

Test specification:	Section 27.53(m)(2), Cond	Section 27.53(m)(2), Conducted spurious emissions at the band edges			
Test procedure:	Section 27.53(m)(2)				
Test mode:	Compliance	Verdict	DV66		
Date:	4/25/2010	verdict.	FA33		
Temperature: 24.6 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks:					

7.3 Conducted spurious emissions at the band edges (emission mask)

7.3.1 General

This test was performed to measure spurious emissions at RF antenna connector at the band edges. Specification test limits are given in Table 7.3.1.

Channel, MHz	Frequency range, MHz	Attenuation below carrier, dBc		
Channel bandwidth 5 MHz				
2498.50	2490.0 - 2496.0 & 2502.0 - 2507.0	43 + 10*Log (P*)		
2593.00	2584.5 - 2590.5 & 2595.5 - 2602.5	43 + 10*Log (P*)		
2687.50	2679.0 – 2685.0 & 2690.0 – 2696.0	43 + 10*Log (P*)		
	Channel bandwidth 10 MHz			
2501.00	2490.0 – 2496.0 & 2507.5 – 2513.5	43 + 10*Log (P*)		
2593.00	2584.0 - 2590.0 & 2602.0 - 2608.0	43 + 10*Log (P*)		
2685.00	2673.0 – 2679.0 & 2690.0 – 2696.0	43 + 10*Log (P*)		

Table 7.3.1 Spurious emission limits

* - P is transmitter output power in Watts

7.3.2 Test procedure

7.3.2.1 The EUT was set up as shown in Figure 7.3.1, energized and its proper operation was checked.

7.3.2.2 The spurious emissions were measured with spectrum analyzer as provided in the associated plots.

7.3.2.3 The worst case results are were provided in Table 7.3.2 and shown in the associated plots.

Figure 7.3.1 Conducted spurious emission test setup

Test specification:	Section 27.53(m)(2), Conc	Section 27.53(m)(2), Conducted spurious emissions at the band edges			
Test procedure:	Section 27.53(m)(2)				
Test mode:	Compliance	Vordict	DASS		
Date:	4/25/2010	verdict.	FA33		
Temperature: 24.6 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks:					

Table 7.3.2 Spurious emission test results

ASSIGNED FRI INVESTIGATED RBW: DETECTOR US	EQUENCY RANGE: D FREQUENCY RAN GED:	2496 IGE: See 1 1 % c Avera	.0 – 2690.0 M Fable 7.3.1 of EBW age	Hz		
		2 Res	solution bandy	viath		
	SIGNAL.		5 K			
Frequency offset, ± MHz	SA reading, dBc low range	SA reading, dBc high range RBW, kHz Integration BW, kHz Limit, dl			Limit, dBm	Verdict
5 MHz EBW						
Low carrier fr	Low carrier frequency 2498.5 MHz, QPSK (Output power = 36.73 dBm)					
2.5-3.5	-17.46	-17.40	100	NA	-13.00	Pass
3.5-4.5	-13.04	-13.83				
4.5-5.5	-15.84	-16.20				
5.5-6.5	-17.76	-18.75	51	1000	-13.00	Pass
6.5-7.5	-20.00	-20.48				
7.5-8.5	-21.84	-22.41				
Mid carrier fre	equency 2593.0 MHz	z, QPSK (Output powe	r = 36.83 dBn	n)		
2.5-3.5	-16.46	-18.33	100	NA	-13.00	Pass
3.5-4.5	-13.14	-14.37				
4.5-5.5	-15.16	-15.44				
5.5-6.5	-17.91	-18.07	51	1000		Pass
6.5-7.5	-20.06	-20.38				
7.5-8.5	-22.01	-22.87				
High carrier frequency 2687.5 MHz, QPSK (Output power = 36.62 dBm)						
2.5-3.5	-16.44	-19.17	100	NA	-13.00	Pass
3.5-4.5	-14.35	-15.12				
4.5-5.5	-16.54	-16.98				
5.5-6.5	-18.69	-19.52	51	1000		Pass
6.5-7.5	-20.97	-22.12				
7.5-8.5	-23.02	-24.27				

Test specification:	Section 27.53(m)(2), Cond	Section 27.53(m)(2), Conducted spurious emissions at the band edges			
Test procedure:	Section 27.53(m)(2)				
Test mode:	Compliance	Verdict	DASS		
Date:	4/25/2010	verdict.	FA33		
Temperature: 24.6 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks:					

Table 7.3.2 Spurious emission test results (continued)

