

Electromagnetic Compatibility Test Report

Tests Performed on an Aclara Technologies, LLC

Itron/Sprague Gas MTU, Model: 2017-021

Radiometrics Document RP-8961C

Product	Detail:					
FCC I	D: LLB2017021					
IC: 4546A-2017021						
Equip	ment type: 450-470 MH	z Transceiver				
	ndards:					
	R Title 47, Chapter I, F					
	Parts 2, 15, and 90 CFR	Title 47: 2016				
	S-119 Issue 12: 2015					
IC RS	S-GEN Issue 4: 2014		r			
	erformed For:		Test Facility:			
	a Technologies, LLC		Radiometrics Midwest Corporation			
	estport Plaza Drive, Suit	e 500	12 East Devonwood			
Saint I	Louis, MO 63146		Romeoville, IL 60446			
			Phone: (815) 293-0772			
Test Da						
Octob	er 22 to December 10, 2	2018				
Docun	nent RP-8961C Revisio	ns:				
Rev.	Issue Date	Affected Sections		Revised By		
0	February 19, 2019					
	•	•				

Table of Contents

1 ADMINISTRATIVE DATA	
2 TEST SUMMARY AND RESULTS	
3 EQUIPMENT UNDER TEST (EUT) DETAILS	4
3.1 EUT Description	4
4 TESTED SYSTEM DETAILS	4
4.1 Tested System Configuration	4
4.2 Special Accessories	4
4.3 Equipment Modifications	
5 TEST SPECIFICATIONS AND RELATED DOCUMENTS	4
6 RADIOMETRICS' TEST FACILITIES	5
7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS	
8 CERTIFICATION	
9 TEST EQUIPMENT TABLE	
10 TEST SECTIONS	
10.1 Peak Output Power	
10.2 Occupied Bandwidth; Emissions Masks	
10.2.1 Conducted Spurious Emissions	
10.3 Occupied Bandwidth	.27
10.4 Field Strength of Unwanted Spurious Radiation	.31
10.4.1 Test Procedures	
Figure 1. Drawing of Radiated Emissions Setup	.32
10.4.2 Spurious Radiated Emissions Test Results	
10.5 Frequency Stability	
10.5.1 Frequency Stability Vs Temperature	
10.5.2 Frequency Stability Vs Supply Voltage	.35
10.5.3 Test Results for Frequency Stability	
10.6 Transient Frequency Behavior	
10.6.1 Test method	
10.6.2 Limits of transient frequency	
10.6.3 Test Results	
10.6.4 Results for Time Periods t1 and t2	
10.6.5 Results for Time Period between t2 and t3	
10.6.6 Results for Time Period t3	
10.7 Radiated Emissions (Receive Mode)	
10.7.1 Radiated Emissions Field Strength Sample Calculation	
10.7.2 Spurious Radiated Emissions Test Results (Receive Mode)	
11 MEASUREMENT INSTRUMENTATION UNCERTAINTY	.45

Notice: This report must not be reproduced (except in full) without the written approval of Radiometrics Midwest Corporation.

1 ADMINISTRATIVE DATA

Equipment Under Test:	
An Aclara Technologies LLC., Itron/Sprag	jue Gas MTU
Model: 2017-021; Serial Numbers: 18095	10001, 1809510002
These will be referred to as the EUT in thi	is Report
Date EUT Received at Radiometrics:	Test Dates:
October 22, 2018	October 22 to December 10, 2018
Test Report Written and Authorized By:	Test Witnessed By:
Joseph Strzelecki	The tests were not witnessed by personnel from
Senior EMC Engineer	Aclara Technologies, LLC
Radiometrics' Personnel Responsible for Test:	
Joseph Strzelechi 02/15/2	019
Date	
Joseph Strzelecki Senior EMC Engineer NARTE EMC-000877-NE	
Richard L. Tichgelaar EMC Technician	
Chris E. Dalessio EMC Technician	

2 TEST SUMMARY AND RESULTS

The EUT (Equipment Under Test) is an Itron/Sprague Gas MTU, Model 2017-021, manufactured by Aclara Technologies, LLC. The detailed test results are presented in a separate section. The following is a summary of the test results.

Transmitter Requirements							
			RSS 119				
Environmental Phenomena	Frequency Range	FCC Sections	Section	Test Result			
RF Power Output	450-470 MHz	2.1046 & 90.205	5.4	Pass			
Occupied Bandwidth Test; Emissions Masks	450-470 MHz	2.1049 & 90.209	5.5	Pass			
Spurious RF Conducted Emissions	1-4700 MHz	2.1051 & 90.210	5.8	Pass			
Field Strength of Spurious Radiation	30-4700 MHz	2.1053	5.3	Pass			
Frequency Vs. Temperature	450-470 MHz	2.1055 & 90.213	5.3	Pass			
Frequency Vs. Voltage	450-470 MHz	2.1055 & 90.213	5.3	Pass			
Transient Frequency Behavior	450-470 MHz	90.214	5.9	Pass			

3 EQUIPMENT UNDER TEST (EUT) DETAILS

3.1 EUT Description

The EUT is an Itron/Sprague Gas MTU. The Meter Transmitting Unit (MTU) is a battery powered device that is mounted directly on a gas meter and sends data over a narrow-band RF transmission link. The EUT is a 450-470 MHz transceiver, manufactured by Aclara Technologies, LLC. The RF communications link is encrypted in both directions. The EUT was in good working condition during the tests, with no known defects.

4 TESTED SYSTEM DETAILS

4.1 Tested System Configuration

The system was configured for testing in a typical fashion. The testing was performed in conditions as close as possible to installed conditions. Wiring was consistent with manufacturer's recommendations. The identification for all equipment, used in the tested system, is:

	Tested System Configuration List							
Item	Description	Туре*	Manufacturer	Model Number	Serial Number			
1	Itron/Sprague Gas MTU	Е	Aclara Technologies, LLC	2017-021	1809510001			
2	Itron/Sprague Gas MTU	E	Aclara Technologies, LLC	2017-021	1809510002			

* Type: E = EUT

4.2 Special Accessories

No special accessories were used during the tests in order to achieve compliance.

4.3 Equipment Modifications

No modifications were made to the EUT at Radiometrics' test facility in order to comply with the standards listed in this report.

5 TEST SPECIFICATIONS AND RELATED DOCUMENTS

Document	Date	Title
FCC CFR Title 47	2016	Code of Federal Regulations Title 47, Chapter 1, Federal Communications Commission, Part 15 & 90 - Radio Frequency Devices
ANSI C63.4-2014	2014	Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
TIA-603-D	2010	Land Mobile FM or PM Communications Equipment – Measurement and Performance Standards
IC RSS-Gen Issue 4	2014	General Requirements and Information for the Certification of Radiocommunication Equipment (RSS-Gen)
IC RSS-119 Issue 12	2015	Radio Transmitters and Receivers Operating in the Land Mobile and Fixed Services in the Frequency Range 27.41-960 MHz

RSS-Gen & RSS-119 are not currently in Radiometrics' Scope of Accreditation, however it uses the procedures from TIA-603-D and ANSI C63.4 that are in Radiometrics Scope of Accreditation

6 RADIOMETRICS' TEST FACILITIES

The results of these tests were obtained at Radiometrics Midwest Corp. in Romeoville, Illinois, USA. Radiometrics is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025: 2005 "General Requirements for the Competence of Calibration and Testing Laboratories". Radiometrics' Lab Code is 121191 and Certification Number is 1495.01. A copy of the accreditation can be accessed on our web site (www.radiomet.com). Radiometrics accreditation status can be verified at A2LA's web site (www.a2la2.org).

The following is a list of shielded enclosures located in Romeoville, Illinois used during the tests:

- Chamber A: Is an anechoic chamber that measures 24' L X 12' W X 12' H. The walls and ceiling are fully lined with ferrite absorber tiles. The floor has a 10' x 10' section of ferrite absorber tiles located in the center. Panashield of Rowayton, Connecticut manufactured the chamber. The enclosure is NAMAS certified.
- Chamber B: Is a shielded enclosure that measures 20' L X 12' W X 8' H. Erik A. Lindgren & Associates of Chicago, Illinois manufactured the enclosure.
- Chamber C: Is a shielded enclosure that measures 17' L X 10' W X 8' H. Lindgren RF Enclosures Inc. of Addison, Illinois manufactured the enclosure.
- Chamber E: Is a custom-made anechoic chamber that measures 52' L X 30' W X 18' H. The walls and ceiling are fully lined with RF absorber. Pro-shield of Collinsville, Oklahoma manufactured the chamber.

A separate ten-foot long, brass plated, steel ground rod attached via a 6-inch copper braid grounds each of the above chambers. Each enclosure is also equipped with low-pass power line filters.

The FCC has accepted these sites as test site number US1065. The FCC test site Registration Number is 732175. Details of the site characteristics are on file with the Industry Canada as site number IC3124A-01.

7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS

There were no deviations or exclusions from the test specifications.

8 CERTIFICATION

Radiometrics Midwest Corporation certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specification. The results relate only to the EUT listed herein. Any modifications made to the EUT subsequent to the indicated test date will invalidate the data and void this certification.

