

Electromagnetic Compatibility Test Report

Tests Performed on an Aclara Technologies, LLC Series 4000 Meter Transmitting Unit (MTU), Model 4291-065-MBS2W Radiometrics Document RP-8231A

Product	Product Detail:					
FCC II	FCC ID: LLB2015001					
Equipr	ment type: 450-470 MHz	Transceiver				
Test Sta	ndards:					
US CF	FR Title 47, Chapter I, F0	CC Part 2 and 90				
FCC F	Parts 2, 15, and 90 CFR	Title 47: 2015				
Tests Pe	erformed For:		Test	Facility:		
Aclara	a Technologies, LLC		Radiometrics Midwest Corporation			
	Solon Rd		12 East Devonwood			
Solon,	OH 44139		Romeoville, IL 60446			
	,			Phone: (815) 293-0772		
Test Dat	te(s): (Month-Day-Year)					
Noven	nber 5 thru 18, 2015					
D						
Docun	nent RP-8231A Revision					
Rev.	Issue Date	Affected Sections		Revised By		
0	December 1, 2015					
1	December 2, 2015	Cover, 1, 2, 3, 4, 10		Joseph Strzelecki		
2	December 10, 2015	2, 10.2.1, 10.3.2		Joseph Strzelecki		
	·					

Table of Contents

1 ADMINISTRATIVE DATA	
2 TEST SUMMARY AND RESULTS	3
3 EQUIPMENT UNDER TEST (EUT) DETAILS	4
3.1 EUT Description	4
4 TESTED SYSTEM DETAILS	
4.1 Tested System Configuration	4
4.2 Special Accessories	
4.3 Equipment Modifications	4
5 TEST SPECIFICATIONS AND RELATED DOCUMENTS	4
6 RADIOMETRICS' TEST FACILITIES	
7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS	5
8 CERTIFICATION	5
9 TEST EQUIPMENT TABLE	5
10 TEST SECTIONS	
10.1 Peak Output Power	
10.2 Occupied Bandwidth; Emissions Masks	
10.3 Field Strength of Unwanted Spurious Radiation	
10.3.1 Test Procedures	
Figure 1. Drawing of Radiated Emissions Setup	
10.3.2 Spurious Radiated Emissions Test Results	
10.4 Frequency Stability	
10.4.1 Frequency Stability Vs Temperature	
10.4.2 Frequency Stability Vs Supply Voltage	
10.4.3 Test Results for Frequency Stability	
10.5 Transient Frequency Behavior	
10.5.1 Test method	
10.5.2 Limits of transient frequency	
10.5.3 Test Results	
10.5.4 Results for Time Periods t1 and t2	
10.5.5 Results for Time Period between t2 and t3	
10.5.6 Results for Time Period t3	
10.6 Radiated Emissions (Receive Mode)	
10.6.1 Radiated Emissions Field Strength Sample Calculation	
10.6.2 Spurious Radiated Emissions Test Results (Receive Mode)	31

Notice: This report must not be reproduced (except in full) without the written approval of Radiometrics Midwest Corporation.

1 ADMINISTRATIVE DATA

Equipment Under Test:					
An Aclara Technologies LLC. Meter Transmitting Unit (MTU)					
Model: 4291-065-MBS2W; Serial Numbers: 800					
This will be referred to as the EUT in this Report					
Date EUT Received at Radiometrics: (Month-Day-Year)	Test Date(s): (Month-Day-Year)				
November 4, 2015	November 5 thru 18, 2015				
Test Report Written By:	Test Witnessed By:				
Joseph Strzelecki	The tests were not witnessed by personnel from				
Senior EMC Engineer	Aclara Technologies, LLC				
Radiometrics' Personnel Responsible for Test:	Test Report Approved By				
Joseph Strzelecki 12/01/2015	Chris W. Carlson Director of Engineering				
Date	NARTE EMC-000921-NE				
Joseph Strzelecki					
Senior EMC Engineer					
NARTE EMC-000877-NE					
Richard L. Tichgelaar					
EMC Technician					

2 TEST SUMMARY AND RESULTS

The EUT (Equipment Under Test) is a Meter Transmitting Unit (MTU), Model 4291-065-MBS2W, manufactured by Aclara Technologies, LLC. The detailed test results are presented in a separate section. The following is a summary of the test results.

Transmitter Requirements

Environmental Phenomena	Frequency Range	FCC Section	Test Result
RF Power Output	450-470 MHz	2.1046 90.205	Pass
Occupied Bandwidth Test; Emissions Masks	450-470 MHz	2.1049 90.209	Pass
Spurious RF Conducted Emissions	1-4700 MHz	2.1051 90.210	Pass
Field Strength of Spurious Radiation	30-4700 MHz	2.1053	Pass
Frequency Vs. Temperature	450-470 MHz	2.1055 90.213	Pass
Frequency Vs. Voltage	450-470 MHz	2.1055 90.213	Pass
Transient Frequency Behavior	450-470 MHz	90.214	Pass
Radiated Emissions Receive Mode	30-2000 MHz	15	Pass

RP-8231A Rev. 2 Page 3 of 31

3 EQUIPMENT UNDER TEST (EUT) DETAILS

3.1 EUT Description

The EUT is a Meter Transmitting Unit (MTU), Model 4291-065-MBS2W, manufactured by Aclara Technologies, LLC. The RF communications link is encrypted in both directions. The EUT was in good working condition during the tests, with no known defects.

4 TESTED SYSTEM DETAILS

4.1 Tested System Configuration

The system was configured for testing in a typical fashion. The testing was performed in conditions as close as possible to installed conditions. Wiring was consistent with manufacturer's recommendations. The Transponder was tested as a stand alone device. The TX/RX Module was used to terminate the receiver ports only. The identification for all equipment used in the tested system, is:

Tested System Configuration List

Item	Description Type	oe*	Manufacturer	Model Number	Serial Numbers
1	Meter Transmitting Unit	П	Aclara Technologies, LLC	4291-065-MBS2W	80010783;
	(MTU)				80010757

^{*} Type: E = EUT,

4.2 Special Accessories

No special accessories were used during the tests in order to achieve compliance.

4.3 Equipment Modifications

No modifications were made to the EUT at Radiometrics' test facility in order to comply with the standards listed in this report.

