

DFS PORTION OF FCC CFR47 PART 15 SUBPART E

CERTIFICATION TEST REPORT FOR

BROADBAND WIRELESS ACCESS, POINT TO MUTIPOINT SYSTEM

MODEL NUMBER: AU-E-SA-5.X-VL

FCC ID: LKT-VL-53C

REPORT NUMBER: 07U10917-1, Revision B

ISSUE DATE: JULY 18, 2007

Prepared for
ALVARION
21A HABARAEL STREET
TEL AVIV
69710 ISRAEL

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	4/13/2007	Initial Issue	M. Heckrotte
В	7/18/2007	Removed references to operation in 40 MHz Channel Bandwidth	M. Heckrotte

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	4
2.	TEST METHODOLOGY	5
3.	FACILITIES AND ACCREDITATION	5
4.	CALIBRATION AND UNCERTAINTY	5
	4.1. MEASURING INSTRUMENT CALIBRATION	5
	4.2. MEASUREMENT UNCERTAINTY	5
5.	DYNAMIC FREQUENCY SELECTION	6
	5.1. DFS OVERVIEW	6
	5.1.1. LIMITS	
	5.1.2. TEST AND MEASUREMENT SYSTEM	
	5.1.3. TEST AND MEASUREMENT EQUIPMENT	
	5.1.4. DESCRIPTION OF EUT	
	5.1.5. SETUP OF EUT	
	5.2. MASTER CONFIGURATION IN 10 MHz BANDWIDTH	
	5.2.1. PLOTS OF RADAR WAVEFORM, AND WLAN TRAFFIC	
	5.2.2. TEST CHANNEL AND METHOD	
	5.2.4. CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME.	
	5.2.5. NON-OCCUPANCY PERIOD	
	5.2.6. DETECTION BANDWIDTH	
	5.2.7. IN-SERVICE MONITORING	
	5.3. SLAVE CONFIGURATION IN 10 MHz BANDWIDTH	43
	5.3.1. PLOTS OF RADAR WAVEFORM AND WLAN TRAFFIC	
	5.3.2. TEST CHANNEL AND METHOD	45
	5.3.3. CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME.	45
	5.4. MASTER CONFIGURATION IN 20 MHz BANDWIDTH	50
	5.4.1. PLOTS OF RADAR WAVEFORM, AND WLAN TRAFFIC	
	5.4.2. TEST CHANNEL AND METHOD	57
	5.4.3. CHANNEL AVAILABILITY CHECK TIME	
	5.4.4. CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME.	
	5.4.5. NON-OCCUPANCY PERIOD	
	5.4.6. DETECTION BANDWIDTH	
	5.4.7. IN-SERVICE MONITORING	
	5.5. SLAVE CONFIGURATION IN 20 MHz BANDWIDTH	
	5.5.1. PLOTS OF RADAR WAVEFORM AND WLAN TRAFFIC	
	5.5.2. TEST CHANNEL AND METHOD	
	5.5.3. CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME.	80
6.	SETUP PHOTOS	85

DATE: JULY 18, 2007 FCC ID: LKT-VL-53C

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: ALVARION

21A HABARZEL STREET TEL AVI 69710 ISRAEL

EUT DESCRIPTION: BROADBAND WIRELESS ACCESS

MODEL: AU-E-SA-5.X-VL

SERIAL NUMBER: 00-10-E7-C4-00-81

DATE TESTED: MARCH 21-31, 2007

APPLICABLE STANDARDS

STANDARD TEST RESULTS

DFS PORTION OF NO NON-COMPLIANCE NOTED

FCC PART 15 SUBPART E

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

MH

MICHAEL HECKROTTE ENGINEERING MANAGER COMPLIANCE CERTIFICATION SERVICES

CAN MING CHUNG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 85

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 15 and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. DYNAMIC FREQUENCY SELECTION

5.1. DFS OVERVIEW

5.1.1. LIMITS

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode				
	Master	Client (without radar detection)	Client (with radar detection)		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
Uniform Spreading	Yes	Not required	Not required		

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode				
	Master Client Cli		Client		
		(without DFS)	(with DFS)		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Closing Transmission Time	Yes	Yes	Yes		
Channel Move Time	Yes	Yes	Yes		

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value
	(see note)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over remaining 10 second
	period

The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

- For the Short pulse radar Test Signals this instant is the end of the *Burst*.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.
- For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Table 5 – Short Pulse Radar Test Waveforms

	Table 5 – Short ruise Radar rest waveforms									
Radar Type	Pulse Width	PRI	Pulses	Minimum	Minimum					
	(Microseconds)	(Microseconds)		Percentage of	Trials					
				Successful						
				Detection						
1	1	1428	18	60%	30					
2	1-5	150-230	23-29	60%	30					
3	6-10	200-500	16-18	60%	30					
4	11-20	200-500	12-16	60%	30					
Aggregate (Ra	adar Types 1-4)	80%	120							

Table 6 - Long Pulse Radar Test Signal

Radar	Bursts	Pulses	Pulse	Chirp	PRI	Minimum	Minimum
Waveform		per	Width	Width	(µsec)	Percentage of	Trials
		Burst	(µsec)	(MHz)		Successful	
						Detection	
5	8-20	1-3	50-100	5-20	1000-	80%	30
					2000		

Table 7 – Frequency Hopping Radar Test Signal

Radar	Pulse	PRI	Burst	Pulses	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	Length	per	Rate	Percentage of	Trials
	(µsec)		(ms)	Нор	(kHz)	Successful Detection	
6	1	333	300	9	.333	70%	30

5.1.2. TEST AND MEASUREMENT SYSTEM

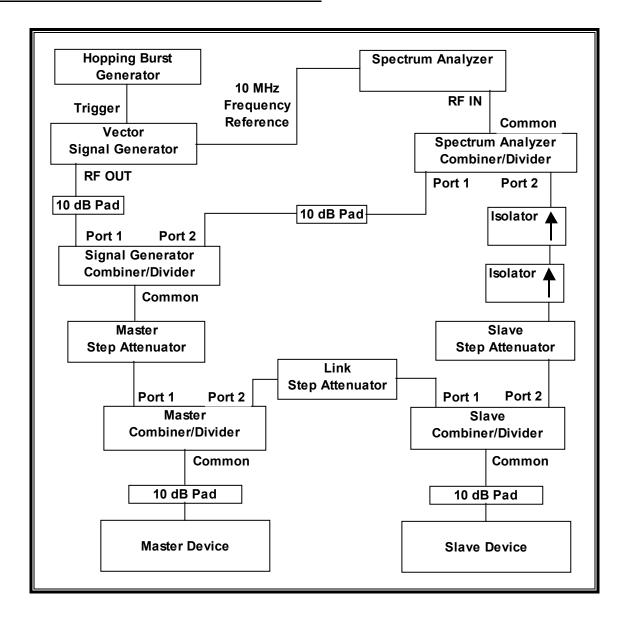
SYSTEM OVERVIEW

The measurement system is based on a conducted test method.

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.


The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold. The time-domain resolution is 3 msec / bin with a 24 second sweep time, meeting the 22 second long pulse reporting criteria and allowing a minimum of 10 seconds after the end of the long pulse waveform.

Should multiple RF ports be utilized for the Master and/or Slave devices (for example, for diversity or MIMO implementations), additional combiner/dividers are inserted between the Master Combiner/Divider and the 10 dB pad connected to the Master Device (and/or between the Slave Combiner/Divider and the 10 dB pad connected to the Slave Device). Additional 10 dB pads are connected as needed, such that there is one pad at each RF port on each EUT.

DATE: JULY 18, 2007

FCC ID: LKT-VL-53C

CONDUCTED METHOD SYSTEM BLOCK DIAGRAM

SYSTEM CALIBRATION

Connect the spectrum analyzer to the test system in place of the master device. Set the signal generator to CW mode. Adjust the amplitude of the signal generator to yield a measured level of –64 dBm on the spectrum analyzer.

Without changing any of the instrument settings, reconnect the spectrum analyer to the Common port of the Spectrum Analyzer Combiner/Divider and connect a 50 ohm load to the Master Device port of the test system.

Measure the amplitude and calculate the difference from -64 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference. Confirm that the signal is displayed at -64 dBm. Readjust the RBW and VBW to 3 MHz, set the span to 10 MHz, and confirm that the signal is still displayed at -64 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

Establish a link between the Master and Slave, adjusting the Link Step Attenuator as needed to provide a suitable received level at the Master and Slave devices. Stream the video test file to generate WLAN traffic. Confirm that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold. Confirm that the displayed traffic is from the Master Device. Confirm that the displayed traffic does not include Slave Device traffic.

If a different setting of the Master Step Attenuator is required to meet the above conditions, perform a new System Calibration for the new Master Step Attenuator setting.

DATE: JULY 18, 2007

FCC ID: LKT-VL-53C

This report shall not be reproduced except in full, without the written approval of CCS.

5.1.3. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST								
Description	Manufacturer	Model	Serial Number	Cal Due				
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	US42070220	7/26/2007				
Vector Signal Generator 250kHz-								
20GHz	Agilent / HP	E8267C	US43320336	11/2/2007				
	National							
High Speed Digital I/O Card	Instruments	PCI-6534	HA1612845	1/16/2008				

5.1.4. DESCRIPTION OF EUT

The EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges.

The EUT can be configured as a Master Device, or as a Slave Device without radar detection.

