FCC ID: LLB2020001

This calculation is based on the highest EIRP possible from the EUT considering maximum power and antenna gain. The highest peak output power of the EUT is 0.933 W and the max gain of the antenna is 5 dBi.

There is a firmware-controlled duty cycle. The firmware is set to limit duty cycle at 10% duty cycle or less in any given 6-minute period.

	Max Power	Max Ant	Duty	EIRP	(S) GP Limit	Declared Minimum seperation	EUT power Density	
MHz	dBm	Gain dBi	Cycle %	Watts	mW/cm^2		mW/cm2	Result
450	29.70	5	10	0.295	0.300	20.0	0.059	Pass
460	29.50	5	10	0.282	0.307	20.0	0.056	Pass
470	28.90	5	10	0.245	0.313	20.0	0.049	Pass

Notes on the above table:

- a. S is the power density General Population Limit from FCC 1.1310 Table 1
- b. EIRP Power is the Peak Effective Radiated Power.
 - EIRP = (Average Conducted Power + Antenna gain) * Duty Cycle.

POWER DENSITY

Power density is given by:

S = EIRP / (4 * Pi * D^2)

Where

 $S = Power density in mW/cm^2$ EIRP = Equivalent Isotropic Radiated Power in mW D = Separation distance in cm

Since the calculated power density is less than the limit, this product fully meets the OET 65 requirements for the general population.