5 TEST SPECIFICATIONS AND RELATED DOCUMENTS

Document	Date	Title
FCC CFR Title 47	2015	Code of Federal Regulations Title 47, Chapter 1, Federal Communications Commission, Part 15 & 90 - Radio Frequency Devices
ANSI C63.4-2009	2009	Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
TIA-603-C	2004	Land Mobile FM or PM Communications Equipment – Measurement and Performance Standards

RP-8231A Rev. 2 Page 4 of 31

6 RADIOMETRICS' TEST FACILITIES

The results of these tests were obtained at Radiometrics Midwest Corp. in Romeoville, Illinois, USA. Radiometrics is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025: 2005 "General Requirements for the Competence of Calibration and Testing Laboratories". Radiometrics' Lab Code is 121191 and Certification Number is 1495.01. A copy of the accreditation can be accessed on our web site (www.radiomet.com). Radiometrics accreditation status can be verified at A2LA's web site (www.a2la2.org).

The following is a list of shielded enclosures located in Romeoville, Illinois used during the tests:

- Chamber A: Is an anechoic chamber that measures 24' L X 12' W X 12' H. The walls and ceiling are fully lined with ferrite absorber tiles. The floor has a 10' x 10' section of ferrite absorber tiles located in the center. Panashield of Rowayton, Connecticut manufactured the chamber. The enclosure is NAMAS certified.
- Chamber B: Is a shielded enclosure that measures 20' L X 12' W X 8' H. Erik A. Lindgren & Associates of Chicago, Illinois manufactured the enclosure.
- Chamber C: Is a shielded enclosure that measures 17' L X 10' W X 8' H. Lindgren RF Enclosures Inc. of Addison, Illinois manufactured the enclosure.
- Chamber E: Is a custom made anechoic chamber that measures 52' L X 30' W X 18' H. The walls and ceiling are fully lined with RF absorber. Pro-shield of Collinsville, Oklahoma manufactured the chamber.

A separate ten-foot long, brass plated, steel ground rod attached via a 6 inch copper braid grounds each of the above chambers. Each enclosure is also equipped with low-pass power line filters.

The FCC has accepted these sites as test site number US1065. The FCC test site Registration Number is 732175. Details of the site characteristics are on file with the Industry Canada as site number IC3124A-1.

7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS

There were no deviations or exclusions from the test specifications.

8 CERTIFICATION

Radiometrics Midwest Corporation certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specification. The results relate only to the EUT listed herein. Any modifications made to the EUT subsequent to the indicated test date will invalidate the data and void this certification.

9 TEST EQUIPMENT TABLE

RMC ID	Manufacturer	Description	Model No.	Serial No.	Frequency Range	Cal Period	Cal Date
ANT-03	Tensor	Biconical Antenna	4104	2231	20-250MHz	24 Mo.	11/26/13
ANT-06	EMCO	Log-Periodic Ant.	3146	1248	200-1000MHz	24 Mo.	11/26/13
ANT-13	EMCO	Horn Antenna	3115	2502	1.0-18GHz	24 Mo.	12/01/14
ANT-36	Ailtech (Eaton)	Horn Antenna	96001	2013	1.0-18GHz	24 Mo.	10/20/14

RP-8231A Rev. 2 Page 5 of 31

					Frequency	Cal	Cal
RMC ID	Manufacturer	Description	Model No.	Serial No.	Range	Period	Date
ANT-44	Impossible	Super Log Antenna	SL-20M2G	1002	20-2000MHz	24 Mo.	12/10/13
	Machine						
ATT-28	Narda	Attenuator(20dB)	757B-20	3131	DC - 6 GHz	24 Mo.	09/24/14
CDT-01	Wiltron	Crystal RF Detector	75N50	CDT-01	DC-18GHz	N/A	NCR
COM-01	Anaren	Coupler	10023-3	COM-01	250-1000MHz	N/A	NCR
DIR-07	Werlatone	Directional Coupler	C3908	6929	80-1000MHz	24 Mo.	06/10/15
DIR-19	Narda	Directional Coupler	3000-10	01174	200-500MHz	N/A	NCR
DMM-08	Fluke	DMM	8840A/AF	AF4005032	DC-100kHz	24 Mo	05/26/14
REC-11	HP / Agilent	Spectrum Analyzer	E7405A	US39110103	9Hz-26.5GHz	12 Mo.	06/23/15
SCP-02	Tektronix	Oscilloscope	TDS784A	B040258	DC-1GHz	24 Mo.	11/15/14
	Rohde &						
SIG-30	Schwarz	Signal Generator	SMC100A	102914	9k-3.2GHz	24 Mo.	10/07/15
THM-02	Fluke	Temp/Humid Meter	971	93490471	N/A	12 Mo.	08/03/15

Note: All calibrated equipment is subject to periodic checks.

NCR – No Calibration Required. Device monitored by calibrated equipment. N/A: Not Applicable.

10 TEST SECTIONS

10.1 Peak Output Power

The peak power was measured by connecting the EUT antenna port to the spectrum analyzer via a low loss coaxial cable and an appropriate power attenuator.

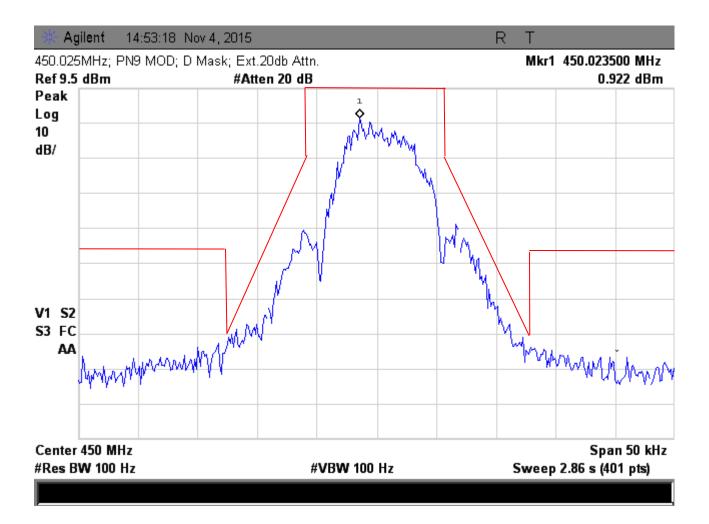
Model	4291-065-MBS2W	Specification	FCC part 90.205
Serial Number	80010783	Test Date	November , 2015
Test Personnel	Joseph Strzelecki	Test Location	Chamber B
Test Equipment	EMI Receiver (REC-11)		

				Peak
TX freq	Reading	Atten &	Total	Power
MHz	dBm	Cable	dBm	Watts
450.0250	9.5	20.2	29.7	0.933
460.0000	9.5	20.3	29.8	0.955
469.9875	9.5	20.3	29.8	0.955