The highest power level within these bands is 27 dBm in 10 MHz bandwidth and 30 dBm EIRP in 20 MHz bandwidth.

The highest gain antenna assembly utilized with the EUT has a gain of 23 dBi. The lowest gain antenna assembly utilized with the EUT has a gain of 15 dBi.

The rated output power of the Master unit is > 23 dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -64 + 15 + 1 = -48 dBm.

The calibrated conducted DFS Detection Threshold level is set to -48 dBm.

The EUT uses one transmitter connected to a 50-ohm coaxial antenna to perform conducted tests.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

TPC is required since the maximum EIRP is less than 500 mW (27 dBm).

The EUT utilizes the 802.11a architecture. Two nominal channel bandwidths are implemented: 10 MHz and 20 MHz

The software installed in the access point is A4_5xx.bz revision C.

INFORMATION REGARDING TPC

The TPC power levels and EIRP calculations are in a separate document.

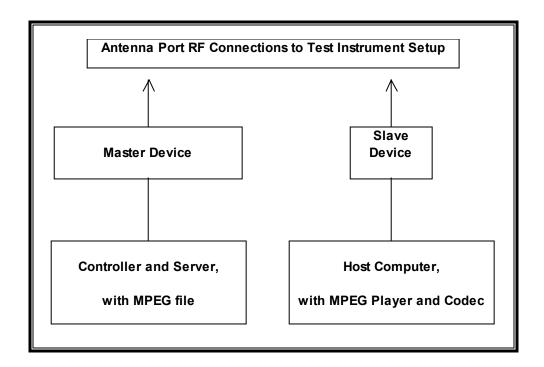
MANUFACTURER'S STATEMENT REGARDING UNIFORM CHANNEL SPREADING

This statement is in a separate document.

Page 13 of 85

DATE: JULY 18, 2007

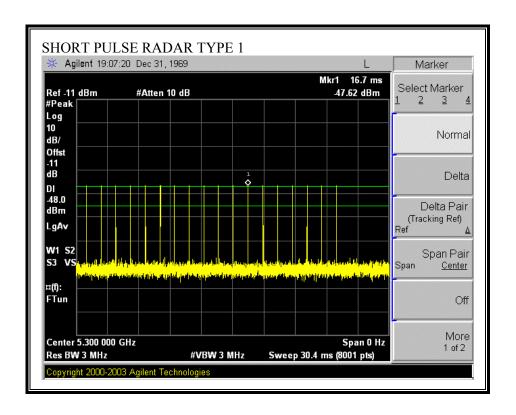
FCC ID: LKT-VL-53C

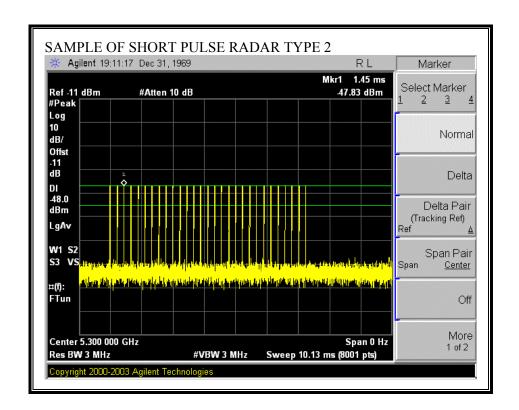

This report shall not be reproduced except in full, without the written approval of CCS.

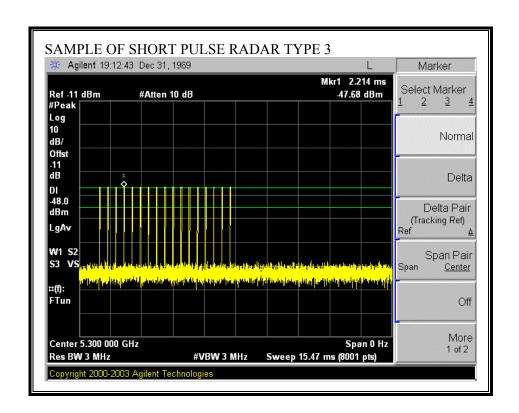
5.1.5. SETUP OF EUT

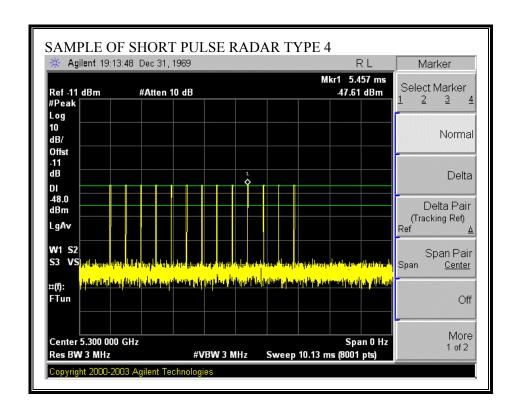
SUPPORT EQUIPMENT

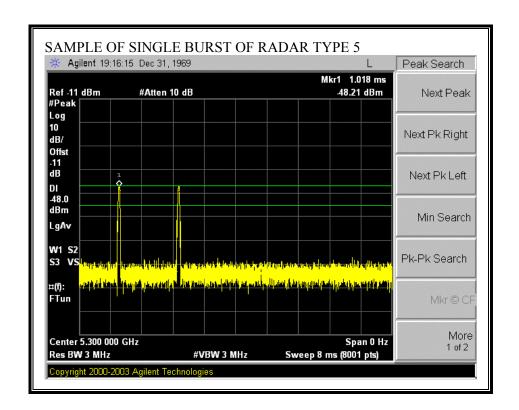
PERIPHERAL SUPPORT EQUIPMENT LIST								
Description Manufacturer Model Serial Number FCC ID								
AC Adapter	Compaq	PPP012L	3300371601	DoC				
Laptop	Compaq	Presario 3000	CNU327025L	DoC				
AC Adapter	Compaq	PPP012L	N/A	DoC				
Laptop	Compaq	Presario 3000	N/A	DoC				

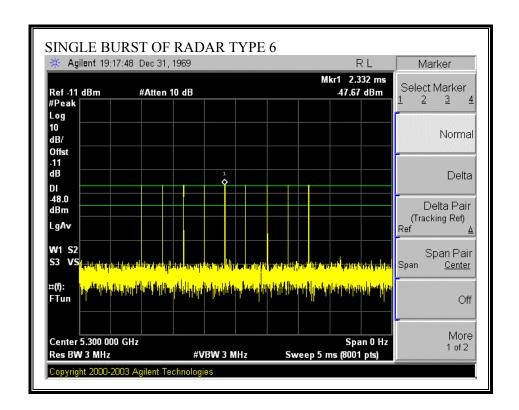

TEST SETUP

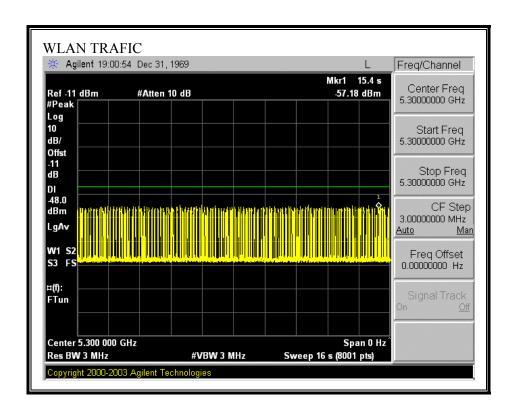



5.2. **MASTER CONFIGURATION IN 10 MHz BANDWIDTH**


5.2.1. PLOTS OF RADAR WAVEFORM, AND WLAN TRAFFIC


PLOTS OF RADAR WAVEFORMS





PLOT OF WLAN TRAFFIC FROM MASTER

5.2.2. TEST CHANNEL AND METHOD

All tests were performed at a channel center frequency of 5300 MHz utilizing a conducted test method.

5.2.3. CHANNEL AVAILABILITY CHECK TIME

TEST PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel, then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

TEST PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

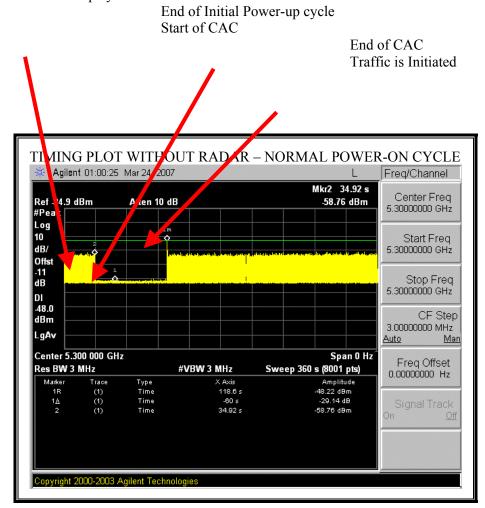
The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

DATE: JULY 18, 2007 FCC ID: LKT-VL-53C

This report shall not be reproduced except in full, without the written approval of CCS.

CHANNEL AVAILABILITY CHECK TIME RESULTS

No non-compliance noted:


Time required for EUT to complete the initial power-up cycle
(sec)
23.58

If a radar signal is detected during the channel availability check then the PC controlling the EUT displays a message stating that radar was detected.

