checks.

NCR – No Calibration Required. Device monitored by calibrated equipment. N/A: Not Applicable.

RP-9899A Rev. 0 Page 6 of 41

10.0 TEST SECTIONS

10.1 Peak Output Power

The peak power was measured by connecting the EUT antenna port to the power meter via a low loss coaxial cable and an appropriate power attenuator.

Model 601-1000-E3F1FECL1;		Specification	FCC part 90.205 & 24
S/N: EBS-6			
Test Location	Chamber B	Test Date January 17, 2024	
Test Personnel	Joseph Strzelecki		
Test Equipment	Power meter PWM-01	_	

TX Freq MHz	Reading dBm	Atten & Cable	Total dBm	Peak Power Watts	Antenna Gain dBi	ERP Watts
466.000	13.8	20.0	33.8	2.415	7.1	7.55
468.000	13.8	20.0	33.8	2.415	7.1	7.55
930.500	14.1	20.1	34.2	2.630	8.7	11.89
940.500	14.4	20.1	34.5	2.818	8.7	12.74

Judgement: Pass

The fundamental emission ERP limit is 100 watts (50 dBm) for an 8 km service area radius.

The fundamental emission ERP limit is 3500 watts (65.4 dBm) for 930-941 MHz.

Note that in decibel units:

ERP = EIRP - 2.15 = P + G - 2.15

where:

P = transmitter output power in dB(W)

G = Gain of the transmitting antenna in dBi

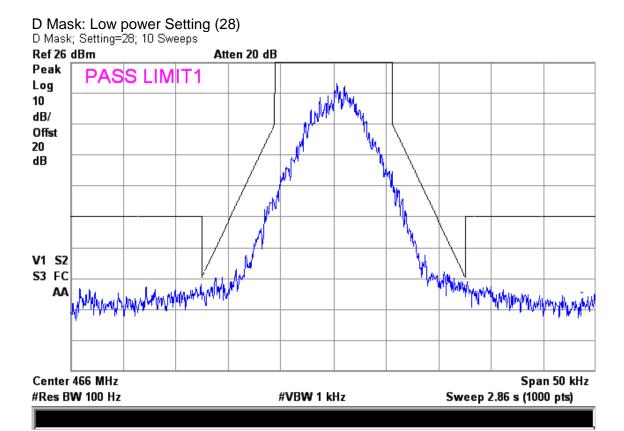
7.1 and 8.7 dBi is the maximum gain allowed by the product specification.

10.2 Emissions Masks

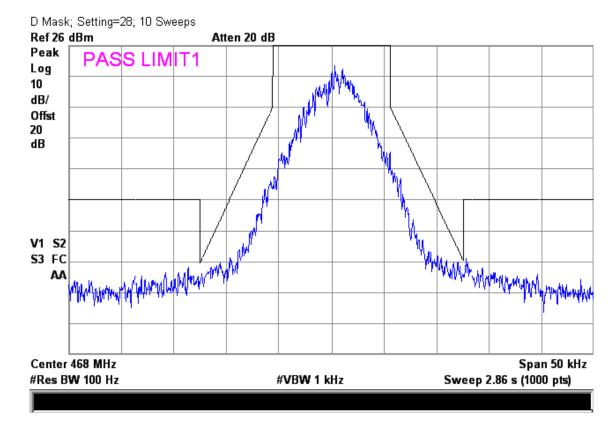
Model 601-100	Model 601-1000-E3F1FECL1 5		FCC Part 90.209 & 90.210		
S/N: EB	S-6				
Test Location	Test Location Chamber B		January 17-18, 2024		
Test Personnel Joseph Strzelecki					
Test Equipment	Spectrum Analyzer (REC-21), (REC-44)				

10.2.1 FCC Part 90 Masks

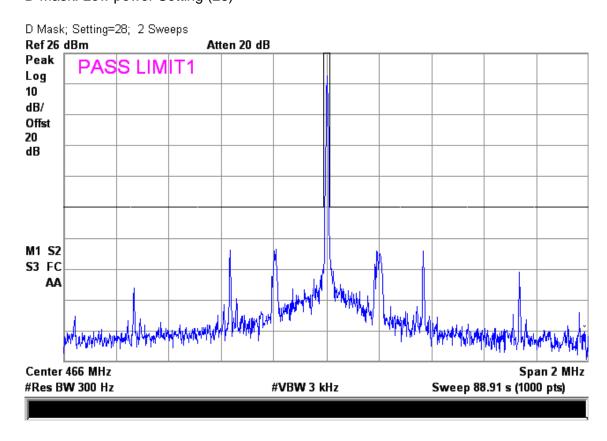
The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation. The EUT was transmitting at its maximum data rate. The trace was allowed to stabilize. All Channels are 12.5 kHz. The emissions Mask D is from FCC part 90.210.


RP-9899A Rev. 0 Page 7 of 41

Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1


- (1) On any frequency from the center of the authorized bandwidth f0 to 5.625 kHz removed from f0: Zero dB.
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(fd -2.88 kHz) dB.
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB.

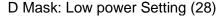
For all Frequencies beyond 25 kHz from the center of the transmit frequency, the worst-case limit was used. The red line is a 50-dB reduction from carrier based on 1 watt.

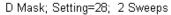


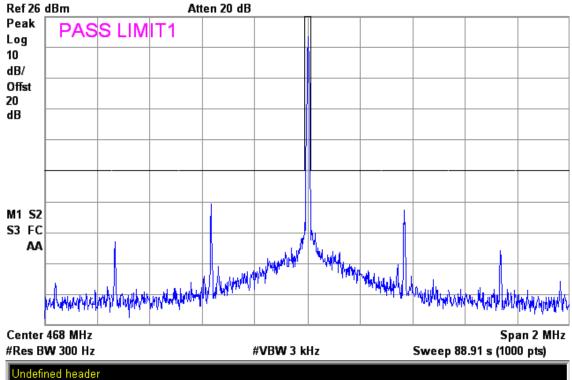
RP-9899A Rev. 0 Page 8 of 41

D Mask: Low power Setting (28)

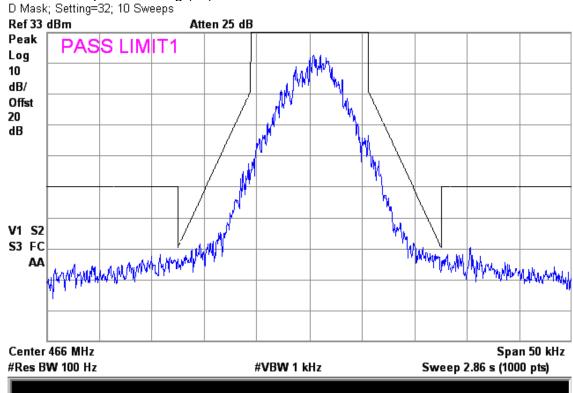
D Mask: Low power Setting (28)



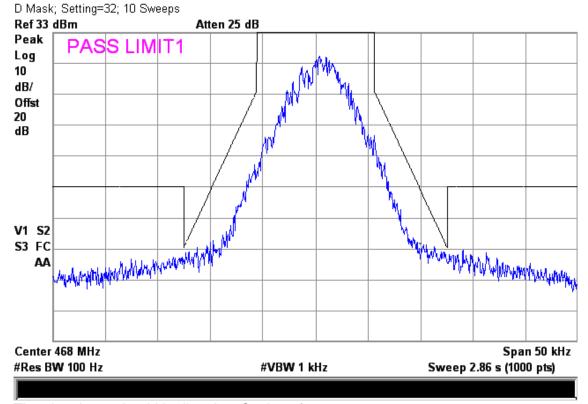

RP-9899A Rev. 0 Page 9 of 41


Z

Radiometrics Midwest Corporation

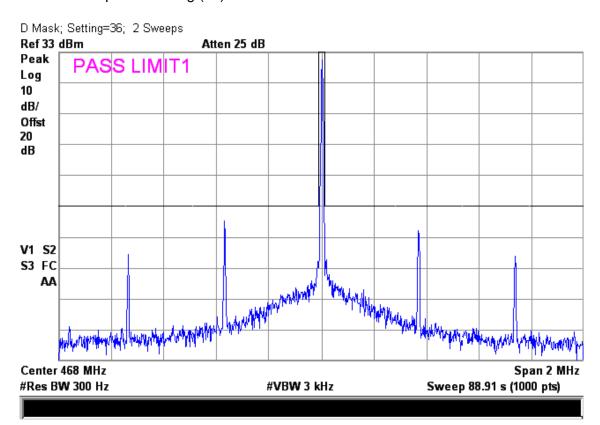

Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1

D Mask: Full power Setting (36)

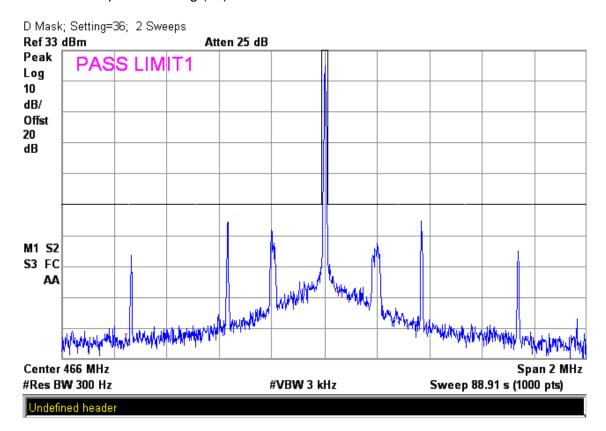


The plot above should be listed as Setting of 36.

