RF Exposure

FCC ID: LLB2017020

This calculation is based on the highest EIRP possible from the EUT, considering maximum power and antenna gain.

The highest output power of the EUT is 0.977 W and the gain of the antenna is 3 dBi.

There is be firmware control duty cycle. The firmware is set to limit duty cycle a 40% duty cycle or less in any given 6-minute period. In most cases, the duty cycle is much less than 40%. For all all calculations, 40% will be used as a worst-case in any given 6-minute period, as this is a worst case.

1.0 RF EXPOSURE PER FCC 1.1310

	Max Power	Max Ant	Duty	EIRP	(S) GP Limit	Declared Minimum seperation	Density	
MHz	dBm	Gain dBi	Cycle %	Watts	mW/cm^2	Distance (cm)	mW/cm2	Result
450	29.9	3	40	0.7799	0.300	20.0	0.1552	Pass
460	29.8	3	40	0.7622	0.307	20.0	0.1516	Pass
470	29.7	3	40	0.7448	0.313	20.0	0.1482	Pass

Notes on the above table:

- a. S is the power density General Population Limit from FCC 1.1310 Table 1
- EIRP Power is the Peak Effective Radiated Power.
 EIRP = (Average Conducted Power + Antenna gain) * Duty Cycle.

POWER DENSITY

Power density is given by:

 $S = EIRP / (4 * Pi * D^2)$

Where

S = Power density in mW/cm^2

EIRP = Equivalent Isotropic Radiated Power in mW

D = Separation distance in cm

Since the calculated power density is less than the limit, this product fully meets the OET 65 requirements for the general population.