Timing of	Display on EUT / PC	Spectrum Analyzer Display
Radar Burst	Control Computer	
No Radar Triggered	EUT Initiates Transmisisons	Transmissions begin on
		channel after completion of
		the initial power-up cycle and
		the 60 second CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

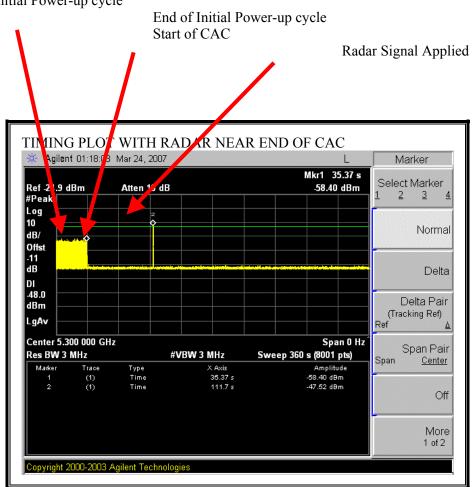
TIMING PLOT WITHOUT RADAR DURING CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle

Note: The initial power-up cycle requires (118.6 - 34.92 - 60) = 23.58 seconds.

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMING PLOT WITH RADAR MEAR BEGINNING OF CAC Agilent 01:08:15 Mar 24, 2007 Marker Mkr1 34.34 s Select Marker Atten 17 dB -58.84 dBm Ref -21.9 dBm 2 3 #Peak Log 10 Normal dB/ Offst -11 dB Delta DI 48.0 Delta Pair dBm (Tracking Ref) LgAv Center 5.300 000 GHz Span O Hz Span Pair Res BW 3 MHz #VBW 3 MHz Sweep 360 s (8001 pts) Span Center Type Time Off More 1 of 2


The radar signal is applied (63.9 - 34.34) = 29.56 seconds after reboot, which is (29.56 - 23.58) = 5.98seconds after the completion of the initial power-up cycle / start of the CAC period.

No EUT transmissions were observed after the radar signal.

Copyright 2000-2003 Agilent Technologies

TIMING PLOT WITH RADAR NEAR END OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle

The radar signal is applied (111.7 - 35.37) = 76.33 seconds after reboot, which is (76.33 - 23.58) = 52.75 seconds after the completion of the initial power-up cycle / start of the CAC period.

No EUT transmissions were observed after the radar signal.

5.2.4. CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME

GENERAL REPORTING NOTES

The reference marker is set at the end of last radar pulse.

SHORT PULSE RADAR REPORTING NOTES

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

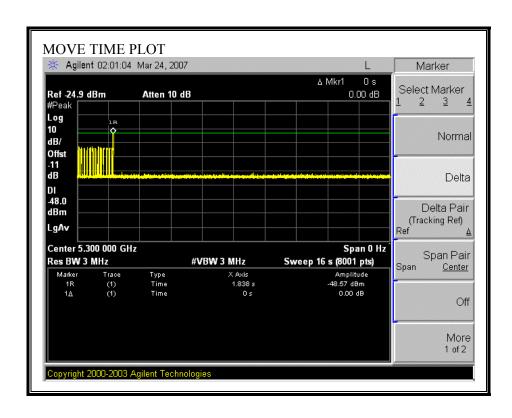
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated for the FCC version Begins at (Reference Marker + 200 msec) and

Ends no earlier than (Reference Marker + 10 sec).

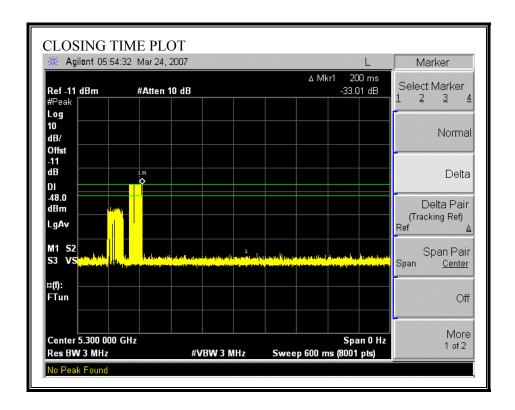
The observation period over which the aggregate time is calculated for the IC version Begins at (Reference Marker) and

Ends no earlier than (Reference Marker + 10 sec).


LONG PULSE RADAR REPORTING NOTES

The delta marker is set to 10 seconds after the end of the radar pulse.

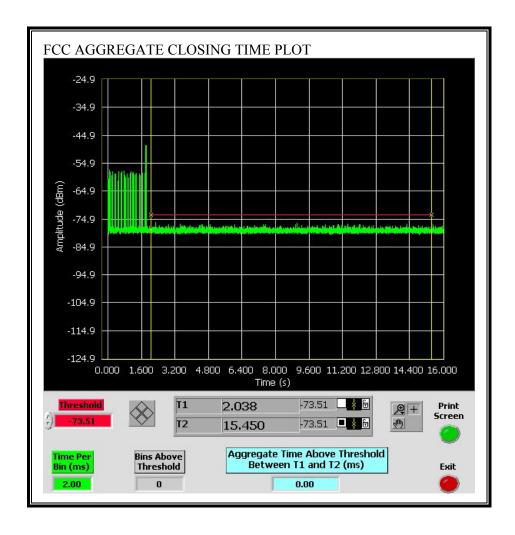
CHANNEL MOVE TIME RESULTS


No non-compliance noted:

Channel Move Time	Limit
(s)	(s)
0.000	10

CHANNEL CLOSING TIME RESULTS

No non-compliance noted:

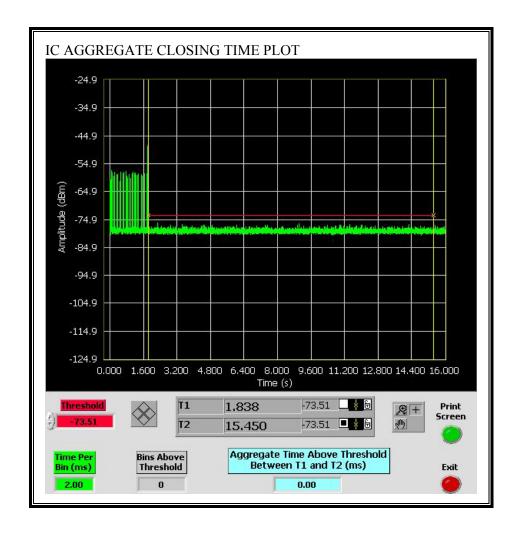


FCC AGGREGATE CHANNEL CLOSING TRANSMISSION TIME RESULTS

No non-compliance noted:

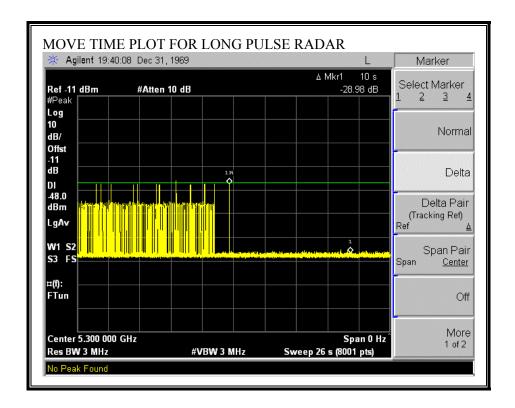
Aggregate Transmission Time	Limit	Margin	
(ms)	(ms)	(ms)	
0.00	60	60.00	

No transmissions are observed during the aggregate monitoring period.



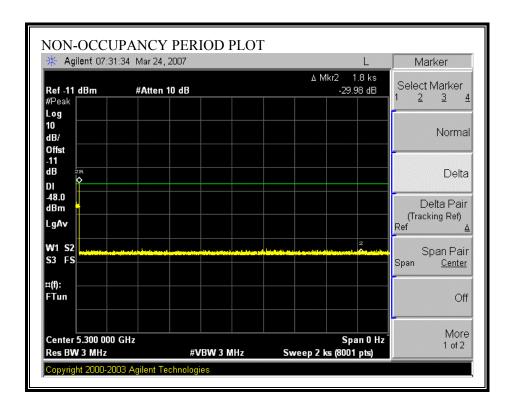
IC AGGREGATE CHANNEL CLOSING TRANSMISSION TIME RESULTS

No non-compliance noted:

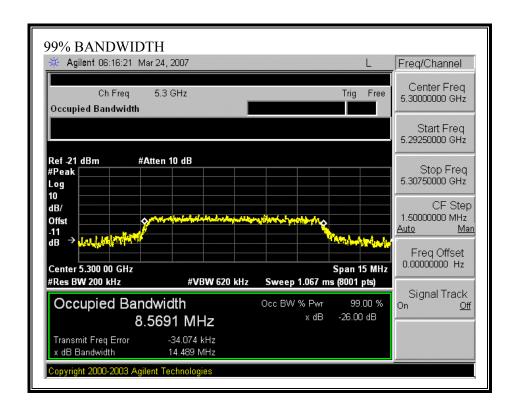

Aggregate Transmission Time	Limit	Margin
(ms)	(ms)	(ms)
0.00	260	260.00

No transmissions are observed during the aggregate monitoring period.

LONG PULSE CHANNEL MOVE TIME RESULTS


No non-compliance noted: The traffic ceases prior to the end of the radar waveform, therefore it also ceases prior to 10 seconds after the end of the radar waveform.

5.2.5. NON-OCCUPANCY PERIOD


RESULTS

No non-compliance noted: No EUT transmissions were observed on the test channel during the 30 minute observation time.