RP-9899A Rev. 0 Page 10 of 41



D Mask: Full power Setting (36)

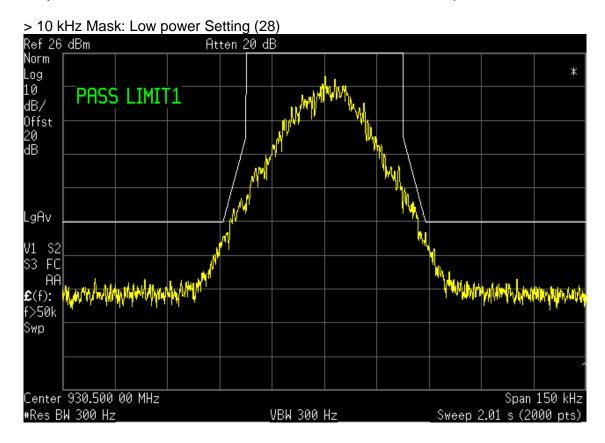

The plot above should be listed as Setting of 36.

D Mask: Full power Setting (36)

RP-9899A Rev. 0 Page 11 of 41

D Mask: Full power Setting (36)

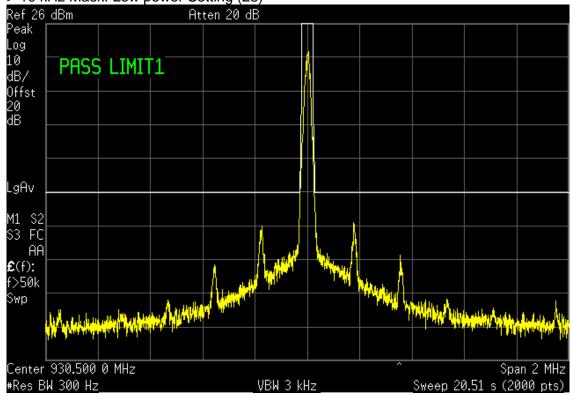
Judgement: Pass


RP-9899A Rev. 0 Page 12 of 41

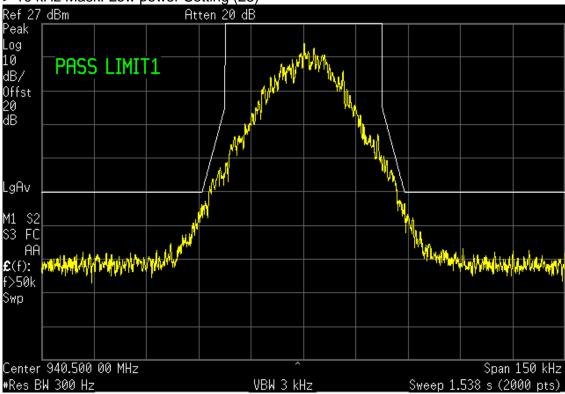
10.2.2 FCC Part 24 Masks

The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation. The EUT was transmitting at its maximum data rate. The trace was allowed to stabilize. The emissions Mask is from FCC part 24.133. This product has a 45 kHz Authorized Bandwidth

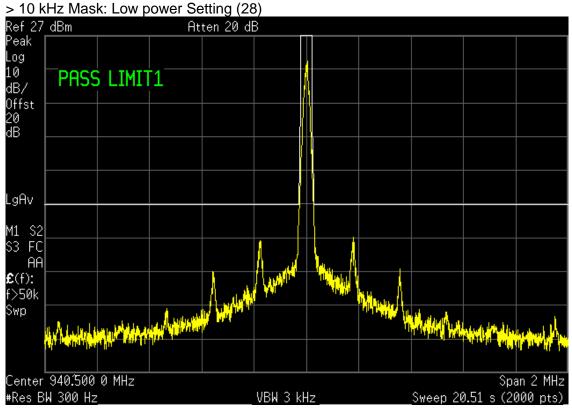
Only the >10 kHz mask is shown. There is no 10 kHz or smaller option for the EUT

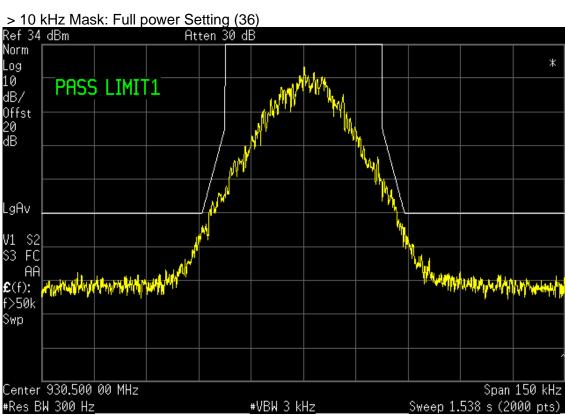


RP-9899A Rev. 0 Page 13 of 41


Radiometrics Midwest Corporation Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1

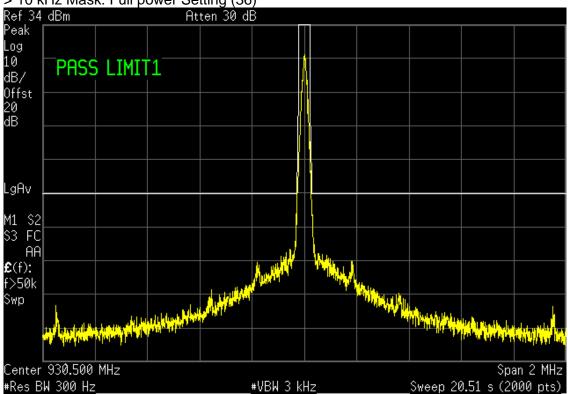
> 10 kHz Mask: Low power Setting (28)

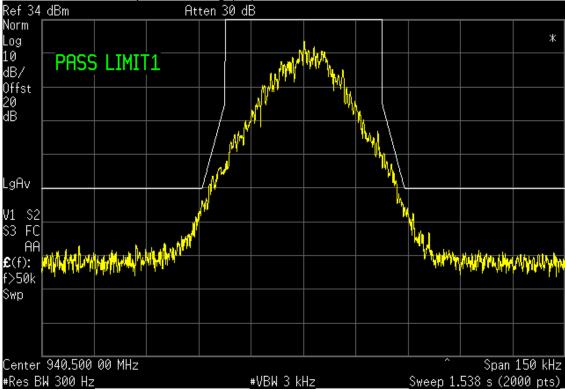




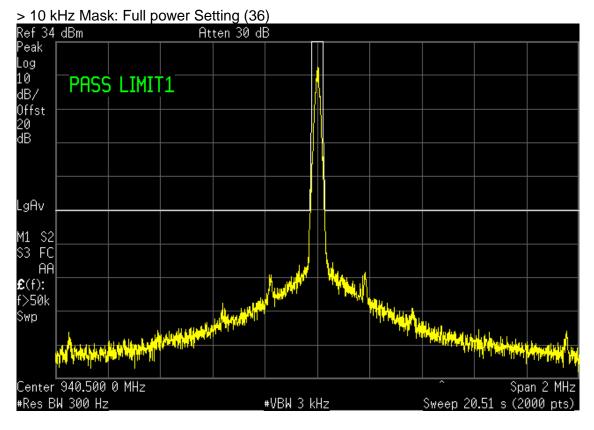
RP-9899A Rev. 0 Page 14 of 41

Radiometrics Midwest Corporation




RP-9899A Rev. 0 Page 15 of 41

Radiometrics Midwest Corporation Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1



RP-9899A Rev. 0 Page 16 of 41

R

Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1

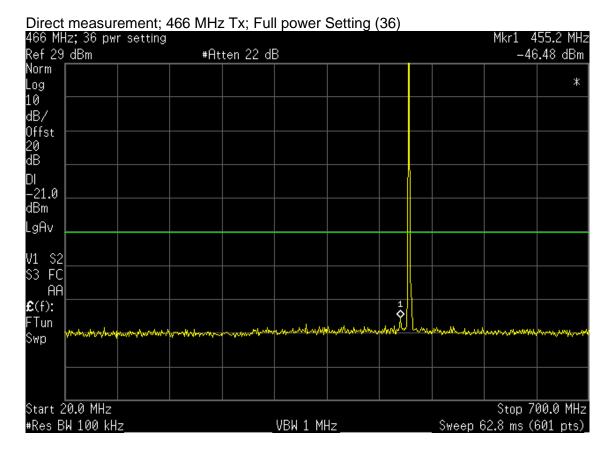
Judgement: Pass

10.2.3 Conducted Spurious Emissions

Model	601-1000-E3F1FECL1	Specification	FCC Part 90.210
Serial Number	EBS-6	Test Date	January 9, 2024
Test Personnel	Joseph Strzelecki	Test Location	Chamber B
Test Equipment	EMI Receiver (REC-44); High pas	s fiiter (HPF-09) fo	r testing 450-470 MHz