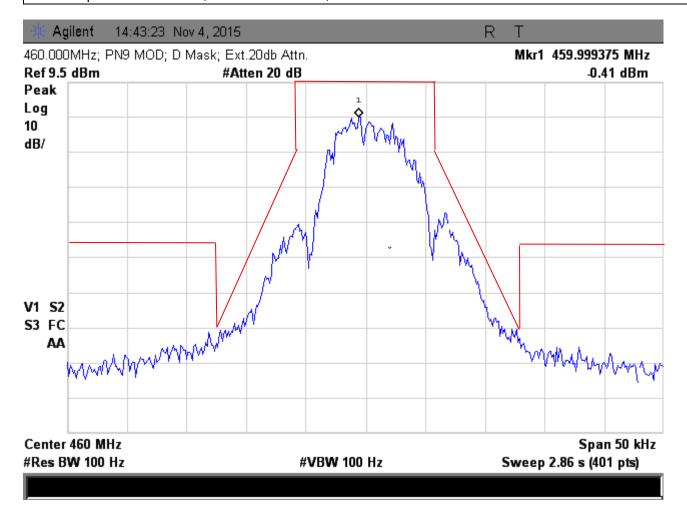
Judgement: Pass

The limit is 33 dBm for this product.

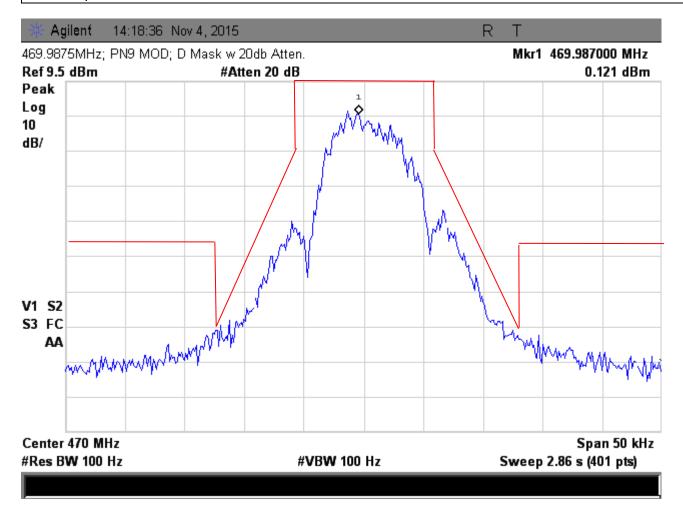
10.2 Occupied Bandwidth; Emissions Masks

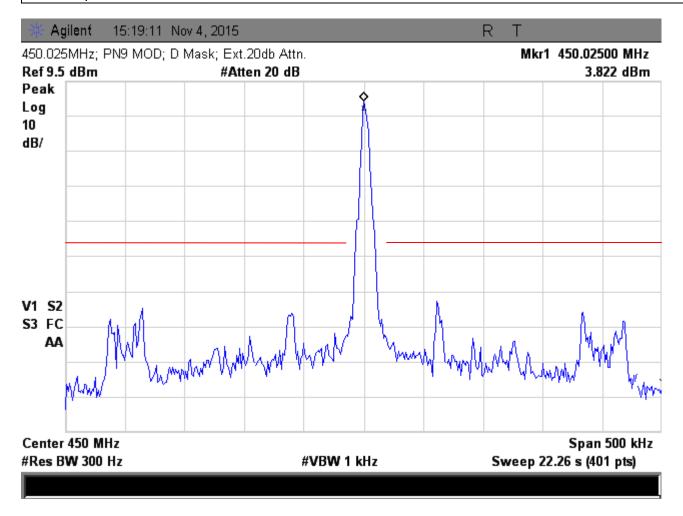

Model	4291-065-MBS2W	Specification	FCC Part 90.209
Serial Number	80010783	Test Date	08/03/2015
Test Personnel	Richard Tichgelaar	Test Location	Chamber B
Test Equipment	Spectrum Analyzer (REC-11)	_	

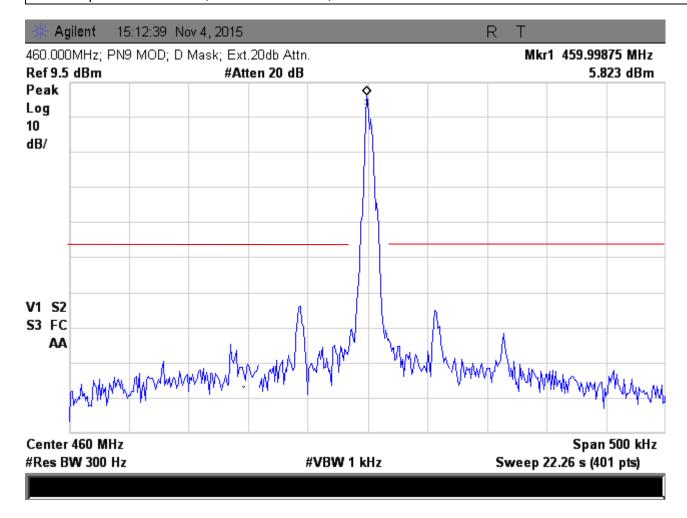
The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation. The EUT was transmitting at its maximum data rate. The trace was allowed to stabilize. All Channels are 12.5 kHz

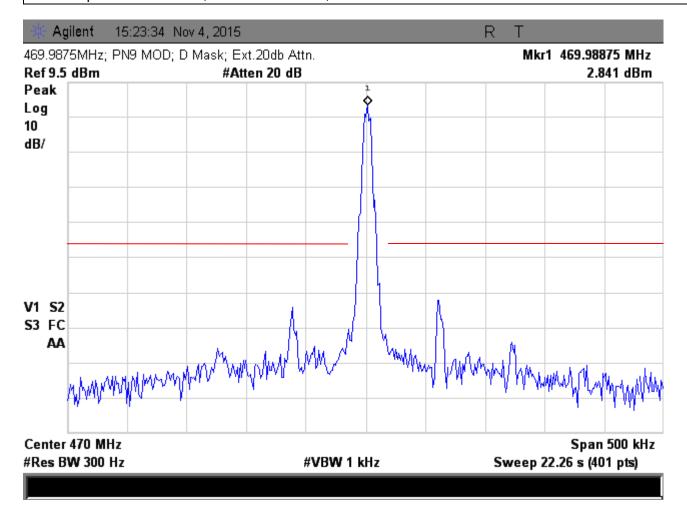

RP-8231A Rev. 2 Page 6 of 31

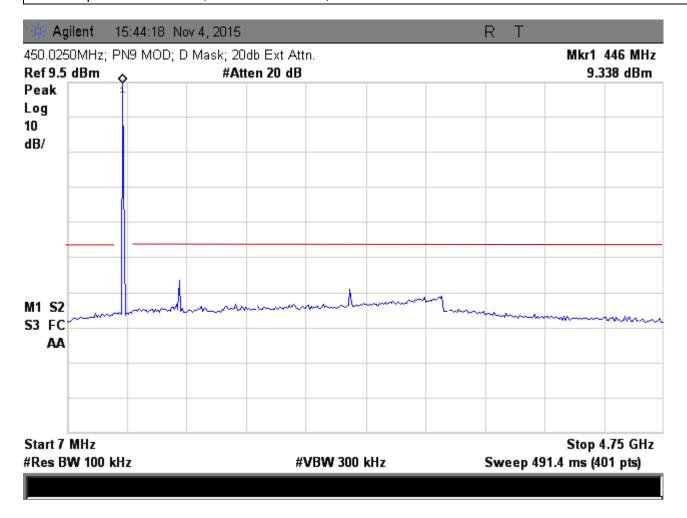
The emissions Masks D is from FCC part 90.210.