					Frequency Range	Cal	Cal
RMC ID	Manufacturer	Description	Model No.	Serial No.		Period	Date
AMP-05	RMC/Celeritek	Pre-amplifier	MW110G	1001	1.0-12GHz	12 Mo.	01/17/18
ANT-03	Tensor	Biconical Antenna	4104	2231	20-250MHz	24 Mo.	12/06/17
ANT-04	Tensor	Biconical Antenna	4104	2246	20-250MHz	24 Mo.	01/24/18
ANT-06	EMCO	Log-Periodic Ant.	3146	1248	200-1000MHz	24 Mo.	12/05/17
ANT-36	Ailtech-Eaton	Horn Antenna	96001	2013	1.0-18GHz	N/A	NCR

9 TEST EQUIPMENT TABLE

Test Report for the Aclara, Itron/Sprague Gas MTU, Model 2017-021

					Frequency Range	Cal	Cal
RMC ID	Manufacturer	Description	Model No.	Serial No.		Period	Date
ANT-66	ETS-Lindgren	Horn Antenna	3115	62580	1.0-18GHz	24 Mo.	02/15/17
		Log Periodic					
ANT-68	EMCO	Antenna	93146	9604-4456	200-1000MHz	24 Mo.	12/05/17
ATT-28	Narda	Attenuator(20dB)	757B-20	3131	DC - 6 GHz	24 Mo.	11/27/17
ATT-53	Weinschel	Attenuator (20 dB)	23-20-34	CG7857	DC-18 GHz	12 Mo	11/06/18
CAB-044A	Teledyne	Coaxial Cable	N/A	044A	DC-18 GHz	24 Mo.	05/15/18
CAB-090C	Teledyne	Coaxial Cable	N/A	090C	DC-18 GHz	24 Mo.	05/15/18
CAB-114G	Teledyne	Coaxial Cable	N/A	114G	DC-18 GHz	24 Mo.	05/15/18
CAB-142G	Teledyne	Coaxial Cable	N/A	142G	DC-18 GHz	24 Mo.	05/09/18
CAB-788A	Teledyne	Coaxial Cable	N/A	788A	DC-18 GHz	24 Mo.	05/09/18
CAB-106A	Teledyne	Coaxial Cable	N/A	106A	DC-2 GHz	24 Mo.	05/07/18
CAB-1090	Teledyne	Coaxial Cable	N/A	1090	DC-18 GHz	24 Mo.	05/16/18
CAB-160B	Teledyne	Coaxial Cable	N/A	160B	DC-18 GHz	24 Mo.	05/09/18
CDT-01	Wiltron	Crystal RF Detector	75N50	CDT-01	DC-18GHz	N/A	NCR
COM-01	Anaren	Coupler	10023-3	COM-01	250-1000MHz	N/A	NCR
DIR-19	Narda	Directional Coupler	3000-10	01174	200-500MHz	N/A	NCR
DMM-11	Fluke	DMM	17B	23490125	DC-100kHz	24 Mo.	04/05/18
PWM-01	Boonton	Power Meter	4230	22503	50kHz-18GHz	24 Mo.	12/26/17
REC-11	HP / Agilent	Spectrum Analyzer	E7405A	US39110103	9Hz-26.5GHz	24 Mo.	04/02/18
			85460A/84562	33330A00135			
REC-20	HP / Agilent	Spectrum Analyzer	А	3410A00178	30Hz-6GHz	24 Mo.	08/03/17
REC-21	Agilent	Spectrum Analyzer	E7405A	MY45118341	9kHz-26.5 GHz	24 Mo.	01/06/18
REC-43	Adventest	Spectrum Analyzer	U3772	150800305	9kHz-43GHz	24 Mo.	04/19/17
	Rohde &	Vector Signal					
SIG-31	Schwarz	Generator	SMJ 100A	101395	100kHz-6GHz	36 Mo.	08/25/17
SCP-02	Tektronix	Oscilloscope	TDS784A	B040258	DC-1GHz	24 Mo.	01/15/19
	Rohde &						
SIG-30	Schwarz	Signal Generator	SMC100A	102914	9k-3.2GHz	24 Mo.	11/29/17
THM-02	Fluke	Temp/Humid Meter	971	93490471	N/A	24 Mo.	10/17/17

Note: All calibrated equipment is subject to periodic checks.

NCR – No Calibration Required. Device monitored by calibrated equipment. N/A: Not Applicable.

10 TEST SECTIONS

10.1 Peak Output Power

The peak power was measured by connecting the EUT antenna port to the spectrum analyzer via a low loss coaxial cable and an appropriate power attenuator.

Model	2017-021	Specification	FCC part 90.205
			RSS-119 Section 5.4
Serial Number	1809510001	Test Date	10/26/2018
Test Personnel	Richard Tichgelaar	Test Location	Chamber B
Test Equipment	Power meter (PWM-01)		

Test Report for the Aclara, Itron/Sprague Gas MTU, Model 2017-021

Standard Power:

		A.U. 0	-		Antenna	500
TX Freq	Reading	Atten &	Total	Peak Power	Gain	ERP
MHz	dBm	Cable	dBm	Watts	dBi	Watts
450.0250	6.70	20.2	25.1	0.490	3.0	0.596
460.0000	6.60	20.2	25.0	0.479	3.0	0.582
469.9750	6.60	20.2	25.0	0.479	3.0	0.582

Extended Power:

TX Freq MHz	Reading dBm	Atten & Cable	Total dBm	Peak Power Watts	Antenna Gain dBi	ERP Watts
450.0250	9.10	20.2	29.3	0.851	3.0	1.189
460.0000	9.10	20.2	29.3	0.851	3.0	1.161
469.9750	8.97	20.2	29.2	0.826	3.0	1.161

Judgement: Pass

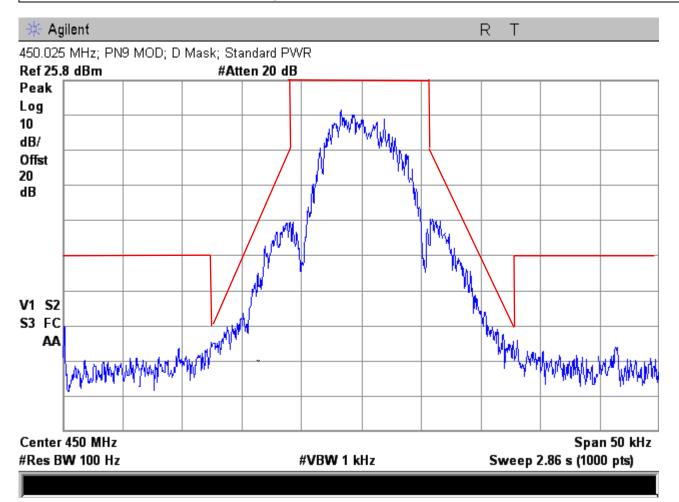
The fundamental emission ERP limit is 100 watts (50 dBm) for an 8 km service area radius.

Note that in decibel units: ERP = EIRP - 2.15 = P+G-2.15 where: P = transmitter output power in dB(W) G = Gain of the transmitting antenna in dBi

10.2 Occupied Bandwidth; Emissions Masks

Model	2017-021	Specification	FCC Part 90.209 & 90.210				
		-	RSS-119 Section 5.5				
Serial Number	1809510001 , 1809510002	Test Date	10/31/2018				
Test Personnel	Richard Tichgelaar	Test Location	Chamber C				
Test Equipment	nent Spectrum Analyzer (REC-21), (REC-43)						

The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation. The EUT was transmitting at its maximum data rate. The trace was allowed to stabilize. All Channels are 12.5 kHz. The emissions Mask D is from FCC part 90.210.


(1) On any frequency from the center of the authorized bandwidth f0 to 5.625 kHz removed from f0: Zero dB.

(2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(fd -2.88 kHz) dB.

(3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB.

For all Frequencies beyond 25 kHz from the center of the transmit frequency, the worst-case limit was used. The red line is a 50-dB reduction from carrier based on 1 watt.