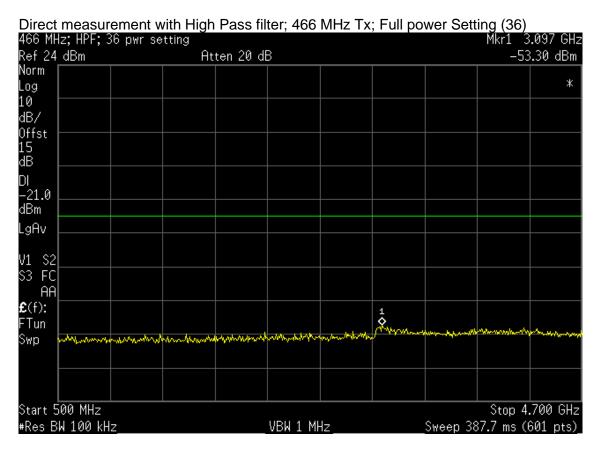
This is a direct measurement from the Antenna port to the EMI Receiver

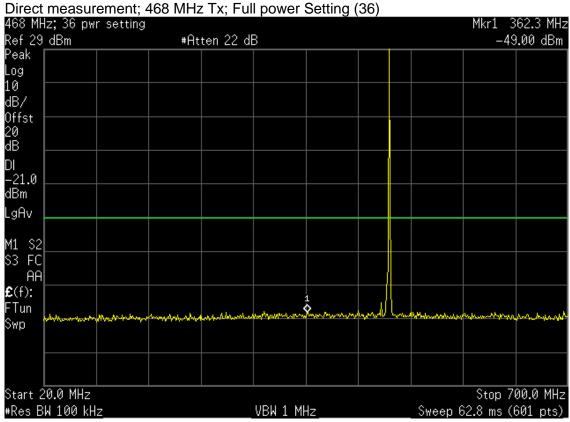
				HPF	Ext.				Margin
		Tested	Rec	Attn.	Atten.	Cable	Total	Power	Under
Freq. Tx	Harm	Freq.	Reading	Factor	Factor	Loss	Power	Limit	Limit
MHz	#	MHz	dBm	dB	dB	dB	dBm	dBm	dB
466.000	2	932.00	-70.1	0.6	14.1	0.1	-55.3	-20.0	35.3
466.000	3	1398.00	-72.2	0.6	14.1	0.2	-57.3	-20.0	37.3
466.000	4	1864.00	-73.0	0.6	14.2	0.2	-58.0	-20.0	38.0
466.000	5	2330.00	-73.0	0.7	14.2	0.2	-57.9	-20.0	37.9
466.000	6	2796.00	-73.0	0.7	14.2	0.2	-57.9	-20.0	37.9
466.000	7	3262.00	-73.0	0.8	14.2	0.2	-57.8	-20.0	37.8
466.000	8	3728.00	-73.0	0.9	14.3	0.3	-57.5	-20.0	37.5
466.000	9	4194.00	-73.0	1.5	14.3	0.3	-56.9	-20.0	36.9
466.000	10	4660.00	-73.0	1.5	14.4	0.3	-56.8	-20.0	36.8
468.000	2	936.00	-68.7	0.6	14.1	0.1	-53.9	-20.0	33.9
468.000	3	1404.00	-69.5	0.6	14.1	0.2	-54.6	-20.0	34.6
468.000	4	1872.00	-73.0	0.6	14.2	0.2	-58.0	-20.0	38.0
468.000	5	2340.00	-73.0	0.7	14.2	0.2	-57.9	-20.0	37.9
468.000	6	2808.00	-73.0	0.7	14.2	0.2	-57.9	-20.0	37.9


RP-9899A Rev. 0 Page 17 of 41

Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1

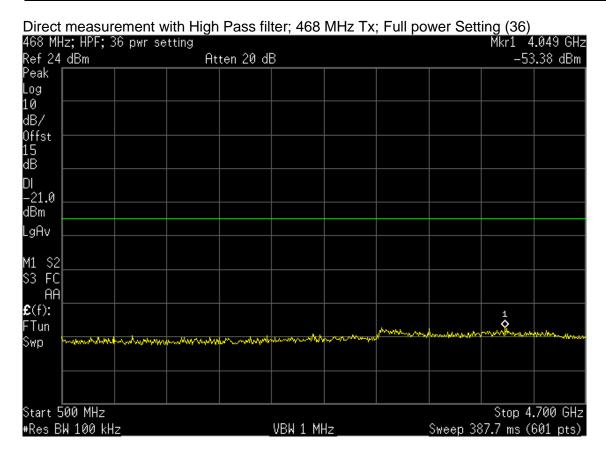
		Tested	Rec	HPF Attn.	Ext. Atten.	Cable	Total	Power	Margin Under
Freq. Tx	Harm	Freq.	Reading	Factor	Factor	Loss	Power	Limit	Limit
MHz	#	MHz	dBm	dB	dB	dB	dBm	dBm	dB
468.000	7	3276.00	-73.0	0.8	14.2	0.2	-57.8	-20.0	37.8
468.000	8	3744.00	-73.0	0.9	14.3	0.3	-57.5	-20.0	37.5
468.000	9	4212.00	-73.0	1.5	14.3	0.3	-56.9	-20.0	36.9
468.000	10	4680.00	-73.0	1.5	14.4	0.3	-56.8	-20.0	36.8


The fundamental emission ERP limit is 100 watts (50 dBm) for an 8 km service area radius. Judgment: Passed by at least 10 dB.



RP-9899A Rev. 0 Page 18 of 41

Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1



RP-9899A Rev. 0 Page 19 of 41

Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1

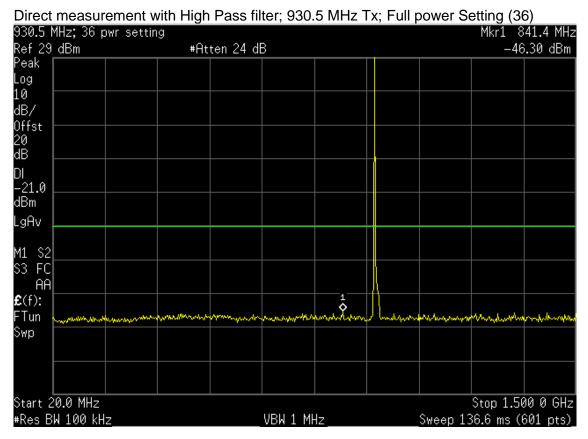
RP-9899A Rev. 0 Page 20 of 41

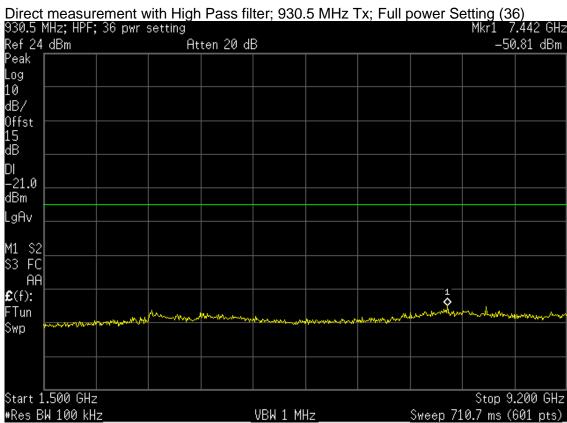
Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1

10.2.4 Conducted Spurious Emissions (Part 24)

Model	601-1000-E3F1FECL1	Specification	FCC Part 24			
Serial Number	EBS-6	Test Date	January 9 & 17, 2024			
Test Personnel	Joseph Strzelecki	Test Location	Chamber B			
Test Equipment	EMI Receiver (REC-44); High pass filter (HPF-07) for testing 901-902 MHz					

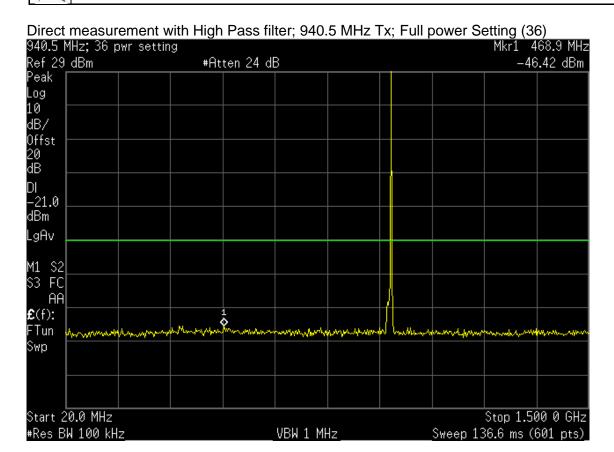
This is a direct measurement from the Antenna port to the EMI Receiver