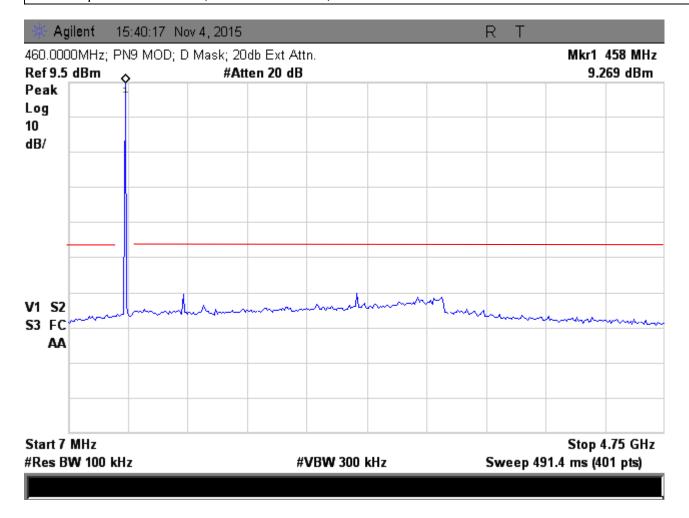

- (1) On any frequency from the center of the authorized bandwidth f0 to 5.625 kHz removed from f0: Zero dB.
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(fd -2.88 kHz) dB.
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB.