ASSIGNED FRI INVESTIGATED RBW: DETECTOR US VIDEO BANDW MODULATING	EQUENCY RANGE: D FREQUENCY RANG SED: /IDTH: SIGNAL:	2496.0 E: See Ta 1 % of I Averag ≥ Reso PRBS	– 2690.0 MHz ble 7.3.1 EBW e lution bandwic	z Ith		
MODULATION:		QPSK				
offset, ± MHz	SA reading, dBm low range	SA reading, dBc high range	RBW, kHz	Integration BW, kHz	Limit, dBm	Verdict
		10 MH	z EBW			
Low carrier fr	equency 2501.75 MHz	z, QPSK (Output powe	r = 37.26 dBn	n)		
5 - 6	-16.30	-18.37	100	NA	-13.00	Pass
6 - 7	-13.48	-14.27				
7 - 8	-14.28	-15.58				
8 - 9	-15.46	-16.51	110	110 1000	12.00	Dass
9 - 10	-16.33	-16.98	110		-13.00	Pass
10 - 11	-17.26	-18.07				
11 - 12	-18.44	-19.11	1			
Mid carrier fre	equency 2596.0 MHz,	QPSK (Output power =	= 37.16 dBm)			-
5 - 6	-18.42	-19.55	100	NA	-13.00	Pass
6 - 7	-13.20	-14.43				
7 - 8	-14.02	-15.66			-13.00	Deer
8 - 9	-15.43	-16.63	110	1000		
9 - 10	-15.97	-17.21	110	1000		Pass
10 - 11	-16.95	-18.56	1			
11 - 12	-18.77	-20.44				
Mid carrier fre	equency 2684. 5 MHz,	QPSK (Output power	= 37.02 dBm)			-
5 - 6	-19.37	-20.05	100	NA	-13.00	Pass
6 - 7	-14.21	-15.55				
7 - 8	-15.25	-16.60				
8 - 9	-16.68	-17.79	110	1000	40.00	Dava
9 - 10	-17.30	-18.27	110	1000	-13.00	Pass
10 - 11	-18.14	-19.66]			
11 - 12	-19.13	-21.33				

Test specification:	Section 27.53(m)(2), Cond	Section 27.53(m)(2), Conducted spurious emissions at the band edges			
Test procedure:	Section 27.53(m)(2)				
Test mode:	Compliance	Vardict: DASS			
Date:	4/25/2010	verdict.	FA33		
Temperature: 24.6 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks:					

Table 7.3.2 Spurious emission test results (continued)

ASSIGNED FR INVESTIGATE RBW: DETECTOR U- VIDEO BANDY MODULATING	REQUENCY RANGE: D FREQUENCY RANG SED: VIDTH: 5 SIGNAL:	2496 GE: See ⊺ 1 % c Avera ≥ Res PRBS	.0 – 2690.0 M Fable 7.3.1 of EBW age solution bandy S	Hz vidth		
MODULATION	1:	64QA	M			
Frequency offset, ± MHz	SA reading, dBc low range	SA reading, dBc high range	RBW, kHz	Integration BW, kHz	Limit, dBm	Verdict
		5 MH	Iz EBW			
Low carrier f	requency 2498.5 MHz	z, 64QAM (Output pow	er = 37.02 dB	m)		
2.5-3.5	-17.37	-16.66	100	NA	-13.00	Pass
3.5-4.5	-14.23	-13.88				
4.5-5.5	-17.04	-16.62				
5.5-6.5	-18.40	-19.65	51	1000	-13 00	Pass
6.5-7.5	-21.19	-22.31		10.00	1 400	
7.5-8.5	-23.60	-24.30				
8.5–9.5	-25.96	-25.95				
Mid carrier fr	equency 2593.0 MHz,	64QAM (Output powe	r = 36.40 dBı	n)		
2.5-3.5	-18.59	-18.14	100	NA	-13.00	Pass
3.5-4.5	-15.74	-15.29				
4.5-5.5	-18.27	-17.50				
5.5-6.5	-19.35	-20.76	51	1000		Pass
6.5-7.5	-22.16	-22.76	51	1000		F 033
7.5-8.5	-24.28	-25.36				
8.5-9.5	-26.58	-26.91				
High carrier	High carrier frequency 2687.5 MHz. 64QAM (Output power = 36.23 dBm)					
2.5-3.5	-15.24	-15.31	100	NA	-13.00	Pass
3.5-4.5	-13.51	-13.03				
4.5-5.5	-16.65	-16.00				
5.5-6.5	-18.24	-20.06	F 4	1000		Dees
6.5-7.5	-21.68	-22.86	51	1000		Pass
7.5-8.5	-23.90	-25.56				
8.5-9.5	-26.03	-27.40				

Test specification:	Section 27.53(m)(2), Cond	Section 27.53(m)(2), Conducted spurious emissions at the band edges			
Test procedure:	Section 27.53(m)(2)				
Test mode:	Compliance	Vardict: DASS			
Date:	4/25/2010	verdict.	FA33		
Temperature: 24.6 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks:					

Table 7.3.2 Spurious emission test results (continued)

ASSIGNED FRE	EQUENCY RANGE:	2496.0	– 2690.0 MHz	Z		
INVESTIGATED) FREQUENCY RANG	E: See Ta	ble 7.3.1			
RBW:		1 % of E	EBW			
DETECTOR US	SED:	Average	e			
VIDEO BANDW	/IDTH:	≥ Kesol	lution bandwid	Jth		
MODULATING	SIGNAL:	PRBS				
MODULATION:		04QAIV	1			
Frequency	SA reading, dBm	SA reading, dBc		Integration	Limit dBm	Vordict
± MHz	low range	high range	KOW, KIIZ	BW, kHz	Linit, ubii	Veruici
		10 MH	z EBW			
Low carrier fr	equency 2501.75 MHz	z, 64QAM (Output pow	er = 36.78 dB	lm)		
5 - 6	-19.55	-16.83	100	ŃA	-13.00	Pass
6 - 7	-15.22	-14.21				
7 - 8	-16.42	-15.47	1	10 1000		
8 - 9	-17.76	-16.16	110		12.00	Deee
9 - 10	-18.65	-16.91	110		-13.00	F 855
10 - 11	-19.63	-18.44]			
11 - 12	-20.41	-20.51				
Mid carrier fre	equency 2596.0 MHz,	64QAM (Output power	[·] = 36.49 dBm	1)		
5 - 6	-20.05	-18.19	100	NA	-13.00	Pass
6 - 7	-16.20	-15.64				
7 - 8	-17.41	-17.00				
8 - 9	-18.87	-17.47	110	1000	12.00	Pass
9 - 10	-19.68	-18.40	110	1000	-13.00	F 055
10 - 11	-20.47	-19.92				
11 - 12	-21.25	-21.88				
Mid carrier fre	equency 2684. 5 MHz,	64QAM (Output powe	r = 36.36 dBn	n)		
5 - 6	-19.15	-18.48	100	NA	-13.00	Pass
6 - 7	-15.16	-15.69				
7 - 8	-16.38	-17.12				
8 - 9	-18.23	-17.75	110	1000	13.00	Pass
9 - 10	-19.22	-18.88	110	1000	-13.00	F 055
10 - 11	-20.29	-20.30]			
11 - 12	-21.21	-22.74	l			