Test Report for the Aclara, Itron/Sprague Gas MTU, Model 2017-021

#Atten 20 dB

450.025 MHz; PN9 MOD; D Mask; Standard PWR

Ref 25.8 dBm

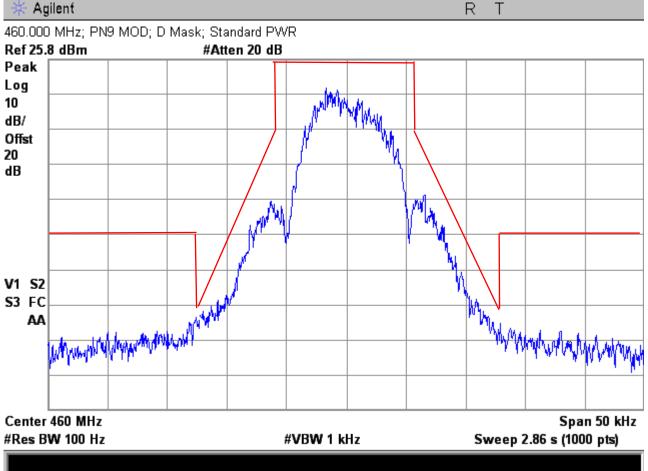
Peak Log 10 dB/ Offst 20 dB

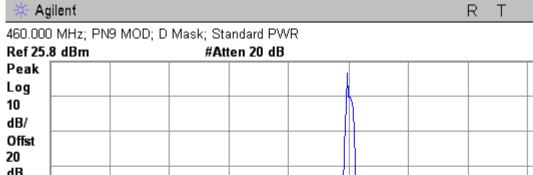
Radiometrics Midwest Corporation

Т

R

		Radiometr	ics Midwest Corp	ooration	www.radiomet.c
Test Report	for the Aclara, Itron	/Sprague Gas MTl	J, Model 2017-02 ²		
🔆 Agilent				RT	
450.025 MHz; I Ref 25.8 dBm	PN9 MOD; D Mask; St # A	andard PVVR tt en 20 dB			Mkr1 2.253 GHz -32.53 dBm
Peak Log 10 dB/ Offst 20					
dB DI -20.0 dBm					
V1 S2 S3 FC AA	and and a second		- Hundhall - Andrew	na franska se	
Start 7 MHz #Res BW 100	kHz	#VBW 1 I	AHz	Sweep 475.9	Stop 4.75 GHz 9 ms (1000 pts)


The red line is a 50-dB reduction from carrier based on 1 watt.


m

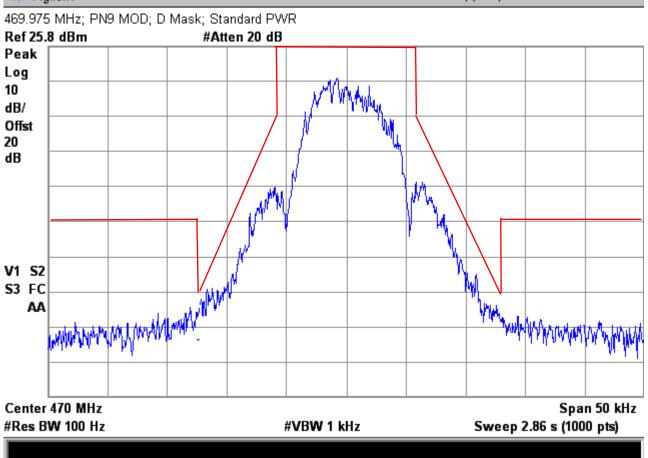
Test Report for the Aclara, Itron/Sprague Gas MTU, Model 2017-021

R

	Center 460 N Res BW 300			i	#VBW 3	kН	z		Sweep	Span 22.26 s (40	500 kHz 1 pts)
	/1 S2 53 FC AA	nmmmM	~MMJ.VM	ymm-yy M	mm ¹		Wayne	Wartungen	wyw	mmyM	мүшүүш
dB											

Radiometrics Midwest Corporation

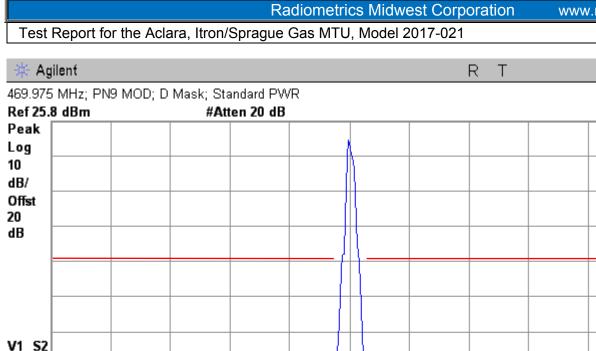
Test Report for the Aclara, Itron/Sprague Gas MTU, Model 2017-021


🔆 Ag	jilent							RТ		
460.000 Ref 25.		19 MOD; D		andard PV t en 20 dB	/R					300 GHz 56 dBm
Peak Log 10 dB/ Offst 20 dB DI -20.0 dBm										
V1 S2 S3 FC AA	en estado	and the applied and	eessee the astrony and				and and and a	04/2+4-goldensyneriaegold	*******	+
Start 7 #Res B	MHz W 100 kH	z		i	#VBW 1 M	IHz	s	weep 475	Stop 4 5.9 ms (100	l.75 GHz)0 pts)

The red line is a 50-dB reduction from carrier based on 1 watt.

Test Report for the Aclara, Itron/Sprague Gas MTU, Model 2017-021

R T



S3 FC AA

Center 470 MHz

#Res BW 300 Hz

William Markey Markey Markey

M.M

#VBW 3 kHz

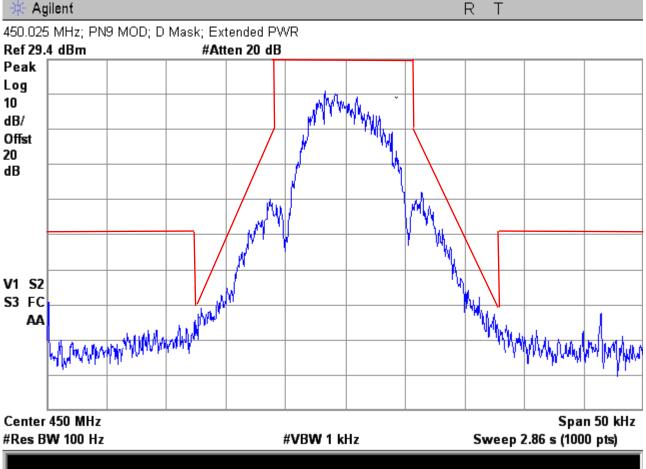
W.

my many my my my my my

Span 500 kHz

Sweep 22.26 s (401 pts)

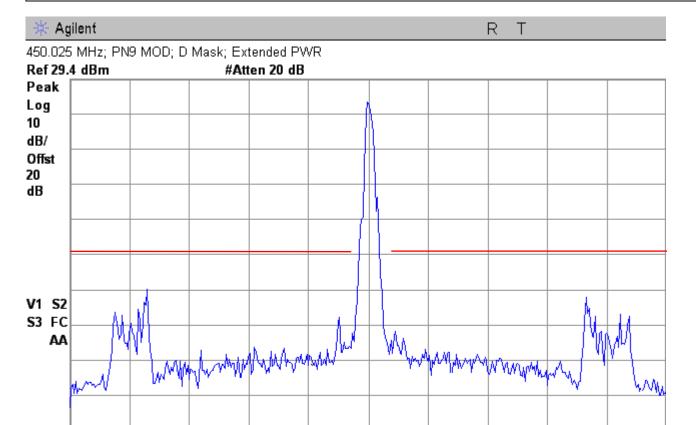
Test Report for the Aclara, Itron/Sprague Gas MTU, Model 2017-021


- (米 A)	gilent							RΤ		
		19 MOD; D	Mask; Sta		/R				Mkr1 2.9	
Ref Zo Peak	.8 dBm		#A11	en 20 dB					-33	.8 dBm
Log										
10										
dB/										
Offst										
20										
dB										
DI										
-20.0										
dBm										
							1			
							ò.			
V1 S2	more month		a mar and a lot	،	provide the second second	and the second states of the	and a market			
\$3 FC	ALC: NOT THE REAL PROPERTY OF	ALIA						****	and the second	
AA	ʻI									
Start 7	MHz	1			1	1	1		Stop 4	.75 GHz
	3W 100 kH	7			#VBW 1 N	147	c	woon 175	.9 ms (100	
#Res D		2		·	TVDVV I N		3	weep 475	.5 ms (100	

The red line is a 50-dB reduction from carrier based on 1 watt.

Test Report for the Aclara, Itron/Sprague Gas MTU, Model 2017-021

R


Edges of limit need to be lower

Center 450 MHz

#Res BW 300 Hz

Radiometrics Midwest Corporation

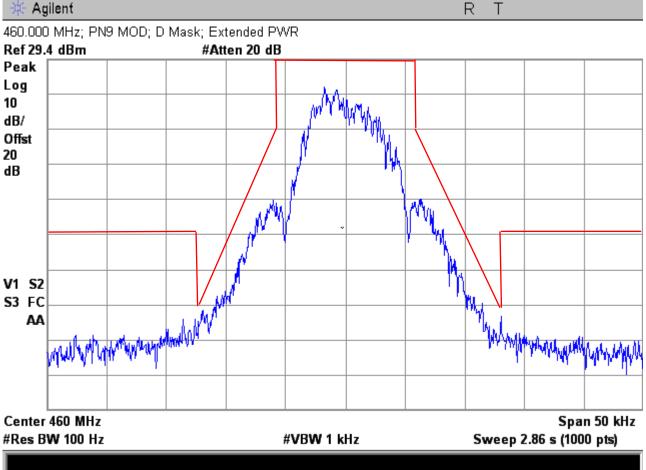
Test Report for the Aclara, Itron/Sprague Gas MTU, Model 2017-021

#VBW 3 kHz

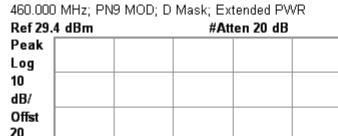
www.radiomet.com

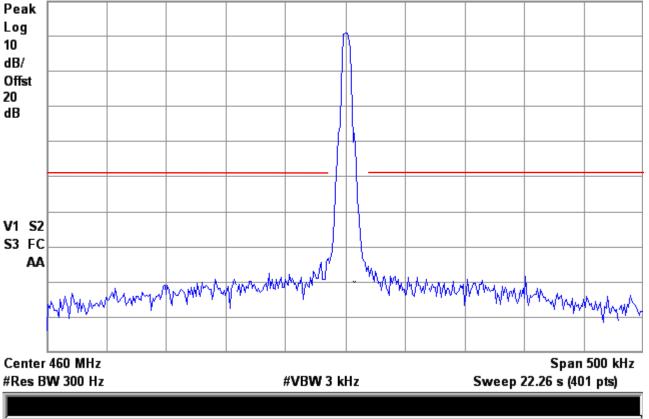
Span 500 kHz

Sweep 22.26 s (401 pts)


		Radiometrics Mic	west Corporation	www.radiomet.co
Test Report for t	he Aclara, Itron/Sprag	jue Gas MTU, Mode	el 2017-021	
🔆 Agilent			RT	
450.025 MHz; PN9 N Ref 29.4 dBm	MOD; D Mask; Extended #Atten 20			Mkr1 2.253 GHz -28.84 dBm
Peak og _og o 0 o B/ o Offst o 20 o 1B o 20.0 o				
/1 S2 53 FC AA	ngagegahl ganada an sha da barang	L ,		
Start 7 MHz Res BW 100 kHz		#VBW 1 MHz	Sweep 475	Stop 4.75 GHz .9 ms (1000 pts)

The red line is a 50-dB reduction from carrier based on 1 watt.