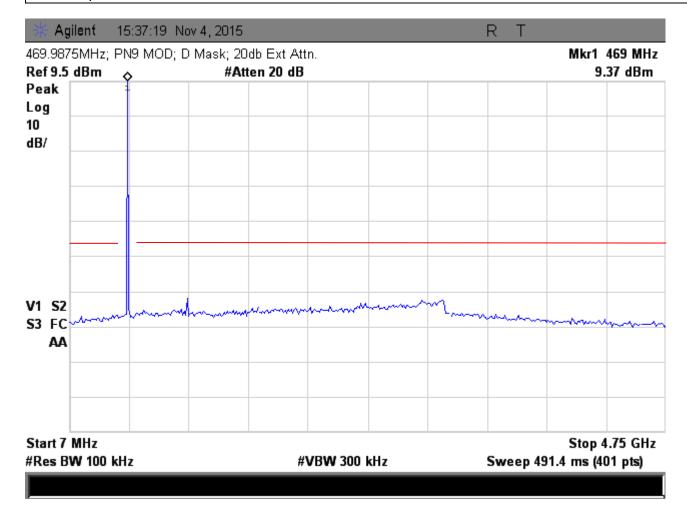

RP-8231A Rev. 2 Page 7 of 31


RP-8231A Rev. 2 Page 8 of 31


RP-8231A Rev. 2 Page 9 of 31

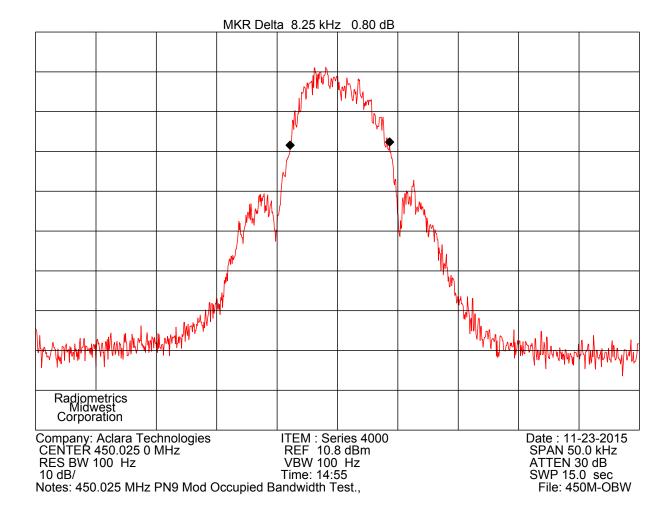

RP-8231A Rev. 2 Page 10 of 31


RP-8231A Rev. 2 Page 11 of 31

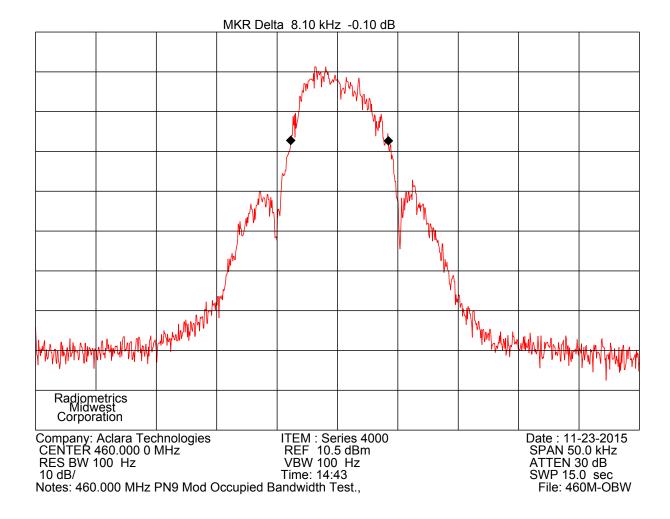

RP-8231A Rev. 2 Page 12 of 31

RP-8231A Rev. 2 Page 13 of 31

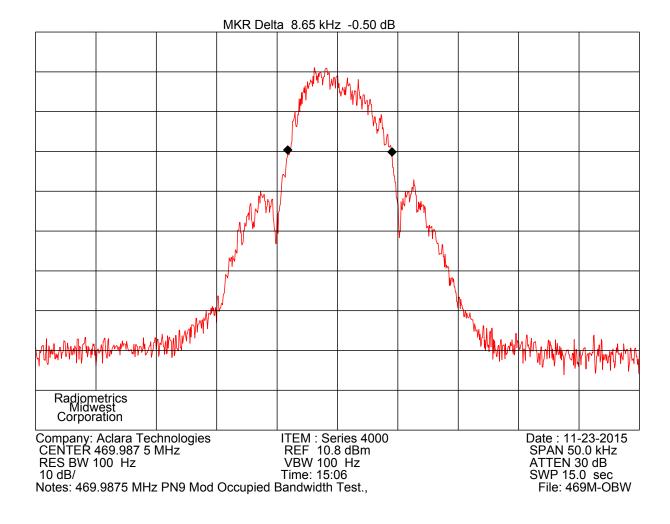
RP-8231A Rev. 2 Page 14 of 31



Judgement: Pass


10.2.1 Occupied bandwidth 99%

Channel	20 dB OBW kHz
450.0250	8.25
460.0000	8.10
469.9875	8.65


RP-8231A Rev. 2 Page 15 of 31

RP-8231A Rev. 2 Page 16 of 31

RP-8231A Rev. 2 Page 17 of 31

RP-8231A Rev. 2 Page 18 of 31

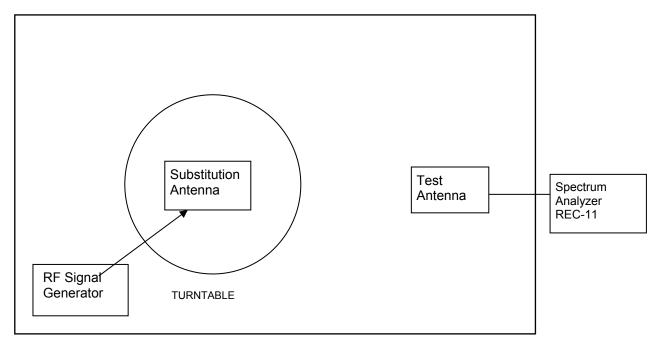
10.3 Field Strength of Unwanted Spurious Radiation

10.3.1 Test Procedures

Radiated emission measurements in the Restricted bands were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists. From 30 to 4700 MHz, a spectrum analyzer with a preselector was used for measurement. Radiated emissions measurements were performed at the anechoic chamber at a test distance of 3 meters. The entire frequency range from 30 to 4700 MHz was slowly scanned and the emissions in the restricted frequency bands were recorded. Measurements were performed using the peak detector function.

The spectrum analyzer was adjusted for the following settings:

- 1) Resolution Bandwidth = 100 kHz for spurious emissions below 1 GHz, and 1 MHz for spurious emissions above 1GHz.
- 2) Video Bandwidth = 300 kHz for spurious emissions below 1 GHz, and 3 MHz for spurious emissions above 1 GHz.
- 3) Sweep Speed slow enough to maintain measurement calibration.
- 4) Detector Mode = Positive Peak.


The transmitter to be tested was placed on the turntable in the standard test site, or an FCC listed site compliant with ANSI C63.4. The transmitter is transmitting into a non-radiating load that is placed on the turntable (except for the fundamental reading which had an antenna). Since the transmitter has an integral antenna, the tests are to be run with the unit operating into the integral antenna. Measurements were made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier. The transmitter was keyed during the tests.

For each spurious frequency, the test antenna was raised and lowered from 1 m to 4m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Then the turntable was rotated 360°to determine the maximum reading. This procedure was repeated to obtain the highest possible reading. This maximum reading was recorded.

Each measurement was repeated for each spurious frequency with the test antenna polarized vertically.

RP-8231A Rev. 2 Page 19 of 31

Figure 1. Drawing of Radiated Emissions Setup

ANSI C63.4 Listed Test Site

Notes:

- Test Antenna height varied from 1 to 4 meters
- Distance from antenna to tested system is 3 meters
- Not to Scale

	Frequency MHz	Test Antenna	Substitution Antenna	Receiver to Coupler	Signal Generator
Ī	30 - 200	ANT-44	ANT-03	REC-11	SIG-30
Ī	200 - 1000	ANT-44	ANT-06	REC-11	SIG-30
ľ	1000-5000	ANT-13	ANT-36	REC-11	SIG-30

The transmitter was removed and replaced with a broadband substitution antenna. The substitution antenna is calibrated so that the gain relative to a dipole is known. The center of the substitution antenna was approximately at the same location as the center of the transmitter.

The substitution antenna was fed at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized, and with the signal generator tuned to a particular spurious frequency, the test antenna was raised and lowered to obtain a maximum reading at the spectrum analyzer. The level of the signal generator output was adjusted until the previously recorded maximum reading for this set of conditions was obtained.

The measurements were repeated with both antennas horizontally and vertically polarized for each spurious frequency.

RP-8231A Rev. 2 Page 20 of 31

The power in dBm into a reference ideal half-wave dipole antenna was calculated by reducing the readings obtained in steps k) and l) by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:

Pd(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dB)

where:

Pd is the dipole equivalent power and

Pg is the generator output power into the substitution antenna.

The Pd levels record in step m) are the absolute levels of radiated spurious emissions in dBm.

Any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB.

Since by mathematical definition, P(dBm) - (50+10xLOG P(W)) = -20 dBm, the limit for spurious emissions was set to -20 dBm equivalent radiated power.

10.3.2 Spurious Radiated Emissions Test Results

Model	4291-065-MBS2W	Specification	FCC Part 90.210
Serial Number	80010783	Test Date	November 9, 10 &11, 2015
Test Distance	3 Meters	Notes	Transmit Mode

	Tx	Measured	Equivalent Radiated power into Dipole			Margin I	Inder Limit
Harmonic	Freq	Frea			Limit	Vertical	Horizontal
#	MHz	MHz	dBm	dBm	dBm	dB	dB
1	450.0250	450.03	28.9	20.8	33.0	4.1	12.3
2	450.0250	900.05	-28.6	-33.9	-20.0	8.6	13.9
3	450.0250	1350.08	-48.5	-51.4	-20.0	28.5	31.4
4	450.0250	1800.10	-52.0	-56.8	-20.0	32.0	36.8
5	450.0250	2250.13	-42.4	-45.0	-20.0	22.4	25.0
6	450.0250	2700.15	-58.0	-58.3	-20.0	38.0	38.3
7	450.0250	3150.18	-40.1	-40.8	-20.0	20.1	20.8
8	450.0250	3600.20	-39.5	-41.3	-20.0	19.5	21.3
9	450.0250	4050.23	-39.4	-40.1	-20.0	19.4	20.1
10	450.0250	4500.25	-39.8	-39.9	-20.0	19.8	19.9
1	460.0000	460.00	29.6	21.4	33.0	3.4	11.6
2	460.0000	920.00	-28.0	-33.7	-20.0	8.0	13.7
3	460.0000	1380.00	-52.2	-51.6	-20.0	32.2	31.6
4	460.0000	1840.00	-51.8	-54.5	-20.0	31.8	34.5
5	460.0000	2300.00	-48.7	-51.4	-20.0	28.7	31.4
6	460.0000	2760.00	-57.5	-57.5	-20.0	37.5	37.5
7	460.0000	3220.00	-40.6	-40.6	-20.0	20.6	20.6
8	460.0000	3680.00	-40.7	-38.6	-20.0	20.7	18.6
9	460.0000	4140.00	-40.6	-39.0	-20.0	20.6	19.0
10	460.0000	4600.00	-38.7	-40.0	-20.0	18.7	20.0
1	469.9875	469.99	30.6	20.0	33.0	2.4	13.0
2	469.9875	939.98	-28.1	-33.9	-20.0	8.1	13.9
3	469.9875	1409.96	-46.1	-52.1	-20.0	26.1	32.1