Reference numbers of test equipment used

#1#2#3Full description is given in Appendix A.

And the state of the

er 2.4955000 GHz BW 51 kHz

#VBW

Test specification:	Section 27.53(m)(2), Cond	Section 27.53(m)(2), Conducted spurious emissions at the band edges			
Test procedure:	Section 27.53(m)(2)				
Test mode:	Compliance	Verdict	DV66		
Date:	4/25/2010	verdict.	FA33		
Temperature: 24.6 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks:					

ASSIGNED FREQUENC [\] DETECTOR USED: MODULATION: MODULATING SIGNAL: TRANSMITTER OUTPUT	Y RANGE:	2496.0 – Average QPSK PRBS Maximum	2690.0 MHz	
	💷 Agilent Spectrum Analyzer - ACP			
	00 500 Center Freq 2.498500000 GHz Gate: L0 Gate: L0 Input: RF 10 dB/div Ref 37 dBm	AT CENER Freq: 2498500000 GHz Center Freq: 2498500000 GHz Trig: Free Run Avg Hold: 100/10 nov #Atten: 24 dB Ext Gain: -33.50 of	INES2228PMApr 12,2010 Radio Std: None B Radio Device: BTS	Freq / Channel
	77 17 7	36.7 dDm Mallur P-1-1-1-444 (Mallur) - John P		Center Freq 2.498500000 GHz
		W Wraywy	ht - 1944,000 at 1970 - 1944,000 at 1970 - 1944,000 at 1970 - 1974,000 at 1970 - 1974,000 at 1974 at 1974 at 1	
	Center 2.499 GHz #Res BW 51 kHz	#VBW 510 kHz	Span 18 MHz Sween 20 2 ms	CF Step
	Total Carrier Power 36 730 dBm/4 8	10 MHz ACP-IBW		1.800000 MHz Auto Map
	Carrier Power Filter 1 36.73 dDm / 4.000 MI Iz OFF	Coffset Freq Integ DW a0bc d0mr 4.000 Mi lz 1.000 Mi lz -49.77 -13.04 5.000 Mi lz 1.000 Mi lz -49.77 -13.04 6.000 Mi lz 1.000 Mi lz -52.57 -15.04 6.000 Mi lz 1.000 Mi lz 54.49 17.76 7.000 Mi lz 1.000 Mi lz 56.74 20.00 8.000 Mi lz 1.000 Mi lz 58.57 21.64	Upper dDc dDm Filter -50.56 -13.03 OFF -52.93 -16.20 OFF 55.49 10.75 OFF 57.22 20.40 OFF 59.15 22.41 OFF	
	MSG	S	AIUS	
Aplient Spectrum Analyzer - Swept SA W T Gold SA Viceo BW 3.0 MHZ Gate: L0 Input: RF PN0: Far + > Trig Freind av Stock 0 Input: RF PN0: Far + > Trig Stock 0 Input: RF PN0: Far + > Trig	Selfacial II Augraphic Fundamic Op:11/9/04/06 RF Burst Avg Type: Fwn(RMS) more the selfaction of the	CASE CONTRACTOR OF CONTRACTOR CONT	ar - Swapt SA Z Input: RF PNO: Far · • Trig IFGain: I ow #Atto	SEAGE INT ANY TYPE: PWT(RMS) Avg Type: PwT(RMS) Avg Hold: 100/100 en: 18 dB Ext Gain: -33.50 dB MKr1 2.
		Vidco BW		

VBW:3dB RBW 100 m Auto Man

Span:3dB RBW 106 Auto Man

RBW Control

<u>Auto</u>

Span 1.000 MHz Sweep 20.0 ms (1001 pts)

بالارزال

Center 2.5015000 GHz #Res BW 51 kHz

eline de la la

N/W/when

#VBW

uthing the automospheric and the second s

Span 1.000 MH: Sweep 20.0 ms (1001 pts

industry of the standard and the standard and the stand

Vidco BV 3.0 MH Ma

Ma

Ma

VBW:3dB RB

Span:3dB RBV

RBW Control

uto

Test specification:	Section 27.53(m)(2), Con	ducted spurious emissions	at the band edges
Test procedure:	Section 27.53(m)(2)		
Test mode:	Compliance	Verdict	DV66
Date:	4/25/2010	verdict.	FA33
Temperature: 24.6 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.2 Emission mask test results at mid carrier frequency, 5 MHz EBW

ASSIGNED FREQUENCY RANGE:
DETECTOR USED:
MODULATION:
MODULATING SIGNAL:
TRANSMITTER OUTPUT POWER SETTINGS:

2496.0 – 2690.0 MHz Average QPSK PRBS Maximum

🛿 Agilent Spectrum Analyzer - AC	IP								
ate Delay, 562,70 µs		AC S	ENSE:INT Fred: 2.5930000	000 GHz	ALIGN AUTO	Badio St	+ PM Apr 12, 2010 d: None		Gate
Cate: LO Inpu	n: RF IFGain:L	→ Trig:Fr ow #Atten:	ee Run 24 dB	Avg Hold Ext Gain:	: 100/100 : -33.50 dB	Radio De	evice: BTS	<u>On</u>	Gate
27 17		,///*****()***p///in/	/8 dBm አምብላቸላቸው አትግምሳ	•				On	Gate Viev <u>Of</u>
-3 -13 -23	and the start			Hitinghur	The she have not	Montree 1	Anexage		Gate View Sweep Time 5.00 m
41 63							1. AND - 10. 1. 115		Gate Delay 562.70 µ
Center 2.593 GHz		-#3.		-		Sp	an 18 MHz		
Total Carrier Power	36.830 dBm/ 4.8	# v 30 MHz	ACP-IE	2 NA/		SWee	p 20.2 ms		Gate Lengt 2.4066 m
			/(0/ 10	 I a	wer	Upper			
Carrier Power	Filter	Ottset Freq	Integ BW	dBc	dBm	dBc di	3m Hilter	-	and Realized
1 36.83 dBm / 4.8001	MHZ OFF	4.000 MHz	1.000 MHz	49.97	13.14 5	51.20 14	37 OFF	L.	
		5.000 MHz	1.000 MHz		-15.16 -5	2.27 -15	.44 OFF		
		6 AND MHZ	1.000 MHz	-54 74	-17.91 -5	4.90 -18	.07 OFF		
		0.000 100 12							
		7.000 MHz 8.000 MHz	1.000 MHz 1.000 MHz	-56.89 -58.84	-20.06 -9 -22.01 -5	97.21 -20 99.70 -22	38 OFF 87 OFF		More 1 of 2
		7.000 MHz 8.000 MHz	1.000 MHz 1.000 MHz	-56.89 -58.84	-20.06 -5 -22.01 -5	97.21 -20 99.70 -22	.38 OFF .87 OFT		Mor 1 of 2

JE As	ilent :	Spectrum	Analyzer -	Swept SA									🗊 Ag	llent Spectru	n Analyzer -	Swept SA									
v Vid	eo i	50 SW 3	ດ 0 MHz			AC. 98	sNSE:UN1	Avg Typ	alignation e: Pwr(RMS)	U8/30/161	MApr 12, 2010	BW	v Vide	ao BW 3	ια S.O.MHz			AL SI	eNSE:INT	Avg Type	: Pwr(RMS)	UB:40:04 P	M Apr 12, 2010		BW
		Gab	s: LO In	iput: RF IF	PNO: Far 🕞 Gain: Luw	Trig: Fre #Atten: 2	e Run 4 dB	Avg Hold Ext Galn:	≫100/100 -33.50 dB	TYS DB	NNNN	Res BW		Ga	te: LO In	iput: RF	PNO: Far 🕶 FGain:Low	#Atten: 2	e Run 14 dB	Avg Hold: Ext Gain:	100/100 -33.50 d⊟	TYP	τ A NNNNN		Res BW
10 6	B/div	Re	f 6.46 d	Bm					Mkr1	2.590 4 -16.4	91 GHz 60 dBm	51 kHz Auto <u>Men</u>	10 di	B/div R	er 6.46 d	Bm					Mkr1	2.595 7 -18.33	26 GHz 33 dBm	Auto	61 kHz <u>Man</u>
5100												Video BW 3 0 MHz	1.04												Video BW 3 0 MHz
											-13.00 e 1 4	Auto <u>Man</u>											-13.00 dBm	Auto	Man
-10.6	F									la		VBW:3dB RBW				⊺ •'−								VBW	:3dB RBW
-23.9	٠¥	MA	www.har	MARCONAL HAV	philipped man	all for	4 WAR	- Aller	in white	11.191	ilydraeth	Auto Man		-hun	and the	W W	w high why	alle fellow	1 and the	wykapy.W	tree at the	Rough	hy highly	Auto	Man
.00 f												Span:3dB RBW											'	Spar	1:3dB RBW
-43.5	┝	_										Auto Man												Auto	106 Man
63.6												RBW Control												RBI	V Control
												[Gaussian,-3 dB]												[Gaus	slan,-3 dB]
-73.9																									
83.6	┢													<u> </u>								_			
Cet		2 5000	1000 CH	7						Snan 1	000 MH7		Can	tor 2 505	0000 @4	7						Span 1	000 MH7		
#Re	s B	W 51 I	Hz	2	#VBW	l			Sweep	20.0 ms (1001 pts)		#Re	s BW 51	kHz	2	#VBV	v			Sweep 3	20.0 ms ('	1001 pts)		
MSG									STATUS	ŝ			MSG								STATUS				

Test specification:	Section 27.53(m)(2), Con	ducted spurious emissions	at the band edges
Test procedure:	Section 27.53(m)(2)		
Test mode:	Compliance	Verdict:	DV66
Date:	4/25/2010	verdict.	FA33
Temperature: 24.6 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.3 Emission mask test results at high carrier frequency, 5 MHz EBW

ASSIGNED FREQUENCY RANGE:
DETECTOR USED:
MODULATION:
MODULATING SIGNAL:
TRANSMITTER OUTPUT POWER SETTINGS:

2496.0 – 2690.0 MHz Average QPSK PRBS Maximum

B Agilent Spectrum Analyzer - ACP								
VBW 510.00 kHz	A/_ Co	SENSE IN I enter Freq: 2.68750	0000 GHz	ALIGN AUTO	Radio Std: 1	Apr 12, 2010 None		BW
Gate: LO Input: RF	ہے۔ IFGain:Low #4	itten: 24 dB	Ext Gain:	-33.50 dB	Radio Devid	e: BTS		Res Bl
							0	61 kH
10 dB/dlv Ref 37 dBm							AULO	<u>IV13</u>
27		100 C -11)	_					
	ALC: UNDER STREET	SOLO UDITI Matematicatulus				• •		510.00 kH
	and the second	dan san dalah kanan sa	1				Auto	Ma
1 to and on the B	mharver		Marilard	William als		A10000		
CO PARTY AND A CONTRACT OF A C				1 1	and the property of	than you a		
-40								
53								
Center 2 688 CHz					Snan	19 MH7		
#Res BW 51 kHz		#VBW 510 k	Hz		Sweep	20.2 ms	PBV	N Control
Tatal Carrier Davies 26.620		100	15147				IGause	sian -3 dBl
Total Gamer Power 30.020	dD11/ 4.00 M112	AGP-	1644					
Carrier Dower	Filter Ottom	roa Jaton PM	LOV	ver den a	Upper	Litter		
1 38.62 dBm (4.800 MHz		Hz 1 000 MHz	50.08	4/13/5 - 51	10. UOIT			
00000 00111 11000 111 E	5.000 M	Hz 1.000 MHz	-53.15	-16:54 -53	59 -16.98	OFF		
	6.000 M	Hz 1.000 MHz	-55.31	-18.69 -56	14 -19.52	OFF		
	7.000 M	Hz 1.000 MHz			/3 -22.12	OFF		
	8.000 M	Hz 1.000 MHz	-59.63	-23.02 -60	88 -24.27	OFT		

💷 Agi	lent Spect	um Analy	yzer - S	wept SA									💷 Agi	llent Spectre	ım Analyzer	- Swept SA									
(X) Victo	o BW	30 Q	Hz			AL 1	SENSE: IN I	Ανα Τνρε	ALIGNAUTO Pwr(RMS)	UB:27:561	MApr 12, 2010	BW	X Vide	DO BW	.⊍Ω 3.0 MHz			AL SI	eNSE:INT	Ανα Τνρε	ALIGNAUTO e: Pwr(RMS)	09:27:0419	MApr 12, 2010		BW
- alexe	(ate: L0	Inp	ut: RF	PNO: Far	Trig: Fr	ee Run 24 dB	Avg Hold Ext Galo:	100/100	TY		Res BW	vitere	G	ate: LO	nput: RF	PNO: Fai 🕶	Trig: Fre	e Run 14 dB	Avg Hold: Evt Galn:	: 100/100 -33.50 dB	TVP			Res BW
10 di	3/dlv	Ref 6.4	16 dB	 Jum					Mkr1	2.684 9 -16.4	91 GHz 37 dBm	61 kHz Auto <u>Man</u>	10 di	B/dlv F	tef 6.46 (1Bm					Mkr1	2.690 0 -19.17	03 GHz 71 dBm	Auto	61 kHz <u>Man</u>
s154												Video BW 30 MH7 Auto <u>Man</u>	-154											Auto	Video BW 3 0 MHz <u>Man</u>
-10.6 -23.5	Hern	rthaul	(with	himiliy	elltradi-a	lantar	wilds, algold	rtuttallation	:lhrpph/	hilionard hilio	hand	VBW:3dB RBW 100 m <u>Auto</u> Man		ul and a	Herd May	477 4	n.h.jihril	ha ka	Whaterpool	Marina da la calego	the states	Mir-Unit	en literatul	VBV Auto	V:3dB RBW 100 m Man
.an.5 -43.5												Span:3dB RBW 106 Auto Man							.1	1	, i kun	.	Ϋ́	Spa <u>Auto</u>	n:3dB RBW 106 Man
63.6												RBW Control [Geussian,-3 dB]												RB [Gau	W Control ssian,-3 dB]
-/3.5																									
83.6																									
Cen #Re	ter 2.68 s BW 5	45000 1 kHz	TGHZ		#VE	w			Sweep	Span 1 20.0 ms (1000 MHz (1001 pts)		Cen #Re	ter 2.69 s BW 51	KHz	12	#VBV	ų			Sweep	8pan 1 20.0 ms (*	.000 MHz 1001 pts)		
MSG									STATUS	5			MSG								STATUS				

Test specification:	Section 27.53(m)(2), Conc	ducted spurious emissions	at the band edges
Test procedure:	Section 27.53(m)(2)		
Test mode:	Compliance	Verdict	DV66
Date:	4/25/2010	verdict.	FASS
Temperature: 24.6 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.4 Emission mask test results at low carrier frequency, 10 MHz EBW