Test Report for the Aclara, Itron/Sprague Gas MTU, Model 2017-021


R

Test Report for the Aclara, Itron/Sprague Gas MTU, Model 2017-021

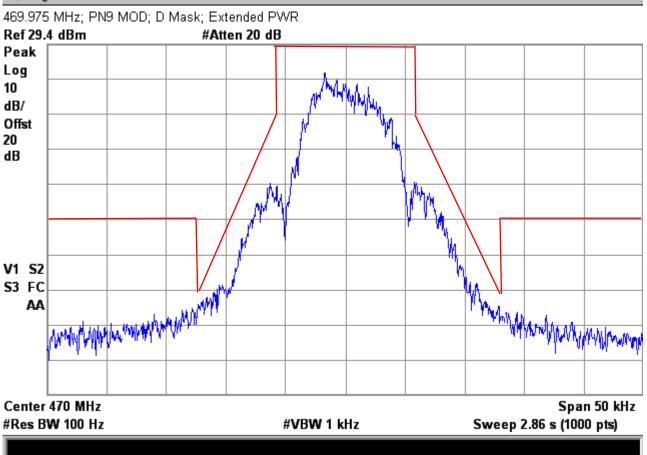
🔆 Agilent

R

Т

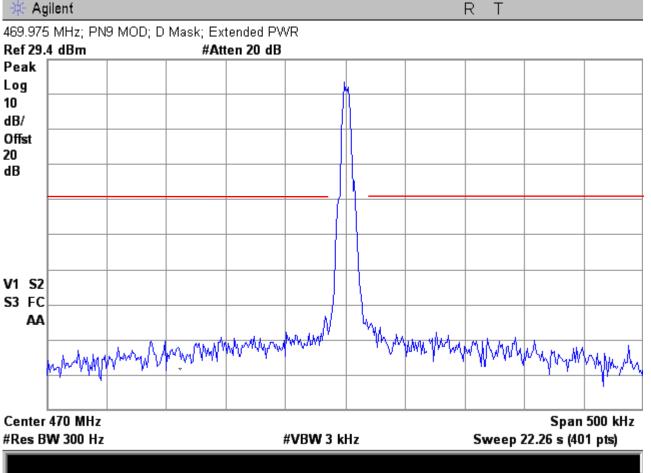
Test Report for the Aclara, Itron/Sprague Gas MTU, Model 2017-021

🔆 Ag	gilent							RТ		
460.000 Ref 29.		19 MOD; D	Mask; Ext # Att	tended PV t en 20 dB	VR				Mkr1 2. -30.(879 GHz)7 dBm
Peak Log 10 dB/ Offst 20 dB DI -20.0 dBm										
V1 S2 S3 FC AA		eter y the mail	and the second		nector scrapes restored	, Unaple control of the second	1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		16-3.0-91/1-1-01-01-01-01-01-01-01-01-01-01-01-01-	verenteringenge
Start 7 #Res B	MHz W 100 kH	z			#VBW 1 M	IHz	S	Sweep 475		.75 GHz 10 pts)


The red line is a 50-dB reduction from carrier based on 1 watt.

www.radiomet.com

Test Report for the Aclara, Itron/Sprague Gas MTU, Model 2017-021



R T

Test Report for the Aclara, Itron/Sprague Gas MTU, Model 2017-021

R

Test Report for the Aclara, Itron/Sprague Gas MTU, Model 2017-021

🔆 🔆 🔆	gilent						RТ		
	5 MHz; PN . 4 dBm	19 MOD; D	tended PV t en 20 dB	VR					942 MHz 12 dBm
Peak Log 10 dB/ Offst 20 dB DI -20.0 dBm									
			 and the second	unada ya Pana Agaman	ler broken and a state of the s	the g	att vitate egydwrtwr opd	**************************************	
Start 7 #Res B	MHz W 100 kH	z		#VBW 1 M	IHz	s	weep 475	Stop 4 5.9 ms (100	l.75 GHz 10 pts)

The red line is a 50-dB reduction from carrier based on 1 watt.

Judgement: Pass

10.2.1 Conducted Spurious Emissions

Model	2017-021	Specification	FCC Part 90.210 RSS-119 Section 5.5
Serial Number	180951001	Test Date	10/26/2018
Test Personnel	Richard Tichgelaar	Test Location	Chamber B
Test Equipment	EMI Receiver (REC-21)		

Test Equipment : EMI Receiver (REC-21) This is a direct measurement from the Antenna port to the EMI Receiver

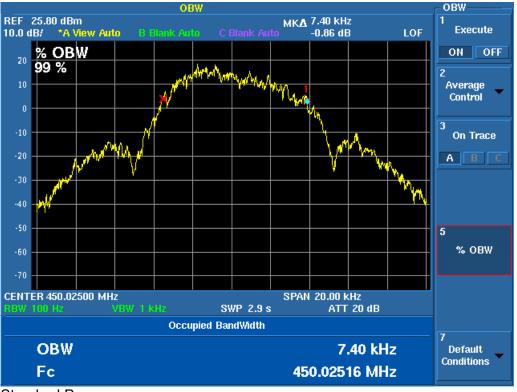
		Testad	Dee	HPF-09	Ext.	Cabla	Total	Deuver	Margin
Freq. Tx	Harm	Tested Freg.	Rec Reading	Attn. Factor	Atten. Factor	Cable Loss	Total Power	Power Limit	Under Limit
MHz	#	MHz	dBm	dB	dB	dB	dBm	dBm	dB
450.0250	1	450.0250	6.7	0.0	19.8	0.3	26.8	50.0	23.2
450.0250	2	900.0500	-59.0	0.4	19.9	0.4	-38.3	-20.0	18.3
450.0250	3	1350.0750	-65.1	0.4	20.0	0.4	-44.3	-20.0	24.3
450.0250	4	1800.1000	-65.3	0.4	20.0	0.5	-44.4	-20.0	24.4
450.0250	5	2250.1250	-54.7	0.5	20.0	0.6	-33.6	-20.0	13.6
450.0250	6	2700.1500	-54.3	0.6	20.0	0.6	-33.1	-20.0	13.1
450.0250	7	3150.1750	-70.6	0.5	20.1	0.7	-49.3	-20.0	29.3
450.0250	8	3600.2000	-70.2	0.8	20.1	0.8	-48.5	-20.0	28.5
450.0250	9	4050.2250	-68.9	1.0	20.2	0.8	-46.9	-20.0	26.9
450.0250	10	4500.2500	-70.9	1.0	20.2	0.8	-48.9	-20.0	28.9
460.0000	1	460.0000	6.6	0.0	19.8	0.3	26.7	50.0	23.3
460.0000	2	920.0000	-63.1	0.4	19.9	0.4	-42.4	-20.0	22.4
460.0000	3	1380.0000	-65.4	0.4	20.0	0.4	-44.6	-20.0	24.6
460.0000	4	1840.0000	-63.2	0.4	20.0	0.5	-42.3	-20.0	22.3
460.0000	5	2300.0000	-58.0	0.5	20.0	0.6	-36.9	-20.0	16.9
460.0000	6	2760.0000	-69.3	0.6	20.0	0.6	-48.1	-20.0	28.1
460.0000	7	3220.0000	-70.2	0.5	20.1	0.7	-48.9	-20.0	28.9
460.0000	8	3680.0000	-69.3	0.8	20.1	0.8	-47.6	-20.0	27.6
460.0000	9	4140.0000	-69.4	1.0	20.2	0.8	-47.4	-20.0	27.4
460.0000	10	4600.0000	-70.1	1.0	20.2	0.8	-48.1	-20.0	28.1
469.9750	1	469.9750	6.6	0.0	19.8	0.3	26.7	50.0	23.3
469.9750	2	939.9500	-62.3	0.4	19.9	0.4	-41.6	-20.0	21.6
469.9750	3	1409.9250	-64.3	0.4	20.0	0.4	-43.5	-20.0	23.5
469.9750	4	1879.9000	-62.1	0.4	20.0	0.5	-41.2	-20.0	21.2
469.9750	5	2349.8750	-61.5	0.5	20.0	0.6	-40.4	-20.0	20.4
469.9750	6	2819.8500	-70.2	0.6	20.0	0.6	-49.0	-20.0	29.0
469.9750	7	3289.8250	-70.3	0.5	20.1	0.7	-49.0	-20.0	29.0
469.9750	8	3759.8000	-68.6	0.8	20.1	0.8	-46.9	-20.0	26.9
469.9750	9	4229.7750	-69.5	1.0	20.2	0.8	-47.5	-20.0	27.5
469.9750	10	4699.7500	-71.0	1.0	20.2	0.8	-49.0	-20.0	29.0

