RF Exposure

FCC ID: LLB9985T491

This calculation is based on the highest EIRP possible from the EUT considering maximum power and antenna gain.

There is only one frequency transmitting at a time.

1.0 RF EXPOSURE PER FCC 1.1310

						Declared		
	Max Power					Minimum		
	Including Tune	Max Ant	Duty			separation	EUT power	
	up Tolerance	Gain	Cycle	EIRP	(S) GP Limit	Distance	Density	
MHz	(dBm)	(dBi)	(%)	(Watts)	(mW/cm^2)	(cm)	(mW/cm^2)	Result
466	36.0	7.1	100	20.417	0.311	150.0	0.072	Pass
468	36.0	7.1	100	20.417	0.312	150.0	0.072	Pass
930.5	36.0	8.7	100	29.512	0.620	150.0	0.104	Pass
940.5	36.0	8.7	100	29.512	0.627	150.0	0.104	Pass

Notes on the above table:

- a. S is the power density General Population Limit from FCC 1.1310 Table 1
- b. EIRP Power is the Peak Effective Radiated Power.

EIRP = (Average Conducted Power + Antenna gain) * Duty Cycle.

POWER DENSITY

Power density is given by:

 $S = EIRP / (4 * Pi * D^2)$

Where

S = Power density in mW/cm^2

EIRP = Equivalent Isotropic Radiated Power in mW

D = Separation distance in cm

Since the calculated power density is less than the limit, this product fully meets the FCC requirements for the general population.