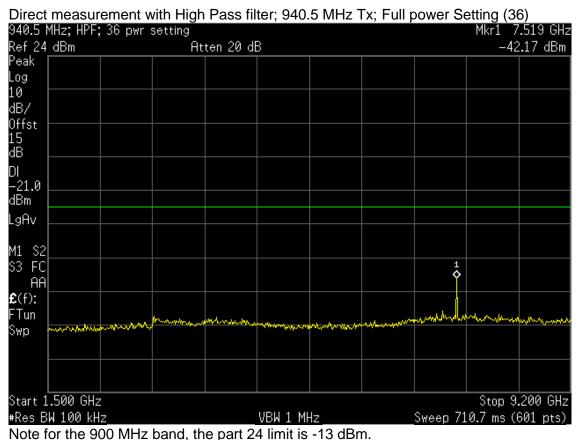

				HPF	Ext.				Margin
		Tested	Rec	Attn.	Atten.	Cable	Total	Power	Under
Freq. Tx	Harm	Freq.	Reading	Factor	Factor	Loss	Power	Limit	Limit
MHz	#	MHz	dBm	dB	dB	dB	dBm	dBm	dB
930.500	2	1861.00	-70.3	1.0	14.2	0.2	-54.9	-20.0	34.9
930.500	3	2791.50	-68.2	0.5	14.2	0.2	-53.3	-20.0	33.3
930.500	4	3722.00	-73.0	0.6	14.3	0.3	-57.8	-20.0	37.8
930.500	5	4652.50	-73.0	1.3	14.4	0.3	-57.0	-20.0	37.0
930.500	6	5583.00	-73.0	2.3	14.3	0.3	-56.1	-20.0	36.1
930.500	7	6513.50	-68.9	2.4	14.5	0.3	-51.7	-20.0	31.7
930.500	8	7444.00	-64.2	3.8	14.6	0.4	-45.4	-20.0	25.4
930.500	9	8374.50	-66.0	4.4	14.7	0.4	-46.5	-20.0	26.5
930.500	10	9305.00	-68.6	5.5	14.9	0.5	-47.7	-20.0	27.7
940.500	2	1881.00	-70.6	0.8	14.2	0.2	-55.4	-20.0	35.4
940.500	3	2821.50	-68.9	0.5	14.2	0.2	-54.0	-20.0	34.0
940.500	4	3762.00	-73.0	0.6	14.3	0.3	-57.8	-20.0	37.8
940.500	5	4702.50	-73.0	1.3	14.4	0.3	-57.0	-20.0	37.0
940.500	6	5643.00	-73.0	2.3	14.3	0.3	-56.1	-20.0	36.1
940.500	7	6583.50	-73.0	2.4	14.5	0.3	-55.8	-20.0	35.8
940.500	8	7524.00	-56.3	3.8	14.6	0.4	-37.5	-20.0	17.5
940.500	9	8464.50	-73.0	4.4	14.7	0.4	-53.5	-20.0	33.5
940.500	10	9405.00	-73.0	5.5	14.9	0.6	-52.0	-20.0	32.0


Judgment: Passed by at least 10 dB.

Note for the 900 MHz band, the part 24 limit is -13 dBm.

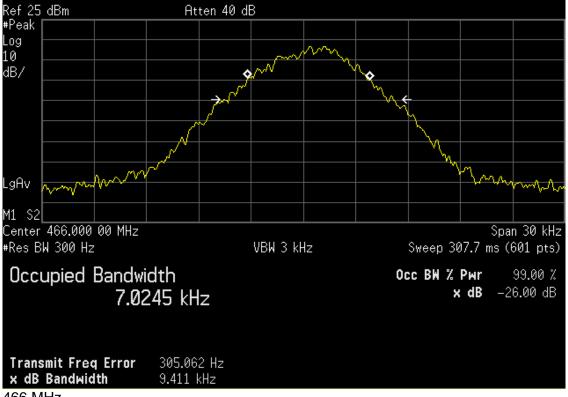
RP-9899A Rev. 0 Page 21 of 41





RP-9899A Rev. 0 Page 22 of 41

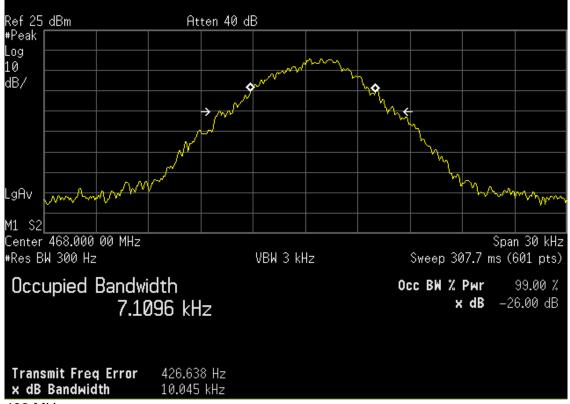
Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1


RP-9899A Rev. 0 Page 23 of 41

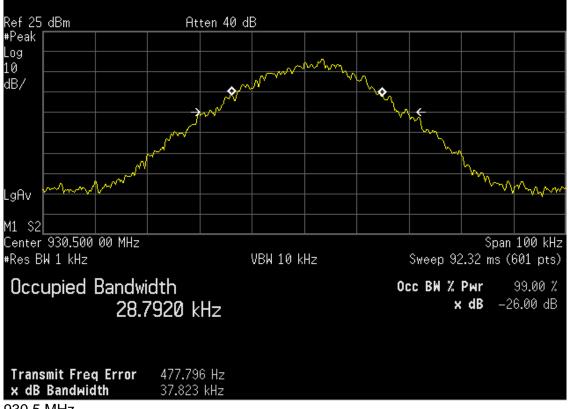
10.3 Occupied Bandwidth

Model	601-1000-E3F1FECL1	Specification	FCC Part 90 & 24
Serial Number	EBS-6	Test Date	January 17, 2024
Test Personnel	Joseph Strzelecki	Test Location	Chamber B
Test Equipment	EMI Receiver (REC-44)		

	99% OBW (kHz)
Channel	kHz
466 MHz	7.0245
468 MHz	7.1096
930.5 MHz	28.7920
940.5 MHz	28.8017

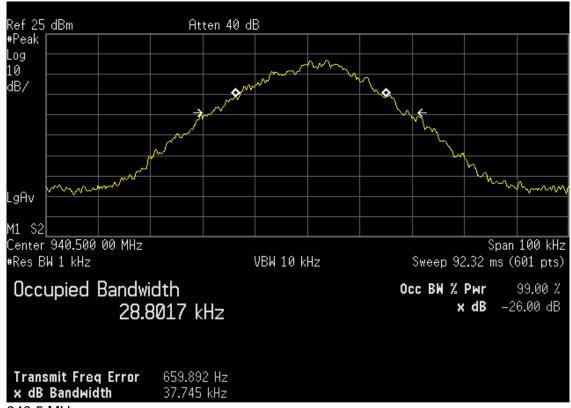


466 MHz


RP-9899A Rev. 0 Page 24 of 41

B

Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1


468 MHz

930.5 MHz

RP-9899A Rev. 0 Page 25 of 41

Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1

940.5 MHz

10.4 Field Strength of Unwanted Spurious Radiation

10.4.1 Test Procedures

Radiated emission measurements in the Restricted bands were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists. From 30 to 4700 MHz, a spectrum analyzer with a preselector was used for measurement. Radiated emissions measurements were performed at the anechoic chamber at a test distance of 3 meters. The entire frequency range from 30 to 4700 MHz was slowly scanned and the emissions in the restricted frequency bands were recorded. Measurements were performed using the peak detector function.

The spectrum analyzer was adjusted for the following settings:

- 1) Resolution Bandwidth = 100 kHz for spurious emissions below 1 GHz, and 1 MHz for spurious emissions above 1GHz.
- 2) Video Bandwidth = 300 kHz for spurious emissions below 1 GHz, and 3 MHz for spurious emissions above 1 GHz.
- 3) Sweep Speed slow enough to maintain measurement calibration.
- 4) Detector Mode = Positive Peak.

The transmitter to be tested was placed on the turntable in the standard test site, or an FCC listed site compliant with ANSI C63.4. The transmitter is transmitting into a non-radiating load that is placed on the turntable. Measurements were made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier. The transmitter was keyed during the tests.

RP-9899A Rev. 0 Page 26 of 41

For each spurious frequency, the test antenna was raised and lowered from 1 m to 4m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Then the turntable was rotated 360° to determine the maximum reading. This procedure was repeated to obtain the highest possible reading. This maximum reading was recorded.

Each measurement was repeated for each spurious frequency with the test antenna polarized vertically.

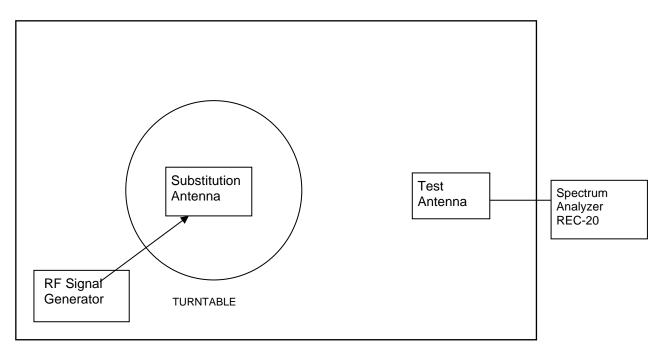


Figure 1. Drawing of Radiated Emissions Setup

ANSI C63.4 Listed Test Site

Notes:

- Test Antenna height varied from 1 to 4 meters
- Distance from antenna to tested system is 3 meters
- Not to Scale

Frequency MHz	Test Antenna	Substitution Antenna	Receiver to Coupler	Signal Generator
30 - 200	ANT-80	ANT-79	REC-44	SIG-31
200 - 1000	ANT-68	ANT-06	REC-44	SIG-31
1000-5000	ANT-66	ANT-13	REC-44	SIG-31

The transmitter was removed and replaced with a broadband substitution antenna. The substitution antenna is calibrated so that the gain relative to a dipole is known. The center of the substitution antenna was approximately at the same location as the center of the transmitter.