ASSIGNED FREQUENCY DETECTOR USED: MODULATION: MODULATING SIGNAL: TRANSMITTER OUTPUT	(RANGE:	:	2496. Avera QPSI PRBS Maxir	0 – 2690 age K S num	.0 MHz		V
		AC SEN	SE:INT	ALIGNAUTO IN	:00:26.0MApr 12, 2010 Io Std: None	Offset/Limits	Ĩ
	Gate: LO Input: RF	Trig: Free	Run Avg Hold dB Ext Gain	1: 100/100 : -33.50 dB Rad	lo Device: BTS		
						F	•
	10 dB/div Ref 37 dBm						
	27 17 7	37.3 (Jenterneljenskehenskehensk	dDm A hl podoolooyothaanaal			Offset Fre 11.500000 M⊦ <u>On</u> 0	q iz)ff
	3 -13 -22 -23 -24 -23 -23			In some open a start of the second	Anzen Militari H-Milyilailai	Integ B\ 1.000000 M⊦	W Iz
	-43 -53					Offset BW	•
	Center 2.501 GHz #Res BW 110 kHz	#VB	W-11MH7		Span 24 MHz Sween 20 ms		
	Total Carrier Power 37 260 dBrt	n/ 9 50 MHz			oweep zomo	Limits	•
			Lo	wer Up	oper		
	Carrier Power Filt	er Offset Freq I	Integ BW dBc	dBm dBc	dBm Filter	Offset Sid	le
	1 37.20 GBHT 9.300 MHZ OF	7.500 MHz	1.000 MHz -51.54	-14.28 -52.84	-14.27 OFF -15.58 OFF	Neg <u>Both</u> Po	bs
		8.500 MI Iz	1.000 MI Iz 52.72	15.46 53.77	16.51 OFF		
		9.500 MI Iz	1.000 MHz 53.58	16.33 54.23	16.98 OFF	Mor	re
		10.50 MHz	1.000 MHz 5/1.51 1.000 MH z 55.70	17:26 55:32 18:44 56:37	18.07 OFF 19.11 OFF	1 of	з
	1977			STATES			
ΟΔ SU Ω ΛC	SENSEUNI ALIGNACIO 10:13:27	PM/pr 12, 2010 BW		SU C	AL.	SENSE:IN1	NLV3

BB Agilent Spectrum Analyzer - Swept SA	🔲 🗖 👘 🔁	SB Agilent Spectrum Analyzer - Swept SA	
Video BW 30.0 MHz Sate:L0 Input: RF PN0: Far () Trig: Free Run Avg]Hold>000000000000000000000000000000000000	C 10:13:27 PMApr 12, 2010 45) TRACE 12 3 4 3 1 TYPE	VICEO BW 30.0 MHz Sate:LO Input: RF PN0: Far La Trig: Free Run Avg Type: Pwr(RMS Sate:LO Input: RF PN0: Far La Trig: Free Run Avg[Hold>100/100	10:12:07 PM Apr 12, 2010 TRACE 1 2 3 4 5 0 TYPE A UNIONI
IFGain: Jow #Arten: 24 dB Ext Gain: -33.50 dE Mikt 10 dB/div Ref 6.00 dBm	r1 2.495 990 GHz -16.300 dBm	IFGain: aw #Atten: 24 dB Ext Gain: -33.00 dB Mkr1 10 dBidly Ref 6.00 dBm	2.506 013 GHz -18.373 dBm
-111	Video BW 3.0 MHz Auto Man	.4m	Vidco BW 3.0 MHz Auto Man
-112 -220 percebute-spearson guardeset districtor astronom a start of appear	VBW:3dB RBW 100 m Auto Man	-ees of an and a state of the s	VBW:3dB RBW 100 m Auto Man
440	Span:3dB RBW 106 <u>Auto</u> Man	40	Span:3dB RBW 106 <u>Auto</u> Man
	RBW Control [Gaussian,-3 dB]	scu	RBW Control [Gaussian,-3 dB]
-740		.740	
840 Center 2.4955000 GHz	Span 1.000 MHz	840 Center 2.5085000 GHz	Span 1.000 MHz
#Res BW 110 kHz #VBW Sweep	o 20.0 ms (1001 pts)	#Res BW 110 kHz #VBW Sweep	20.0 ms (1001 pts)
M3G STA	TUS	MSG STATL	15

Test specification:	Section 27.53(m)(2), Con	ducted spurious emissions	at the band edges
Test procedure:	Section 27.53(m)(2)		
Test mode:	Compliance	Verdict	DV66
Date:	4/25/2010	verdict.	FA33
Temperature: 24.6 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.5 Emission mask test results at mid carrier frequency, 10 MHz EBW

ASSIGNED FREQUENCY RANGE:
DETECTOR USED:
MODULATION:
MODULATING SIGNAL:
TRANSMITTER OUTPUT POWER SETTINGS:

2496.0 – 2690.0 MHz Average QPSK PRBS Maximum

Agilent Spectrum Analyzer - ACP										
20.02		AL 58	INSE:INT		ALIGN AUT	0 1	1:20:07 PM	Apr 12, 2010		Gate
ate Delay 652.70 µs	-	Center F	req: 2.593000 e Run	AvalHold	· 100/100	Rad	io Std: N	lone		Cuto
Gate: LO Input: R	l IFGain:Lo	w #Atten:2	4 dB	Ext Gain:	-33.50 dE	B Rad	io Devic	e: BTS		Cat
									0	Gau
OldBidly Ref. 37 dBm									Un	U
og										
27		37.3	2 dBm							Cate View
1/	Jame	mallenterations	and production	independent.		• •	+ +			Galeviev
									on	<u>01</u>
-3					1					Gate View
13							==			Sweep Time
a set of a s	A MARKAN				Harrister	A State	and the set	Average		5.00 m
MANAGARA A					<u> </u>		199 P. 19	the destroy where		
										Outo Dula
43										Gate Dela
55										652.70 μ
enter 2 503 CHz							Snan	24 MHz		
							A Martin	C T IVII IC		
2PS BW 1111 KH7		#∀I	3W 11M	17			Sween	20 ms		0
Res BW 110 KHZ		#VE	3W 1.1 M	łz			Sweep	20 ms		Gate Lengt
otal Carrier Power 37.1	60 dBm/ 9.5	# VE 0 MH2	ACP-I	Hz BW			Sweep	20 ms		Gate Lengt 2.3266 m
otal Carrier Power 37.1	60 dBm/ 9.5	# VE 0 MH2	ACP-I	HZ BW Lo	wer	U	Sweep	20 ms		Gate Lengt 2.3266 m
otal Carrier Power 37.1	160 dBm/ 9.5 Filter	#VE 0 MH∠ Ottset Freq	ACP-II	HZ BW Lo	wer dBm	U dBc	Sweep oper dBm	20 ms		Gate Lengti 2.3266 m
es BW 110 KHz Ital Carrier Power 37.1 arrier Power 37.16 dBm / 9.500 MH3	160 dBm/ 9.5 Filter	#VE 0 MHz Ottset Freq 6:500 MHz	ACP-II Integ BW	Hz BW Lo dBc 50.36	wer dBm 13.20	U dBc 51.59	Sweep oper dBm 14.43	20 ms Filter	G	Gate Lengti 2.3266 m
otal Carrier Power 37.1 Sarrier Power 37.1 37.16 dBm / 9.300 MH:	I60 dBm/ 9.5 Filter z OFF	#VE 0 MHz Ottset Freq 6:500 MHz 7:500 MHz	ACP-II Integ BW 1.000 MHz 1.000 MHz	Hz BW dBc 50.36 -51.18	wer dBm 13.20	Uj dBc 51.59 -52.82	Sweep oper dBm 14.43 -15.66	Filter OFF OFF	C	Gate Lengt 2.3266 m ate Method
otal Carrier Power 37.1 Sarrier Power 37.1 1 37.16 dbm / 9.500 MHb	I60 dBm/ 9.5 Filter z OFF	#VE 0 MHz 0 titset Ereq 6,500 MHz 7,500 MHz 8,500 MHz	ACP-II ACP-II Integ BW 1.000 MHz 1.000 MHz 1.000 MHz	tz BW dBc -50.36 -51.18 -52.59	wer dBm 13.20 -14.02 -15.43	Uj dBc 51.59 -52.82 -53.79	Sweep oper dBm 14.43 -15.66 -16.63	20 ms Filter OFF OFF OFF	G	Gate Lengti 2.3266 m ate Method LO
tes BW 110 KHZ otal Carrier Power 37.1 xarrier Power 37.16 dbm / 9.500 MH5	160 dBm/ 9.5 Filter ©FF	#VE 0 MH2 0 theft Freq 0 300 MHz 7.500 MHz 9.500 MHz 9.500 MHz	ACP-II Integ BW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	tz BW dBc 50.36 -51.18 -52.59 -53.13	wer dBm -13.20 -14.02 -15.43 -15.97	Uj dBc 51.59 -52.82 -53.79 -54.37	Sweep oper dBm 14.43 -15.66 -15.63 -17.21	20 ms	C	Gate Lengti 2.3266 m ate Method Lo
des BW 110 kHz otal Carrier Power 37.1 sarrier Power 37.16 dbm / 9.300 MHb	I60 dBni/ 9.5 Filter z OFF	#VE 0 MH2 0 their Freq 0 300 MHz 7 300 MHz 8 300 MHz 9 300 MHz 10 50 MHz	BW 1.1 MH ACP-II Integ BW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	Iz BW dBc 50.36 -51.18 -52.59 -53.13 -54.11	dBm 13.20 -14.02 -15.43 -15.97 -15.97	U dBc 51.59 -52.82 -53.79 -54.37 -55.72	Sweep dBm 14.43 -15.86 -16.83 -17.21 -18.56	20 ms	G	Gate Lengti 2.3266 m ate Method LO More
tes BW 110 KHZ Stal Carrier Power 37.1 arrier Power 37.16 dem 7 9.500 MHz	I60 dBm/ 9.5 Filter z OFF	#VE 0 MHz 0 MHz 6,500 MHz 7,500 MHz 8,500 MHz 9,500 MHz 10,50 MHz 11,50 MHz	ACP-II Integ BW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	Iz BW dBc 50.36 -51.18 -52.59 -53.13 -54.11 -55.93	dBm 13.20 -14.02 -15.43 -15.97 -15.97 -16.95 -18.77	U dBc 51.59 -52.82 -53.79 -54.37 -55.72 -55.72	50000000000000000000000000000000000000	20 ms	C	Gate Lengti 2.3266 m late Method LO More 1 of 2
des BW 110 kHz otal Carrier Power 37.1 arrier Power 37.16 dem / 9.500 MHz	I60 dBm/ 9.5 Filter z OFF	#VE 0 MH2 0 theat Fing 6:500 MHz 7:500 MHz 8:500 MHz 9:500 MHz 10:50 MH2 11:50 MH2	ACP-II Integ BW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	Iz BW 680 50,36 -51,18 -52,59 -53,13 -54,11 -55,93	Wer dBm -13.20 -15.43 -15.43 -15.97 -16.95 -18.77	U dBc 51.59 -52.82 -53.79 -54.37 -55.72 -57.60	Deper dBm 14/43 -15.66 -16.63 -17.21 -18.56 -20.44	20 ms	e	Gate Lengti 2.3266 m ate Method Lo Morr 1 of 2
des BW 110 kHz otal Carrier Power 37.1 arrier Power 37.16 dbm / 9.500 MHb	Filter z OFF	#VE 0 MH2 0 MH2 6.300 MH2 7.500 MH2 9.300 MH2 9.300 MH2 10.50 MH2 11.50 MH2	BW 1.1 MF ACP-II Integ BW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	1 2 BW Lo 60.36 −51.18 −52.59 −53.13 −54.11 −55.93	wer dBm 13.20 -14.02 -15.43 -15.97 -16.95 -18.77	U) dBc 51.59 -52.82 -53.79 -54.37 -55.72 -57.60 τυs	Sweep oper dBm 14/43 -15.66 -16.63 -17.21 -18.56 -20.44	20 ms	C	Gate Lengti 2.3266 m iate Method Lo Mor 1 of J