5.2.6. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% BANDWIDTH

RESULTS

No non-compliance noted:

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5296	5304	8	8.569	93.4	80

DETECTION BANDWIDTH PROBABILITY

Detection Bandwidth Test Results:			Waveforn	n: TYPE
Frequency (MHz)	equency (MHz) Number of Trials		Detection (%)	Mark
5295	10	0	0.00	
5296	10	10	100.00	FL
5297	10	10	100.00	
5298	10	10	100.00	
5299	10	10	100.00	
5300	10	10	100.00	
5301	10	10	100.00	
5302	10	10	100.00	
5303	10	10	100.00	
5304	10	10	100.00	FH
5305	10	0	0.00	

5.2.7. IN-SERVICE MONITORING

RESULTS

No non-compliance noted:

Radar Test Sum	ımary:			
Signal Type	Waveform/Trial No.	Detection (%)	Limit (%)	Pas/Fail
FCC TYPE 1	30	80.00	60.00	Pass
FCC TYPE 2	30	90.00	60.00	Pass
FCC TYPE 3	30	83.33	60.00	Pass
FCC TYPE 4	30	86.67	60.00	Pass
Aggregate		85.00	80.00	Pass
FCC TYPE 5	30	80.00	80.00	Pass
FCC TYPE 6	36	86.11	70.00	Pass

TYPE 1 DETECTION PROBABILITY

ta Sheet for Short Pulse Radar Type 1		
Trial No.	Successful Detection (Yes/No	
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	Yes	
6	No	
7	Yes	
8	Yes	
9	Yes	
10	Yes	
11	Yes	
12	Yes	
13	Yes	
14	Yes	
15	Yes	
16	No	
17	Yes	
18	Yes	
19	No	
20	No	
21	Yes	
22	Yes	
23	Yes	
24	Yes	
25	Yes	
26	Yes	
27	No	
28	Yes	
29	No	
30	Yes	

TYPE 2 DETECTION PROBABILITY

ata oneet lo	r Short Pulse Ra	adai Type z	Pulse	
Waveform No.	# Pulses per burst	Pulse Width (us)	repetition Interval (us)	Successful Detection (Yes/No)
2001	29	1.60	226	Yes
2002	25	4.30	227	Yes
2003	28	1.30	184	Yes
2004	23	4.40	187	Yes
2005	26	1.90	198	Yes
2006	25	1.20	172	Yes
2007	29	2.40	158	Yes
2008	24	1.40	182	No
2009	26	4.10	151	Yes
2010	28	3.60	202	Yes
2011	25	4.10	173	Yes
2012	29	1.10	164	Yes
2013	27	1.60	208	Yes
2014	26	4.50	199	Yes
2015	28	4.00	167	Yes
2016	28	4.30	156	Yes
2017	26	1.40	166	Yes
2018	29	4.70	215	No
2019	24	3.90	170	Yes
2020	25	3.90	215	Yes
2021	28	1.20	151	Yes
2022	29	3.90	166	No
2023	27	1.00	203	Yes
2024	28	2.00	208	Yes
2025	23	2.90	217	Yes
2026	26	3.00	198	Yes
2027	24	2.10	203	Yes
2028	25	3.50	165	Yes
2029	28	2.20	165	Yes
2030	24	2.40	224	Yes

TYPE 3 DETECTION PROBABILITY

Jaka Sheet 10	r Short Pulse Ra	iddi iypo o	Pulse	
Waveform	# Pulses per	Pulse Width	repetition	Successful Detection
No.	burst	(us)	Interval	(Yes/No)
	D. III O.	()	(us)	(100,110)
3001	17	9.30	404	No
3002	18	9.30	396	Yes
3003	16	5.10	434	No
3004	17	7.70	262	Yes
3005	16	6.60	442	Yes
3006	16	7.00	480	Yes
3007	18	7.10	403	Yes
3008	18	8.50	468	Yes
3009	18	7.50	441	No
3010	18	9.30	350	Yes
3011	16	8.30	400	Yes
3012	18	7.40	273	Yes
3013	16	9.70	438	Yes
3014	18	7.40	464	Yes
3015	18	6.10	256	Yes
3016	16	6.00	387	Yes
3017	17	7.10	490	No
3018	16	7.20	293	Yes
3019	18	8.20	467	Yes
3020	18	8.20	413	Yes
3021	17	8.60	407	Yes
3022	17	7.00	435	No
3023	17	5.90	455	Yes
3024	16	6.40	381	Yes
3025	17	9.60	266	Yes
3026	16	5.20	401	Yes
3027	18	7.70	446	Yes
3028	16	9.30	470	Yes
3029	17	7.20	354	Yes
3030	18	5.30	359	Yes

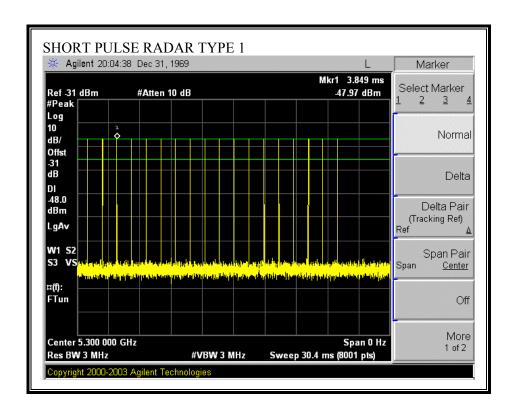
TYPE 4 DETECTION PROBABILITY

	r Short Pulse Ra		Pulse	
Waveform	# Pulses per	Pulse Width	repetition	Successful Detection
No.	burst	(us)	Interval	(Yes/No)
	,,,,,,,	()	(us)	(100.110)
4001	13	13.70	495	Yes
4002	14	17.20	289	Yes
4003	13	10.20	497	Yes
4004	12	12.40	365	No
4005	12	13.70	425	Yes
4006	16	18.70	495	No
4007	15	14.20	448	Yes
4008	16	17.20	441	Yes
4009	14	11.40	487	Yes
4010	16	13.90	500	Yes
4011	16	16.60	472	Yes
4012	15	18.40	421	No
4013	14	19.30	300	No
4014	14	11.10	399	Yes
4015	16	10.90	309	Yes
4016	16	18.90	274	Yes
4017	14	10.30	354	Yes
4018	14	17.00	365	Yes
4019	12	18.90	393	Yes
4020	13	16.90	342	Yes
4021	16	12.50	340	Yes
4022	14	19.30	268	Yes
4023	14	19.20	482	Yes
4024	14	15.60	262	Yes
4025	12	18.50	350	Yes
4026	13	19.20	450	Yes
4027	16	18.20	371	Yes
4028	13	10.90	355	Yes
4029	16	17.70	256	Yes
4030	14	18.00	322	Yes

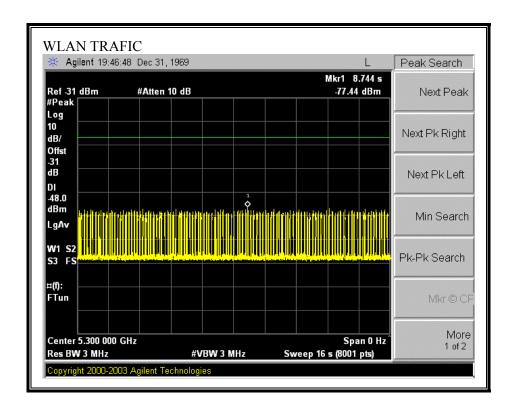
TYPE 5 DETECTION PROBABILITY

ata Sheet for Long Pulse Radar Type 5		
Waveform No.	Successful Detection (Yes/No)	
5001	Yes	
5002	Yes	
5003	Yes	
5004	Yes	
5005	Yes	
5006	No	
5007	No	
5008	No	
5009	Yes	
5010	Yes	
5011	Yes	
5012	Yes	
5013	Yes	
5014	Yes	
5015	No	
5016	Yes	
5017	Yes	
5018	Yes	
5019	Yes	
5020	Yes	
5021	Yes	
5022	No	
5023	Yes	
5024	Yes	
5025	Yes	
5026	Yes	
5027	Yes	
5028	Yes	
5029	No	
5030	Yes	

Type 5 randomized parameters are in a separate document.


TYPE 6 DETECTION PROBABILITY

Data Sheet	for Hopping Signal			
Trial No.	Starting Index within NTIA August 2005 Sequence	Signal Generator Frequency (MHz)	Hops within Detection BW	Successful Detection (Yes/No)
1	161	5296	1	Yes
2	636	5297	1	No
3	1111	5298	3	Yes
4	1586	5299	5	Yes
5	2061	5300	3	Yes
6	3011	5301	2	Yes
7	3486	5302	1	Yes
8	3961	5303	1	No
9	4436	5304	1	Yes
10	4911	5296	2	Yes
11	5386	5297	1	Yes
12	5861	5298	1	Yes
13	6336	5299	1	Yes
14	6811	5300	1	No
15	7286	5301	1	Yes
16	7761	5302	1	Yes
17	8236	5303	5	Yes
18	8711	5304	3	Yes
19	9186	5296	2	No
20	9661	5297	1	Yes
21	10136	5298	1	Yes
22	10611	5299	2	Yes
23	11086	5300	3	Yes
24	11561	5301	2	Yes
25	12036	5302	2	Yes
26	12511	5303	1	No
27	12986	5304	3	Yes
28	13461	5296	3	Yes
29	13936	5297	4	Yes
30	14411	5298	3	Yes
31	14886	5299	2	Yes
32	15361	5300	2	Yes
33	15836	5301	4	Yes
34	16311	5302	3	Yes
35	17261	5303	3	Yes
36	17736	5304	3	Yes
30	11130	5504	J	162


5.3. SLAVE CONFIGURATION IN 10 MHz BANDWIDTH

5.3.1. PLOTS OF RADAR WAVEFORM AND WLAN TRAFFIC

PLOT OF RADAR WAVEFORM

PLOT OF WLAN TRAFFIC FROM SLAVE

5.3.2. TEST CHANNEL AND METHOD

All tests were performed at a channel center frequency of 5300 MHz utilizing a conducted test method.