The substitution antenna was fed at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized, and with the signal generator tuned to a particular spurious frequency, the test antenna was raised and lowered to obtain a maximum reading at the spectrum analyzer. The level of the signal generator output was adjusted until the previously recorded maximum reading for this set of conditions was obtained.

RP-9899A Rev. 0 Page 27 of 41

Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1

The measurements were repeated with both antennas horizontally and vertically polarized for each spurious frequency.

The power in dBm into a was calculated by reducing the substitution readings obtained above by the loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:

Pd(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dB)

where:

Pd is the dipole equivalent power and

Pg is the generator output power into the substitution antenna.

10.4.2 Test Limits

Any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB.

Since by mathematical definition, P(dBm) - (50+10xLOG(P(W))) = -20 dBm, the limit for spurious emissions was set to -20 dBm equivalent radiated power. P(W) = Power in watts.

10.4.3 Spurious Radiated Emissions Test Results

Model	601-1000-E3F1FECL1	Specification	FCC Part 90.210
Serial Number	EBS-6	Test Date	January 3-5, 2024
Test Distance	3 Meters	Notes	Transmit Mode
Test Personnel	Chris Dalessio		

	Tx	Measured	Equivalent Radiated power into Dipole			Margin U	Inder Limit
Harmonic	Freq	Freq	Vertical	Horizontal	Limit	Vertical	Horizontal
#	MHz	MHz	dBm	dBm	dBm	dB	dB
2	466.000	932.00	-27.9	-27.8	-20.0	7.9	7.8
3	466.000	1398.00	-41.4	-39.9	-20.0	21.4	19.9
4	466.000	1864.00	-33.0	-33.3	-20.0	13.0	13.3
5	466.000	2330.00	-40.3	-45.2	-20.0	20.3	25.2
6	466.000	2796.00	-54.0	-55.1	-20.0	34.0	35.1
7	466.000	3262.00	-51.0	-52.7	-20.0	31.0	32.7
8	466.000	3728.00	-60.3	-58.4	-20.0	40.3	38.4
9	466.000	4194.00	-46.9	-49.8	-20.0	26.9	29.8
10	466.000	4660.00	-58.7	-56.8	-20.0	38.7	36.8
2	468.000	936.00	-24.6	-28.4	-20.0	4.6	8.4
3	468.000	1404.00	-45.3	-45.4	-20.0	25.3	25.4
4	468.000	1872.00	-31.3	-31.1	-20.0	11.3	11.1
5	468.000	2340.00	-41.6	-47.2	-20.0	21.6	27.2
6	468.000	2808.00	-55.7	-60.5	-20.0	35.7	40.5
7	468.000	3276.00	-49.0	-49.2	-20.0	29.0	29.2
8	468.000	3744.00	-60.2	-60.9	-20.0	40.2	40.9
9	468.000	4212.00	-49.5	-52.8	-20.0	29.5	32.8
10	468.000	4680.00	-53.0	-59.0	-20.0	33.0	39.0

No other radiated emissions were detected within 10 dB of the limits from 30 MHz to 9.2 GHz. Judgment: Passed by at least 10 dB.

RP-9899A Rev. 0 Page 28 of 41

10.4.4 Spurious Radiated Emissions Test Results (Part 24)

Model	601-1000-E3F1FECL1	Specification	FCC Part 24
Serial Number	EBS-6	Test Date	January 3-5, 2024
Test Distance	3 Meters	Notes	Transmit Mode
Test Personnel	Chris Dalessio		

	Tx	Measured	Equivalent Radiated power into Dipole			Margin U	Inder Limit
Harmonic	Freq	Freq	Vertical	Horizontal	Limit	Vertical	Horizontal
#	MHz	MHz	dBm	dBm	dBm	dB	dB
2	930.500	1861.00	-16.2	-16.2	-13.0	3.2	3.2
3	930.500	2791.50	-31.0	-36.8	-13.0	18.0	23.8
4	930.500	3722.00	-27.8	-31.2	-13.0	14.8	18.2
5	930.500	4652.50	-34.8	-36.6	-13.0	21.8	23.6
6	930.500	5583.00	-32.1	-32.0	-13.0	19.1	19.0
7	930.500	6513.50	-26.8	-27.5	-13.0	13.8	14.5
8	930.500	7444.00	-37.2	-41.3	-13.0	24.2	28.3
9	930.500	8374.50	-29.4	-29.6	-13.0	16.4	16.6
10	930.500	9305.00	-28.9	-27.8	-13.0	15.9	14.8
2	940.500	1881.00	-16.6	-18.0	-13.0	3.6	5.0
3	940.500	2821.50	-32.7	-36.0	-13.0	19.7	23.0
4	940.500	3762.00	-35.8	-40.2	-13.0	22.8	27.2
5	940.500	4702.50	-32.1	-36.9	-13.0	19.1	23.9
6	940.500	5643.00	-30.3	-26.6	-13.0	17.3	13.6
7	940.500	6583.50	-24.3	-20.7	-13.0	11.3	7.7
8	940.500	7524.00	-37.4	-39.6	-13.0	24.4	26.6
9	940.500	8464.50	-30.2	-36.0	-13.0	17.2	23.0
10	940.500	9405.00	-33.7	-34.9	-13.0	20.7	21.9

No other radiated emissions were detected within 10 dB of the limits from 30 MHz to 9.2 GHz.

Judgment: Passed by at least 10 dB.

RP-9899A Rev. 0 Page 29 of 41

10.5 Frequency Stability

10.5.1 Frequency Stability Vs Temperature

The chamber was then set to the lowest temperature. The transmitter was in the chamber and allowed to stabilize for 15 minutes. The transmitter was then keyed, and the frequency was recorded. The chamber was then incremented in 10°C steps with a minimum of 15-minute stabilization period for each temperature measurement. The transmitter was off during the temperature transitions.

10.5.2 Frequency Stability Vs Supply Voltage

The EUT was allowed to stabilize with the nominal primary power supply voltage applied. The primary input voltage was varied from the lowest to the highest rated levels specified by the manufacturer.

10.5.3 Test Results for Frequency Stability

Model	601-1000-E3F1FECL1	000-E3F1FECL1 Specification			
Serial Number EBS-6		Test Date	January 26-27, 2024		
Test Personnel	Chris D'Alessio	Test Location	Station F		
Test Equipment	Test Equipment Spectrum Analyzer (REC-20); Freq. Counter(CNT-01);				
	Temperature Chamber TC-01; Digital Multimeter (DMM-11)				
Notes 15 minutes at each Temperature; 1 min at each voltage			ige		
Nominal Frequence	cy 460.000 MHz				

Volts	Freq.	Nominal Freq:	Deviation	
VDC	(MHz)	(MHz)	Hz	PPM
10.0		467.000092	4	0.01
12.0		467.000092	6	0.01
14.0		467.000092	7	0.01

Temp	Measured Freq	Nominal Freq:	Deviation	
Deg C	(MHz)	at 20 Deg C	Hz	PPM
50	467.000072	467.000092	-20	-0.04
40	467.000075	467.000092	-17	-0.04
30	467.000107	467.000092	15	0.03
20	467.000092	467.000092	0	0.00
10	467.000078	467.000092	-14	-0.03
0	467.000069	467.000092	-23	-0.05
-10	466.999911	467.000092	-181	-0.39
-20	467.000015	467.000092	-77	-0.16
-30	467.000130	467.000092	38	0.08

RP-9899A Rev. 0 Page 30 of 41

Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1

Nominal Frequency	930.500 MHz
-------------------	-------------

Volts	Freq.	Nominal Freq:	Deviation	
VDC	(MHz)	(MHz)	Hz	PPM
10.0	930.499924	930.499917	7	0.01
12.0	930.499914	930.499917	-3	0.00
14.0	930.499936	930.499917	19	0.02

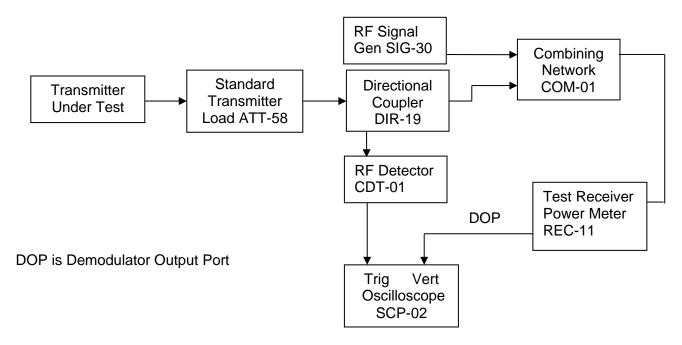
Temp	Measured Freq	Nominal Freq:	Deviation	
Deg C	(MHz)	at 20 Deg C	Hz	PPM
50	930.499850	930.499917	-67	-0.07
40	930.499915	930.499917	-2	0.00
30	930.500460	930.499917	543	0.58
20	930.499917	930.499917	0	0.00
10	930.499893	930.499917	-24	-0.03
0	930.499816	930.499917	-101	-0.11
-10	930.499860	930.499917	-57	-0.06
-20	930.499886	930.499917	-31	-0.03
-30	930.500013	930.499917	96	0.10