RP-8231A Rev. 2 Page 21 of 31

	Tx	Measured	Equivalent Radiated power into Dipole			Margin U	Inder Limit
Harmonic	Freq	Freq	Vertical	Horizontal	Limit	Vertical	Horizontal
#	MHz	MHz	dBm	dBm	dBm	dB	dB
4	469.9875	1879.95	-50.9	-53.2	-20.0	30.9	33.2
5	469.9875	2349.94	-52.4	-52.1	-20.0	32.4	32.1
6	469.9875	2819.93	-55.6	-57.0	-20.0	35.6	37.0
7	469.9875	3289.91	-41.8	-39.7	-20.0	21.8	19.7
8	469.9875	3759.90	-40.4	-38.4	-20.0	20.4	18.4
9	469.9875	4229.89	-39.7	-39.2	-20.0	19.7	19.2
10	469.9875	4699.88	-40.0	-39.4	-20.0	20.0	19.4

The fundamental emission limit is 2 watts.

Judgment: Spurious emissions passed by 8 dB.

10.4 Frequency Stability

10.4.1 Frequency Stability Vs Temperature

The chamber was then set to the lowest temperature. The transmitter was in the chamber and allowed to stabilize for 15 minutes. The transmitter was then keyed and the frequency was recorded. The chamber was then incremented in 10°C steps with a minimum of 15 minute stabilization period for each temperature measurement. The transmitter was off during the temperature transitions.

10.4.2 Frequency Stability Vs Supply Voltage

The EUT was allowed to stabilize with the nominal primary power supply voltage applied. The primary input voltage was varied from the lowest to the highest rated levels specified by the manufacturer. Frequency readings were taken at increments of 0.5 VDC.

10.4.3 Test Results for Frequency Stability

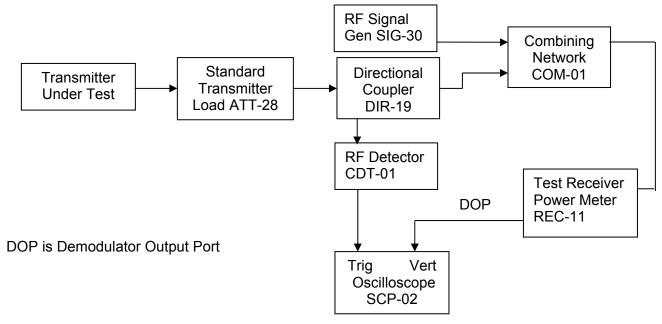
Model	4291-065-MBS2W	Specification	FCC Part 90.213			
Serial Number	80010783	Test Date	11/11/2015			
Test Personnel	Rich Tichgelaar	Test Location	Chamber B			
Test Equipment	Spectrum Analyzer (REC-11); Temperature Chamber TC-01					
	Digital Multimeter (DMM-08)					
Notes	Notes 15 minutes at each Temperature; 1 min at each voltage					
Nominal Frequency 460.0000 MHz						

Volts	Freq.	Deviation	
VAC	(MHz)	Hz	PPM
3.8	460.000011	11	0.02
3.6	460.000012	12	0.03
3.4	460.000011	11	0.02
3.2	460.000012	12	0.03
3.0	460.000009	9	0.02
2.8	460.000008	8	0.02

Temp	Freq.	Deviation	
Deg C	(MHz)	Hz	PPM
50	460.000079	79	0.17

RP-8231A Rev. 2 Page 22 of 31

40	460.000019	19	0.04
30	459.999997	-3	-0.01
20	460.000018	18	0.04
10	459.999949	-51	-0.11
0	459.999900	-100	-0.22
-10	459.999898	-102	-0.22
-20	459.999918	-82	-0.18
-30	459.999911	-89	-0.19


Test Requirements: Limit is 2.5 ppm

Judgement: Pass

10.5 Transient Frequency Behavior

10.5.1 Test method

The test was performed in accordance to TIA-603-C Section 2.2.19.3 Alternate Method of Measurement (Using a Test Receiver). The equipment was connected as shown below.

10.5.2 Limits of transient frequency

Time intervals 1,2	Maximum Frequency Difference ³	421 to 512 MHz Equipment Operating on 12.5 kHz Channels
t ₁ ⁴	±12.5 kHz	10.0 ms
t_2	±6.25 kHz	25.0 ms
t ₃ ⁴	±12.5 kHz	10.0 ms

 1 _{on}is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing. t_{1} is the time period immediately following t_{on} .

 t_2 is the time period immediately following t_1 .

RP-8231A Rev. 2 Page 23 of 31

t₃is the time period from the instant when the transmitter is turned off until t_{off}.

toffis the instant when the 1 kHz test signal starts to rise.

 2 During the time from the end of t_2 to the beginning of t_3 , the frequency difference must not exceed the limits specified in § 90.213.

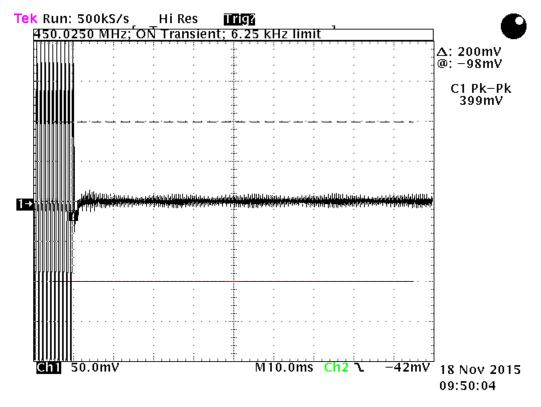
³Difference between the actual transmitter frequency and the assigned transmitter frequency.