5.3.3. CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

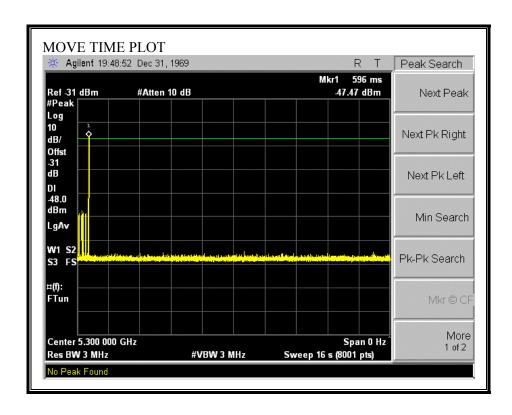
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated for the FCC version Begins at (Reference Marker + 200 msec) and Ends no earlier than (Reference Marker + 10 sec).

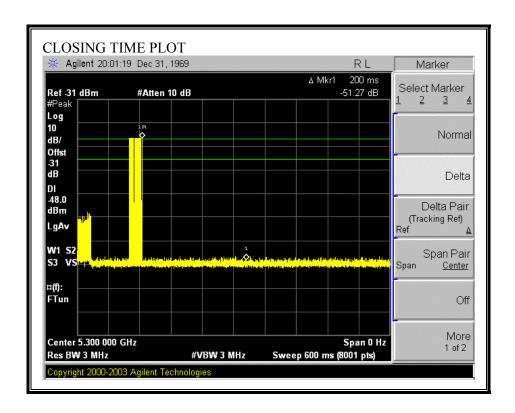
The observation period over which the aggregate time is calculated for the IC version Begins at (Reference Marker) and

Ends no earlier than (Reference Marker + 10 sec).


DATE: JULY 18, 2007

FCC ID: LKT-VL-53C

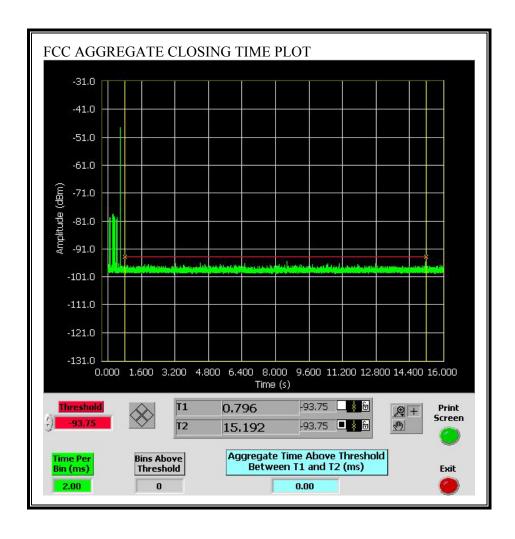
CHANNEL MOVE TIME RESULTS


No non-compliance noted:

Channel Move Time	Limit
(s)	(s)
0.000	10

CHANNEL CLOSING TIME RESULTS

No non-compliance noted:

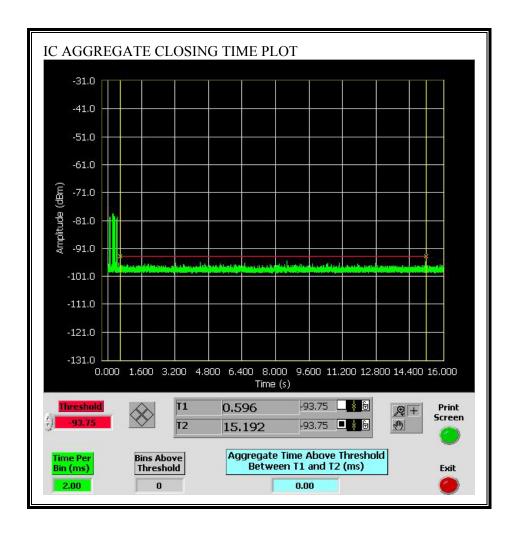


FCC AGGREGATE CHANNEL CLOSING TRANSMISSION TIME RESULTS

No non-compliance noted:

Aggregate Transmission Time	Limit	Margin
(ms)	(ms)	(ms)
0.00	60	60.00

No transmissions are observed during the aggregate monitoring period.

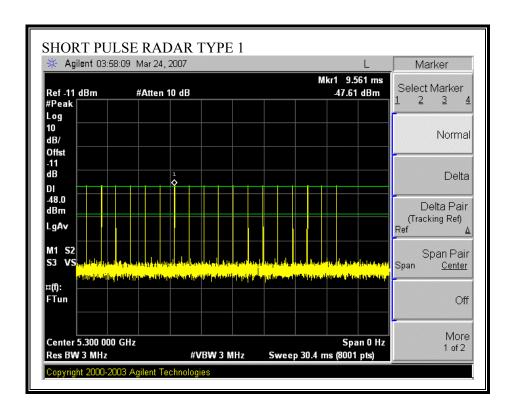

Page 48 of 85

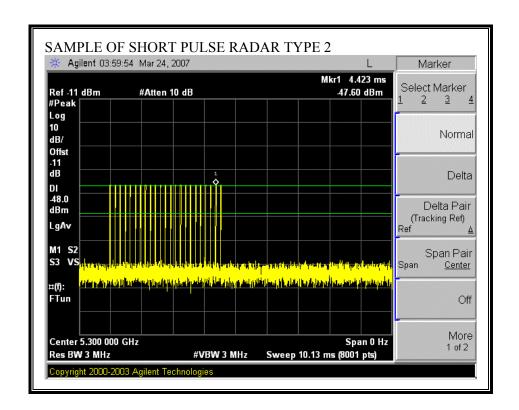
IC AGGREGATE CHANNEL CLOSING TRANSMISSION TIME RESULTS

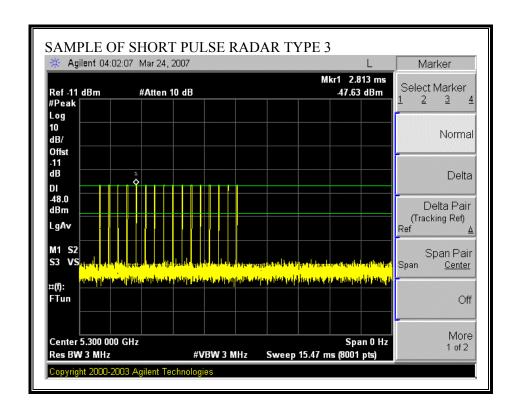
No non-compliance noted:

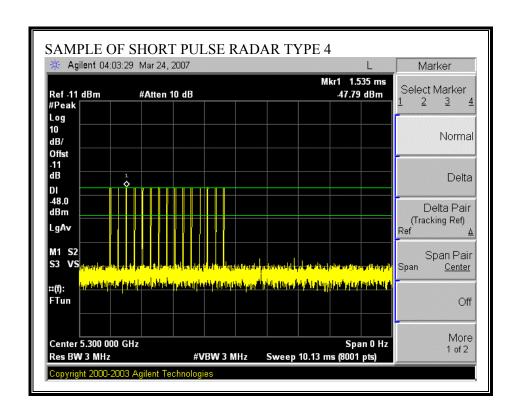
Aggregate Transmission Time	Limit	Margin
(ms)	(ms)	(ms)
0.00	260	260.00

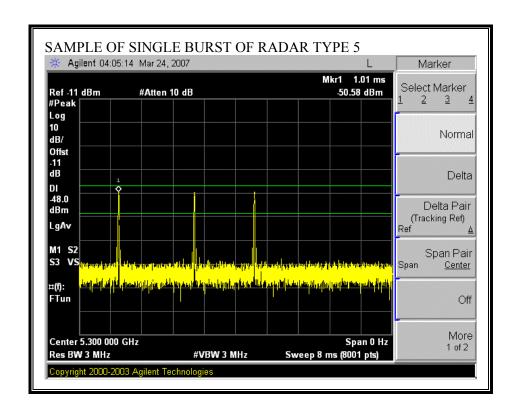
No transmissions are observed during the aggregate monitoring period.