Nominal Frequency 940.500 MHz

Volts	Freq.	Nominal Freq:	Deviation	
VDC	(MHz)	(MHz)	Hz	PPM
10.0	940.499914	940.499916	-2	0.00
12.0	940.499911	940.499916	-5	-0.01
14.0	940.499917	940.499916	1	0.00

Temp	Measured Freq	Nominal Freq:	Deviation	
Deg C	(MHz)	at 20 Deg C	Hz	PPM
50	940.499911	940.499916	-5	-0.01
40	940.499973	940.499916	57	0.06
30	940.500513	940.499916	597	0.63
20	940.499916	940.499916	0	0.00
10	940.499960	940.499916	44	0.05
0	940.499876	940.499916	-40	-0.04
-10	940.499920	940.499916	4	0.00
-20	940.499960	940.499916	44	0.05
-30	940.500087	940.499916	171	0.18

Test Requirements: Limit is 2.5 ppm


Judgement: Pass

RP-9899A Rev. 0 Page 31 of 41

10.6 Transient Frequency Behavior

10.6.1 Test method

The test was performed in accordance with TIA-603-D Section 2.2.19.3 Alternate Method of Measurement (Using a Test Receiver). The equipment was connected as shown below.

10.6.2 Limits of transient frequency

Time intervals ^{1,2}	Maximum Frequency Difference ³	421 to 512 MHz Equipment Operating on 12.5 kHz Channels
t ₁ ⁴	±12.5 kHz	10.0 mSec
t ₂	±6.25 kHz	25.0 mSec
t ₃ ⁴	±12.5 kHz	10.0 mSec

¹_{on} is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing. t₁ is the time period immediately following t_{on}.

RP-9899A Rev. 0 Page 32 of 41

t2 is the time period immediately following t1.

t₃ is the time period from the instant when the transmitter is turned off until t_{off}.

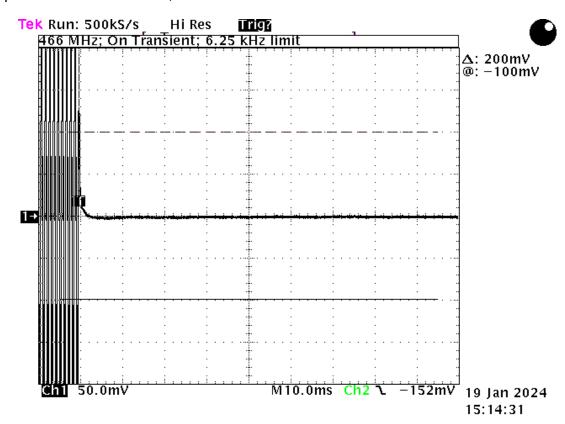
toff is the instant when the 1 kHz test signal starts to rise.

 $^{^2}$ During the time from the end of t_2 to the beginning of t_3 , the frequency difference must not exceed the limits specified in § 90.213.

³ Difference between the actual transmitter frequency and the assigned transmitter frequency.

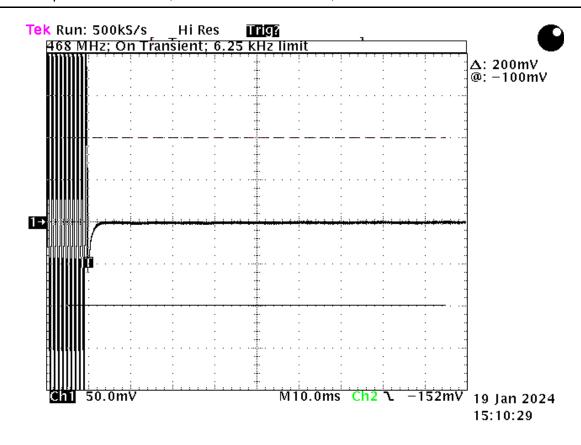
⁴ If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

10.6.3 Test Results

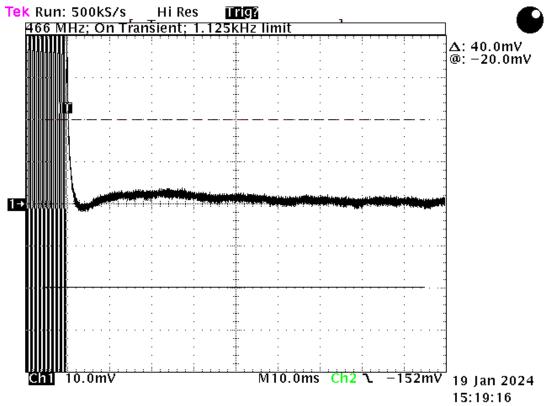

Model	601-10 S/N: E	000-E3F1FECL1	Specification	FCC part 90.214
Test Location		Chamber C	Test Date	January 19, 2024
Test Personnel		Joseph Strzelecki		

		Limit	Limits for Time interval/Freq difference					
	Channel	t	1	t	2	t	3	Test
Freq MHz	BW	mSec	kHz	mSec	kHz	mSec	kHz	Result
450.025	12.5	10	12.5	25	6.25	10	12.5*	Pass
460.000	12.5	10	12.5	25	6.25	10	12.5*	Pass
469.975	12.5	10	12.5	25	6.25	10	12.5*	Pass

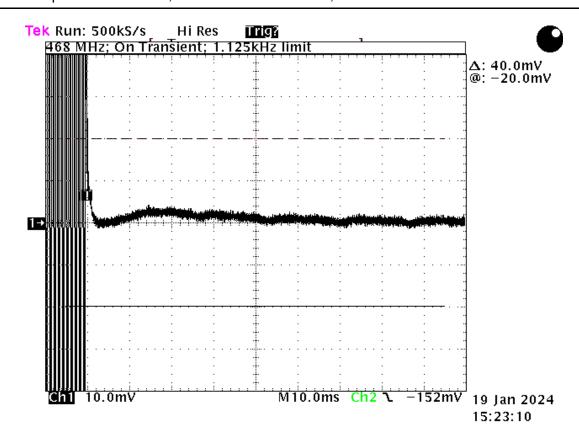
Judgement: Pass


10.6.4 Results for Time Periods t1, t2, and t3

The EUT passed the 6.25 kHz limit, so the 12.5 limit is not shown.


RP-9899A Rev. 0 Page 33 of 41

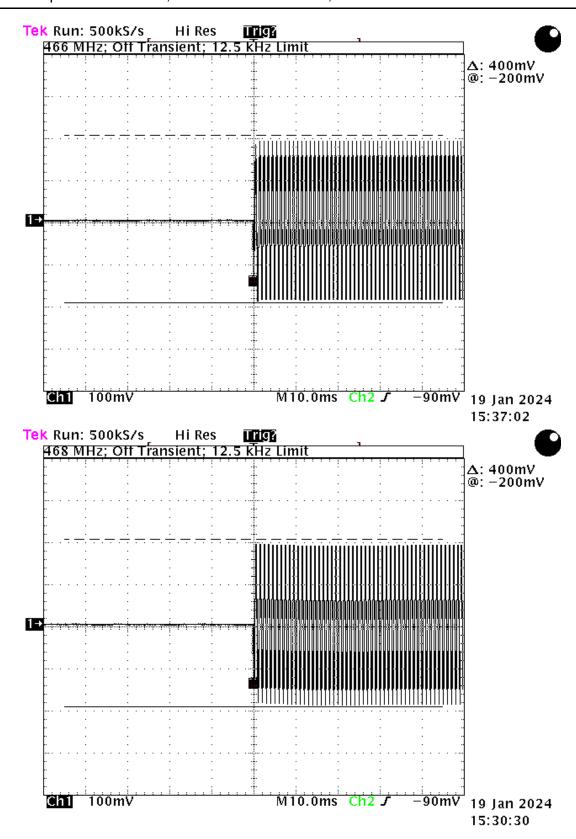
^{*}Since the transmitter carrier output power is less than 6 watts, the frequency difference during the t3 time period may exceed the maximum frequency difference for this time period.



10.6.5 Results for Time Period between t2 and t3

The limit between t2 and t3 on all the scope traces are calculated for the 466 MHz Channel since this is the lowest limit. This limit is 466 MHz * 2.5 ppm or 1125 Hz.

RP-9899A Rev. 0 Page 34 of 41



10.6.6 Results for Time Period t3

Since the transmitter carrier output power is less than 6 watts, the frequency difference during the t3 time period may exceed the maximum frequency difference for this time period.