Extended Power


				HPF-09	Ext.				Margin
		Tested	Rec	Attn.	Atten.	Cable	Total	Power	Under
Freq. Tx	Harm	Freq.	Reading	Factor	Factor	Loss	Power	Limit	Limit
MHz	#	MHz	dBm	dB	dB	dB	dBm	dBm	dB
450.0250	1	450.0250	9.7	0.0	19.8	0.3	29.8	50.0	20.2
450.0250	2	900.0500	-53.9	0.4	19.9	0.4	-33.2	-20.0	13.2
450.0250	3	1350.0750	-60.6	0.4	20.0	0.4	-39.8	-20.0	19.8
450.0250	4	1800.1000	-63.4	0.4	20.0	0.5	-42.5	-20.0	22.5
450.0250	5	2250.1250	-53.0	0.5	20.0	0.6	-31.9	-20.0	11.9
450.0250	6	2700.1500	-69.5	0.6	20.0	0.6	-48.3	-20.0	28.3
450.0250	7	3150.1750	-69.3	0.5	20.1	0.7	-48.0	-20.0	28.0
450.0250	8	3600.2000	-69.4	0.8	20.1	0.8	-47.7	-20.0	27.7
450.0250	9	4050.2250	-67.2	1.0	20.2	0.8	-45.2	-20.0	25.2
450.0250	10	4500.2500	-70.0	1.0	20.2	0.8	-48.0	-20.0	28.0
460.0000	1	460.0000	9.6	0.0	19.8	0.3	29.7	50.0	20.3
460.0000	2	920.0000	-57.9	0.4	19.9	0.4	-37.2	-20.0	17.2
460.0000	3	1380.0000	-61.2	0.4	20.0	0.4	-40.4	-20.0	20.4
460.0000	4	1840.0000	-60.8	0.4	20.0	0.5	-39.9	-20.0	19.9
460.0000	5	2300.0000	-57.9	0.5	20.0	0.6	-36.8	-20.0	16.8
460.0000	6	2760.0000	-68.4	0.6	20.0	0.6	-47.2	-20.0	27.2
460.0000	7	3220.0000	-67.8	0.5	20.1	0.7	-46.5	-20.0	26.5
460.0000	8	3680.0000	-65.1	0.8	20.1	0.8	-43.4	-20.0	23.4
460.0000	9	4140.0000	-65.3	1.0	20.2	0.8	-43.3	-20.0	23.3
460.0000	10	4600.0000	-70.0	1.0	20.2	0.8	-48.0	-20.0	28.0
469.9750	1	469.9750	9.6	0.0	19.8	0.3	29.7	50.0	20.3
469.9750	2	939.9500	-57.7	0.4	19.9	0.4	-37.0	-20.0	17.0
469.9750	3	1409.9250	-62.1	0.4	20.0	0.4	-41.3	-20.0	21.3
469.9750	4	1879.9000	-61.8	0.4	20.0	0.5	-40.9	-20.0	20.9
469.9750	5	2349.8750	-61.0	0.5	20.0	0.6	-39.9	-20.0	19.9
469.9750	6	2819.8500	-69.2	0.6	20.0	0.6	-48.0	-20.0	28.0
469.9750	7	3289.8250	-69.4	0.5	20.1	0.7	-48.1	-20.0	28.1
469.9750	8	3759.8000	-67.2	0.8	20.1	0.8	-45.5	-20.0	25.5
469.9750	9	4229.7750	-68.8	1.0	20.2	0.8	-46.8	-20.0	26.8
469.9750	10	4699.7500	-70.0	1.0	20.2	0.8	-48.0	-20.0	28.0

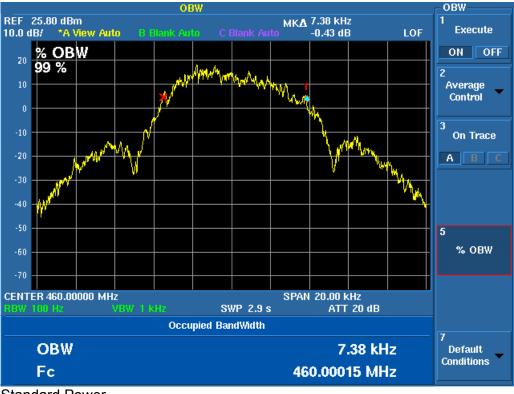
The fundamental emission ERP limit is 100 watts (50 dBm) for an 8 km service area radius.

Judgment: Passed by 11.9 dB.


10.3 Occupied Bandwidth

Channel	Extended Power 99% OBW (kHz)	Standard Power 99% OBW (kHz)
450.0250	7.38	7.40
460.0000	7.40	7.38
469.9875	7.40	7.40

99% OBW: 450.025 MHz


Extended Power

OBW OBW MKA 7.40 kHz -0.89 dB REF 29.40 dBm 1 Execute 10.0 dB/ *A View Auto LOF % OBW ON OFF 20 99 % 2 WAW Average Control 0 3 On Trace Vry. MAN MAN A B C M 5 % OBW CENTER 460.00000 MHz SPAN 20.00 kHz ATT 20 dB SWP 2.9 s Occupied BandWidth OBW 7.40 kHz Default Conditions Fc 460.00016 MHz

99% OBW 460 MHz


Extended Power

OBW OBW MKA 7.40 kHz -0.70 dB REF 29.40 dBm 1 Execute 10.0 dB/ *A View Auto LOF % OBW ON OFF 20 99 % 2 m when Average Control 0 3 On Trace "V#W MW WY A B C M 5 % OBW CENTER 469.97500 MHz SPAN 20.00 kHz ATT 20 dB SWP 2.9 s Occupied BandWidth OBW 7.40 kHz Default Conditions Fc 469.97516 MHz

99% OBW 470 MHz

Extended Power

10.4 Field Strength of Unwanted Spurious Radiation

10.4.1 Test Procedures

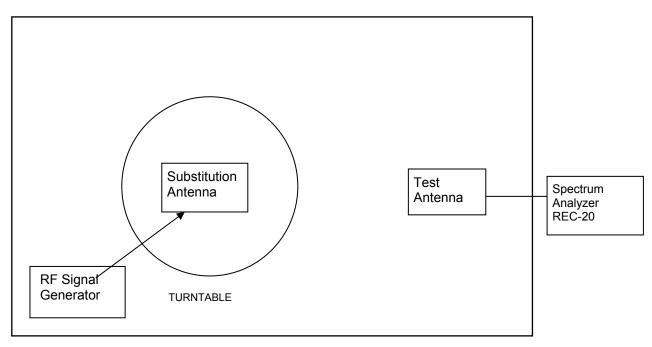
Radiated emission measurements in the Restricted bands were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists. From 30 to 4700 MHz, a spectrum analyzer with a preselector was used for measurement. Radiated emissions measurements were performed at the anechoic chamber at a test distance of 3 meters. The entire frequency range from 30 to 4700 MHz was slowly scanned and the emissions in the restricted frequency bands were recorded. Measurements were performed using the peak detector function.

The spectrum analyzer was adjusted for the following settings:

1) Resolution Bandwidth = 100 kHz for spurious emissions below 1 GHz, and 1 MHz for spurious emissions above 1GHz.

2) Video Bandwidth = 300 kHz for spurious emissions below 1 GHz, and 3 MHz for spurious emissions above 1 GHz.

3) Sweep Speed slow enough to maintain measurement calibration.


4) Detector Mode = Positive Peak.

The transmitter to be tested was placed on the turntable in the standard test site, or an FCC listed site compliant with ANSI C63.4. The transmitter is transmitting into a non-radiating load that is placed on the turntable. Measurements were made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier. The transmitter was keyed during the tests.

For each spurious frequency, the test antenna was raised and lowered from 1 m to 4m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Then the turntable was rotated 360°to determine the maximum reading. This procedure was repeated to obtain the highest possible reading. This maximum reading was recorded.

Each measurement was repeated for each spurious frequency with the test antenna polarized vertically.

ANSI C63.4 Listed Test Site

Notes:

- Test Antenna height varied from 1 to 4 meters
- Distance from antenna to tested system is 3 meters
- Not to Scale

Frequency MHz	Test Antenna	Substitution Antenna	Receiver to Coupler	Signal Generator
30 - 200	ANT-04	ANT-03	REC-20	SIG-30
200 - 1000	ANT-68	ANT-06	REC-20	SIG-30
1000-5000	ANT-36	ANT-66	REC-20	SIG-30

The transmitter was removed and replaced with a broadband substitution antenna. The substitution antenna is calibrated so that the gain relative to a dipole is known. The center of the substitution antenna was approximately at the same location as the center of the transmitter.