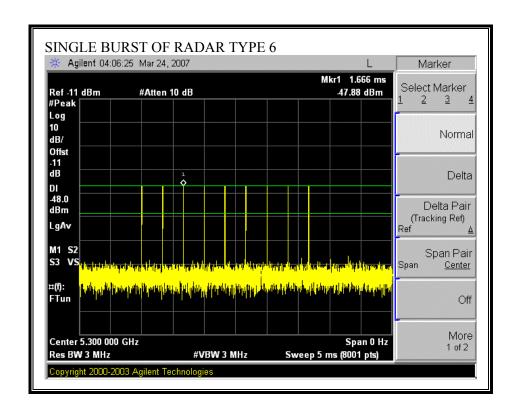


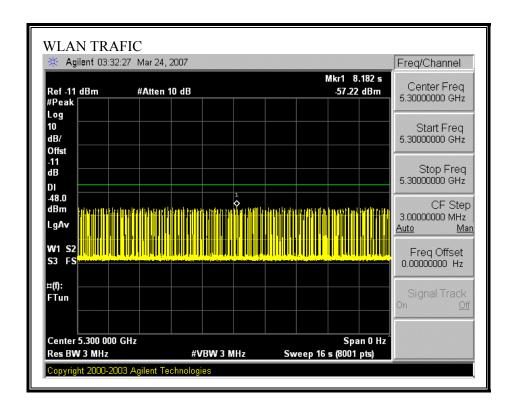

Page 49 of 85


5.4. MASTER CONFIGURATION IN 20 MHz BANDWIDTH


5.4.1. PLOTS OF RADAR WAVEFORM, AND WLAN TRAFFIC


PLOTS OF RADAR WAVEFORMS





PLOT OF WLAN TRAFFIC FROM MASTER

5.4.2. TEST CHANNEL AND METHOD

All tests were performed at a channel center frequency of 5300 MHz utilizing a conducted test method.

5.4.3. CHANNEL AVAILABILITY CHECK TIME

TEST PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel, then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

TEST PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

DATE: JULY 18, 2007 FCC ID: LKT-VL-53C

CHANNEL AVAILABILITY CHECK TIME RESULTS

No non-compliance noted:

Time required for EUT to complete the initial power-up cycle		
(sec)		
23.36		

If a radar signal is detected during the channel availability check then the PC controlling the EUT displays a message stating that radar was detected.

Timing of	Display on EUT / PC	Spectrum Analyzer Display
Radar Burst	Control Computer	
No Radar Triggered	EUT Initiates Transmisisons	Transmissions begin on
		channel after completion of
		the initial power-up cycle and
		the 60 second CAC
Within 0 to 6 second window		No transmissions on channel
	EUT does not display any radar	
	parameter values	
Within 54 to 60 second window		No transmissions on channel
	EUT does not display any radar	
	parameter values	

DATE: JULY 18, 2007

FCC ID: LKT-VL-53C

TIMING PLOT WITHOUT RADAR DURING CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle

> End of Initial Power-up cycle Start of CAC End of CAC Traffic is Initiated TIMING PLOT WITHOUT RADAR – NORMAL POWER-ON CYCLE Agilent 01:29:45 Mar 24 2007 Marker Mkr2 35.64 s Select Marker 4.9 dBm ten 10 dB -61.07 dBm Ref 2 3 #Pea Log 10 Normal dB/ Offst -11 dB Delta DI 48.0 dBm Delta Pair (Tracking Ref) LgAv Center 5.300 000 GHz Span 0 Hz Span Pair Res BW 3 MHz #VBW 3 MHz Sweep 360 s (8001 pts) Span Center Type Time 119 s (1) (1) -60 s 35.64 s -26.48 dB Off -61.07 dBm Time More 1 of 2

Note: The initial power-up cycle requires (119 - 35.64 - 60) = 23.36 seconds.

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied VITH RADAR MEAR BEGINNING OF CAC TIMING PLOT Agilent 01:36:56 Mar 24, 2007 Marker Mkr1 34.74 s Select Marker Atter ou dB 63.69 dBm Ref -21.9 dBm 2 3 #Peal Log 10 Normal dB/ Offst -11 dB Delta DI 48.0 Delta Pair dBm (Tracking Ref) LgAv Center 5.300 000 GHz Span O Hz Span Pair Res BW 3 MHz #VBW 3 MHz Sweep 360 s (8001 pts) Span Center Type Time 64 44 c Off More 1 of 2

The radar signal is applied (64.44 - 34.74) = 29.7 seconds after reboot, which is (29.7 - 23.36) = 3.9 seconds after the completion of the initial power-up cycle / start of the CAC period.

No EUT transmissions were observed after the radar signal.

Copyright 2000-2003 Agilent Technologies

10

dB/ Offst -11 dB

DI 48.0

dBm

LgAv

Center 5.300 000 GHz

Res BW 3 MHz

TIMING PLOT WITH RADAR NEAR END OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMING PLO Γ WITH RAD AR NEAR END OF CAC Agilent 01:45 29 Mar 24, 2007 Marker Mkr1 34.88 s Select Marker Atten 🔰 dB Ref -4.9 dBm -62.77 dBm 2 3 #Pea Log

#VBW 3 MHz

The radar signal is applied (112.3 - 34.88) = 77.5 seconds after reboot, which is (77.5 - 23.36) = 54.14 seconds after the completion of the initial power-up cycle / start of the CAC period.

No EUT transmissions were observed after the radar signal.

Normal

Delta

Delta Pair

Span Pair

Center

(Tracking Ref)

Span

Span O Hz

Sweep 360 s (8001 pts)

5.4.4. CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME

GENERAL REPORTING NOTES

The reference marker is set at the end of last radar pulse.

SHORT PULSE RADAR REPORTING NOTES

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

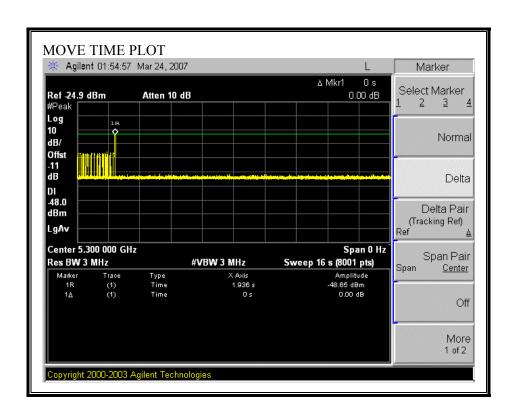
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated for the FCC version Begins at (Reference Marker + 200 msec) and

Ends no earlier than (Reference Marker + 10 sec).

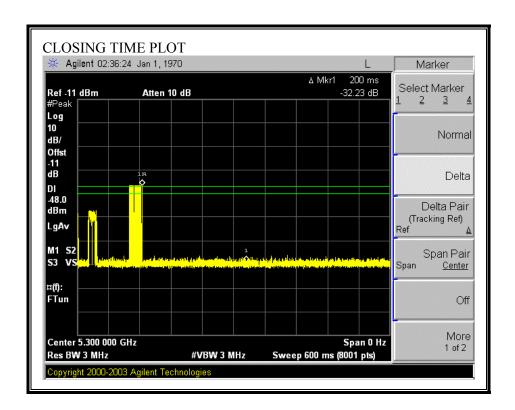
The observation period over which the aggregate time is calculated for the IC version Begins at (Reference Marker) and

Ends no earlier than (Reference Marker + 10 sec).


LONG PULSE RADAR REPORTING NOTES

The delta marker is set to 10 seconds after the end of the radar pulse.

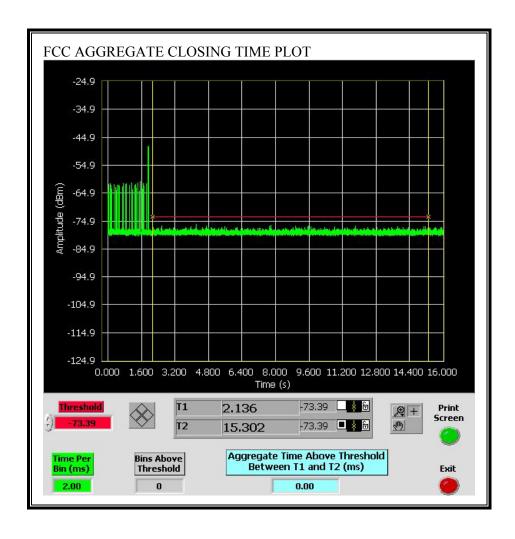
CHANNEL MOVE TIME RESULTS


No non-compliance noted:

Channel Move Time	Limit
(s)	(s)
0.000	10

CHANNEL CLOSING TIME RESULTS

No non-compliance noted:

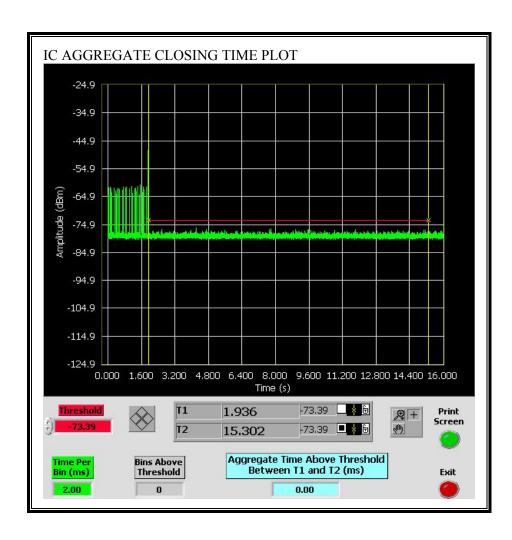


FCC AGGREGATE CHANNEL CLOSING TRANSMISSION TIME RESULTS

No non-compliance noted:

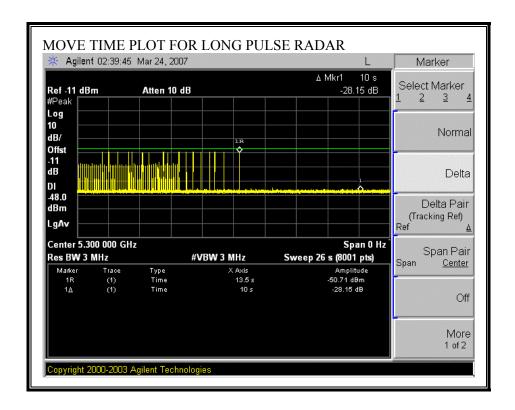
Aggregate Transmission Time	Limit	Margin
(ms)	(ms)	(ms)
0.00	60	60.00

No transmissions are observed during the aggregate monitoring period.