RP-9899A Rev. 0 Page 35 of 41

Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1

RP-9899A Rev. 0 Page 36 of 41

Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1

10.7 Radiated Emissions (Receive Mode)

Radiated emission measurements were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. The radiated emission measurements were performed with a spectrum analyzer. The bandwidth used from 150 kHz to 30 MHz is 9 or 10 kHz and the bandwidth from 30 MHz to 1000 MHz is 100 or 120 kHz. Above 1 GHz, a 1 MHz bandwidth is used. A 10-dB linearity check is performed prior to start of testing, in order to determine if an overload condition exists.

From 30 to 2000 MHz, an Anritsu spectrum analyzer was used. Final radiated emissions measurements were performed inside of an anechoic chamber at a test distance of 3 meters. The anechoic chamber is designated as Chamber E. This Chamber meets the Site Attenuation requirements of ANSI C63.4 and CISPR 16-1. Chamber E is located at 12 Devonwood Ave. Romeoville, Illinois EMI test lab.

The entire frequency range from 30 to 5000 MHz was slowly scanned with attention paid to those frequency ranges which appeared high. Measurements were performed using two antenna polarizations, (vertical and horizontal). The worst-case emissions were recorded. All measurements may be performed using either the peak, average or quasi-peak detector functions. If the peak detector data exceeds or is marginally close to the limits, the measurements are repeated using a quasi-peak detector or average function as required by the specification for final determination of compliance.

The detected emission levels were maximized by rotating the EUT, adjusting the positions of all cables, and by scanning the measurement antenna from 1 to 4 meters above the ground.

10.7.1 Radiated Emissions Field Strength Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and by subtracting the Amplifier Gain from the measured reading. The basic equation is as follows:

FS = RA + AF + CF - AG

Where: FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

10.7.2 Spurious Radiated Emissions Test Results (Receive Mode)

Model 601-10 S/N: E	000-E3F1FECL1 :BS-6	Specification	FCC Part 15 Subpart B			
Test Distance	3 Meters	Test Date	January 5, 2024			
Tested by	Chris E. Dalessio					
Abbreviations	Pol = Antenna Polarization; V = Ver	tical; H = Horizo	ontal; P = peak; Q = QP			
Notes	Corr. Factors = Cable Loss - Prean	np Gain				
Configuration Receive Mode						

	Meter				Cable &	Dist.			Margin	
Freq.	Reading		Ant.	Ant	Amp	Fact	EUT	Limit	Under	
MHz	dBuV	Dect.	Pol.	Factor	Factors	dB	dBuV/m	dBuV/m	Limit dB	Note
40.4	4.8	Р	Н	10.5	0.7	0.0	16.0	40.0	24.0	
55.2	7.8	Р	Н	9.0	0.8	0.0	17.6	40.0	22.4	
63.0	6.4	Р	Н	9.0	0.8	0.0	16.2	40.0	23.8	
70.3	6.3	Р	Н	9.1	0.9	0.0	16.3	40.0	23.7	
79.8	10.5	Р	Н	9.1	1.0	0.0	20.6	40.0	19.4	

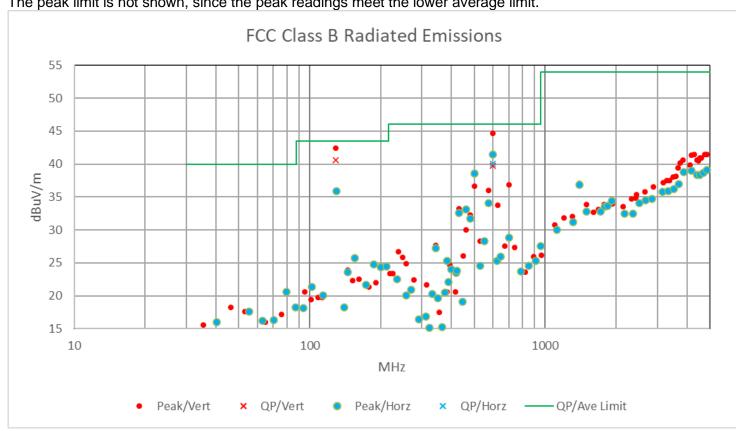
RP-9899A Rev. 0 Page 37 of 41

	Meter				Cable &	Dist.			Margin	
Freq.	Reading	_	Ant.	Ant	Amp	Fact	EUT	Limit	Under	
MHz	dBuV	Dect.	Pol.	Factor	Factors	dB	dBuV/m	dBuV/m	Limit dB	Note
87.3	7.8	Р	Н	9.5	1.0	0.0	18.3	40.0	21.7	
93.7	7.4	Р	Н	9.7	1.0	0.0	18.1	43.5	25.4	
102.3	9.9	Р	Н	10.3	1.1	0.0	21.3	43.5	22.2	
113.8	7.9	Р	Н	11.1	1.1	0.0	20.1	43.5	23.4	
130.0	22.8	Р	Н	11.9	1.2	0.0	35.9	43.5	7.6	
145.5	9.8	Р	Н	12.5	1.3	0.0	23.6	43.5	19.9	
155.2	11.7	Р	Н	12.7	1.3	0.0	25.7	43.5	17.8	
173.4	7.1	Р	Н	13.2	1.4	0.0	21.7	43.5	21.8	
187.3	9.6	Р	Н	13.7	1.5	0.0	24.8	43.5	18.7	
199.9	8.6	Р	Н	14.2	1.5	0.0	24.3	43.5	19.2	
212.1	8.2	Р	Н	14.6	1.6	0.0	24.4	43.5	19.1	
235.7	5.8	Р	Н	15.0	1.7	0.0	22.5	46.0	23.5	
257.1	6.2	Р	Н	12.2	1.7	0.0	20.1	46.0	25.9	
270.4	6.5	Р	Н	12.6	1.8	0.0	20.9	46.0	25.1	
291.6	0.9	P	Н	13.6	1.9	0.0	16.4	46.0	29.6	
311.5	0.0	P	H	15.0	1.9	0.0	16.9	46.0	29.1	
332.5	4.1	P	H	14.2	2.0	0.0	20.3	46.0	25.7	
342.8	10.8	P	H	14.4	2.0	0.0	27.2	46.0	18.8	
375.1	3.8	P	H	14.6	2.1	0.0	20.5	46.0	25.5	
384.0	8.2	P	H	14.9	2.2	0.0	25.3	46.0	20.7	
387.7	4.8	P	H	15.1	2.2	0.0	22.1	46.0	23.9	
400.1	6.4	P	H	15.4	2.2	0.0	24.0	46.0	22.0	
418.3	5.6	P	H	15.6	2.3	0.0	23.5	46.0	22.5	
421.3	5.8	P	H	15.7	2.3	0.0	23.8	46.0	22.2	
432.1	14.3	P	H	16.0	2.3	0.0	32.6	46.0	13.4	
461.4	13.8	P	H	16.9	2.4	0.0	33.1	46.0	12.9	
480.1	12.1	P	H	17.1	2.5	0.0	31.7	46.0	14.3	
500.0	18.6	P	H	17.5	2.5	0.0	38.6	46.0	7.4	
552.1	7.6	P	H	18.1	2.6	0.0	28.3	46.0	17.7	
576.1	12.8	P	Н	18.6	2.7	0.0	34.1	46.0	11.9	
600.1	20.1	P	Н	18.7	2.7	0.0	41.5	46.0	4.5	
600.1	18.7	Q	Н	18.7	2.7	0.0	40.1	46.0	5.9	
625.1	3.4	P	Н	19.1	2.8	0.0	25.3	46.0	20.7	
648.1	3.6	P	Н	19.1	2.8	0.0	26.0	46.0	20.7	
700.2	4.5	P P	H H	21.3	3.0	0.0	28.8	46.0	17.2	
849.8	-1.0	P		22.3	3.3	0.0	24.6	46.0	21.4	
955.0	0.7	P	Н	23.4	3.5	0.0	27.6	46.0	18.4	4
1125.1	37.0		H	24.6	-31.6	0.0	30.0	74.0	44.0	1
1318.3	37.7	Р	H	25.0	-31.5	0.0	31.2	74.0	42.8	1
1400.4	43.2	Р	Н	25.0	-31.4	0.0	36.8	74.0	37.2	1
1500.5	38.9	Р	H	25.2	-31.3	0.0	32.8	74.0	41.2	1
1789.8	37.4	Р	H	26.9	-30.8	0.0	33.5	74.0	40.5	1
1838.8	37.4	Р	H	27.0	-30.8	0.0	33.6	74.0	40.4	1
1922.9	38.0	Р	H	27.1	-30.7	0.0	34.4	74.0	39.6	1
2167.3	35.1	Р	H	27.7	-30.3	0.0	32.5	74.0	41.5	1
2364.5	34.2	Р	H	28.2	-29.9	0.0	32.5	74.0	41.5	1
2506.7	35.5	P	Н	28.4	-29.8	0.0	34.1	74.0	39.9	1
2665.8	35.0	P	Н	28.9	-29.4	0.0	34.5	74.0	39.5	1
2852.0	34.5	P	Н	29.4	-29.2	0.0	34.7	74.0	39.3	1
3152.3	33.7	Р	Н	30.7	-28.6	0.0	35.8	74.0	38.2	1
3339.5	33.0	Р	Н	31.2	-28.3	0.0	35.9	74.0	38.1	1
3515.7	32.8	Р	Н	31.3	-27.9	0.0	36.2	74.0	37.8	1
3880.0	33.5	Р	Н	32.8	-27.5	0.0	38.8	74.0	35.2	1