The substitution antenna was fed at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized, and with the signal generator tuned to a particular spurious frequency, the test antenna was raised and lowered to obtain a maximum reading at the spectrum analyzer. The level of the signal generator output was adjusted until the previously recorded maximum reading for this set of conditions was obtained.

The measurements were repeated with both antennas horizontally and vertically polarized for each spurious frequency.

Test Report for the Aclara, Itron/Sprague Gas MTU, Model 2017-021

The power in dBm into a reference ideal half-wave dipole antenna was calculated by reducing the readings obtained in steps k) and l) by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:

Pd(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dB)

where:

Pd is the dipole equivalent power and

Pg is the generator output power into the substitution antenna.

The *Pd* levels record in step m) are the absolute levels of radiated spurious emissions in dBm.

Any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB.

Since by mathematical definition, P(dBm) - (50+10xLOG P(W)) = -20 dBm, the limit for spurious emissions was set to -20 dBm equivalent radiated power.

10.4.2 Spurious Radiated Emissions Test Results

Model	2017-021	Specification	FCC Part 90.210
			RSS-119 Section 5.8
Serial Number	1809510001	Test Date	11/05/18 , 11/06/18
Test Distance	3 Meters	Notes	Transmit Mode; Extended range
Test Personnel	Richard Tichgelaar		

			Equivaler	nt Radiated			
	Тx	Measured	power ir	nto Dipole		Margin Under Limit	
Harmonic	Freq	Freq	Vertical	Horizontal	Limit	Vertical	Horizontal
#	MHz	MHz	dBm	dBm	dBm	dB	dB
2	450.0250	900.05	-50.3	-42.9	-20.0	30.3	22.9
3	450.0250	1350.08	-49.0	-56.1	-20.0	29.0	36.1
4	450.0250	1800.10	-51.5	-53.3	-20.0	31.5	33.3
5	450.0250	2250.13	-44.7	-46.6	-20.0	24.7	26.6
6	450.0250	2700.15	-53.5	-51.1	-20.0	33.5	31.1
7	450.0250	3150.18	-51.8	-50.4	-20.0	31.8	30.4
8	450.0250	3600.20	-44.6	-43.8	-20.0	24.6	23.8
9	450.0250	4050.23	-44.8	-42.6	-20.0	24.8	22.6
10	450.0250	4500.25	-44.9	-46.3	-20.0	24.9	26.3
2	460.0000	920.00	-52.5	-43.3	-20.0	32.5	23.3
3	460.0000	1380.00	-46.6	-56.1	-20.0	26.6	36.1
4	460.0000	1840.00	-55.6	-56.6	-20.0	35.6	36.6
5	460.0000	2300.00	-45.9	-54.4	-20.0	25.9	34.4
6	460.0000	2760.00	-53.7	-51.7	-20.0	33.7	31.7
7	460.0000	3220.00	-50.5	-50.1	-20.0	30.5	30.1
8	460.0000	3680.00	-43.0	-42.2	-20.0	23.0	22.2
9	460.0000	4140.00	-49.0	-48.1	-20.0	29.0	28.1
10	460.0000	4600.00	-43.9	-45.6	-20.0	23.9	25.6
2	469.9875	939.98	-52.2	-42.7	-20.0	32.2	22.7
3	469.9875	1409.96	-45.1	-54.0	-20.0	25.1	34.0
4	469.9875	1879.95	-48.6	-52.5	-20.0	28.6	32.5
5	469.9875	2349.94	-45.4	-53.0	-20.0	25.4	33.0
6	469.9875	2819.93	-53.9	-53.2	-20.0	33.9	33.2
7	469.9875	3289.91	-51.5	-50.7	-20.0	31.5	30.7
8	469.9875	3759.90	-46.6	-44.4	-20.0	26.6	24.4
9	469.9875	4229.89	-43.6	-44.6	-20.0	23.6	24.6
10	469.9875	4699.88	-44.4	-44.8	-20.0	24.4	24.8

Judgment: Passed by at least 20 dB.

No other radiated emissions were detected within 15 dB of the limits from 30 MHz to 4.7 GHz.

10.5 Frequency Stability

10.5.1 Frequency Stability Vs Temperature

The chamber was then set to the lowest temperature. The transmitter was in the chamber and allowed to stabilize for 15 minutes. The transmitter was then keyed, and the frequency was recorded. The chamber was then incremented in 10°C steps with a minimum of 15-minute stabilization period for each temperature measurement. The transmitter was off during the temperature transitions.

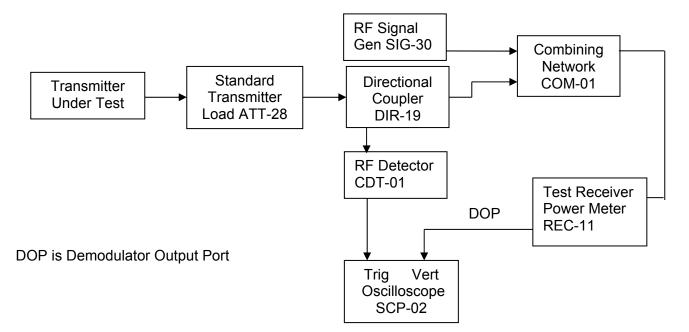
10.5.2 Frequency Stability Vs Supply Voltage

The EUT was allowed to stabilize with the nominal primary power supply voltage applied. The primary input voltage was varied from the lowest to the highest rated levels specified by the manufacturer. Frequency readings were taken at increments of 0.5 VDC.

10.5.3 Test Results for Frequency Stability

Model	2017-021		FCC Part 90.213 RSS-119 Section 5.3					
	4000 - 40000							
Serial Number	1809510002	Test Date	11/06/2018					
Test Personnel	Richard Tichgelaar Test Location Chamber F							
Test Equipment	Spectrum Analyzer (REC-20); Freq. Counter(CNT-01);							
	Temperature Chamber TC-01		-					
	Digital Multimeter (DMM-11)							
Notes	Notes 15 minutes at each Temperature; 1 min at each voltage							
Nominal Frequency 460.000 MHz								

Volts	Freq.	Deviation	
VDC	(MHz)	Hz	PPM
3.8	460.000064	64	0.14
3.6	460.000066	66	0.14
3.4	460.000055	55	0.12
3.2	460.000066	66	0.14
3.0	460.000058	58	0.13
2.8	460.000066	66	0.14
2.6	460.000061	61	0.13


Temp	Freq.	Deviation	
Deg. C	(MHz)	Hz	PPM
50	460.000050	50	0.11
40	460.000038	38	0.08
30	460.000050	50	0.11
20	460.000050	50	0.11
10	460.000095	95	0.21
0	460.000125	125	0.27
-10	460.000185	185	0.40
-20	460.000176	176	0.38
-30	460.000126	126	0.27

Test Requirements: Limit is 2.5 ppm Judgement: Pass

10.6 Transient Frequency Behavior

10.6.1 Test method

The test was performed in accordance to TIA-603-D Section 2.2.19.3 Alternate Method of Measurement (Using a Test Receiver). The equipment was connected as shown below.

10.6.2 Limits of transient frequency

Time intervals ^{1,2}	Maximum Frequency Difference ³	421 to 512 MHz Equipment Operating on 12.5 kHz Channels
t ₁ 4	±12.5 kHz	10.0 mSec
t ₂	±6.25 kHz	25.0 mSec
t ₃ ⁴	±12.5 kHz	10.0 mSec

 $_{on}^{1}$ is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing. t₁ is the time period immediately following t_{on}.

 t_2 is the time period immediately following t_1 .

 $t_{\rm 3}$ is the time period from the instant when the transmitter is turned off until $t_{\rm off.}$

toff is the instant when the 1 kHz test signal starts to rise.

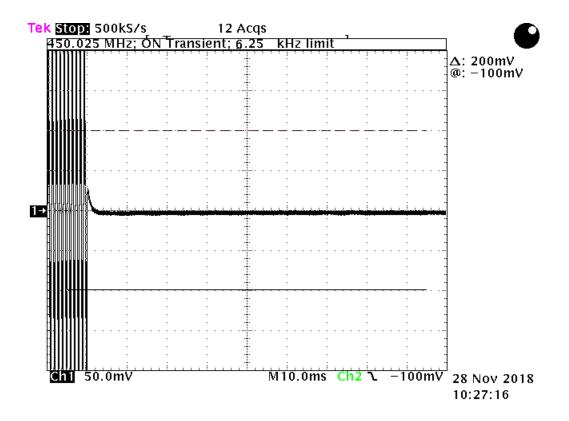
 2 During the time from the end of $t_2 to$ the beginning of $t_3,$ the frequency difference must not exceed the limits specified in § 90.213.