Page 65 of 85

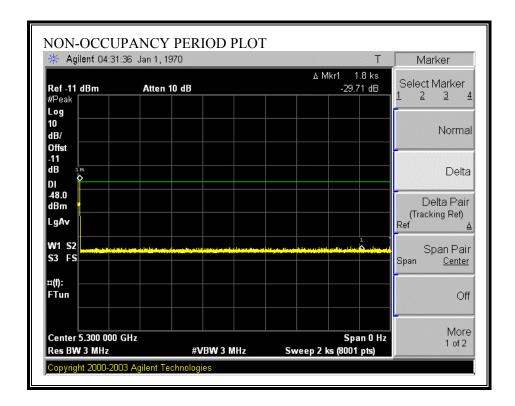
IC AGGREGATE CHANNEL CLOSING TRANSMISSION TIME RESULTS

No non-compliance noted:

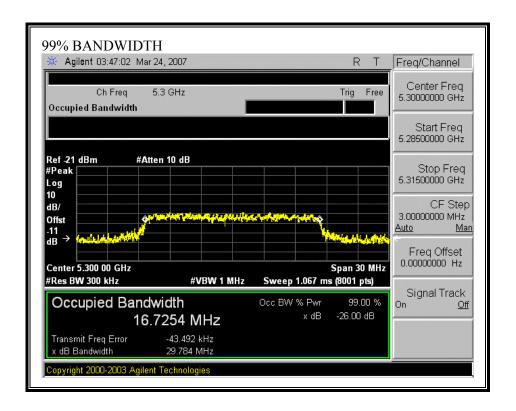

Aggregate Transmission Time	Limit	Margin
(ms)	(ms)	(ms)
0.00	260	260.00

No transmissions are observed during the aggregate monitoring period.

LONG PULSE CHANNEL MOVE TIME RESULTS


No non-compliance noted: The traffic ceases prior to the end of the radar waveform, therefore it also ceases prior to 10 seconds after the end of the radar waveform.

5.4.5. NON-OCCUPANCY PERIOD


RESULTS

No non-compliance noted: No EUT transmissions were observed on the test channel during the 30 minute observation time.

5.4.6. DETECTION BANDWIDTH

REFERENCE PLOT FOR 99% BANDWIDTH

RESULTS

No non-compliance noted:

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5290	5310	20	16.725	119.6	80

DETECTION BANDWIDTH PROBABILITY

Detection Bandwidth Test Results:			Waveform: TYPE	
Frequency (MHz)	Number of Trials	Number Detected	Detection (%)	Mark
5289	10	6	60.00	
5290	10	10	100.00	FL
5291	10	10	100.00	
5292	10	10	100.00	
5293	10	10	100.00	
5294	10	10	100.00	
5295	10	10	100.00	
5296	10	10	100.00	
5297	10	10	100.00	
5298	10	10	100.00	
5299	10	9	90.00	
5300	10	10	100.00	
5301	10	10	100.00	
5302	10	9	90.00	
5303	10	9	90.00	
5304	10	10	100.00	
5305	10	9	90.00	
5306	10	10	100.00	
5307	10	10	100.00	
5308	10	10	100.00	
5309	10	10	100.00	
5310	10	10	100.00	FH
5311	10	3	30.00	

5.4.7. IN-SERVICE MONITORING

RESULTS

No non-compliance noted:

adar Test Sun	ımary:			
Signal Type	Waveform/Trial No.	Detection (%)	Limit (%)	Pas/Fail
FCC TYPE 1	30	93.33	60.00	Pass
FCC TYPE 2	30	96.67	60.00	Pass
FCC TYPE 3	30	90.00	60.00	Pass
FCC TYPE 4	30	100.00	60.00	Pass
Aggregate		95.00	80.00	Pass
FCC TYPE 5	30	100.00	80.00	Pass
FCC TYPE 6	42	100.00	70.00	Pass

TYPE 1 DETECTION PROBABILITY

ata Sheet for Short Pulse Radar Type 1		
Trial No.	Successful Detection (Yes/No)	
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	Yes	
6	Yes	
7	Yes	
8	Yes	
9	Yes	
10	Yes	
11	Yes	
12	Yes	
13	Yes	
14	Yes	
15	Yes	
16	Yes	
17	Yes	
18	Yes	
19	Yes	
20	Yes	
21	Yes	
22	Yes	
23	No	
24	Yes	
25	Yes	
26	No	
27	Yes	
28	Yes	
29	Yes	
30	Yes	

TYPE 2 DETECTION PROBABILITY

Waveform No.	r Short Pulse Ra # Pulses per burst	Pulse Width (us)	Pulse repetition Interval (us)	Successful Detection (Yes/No)
2001	23	4.50	163	Yes
2002	27	4.70	215	Yes
2003	25	2.90	173	Yes
2004	29	3.70	182	Yes
2005	24	1.70	184	Yes
2006	24	2.90	206	Yes
2007	28	2.60	162	Yes
2008	25	2.90	167	Yes
2009	25	1.50	173	Yes
2010	25	4.40	192	Yes
2011	24	4.80	174	Yes
2012	23	1.50	199	Yes
2013	27	2.50	221	Yes
2014	24	3.90	186	Yes
2015	29	3.70	196	Yes
2016	24	3.00	225	Yes
2017	25	3.30	191	Yes
2018	27	2.30	205	Yes
2019	25	3.10	219	Yes
2020	27	4.70	163	Yes
2021	25	4.20	219	Yes
2022	23	4.10	209	Yes
2023	25	2.40	205	Yes
2024	24	2.00	226	Yes
2025	23	1.20	178	Yes
2026	26	1.00	157	Yes
2027	25	3.10	200	Yes
2028	26	2.00	200	No
2029	23	1.70	161	Yes
2030	26	1.80	156	Yes

TYPE 3 DETECTION PROBABILITY

Jaka Sheet 10	r Short Pulse Ra	iddi Type J	Pulse	
Waveform No.	# Pulses per burst	Pulse Width (us)	repetition Interval (us)	Successful Detectio (Yes/No)
3001	16	9.20	454	Yes
3002	16	6.00	282	Yes
3003	18	8.40	401	Yes
3004	16	5.80	389	Yes
3005	17	9.90	495	No
3006	16	6.60	359	No
3007	16	6.60	452	Yes
3008	16	8.30	333	Yes
3009	16	9.10	400	Yes
3010	17	6.70	447	Yes
3011	18	6.10	458	Yes
3012	16	5.40	442	Yes
3013	16	7.20	393	Yes
3014	18	9.40	397	No
3015	17	7.80	344	Yes
3016	18	9.60	418	Yes
3017	16	6.90	364	Yes
3018	17	8.60	349	Yes
3019	16	6.80	407	Yes
3020	16	9.40	270	Yes
3021	18	6.30	455	Yes
3022	16	6.30	326	Yes
3023	17	8.70	396	Yes
3024	17	9.60	421	Yes
3025	18	8.50	449	Yes
3026	16	5.00	420	Yes
3027	18	9.50	372	Yes
3028	17	6.10	273	Yes
3029	18	6.20	464	Yes

TYPE 4 DETECTION PROBABILITY

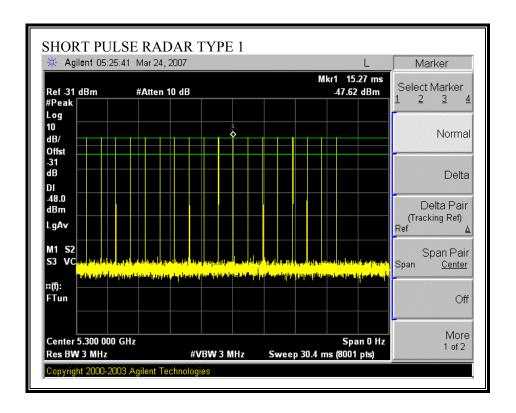
Jata Sneet to	r Short Pulse Ra	idar Type 4	5.	
Waveform No.	# Pulses per burst	Pulse Width (us)	Pulse repetition Interval (us)	Successful Detection (Yes/No)
4001	15	12.70	263	Yes
4002	15	14.60	336	Yes
4003	12	13.60	439	Yes
4004	13	15.90	475	Yes
4005	16	13.50	300	Yes
4006	16	15.00	394	Yes
4007	14	13.10	381	Yes
4008	16	17.30	462	Yes
4009	14	16.10	471	Yes
4010	12	12.50	479	Yes
4011	12	18.70	348	Yes
4012	16	14.20	273	Yes
4013	15	15.40	362	Yes
4014	15	15.40	403	Yes
4015	12	13.80	358	Yes
4016	16	12.20	347	Yes
4017	13	18.50	371	Yes
4018	13	10.50	455	Yes
4019	16	12.30	312	Yes
4020	15	13.60	500	Yes
4021	14	12.60	360	Yes
4022	12	14.80	420	Yes
4023	13	12.80	430	Yes
4024	14	18.00	468	Yes
4025	16	13.30	409	Yes
4026	12	12.80	328	Yes
4027	12	14.90	386	Yes
4028	14	16.30	284	Yes
4029	13	10.50	469	Yes
4030	13	15.20	276	Yes