RP-9899A Rev. 0 Page 38 of 41

		ı		ı			1		1	
	Meter				Cable &	Dist.			Margin	
Freq.	Reading	_	Ant.	Ant	Amp	Fact	EUT	Limit	Under	
MHz	dBuV	Dect.	Pol.	Factor	Factors	dB	dBuV/m	dBuV/m	Limit dB	Note
4175.3	33.4	Р	Н	32.4	-26.8	0.0	39.0	74.0	35.0	1
4404.6	32.2	Р	Н	32.7	-26.6	0.0	38.3	74.0	35.7	1
4860.0	31.2	Р	Η	33.5	-25.6	0.0	39.1	74.0	34.9	1
35.3	3.2	Р	V	11.8	0.6	0.0	15.6	40.0	24.4	
46.2	7.7	Р	V	9.9	0.7	0.0	18.3	40.0	21.7	
53.0	7.8	Р	V	9.0	8.0	0.0	17.6	40.0	22.4	
64.7	6.4	Р	V	8.8	0.8	0.0	16.0	40.0	24.0	
76.2	7.5	Р	V	8.8	0.9	0.0	17.2	40.0	22.8	
84.6	3.7	Р	V	9.1	1.0	0.0	13.8	40.0	26.2	
95.5	9.7	Р	V	9.9	1.0	0.0	20.6	43.5	22.9	
101.7	8.1	Р	V	10.2	1.1	0.0	19.4	43.5	24.1	
108.8	7.9	Р	V	10.7	1.1	0.0	19.7	43.5	23.8	
113.6	7.7	Р	V	11.0	1.1	0.0	19.8	43.5	23.7	
129.1	29.3	Р	V	11.9	1.2	0.0	42.4	43.5	1.1	
129.1	27.5	Q	V	11.9	1.2	0.0	40.6	43.5	2.9	
144.8	10.1	Р	V	12.5	1.3	0.0	23.9	43.5	19.6	
152.6	8.3	Р	V	12.7	1.3	0.0	22.3	43.5	21.2	
162.1	8.3	Р	V	12.8	1.4	0.0	22.5	43.5	21.0	
178.7	6.6	Р	V	13.3	1.5	0.0	21.4	43.5	22.1	
190.6	6.7	Р	V	13.8	1.5	0.0	22.0	43.5	21.5	
199.9	8.7	Р	V	14.2	1.5	0.0	24.4	43.5	19.1	
219.4	7.0	Р	V	14.8	1.6	0.0	23.4	46.0	22.6	
226.2	6.9	Р	V	14.9	1.6	0.0	23.4	46.0	22.6	
238.4	10.0	Р	V	15.0	1.7	0.0	26.7	46.0	19.3	
247.9	8.8	Р	V	15.3	1.7	0.0	25.8	46.0	20.2	
257.3	11.0	Р	V	12.2	1.7	0.0	24.9	46.0	21.1	
276.5	7.7	Р	V	12.9	1.8	0.0	22.4	46.0	23.6	
314.6	4.8	Р	V	14.9	2.0	0.0	21.7	46.0	24.3	
342.8	11.3	Р	V	14.4	2.0	0.0	27.7	46.0	18.3	
384.0	3.5	Р	V	14.9	2.2	0.0	20.6	46.0	25.4	
395.0	7.2	Р	V	15.3	2.2	0.0	24.7	46.0	21.3	
432.1	14.9	P	V	16.0	2.3	0.0	33.2	46.0	12.8	
450.0	7.3	P	V	16.5	2.3	0.0	26.1	46.0	19.9	
461.4	10.7	P	V	16.9	2.4	0.0	30.0	46.0	16.0	
480.1	12.7	P	V	17.1	2.5	0.0	32.3	46.0	13.7	
500.0	16.6	P	V	17.5	2.5	0.0	36.6	46.0	9.4	
528.0	7.7	P	V	18.0	2.6	0.0	28.3	46.0	17.7	
576.1	14.7	P	V	18.6	2.7	0.0	36.0	46.0	10.0	
600.1	23.3	P	V	18.7	2.7	0.0	44.7	46.0	1.3	
600.1	18.3	Q	V	18.7	2.7	0.0	39.7	46.0	6.3	
629.1	11.8	P	V	19.2	2.8	0.0	33.8	46.0	12.2	
700.2	12.6	P	V	21.3	3.0	0.0	36.9	46.0	9.1	
743.7	3.3	P	V	20.9	3.1	0.0	27.3	46.0	18.7	
822.8	-1.3	P	V	21.6	3.3	0.0	23.6	46.0	22.4	
894.9	-0.2	P	V	22.8	3.4	0.0	26.0	46.0	20.0	
964.5	-0.2	P	V	23.5	3.5	0.0	26.2	54.0	27.8	
1102.1	37.9	P	V	24.5	-31.6	0.0	30.8	74.0	43.2	1
1200.2	38.5	P	V	24.9	-31.6	0.0	31.8	74.0	42.2	<u>'</u> 1
1304.3	38.5	P	V	25.0	-31.5	0.0	32.0	74.0	42.0	<u>1</u> 1
1400.4	43.5	P	V	25.0	-31.4	0.0	37.1	74.0	36.9	<u>1</u> 1
1500.5	40.0	P	V	25.0	-31.3	0.0	33.9	74.0	40.1	<u>1</u> 1
1604.6	38.2	P	V	25.2	-31.0	0.0	32.7	74.0	41.3	1
1687.7	37.9	P	V	26.2	-31.0	0.0	33.1	74.0	40.9	<u>1</u> 1
1007.7	31.8	「	V	20.2	-31.U	0.0	JJ. I	74.0	40.9	<u> </u>

RP-9899A Rev. 0 Page 39 of 41



	Meter				Cable &	Dist.			Margin	
Freq.	Reading		Ant.	Ant	Amp	Fact	EUT	Limit	Under	
MHz	dBuV	Dect.	Pol.	Factor	Factors	dB	dBuV/m	dBuV/m	Limit dB	Note
1776.8	37.9	Р	V	26.8	-30.8	0.0	33.9	74.0	40.1	1
1927.9	37.5	Р	V	27.2	-30.7	0.0	34.0	74.0	40.0	1
2321.3	36.6	Р	V	28.1	-30.0	0.0	34.7	74.0	39.3	1
2449.4	37.0	Ρ	V	28.3	-29.9	0.0	35.4	74.0	38.6	1
2661.7	36.3	Р	V	28.9	-29.4	0.0	35.8	74.0	38.2	1
2886.9	36.1	Р	V	29.5	-29.1	0.0	36.5	74.0	37.5	1
3175.2	35.0	Р	V	30.8	-28.6	0.0	37.2	74.0	36.8	1
3278.3	34.8	Р	V	31.1	-28.4	0.0	37.5	74.0	36.5	1
3493.5	34.8	Р	V	31.2	-28.0	0.0	38.0	74.0	36.0	1
3678.7	35.2	Р	V	31.9	-27.7	0.0	39.4	74.0	34.6	1
3754.8	35.5	Р	V	32.4	-27.7	0.0	40.2	74.0	33.8	1
3849.8	35.5	Р	V	32.7	-27.6	0.0	40.6	74.0	33.4	1
4169.2	35.7	Р	V	32.4	-26.8	0.0	41.3	74.0	32.7	1
4305.3	35.5	Р	V	32.5	-26.6	0.0	41.4	74.0	32.6	1
4542.5	34.4	Р	V	33.0	-26.5	0.0	40.9	74.0	33.1	1
4864.9	33.5	Р	V	33.5	-25.6	0.0	41.4	74.0	32.6	1

Note 1; Peak reading meeting the average limit, so the average reading is not required.

Judgment: Pass by 2.9 dB

Radiated emissions in a graphical format. The following chart is the same data as the previous table. The peak limit is not shown, since the peak readings meet the lower average limit.

RP-9899A Rev. 0 Page 40 of 41

Test Report for the Aclara, Enhanced Base Station, Model 601-1000-E3F1FECL1

11.0 MEASUREMENT INSTRUMENTATION UNCERTAINTY

Measurement	Uncertainty
Radiated Emissions, E-field, 3 meters, 30 to 200 MHz	3.3 dB
Radiated Emissions, E-field, 3 meters, 200 to 1000 MHz	4.9 dB
Radiated Emissions, E-field, 3 meters, 1 to 18 GHz	4.8 dB
99% Occupied Bandwidth using REC-43	1% of frequency span
Conducted power PWM-01; 460 - 940 MHz	0.2 dB
Amplitude measurement 1-9500 MHz	1.8 dB
Temperature THM-02	0.6 Deg. C

The uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2 in accordance with CISPR 16-4-2.

12.0 REVISION HISTORY

RP-98	RP-9899A Revisions:									
Rev.	Affected	Description	Rationale							
	Sections									

RP-9899A Rev. 0 Page 41 of 41