⁴If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

10.5.3 Test Results

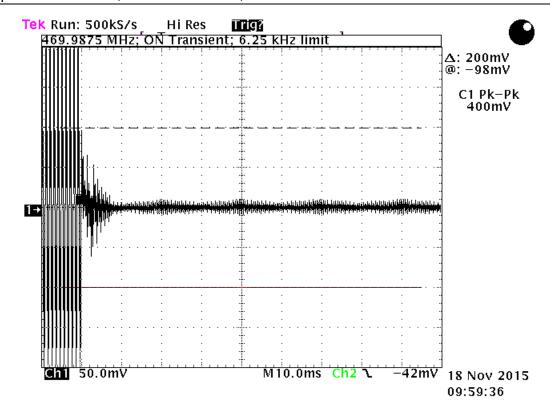
Model	4291-065-MBS2W	Specification	FCC part 90.213
Serial Number	80010783	Test Date	November 18, 2015
Test Personnel	Joseph Strzelecki	Test Location	Chamber B
	Rich Tichgelaar		
Notes			

		Limit	Limits for Time interval/Freq difference					
	Channel	t ₁		t	t_2 t_3		3	Test
Freq MHz	BW	mSec	kHz	mSec	kHz	mSec	kHz	Result
450.0250	12.5	10	12.5	25	6.25	10	12.5*	Pass
460.000	12.5	10	12.5	25	6.25	10	12.5*	Pass
469.9875	12.5	10	12.5	25	6.25	10	12.5*	Pass

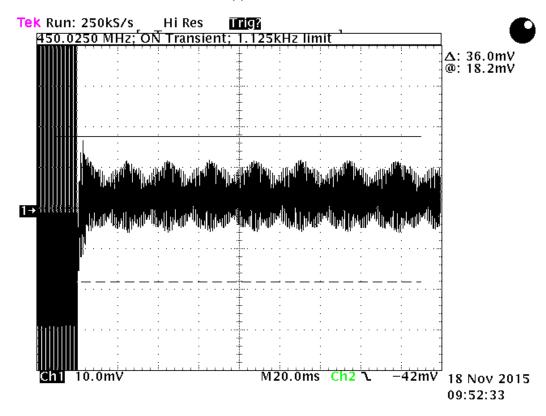

Judgement: Pass

10.5.4 Results for Time Periods t1 and t2

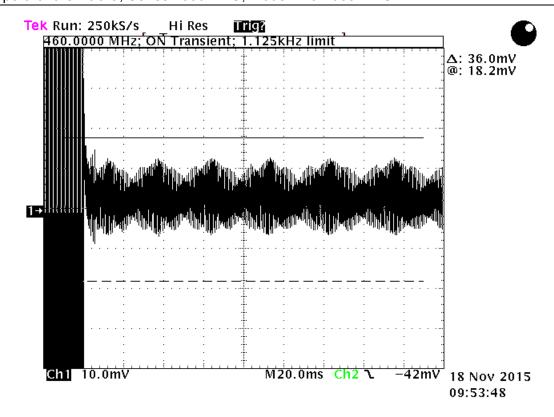
The EUT passed the 6.25 kHz limit so the 12.5 limit is not shown.

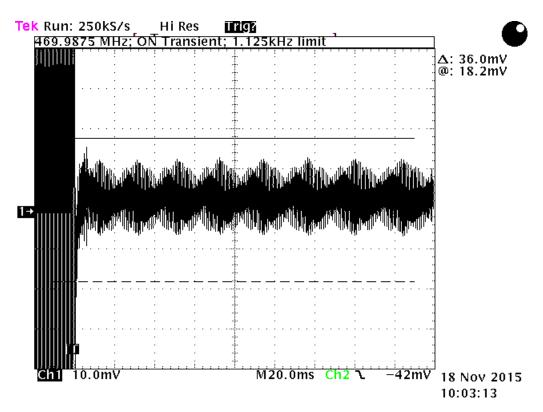

RP-8231A Rev. 2 Page 24 of 31

^{*}Since the transmitter carrier output power is less than 6 watts, the frequency difference during the t3 time period may exceed the maximum frequency difference for this time period.



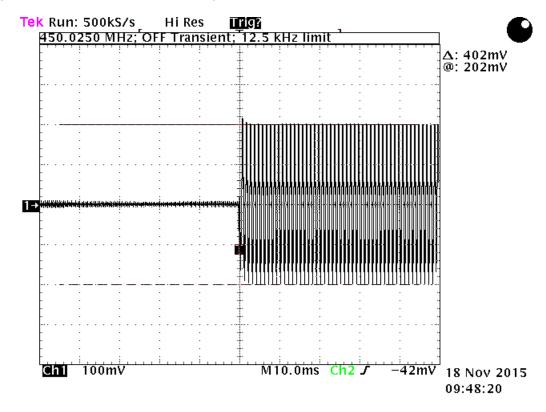
RP-8231A Rev. 2 Page 25 of 31

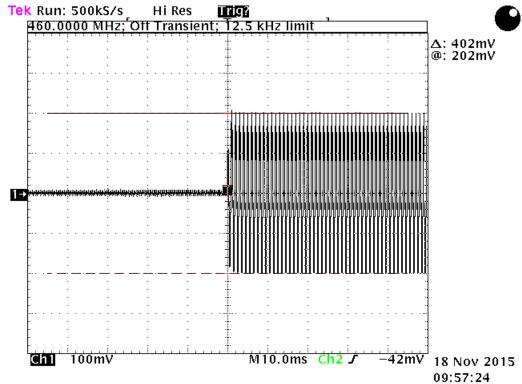



10.5.5 Results for Time Period between t2 and t3

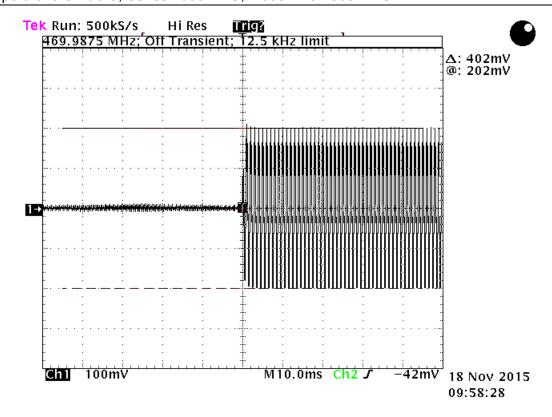
The limit between t2 and t3 on all of the scope traces are calculated for the 450 MHz Channel since this is the lowest limit. This limit is 450 MHz * 2.5 ppm or 1125 Hz.