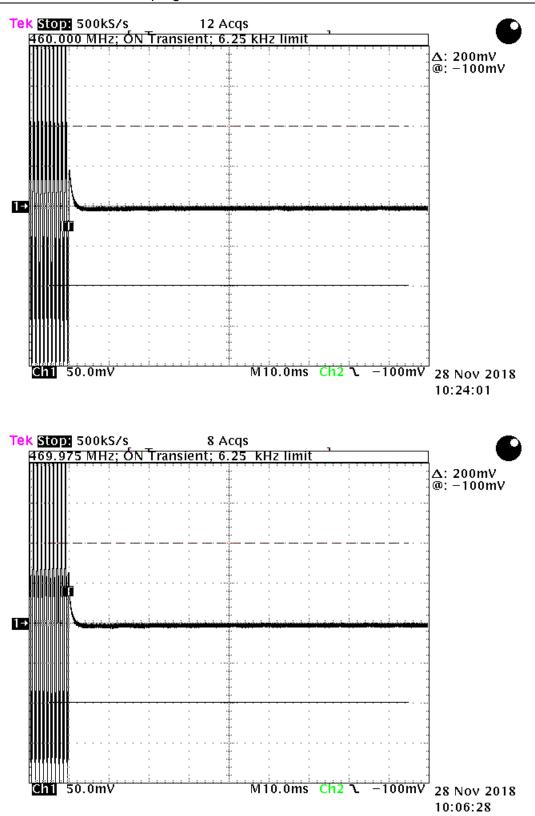
³ Difference between the actual transmitter frequency and the assigned transmitter frequency.

⁴ If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

10.6.3 Test Results

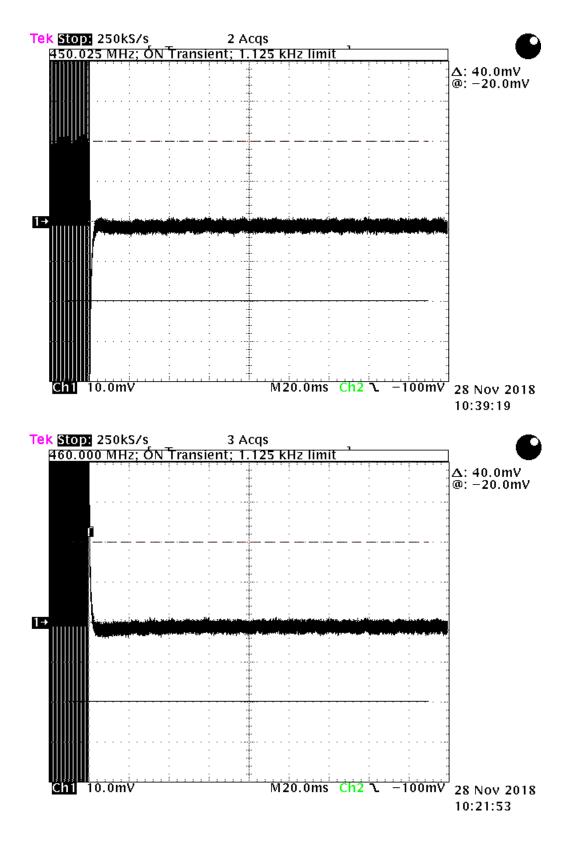
Model	2017-021	Specification	FCC part 90.214 RSS-119 Section 5.9
Serial Number	1809510002	Test Date	11/28/2018
Test Personnel	Joseph Strzelecki; Rich Tichgelaar	Test Location	Chamber C

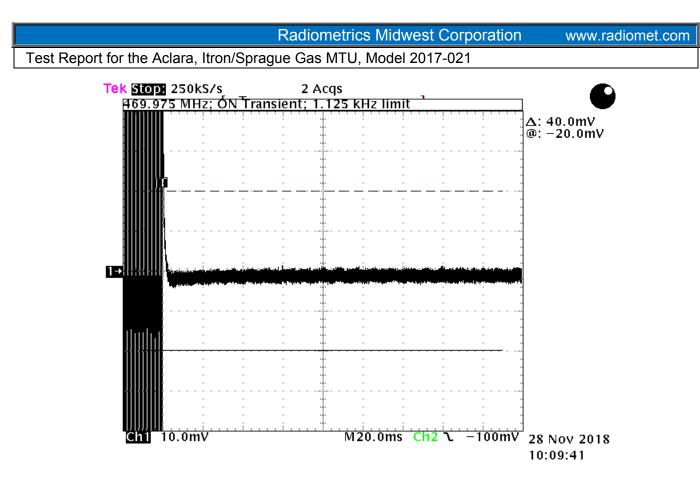

		Limit	Limits for Time interval/Freq difference					
	Channel	t1		t	t ₂		3	Test
Freq MHz	BW	mSec	kHz	mSec	kHz	mSec	kHz	Result
450.0250	12.5	10	12.5	25	6.25	10	12.5*	Pass
460.000	12.5	10	12.5	25	6.25	10	12.5*	Pass
469.9875	12.5	10	12.5	25	6.25	10	12.5*	Pass


Judgement: Pass

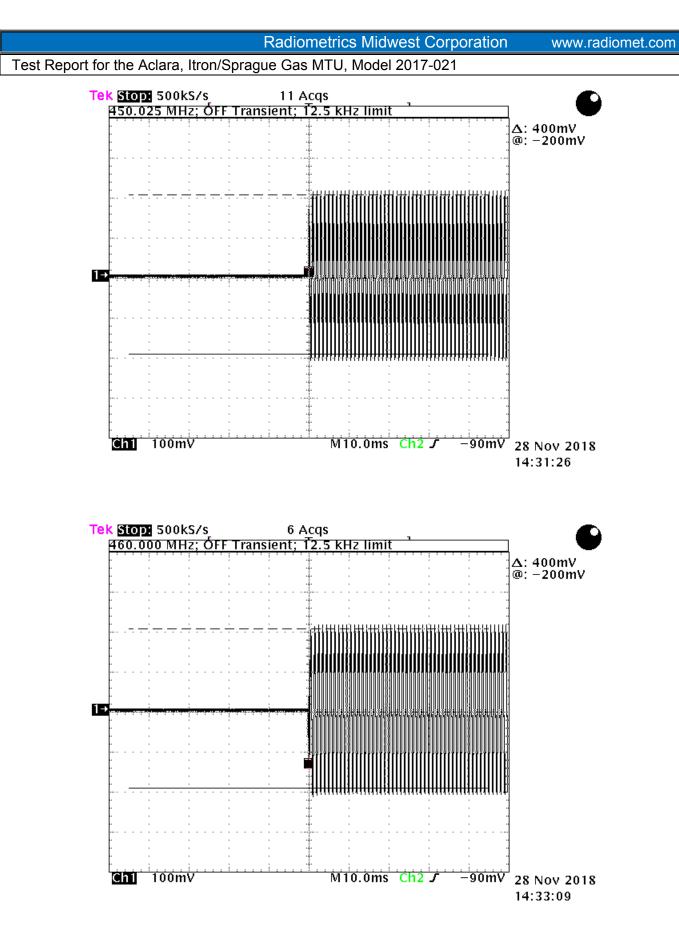
*Since the transmitter carrier output power is less than 6 watts, the frequency difference during the t3 time period may exceed the maximum frequency difference for this time period.

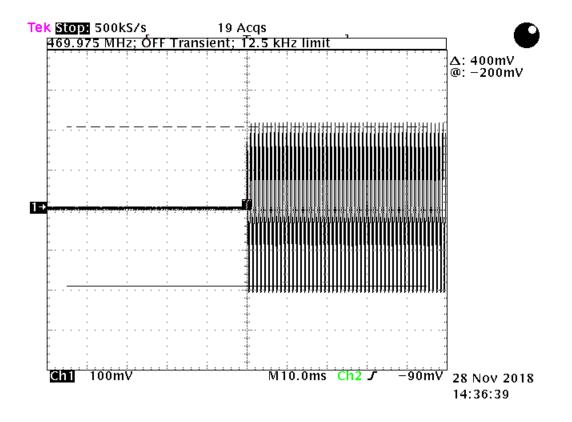
10.6.4 Results for Time Periods t1 and t2


The EUT passed the 6.25 kHz limit so the 12.5 limit is not shown.



10.6.5 Results for Time Period between t2 and t3


The limit between t2 and t3 on all the scope traces are calculated for the 450 MHz Channel since this is the lowest limit. This limit is 450 MHz * 2.5 ppm or 1125 Hz.



10.6.6 Results for Time Period t3

Since the transmitter carrier output power is less than 6 watts, the frequency difference during the t3 time period may exceed the maximum frequency difference for this time period.

10.7 Radiated Emissions (Receive Mode)

Radiated emission measurements were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. The radiated emission measurements were performed with a spectrum analyzer. The bandwidth used from 150 kHz to 30 MHz is 9 or 10 kHz and the bandwidth from 30 MHz to 1000 MHz is 100 or 120 kHz. Above 1 GHz, a 1 MHz bandwidth is used. A 10-dB linearity check is performed prior to start of testing in order to determine if an overload condition exists.

From 30 to 2000 MHz, an Anritsu spectrum analyzer was used. Final radiated emissions measurements were performed inside of an anechoic chamber at a test distance of 3 meters. The anechoic chamber is designated as Chamber E. This Chamber meets the Site Attenuation requirements of ANSI C63.4 and CISPR 16-1. Chamber E is located at 12 East Devonwood Ave. Romeoville, Illinois EMI test lab.