TYPE 5 DETECTION PROBABILITY

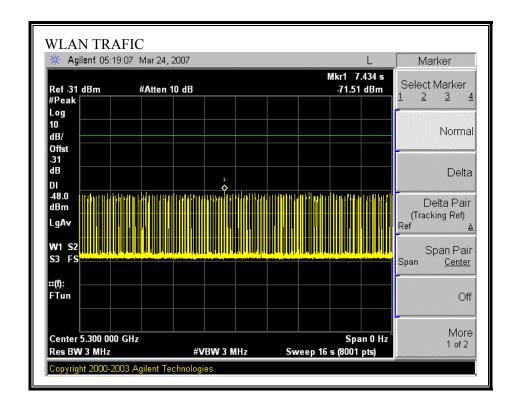
ata Sheet for Long Pulse Radar Type 5		
Waveform No.	Successful Detection (Yes/No)	
5001	Yes	
5002	Yes	
5003	Yes	
5004	Yes	
5005	Yes	
5006	Yes	
5007	Yes	
5008	Yes	
5009	Yes	
5010	Yes	
5011	Yes	
5012	Yes	
5013	Yes	
5014	Yes	
5015	Yes	
5016	Yes	
5017	Yes	
5018	Yes	
5019	Yes	
5020	Yes	
5021	Yes	
5022	Yes	
5023	Yes	
5024	Yes	
5025	Yes	
5026	Yes	
5027	Yes	
5028	Yes	
5029	Yes	
5030	Yes	

Type 5 randomized parameters are in a separate document.

TYPE 6 DETECTION PROBABILITY


Trial No.	Starting Index within NTIA August 2005 Sequence	Signal Generator Frequency (MHz)	Hops within Detection BW	Successful Detection (Yes/No)
1	259	5290	6	Yes
2	734	5291	3	Yes
3	1209	5292	4	Yes
4	1684	5293	4	Yes
5	2159	5294	6	Yes
6	2634	5295	3	Yes
7	3109	5296	4	Yes
8	3584	5297	2	Yes
9	4059	5298	9	Yes
10	4534	5299	6	Yes
11	5009	5300	5	Yes
12	5484	5301	4	Yes
13	5959	5302	5	Yes
14	6434	5303	4	Yes
15	6909	5304	4	Yes
16	7384	5305	6	Yes
17	7859	5306	6	Yes
18	8334	5307	5	Yes
19	8809	5308	4	Yes
20	9284	5309	7	Yes
21	9759	5310	3	Yes
22	10234	5290	4	Yes
23	10709	5291	3	Yes
24	11184	5292	3	Yes
25	11659	5293	5	Yes
26	12134	5294	3	Yes
27	12609	5295	8	Yes
28	13084	5296	4	Yes
29	13559	5297	2	Yes
30	14034	5298	1	Yes
31	14509	5299	4	Yes
32	14984	5300	1	Yes
33	15459	5301	4	Yes
34	15934	5302	3	Yes
35	16409	5303	3	Yes
36	16884	5304	6	Yes
37	17359	5305	5	Yes
38	17834	5306	3	Yes
39	18309	5307	6	Yes
40	18784	5308	6	Yes
41	19259	5309	7	Yes
42	19734	5310	4	Yes

Page 77 of 85


5.5. SLAVE CONFIGURATION IN 20 MHz BANDWIDTH

5.5.1. PLOTS OF RADAR WAVEFORM AND WLAN TRAFFIC

PLOT OF RADAR WAVEFORM

PLOT OF WLAN TRAFFIC FROM SLAVE

5.5.2. TEST CHANNEL AND METHOD

All tests were performed at a channel center frequency of 5300 MHz utilizing a conducted test method.

5.5.3. CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

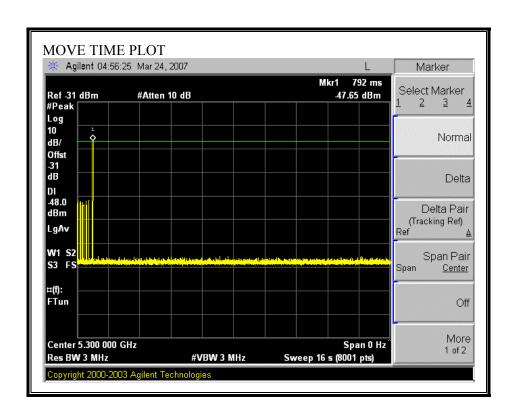
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated for the FCC version Begins at (Reference Marker + 200 msec) and Ends no earlier than (Reference Marker + 10 sec).

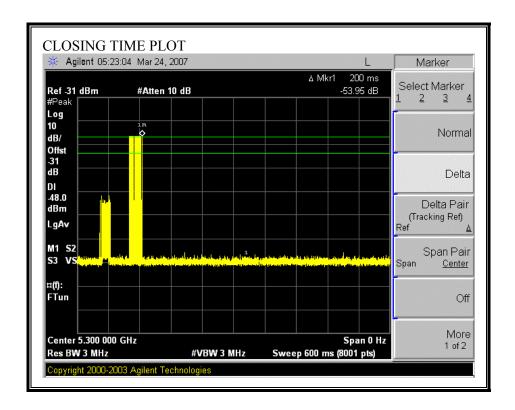
The observation period over which the aggregate time is calculated for the IC version Begins at (Reference Marker) and

Ends no earlier than (Reference Marker + 10 sec).


DATE: JULY 18, 2007

FCC ID: LKT-VL-53C

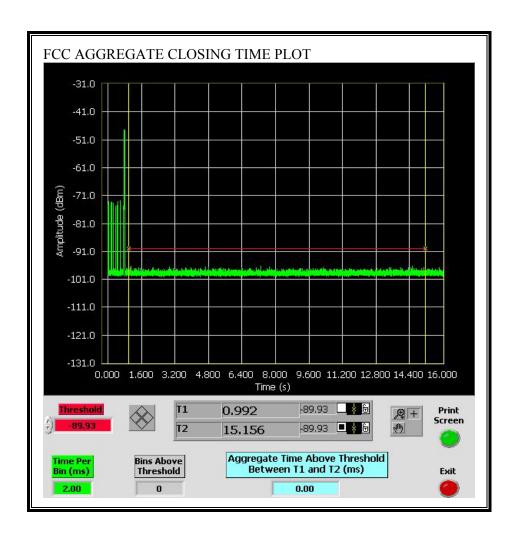
CHANNEL MOVE TIME RESULTS


No non-compliance noted:

Channel Move Time	Limit
(s)	(s)
0.000	10

CHANNEL CLOSING TIME RESULTS

No non-compliance noted:

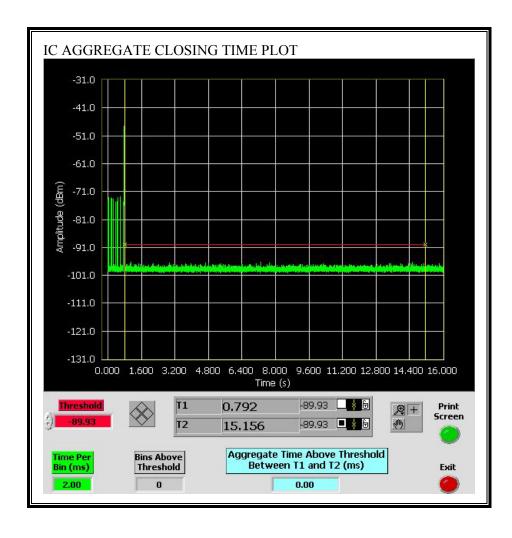


FCC AGGREGATE CHANNEL CLOSING TRANSMISSION TIME RESULTS

No non-compliance noted:

Aggregate Transmission Time	Limit	Margin
(ms)	(ms)	(ms)
0.00	60	60.00

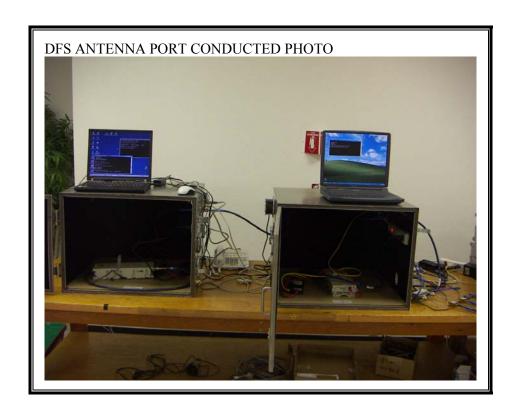
Only intermittent transmissions are observed during the aggregate monitoring period.



IC AGGREGATE CHANNEL CLOSING TRANSMISSION TIME RESULTS

No non-compliance noted:

Aggregate Transmission Time	Limit	Margin
(ms)	(ms)	(ms)
0.00	260	260.00


No transmissions are observed during the aggregate monitoring period.

Page 84 of 85

6. SETUP PHOTOS

DFS MEASUREMENT SETUP

END OF REPORT