RP-8231A Rev. 2 Page 26 of 31





RP-8231A Rev. 2 Page 27 of 31


10.5.6 Results for Time Period t3

Since the transmitter carrier output power is less than 6 watts, the frequency difference during the t3 time period may exceed the maximum frequency difference for this time period.

RP-8231A Rev. 2 Page 28 of 31

10.6 Radiated Emissions (Receive Mode)

Radiated emission measurements were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. The radiated emission measurements were performed with a spectrum analyzer. The bandwidth used from 150 kHz to 30 MHz is 9 or 10 kHz and the bandwidth from 30 MHz to 1000 MHz is 100 or 120 kHz. Above 1 GHz, a 1 MHz bandwidth is used. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists.

From 30 to 2000 MHz, an Anritsu spectrum analyzer was used. Final radiated emissions measurements were performed inside of an anechoic chamber at a test distance of 3 meters. The anechoic chamber is designated as Chamber E. This Chamber meets the Site Attenuation requirements of ANSI C63.4 and CISPR 16-1. Chamber E is located at 12 East Devonwood Ave. Romeoville, Illinois EMI test lab.

The entire frequency range from 30 to 2000 MHz was slowly scanned with particular attention paid to those frequency ranges which appeared high. Measurements were performed using two antenna polarizations, (vertical and horizontal). The worst case emissions were recorded. All measurements may be performed using either the peak, average or quasi-peak detector functions. If the peak detector data exceeds or is marginally close to the limits, the measurements are repeated using a quasi-peak detector or average function as required by the specification for final determination of compliance.

The detected emission levels were maximized by rotating the EUT, adjusting the positions of all cables, and by scanning the measurement antenna from 1 to 4 meters above the ground.

10.6.1 Radiated Emissions Field Strength Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and by subtracting the Amplifier Gain from the measured reading. The basic equation is as follows:

RP-8231A Rev. 2 Page 29 of 31

FS = RA + AF + CF - AG

Where: FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

RP-8231A Rev. 2 Page 30 of 31

10.6.2 Spurious Radiated Emissions Test Results (Receive Mode)

Model	4291-065-MBS2W-1	Specification	FCC Part 15 Subpart B			
Serial Number	80010757	Test Date	11/09/2015			
Tested by	Richard Tichgelaar	Test Distance	3 Meters			
Abbreviations	Pol = Antenna Polarization; V = Vertical; H = Horizontal; P = peak; Q = QP					
Notes	Corr. Factors = Cable Loss – Preamp Gain					
Configuration	Receive Mode					

	Meter				Cable &	Dist			Margin	
Freq.	Reading		Ant.	Ant	Amp	Fact	EUT	Limit	Under	
MHz	dBuV	Dect.	Pol.	Factor	Factors	dB	dBuV/m	dBuV/m	Limit dB	Note
30.0	33.5	Р	Н	16.9	-28.3	0.0	22.0	40.0	18.0	
35.0	38.1	Р	Н	16.6	-28.2	0.0	26.4	40.0	13.6	
132.3	34.3	Р	Н	13.6	-27.7	0.0	20.3	43.5	23.2	
204.9	34.6	Р	Н	10.3	-27.5	0.0	17.4	43.5	26.1	
250.0	34.3	Р	Н	12.4	-27.3	0.0	19.5	46.0	26.5	
258.1	33.4	Р	Н	12.9	-27.3	0.0	19.0	46.0	27.0	
343.8	35.1	Р	Н	15.3	-27.2	0.0	23.2	46.0	22.8	
420.0	35.7	Р	Н	17.0	-27.0	0.0	25.7	46.0	20.3	
493.1	34.6	Р	Н	17.6	-26.9	0.0	25.4	46.0	20.6	
522.5	33.6	Ρ	Η	19.1	-26.7	0.0	26.0	46.0	20.0	
668.8	35.5	Р	Н	20.2	-26.2	0.0	29.5	46.0	16.5	
863.8	34.2	Р	Н	21.1	-25.4	0.0	29.9	46.0	16.1	
987.5	34.8	Р	Н	22.3	-24.5	0.0	32.7	54.0	21.3	
1025.0	40.4	Р	Н	23.9	-32.8	0.0	31.5	74.0	42.5	Note 1
1677.5	40.1	Р	Н	26.1	-32.2	0.0	34.0	74.0	40.0	Note 1
1932.5	42.2	Р	Н	27.6	-31.8	0.0	38.0	74.0	36.0	Note 1
1992.5	39.9	Р	Н	27.6	-31.6	0.0	35.9	74.0	38.1	Note 1
30.0	34.1	Р	V	16.9	-28.3	0.0	22.7	40.0	17.3	
35.0	39.9	Р	V	16.6	-28.2	0.0	28.3	40.0	11.7	
49.8	39.2	Р	V	14.3	-28.1	0.0	25.4	40.0	14.6	
75.7	34.1	Р	V	7.1	-27.9	0.0	13.2	40.0	26.8	
185.6	34.6	Р	V	9.4	-27.5	0.0	16.5	43.5	27.0	
245.1	34.5	Р	V	12.5	-27.3	0.0	19.7	46.0	26.3	
255.0	34.5	Р	V	12.9	-27.3	0.0	20.1	46.0	25.9	
298.8	33.9	Р	V	13.2	-27.2	0.0	20.0	46.0	26.0	
425.6	34.2	Р	V	17.2	-27.0	0.0	24.4	46.0	21.6	
500.0	33.6	Р	V	17.3	-27.0	0.0	24.0	46.0	22.0	
518.8	34.5	Р	V	19.0	-26.8	0.0	26.7	46.0	19.3	
618.8	35.9	Р	V	19.4	-26.6	0.0	28.8	46.0	17.2	
805.0	36.0	Р	V	20.1	-25.8	0.0	30.3	46.0	15.7	
993.8	35.6	Р	V	22.6	-24.4	0.0	33.8	54.0	20.2	
1002.5	39.0	Р	V	23.7	-32.7	0.0	29.9	74.0	44.1	Note 1
1475.0	40.6	Р	V	25.5	-32.5	0.0	33.6	74.0	40.4	Note 1
1695.0	41.0	Р	V	26.2	-32.1	0.0	35.1	74.0	38.9	Note 1
1902.5	40.1	Р	V	27.6	-31.9	0.0	35.9	74.0	38.1	Note 1
1990.0	39.8	P	V	27.6	-31.6	0.0	35.8	74.0	38.2	Note 1
Note 1: Peak reading meeting the average limit so the average reading is not required										

Note 1; Peak reading meeting the average limit so the average reading is not required. Judgment: Pass by at least 10 dB

RP-8231A Rev. 2 Page 31 of 31