The entire frequency range from 30 to 2000 MHz was slowly scanned with attention paid to those frequency ranges which appeared high. Measurements were performed using two antenna polarizations, (vertical and horizontal). The worst-case emissions were recorded. All measurements may be performed using either the peak, average or quasi-peak detector functions. If the peak detector data exceeds or is marginally close to the limits, the measurements are repeated using a quasi-peak detector or average function as required by the specification for final determination of compliance.

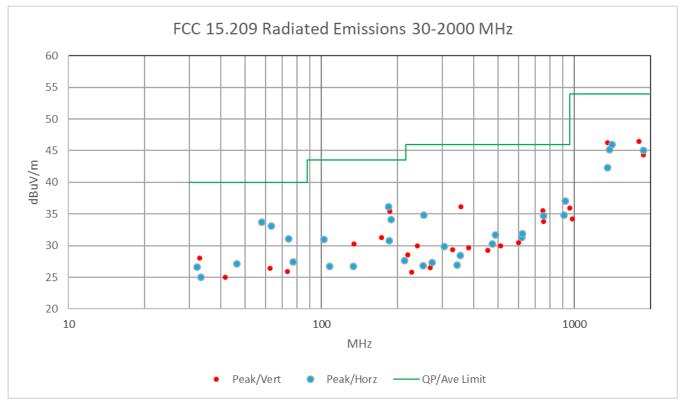
The detected emission levels were maximized by rotating the EUT, adjusting the positions of all cables, and by scanning the measurement antenna from 1 to 4 meters above the ground.

10.7.1 Radiated Emissions Field Strength Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and by subtracting the Amplifier Gain from the measured reading. The basic equation is as follows:

FS = RA + AF + CF - AGWhere: FS = Field Strength RA = Receiver AmplitudeAF = Antenna FactorCF = Cable Attenuation FactorAG = Amplifier Gain

10.7.2 Spurious Radiated Emissions Test Results (Receive Mode)


Model	2017-021	Specification	FCC Part 15 Subpart B & RSS-Gen				
Serial Number	1809510001	Test Date	10/30/2018, and 11/20/2018				
Tested by	Richard Tichgelaar	Test Distance	3 Meters				
	Chris E. Dalessio						
Abbreviations	Pol = Antenna Polarization; V	′ = Vertical; H = F	lorizontal; P = peak; Q = QP				
Notes	Corr. Factors = Cable Loss – Preamp Gain						
Configuration	Receive Mode						

	Meter				Cable &	Dist.			Margin	
Freq.	Reading		Ant.	Ant	Amp	Fact	EUT	Limit	Under	
MHz	dBuV	Dect.	Pol.	Factor	Factors	dB	dBuV/m	dBuV/m	Limit dB	Note
32.2	15.4	Р	Н	10.8	0.4	0.0	26.6	40.0	13.4	
33.4	13.5	Р	Н	11.0	0.5	0.0	25.0	40.0	15.0	
46.3	13.9	Р	Н	12.7	0.5	0.0	27.1	40.0	12.9	
58.0	21.1	Р	Н	12.0	0.6	0.0	33.7	40.0	6.3	
63.5	21.8	Р	Н	10.7	0.6	0.0	33.1	40.0	6.9	
74.3	22.5	Р	Н	7.9	0.7	0.0	31.1	40.0	8.9	
77.3	18.6	Р	Н	8.1	0.7	0.0	27.4	40.0	12.6	
102.2	17.8	Р	Н	12.4	0.8	0.0	31.0	43.5	12.5	
107.8	12.7	Р	Н	13.2	0.8	0.0	26.7	43.5	16.8	
133.6	12.0	Р	Н	13.8	0.9	0.0	26.7	43.5	16.8	
183.9	15.7	Р	Н	19.3	1.1	0.0	36.1	43.5	7.4	
185.7	10.6	Р	Н	19.1	1.1	0.0	30.8	43.5	12.7	
188.2	14.1	Р	Н	18.9	1.1	0.0	34.1	43.5	9.4	
213.6	15.5	Р	Н	10.9	1.2	0.0	27.6	43.5	15.9	
252.9	13.4	Р	Н	12.1	1.3	0.0	26.8	46.0	19.2	
253.6	21.4	Р	Н	12.1	1.3	0.0	34.8	46.0	11.2	
274.0	13.1	Р	Н	12.8	1.4	0.0	27.3	46.0	18.7	
306.5	13.3	Р	Н	15.2	1.4	0.0	29.9	46.0	16.1	
344.2	11.4	Р	Н	14.0	1.5	0.0	26.9	46.0	19.1	
354.0	12.0	Р	Н	14.8	1.6	0.0	28.4	46.0	17.6	
474.8	11.8	Р	Н	16.7	1.8	0.0	30.3	46.0	15.7	
486.9	12.6	Р	Н	17.2	1.9	0.0	31.7	46.0	14.3	
618.8	10.2	Р	Н	19.0	2.1	0.0	31.3	46.0	14.7	
622.5	10.6	Р	Н	19.2	2.1	0.0	31.9	46.0	14.1	
753.8	10.8	Р	Н	21.6	2.3	0.0	34.7	46.0	11.3	
910.0	10.4	Р	Н	21.8	2.6	0.0	34.8	46.0	11.2	
920.0	11.2	Р	Н	23.2	2.6	0.0	37.0	46.0	9.0	
1350.1	49.6	Р	Н	25.0	-32.3	0.0	42.3	74.0	31.7	1
1380.0	52.3	Р	Н	25.0	-32.2	0.0	45.1	74.0	28.9	1
1409.9	53.2	Р	Н	25.0	-32.2	0.0	46.0	74.0	28.0	1
1879.9	49.5	Р	Н	27.1	-31.6	0.0	45.0	74.0	29.0	1
33.0	16.5	Р	V	11.0	0.5	0.0	28.0	40.0	12.0	
41.6	12.1	Р	V	12.4	0.5	0.0	25.0	40.0	15.0	
62.7	14.8	Р	V	11.0	0.6	0.0	26.4	40.0	13.6	

Test Report for the Aclara, Itron/Sprague Gas MTU, Model 2017-021

	Meter				Cable &	Dist.			Margin	
Freq.	Reading		Ant.	Ant	Amp	Fact	EUT	Limit	Under	
MHz	dBuV	Dect.	Pol.	Factor	Factors	dB	dBuV/m	dBuV/m	Limit dB	Note
73.4	17.3	Р	V	7.9	0.7	0.0	25.9	40.0	14.1	
134.9	15.7	Р	V	13.7	0.9	0.0	30.3	43.5	13.2	
173.2	12.0	Р	V	18.2	1.1	0.0	31.3	43.5	12.2	
186.5	15.2	Р	V	19.1	1.1	0.0	35.4	43.5	8.1	
218.9	16.5	Р	V	10.8	1.2	0.0	28.5	46.0	17.5	
227.9	14.1	Р	V	10.5	1.2	0.0	25.8	46.0	20.2	
240.0	17.5	Р	V	11.2	1.3	0.0	30.0	46.0	16.0	
269.5	12.8	Р	V	12.4	1.3	0.0	26.5	46.0	19.5	
330.6	13.9	Р	V	13.9	1.5	0.0	29.3	46.0	16.7	
357.0	19.8	Р	V	14.7	1.6	0.0	36.1	46.0	9.9	
382.0	13.6	Р	V	14.5	1.6	0.0	29.7	46.0	16.3	
454.4	11.6	Р	V	15.8	1.8	0.0	29.2	46.0	16.8	
479.4	11.6	Р	V	16.8	1.8	0.0	30.2	46.0	15.8	
512.5	10.1	Р	V	18.0	1.9	0.0	30.0	46.0	16.0	
601.3	9.9	Р	V	18.6	2.0	0.0	30.5	46.0	15.5	
750.0	11.6	Р	V	21.6	2.3	0.0	35.5	46.0	10.5	
753.8	9.9	Р	V	21.6	2.3	0.0	33.8	46.0	12.2	
960.0	9.4	Р	V	23.8	2.7	0.0	35.9	46.0	10.1	
980.0	9.0	Р	V	22.5	2.7	0.0	34.2	54.0	19.8	
1350.1	53.6	Р	V	25.0	-32.3	0.0	46.3	74.0	27.7	1
1800.1	51.7	Р	V	26.6	-31.8	0.0	46.5	74.0	27.5	1
1879.9	48.8	Р	V	27.1	-31.6	0.0	44.3	74.0	29.7	1

Note 1; Peak reading meeting the average limit, so the average reading is not required. Judgment: Pass by 6.3 dB

Radiated emissions in a graphical format. The above chart is the same data as the previous table. The peak limit is not shown, since the peak readings meet the lower average limit.

11 MEASUREMENT INSTRUMENTATION UNCERTAINTY

Measurement	Uncertainty
Radiated Emissions, E-field, 3 meters, 30 to 200 MHz	3.3 dB
Radiated Emissions, E-field, 3 meters, 200 to 1000 MHz	4.9 dB
Radiated Emissions, E-field, 3 meters, 1 to 18 GHz	4.8 dB
99% Occupied Bandwidth using REC-43	1% of frequency span
Conducted power PWM-01 at 460 MHz	0.14 dB
Amplitude measurement 1-5000 MHz; REC-11	1.5 dB
Temperature THM-02	0.6 Deg. C

The uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2 in accordance with CISPR 16-4-2.