💷 Ag	lent Sp	pectrun	n Analyze	er - Swe	pt SA									💷 Ag	ilent Spect	rum Ana	lyzer - Sw	ept SA									
Swe	ep T	fime Gat	2 30.0 e: L0	ms Input:	RF F	NO:Far ⊶ Gain:Inw	Trig: F #Atten	senseun (ree Run : 24 dB	Avg Typ Avg Hold Ext Gain	e: Pwr(RMS E: 100/100 : -33.50 dB) 10:22:19) 10: 10: 10:22:19 10: 10: 10:22:19 10: 10:22:19 10: 10:22:19 10: 10:22:19 10: 10:22:19 10: 10:22:19	(MApr 12, 2010 ADF 12, 2010 APF 4 DET 4 A A A A A A A A A A A A A A A A A A	Sweep/Control Sweep Time	Vide	eo BW	50 Ω 3.0 Ν Sate: L0	MHZ Input	: RF F	NO: Far (Saint ow	Trig: Fre #Atten: 2	e Run 4 dB	Avg Type Avg Hold Ext Gain:	ALIGNAUTO :: Pwr(RMS) >100/100 -33.50 dB	10:21:201 10%C TYP DB	M Apr 12, 2010 A. <mark>1 2 3 4 3</mark> 0 A A A A A A A A A A A A A A A A A A A		BW Res BW
10 d	3/div	Re	ef 6.00) dBm	ı					Mkr1	2.587 -18.4	342 GHz 24 dBm	30.0 ms <u>Auto</u> Man	10 di	Bídiv	Ref 6.	.00 dBr	n					Mkr1	2.598 0 -19.54	08 GHz 46 dBm	Auto	110 kHz <u>Man</u>
-4111													Sweep Setup ►	-4111												Auto	Video BW 3 0 MHz Man
-14.U											↓ 1−	-10.00 dan		-14.U	1-										-10.00 dum	VBW	:3dB RBW
-24.0	pothe	en vid	maphi	with	North	hypityaph	iyeddaildd y	approximate	prolityoithyddyd	upper particularly	philles at a path	h fry some light		-24.0	<mark>had huj</mark> e	and in the	infainten	i den fratis	editer and the	nyy Ma ^r indry	nhunduhil	hin the states of the states o	afablire.dab	ultimpetus	info-substation	Auto	100 m Man
:14 N														.14 N												Span	:3dB RBW 106
-14.U														-44.U												Auto	Man
-64.U														-64.U												RBW [Gauss	Control
+/4.U													Gate	-/4.U													
84.U													[0n,L0]	84.U													
Gen	ter 2	.587	5000 (GHZ							Span	1.000 MHz	Points 1001	Cen	ter 2.5	18500	0 GHz							Span 1	.000 MHz		
#Re	s BW	/ 110	kHz			#VB\	N			Sweep	30.0 ms	(1001 pts)		#Re	s BW 1	10 kH	z		#VBN				Sweep Status	30.0 ms (1001 pts)		

Test specification:	Section 27.53(m)(2), Cond	ducted spurious emissions	at the band edges
Test procedure:	Section 27.53(m)(2)		
Test mode:	Compliance	Verdict	DV66
Date:	4/25/2010	verdict.	FA33
Temperature: 24.6 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.6 Emission mask test results at high carrier frequency, 10 MHz EBW

ASSIGNED FREQUENCY DETECTOR USED:	Y RANGE:		2496 Aver	6.0 – 269 age	0.0 MHz		
MODULATION:			OPS	ĸ			
MODULATING SIGNAL:			PRB	S			
TRANSMITTER OUTPUT	POWER SETTING	S:	Maxi	imum			
	🗊 Agilent Spectrum Analyzer - ACP						
	50Ω Gate Delay, 647,70 μs	AC	SENSE:INT	ALIGN AUTO	10:29:28 PM Apr 12, 2 dio Std: None	D10	Gate
	Gate: LO Input: RI-		reeRun Avg Hol 24.dB Ext Gale	ld: 100/100 n: -33.50 dB = Ba	dio Device: BTS		
		Gam.cow				On	Gate
	10 dB/dlv Ref 37 dBm						UII
	27		7 0 dBm				Gate View
		player characteristic adverse	energiateritan alle alle average alle	h		On	Off
	7						
							Gate View
				line at a .	- Ave	740 <mark>7</mark>	Sweep Time 5.00 ms
	all an appropriate the state of			In the second	and produced the	.	
	-48						Gate Delay
	-53						647.70 µs
	Center 2.685 GHz				Span 24 M	HZ	
	#Res BW 110 kHz	#	VBW 1.1 MHz		Sweep 20 r	ns	Gate Length
	Total Carrier Power 37 020 dF	3m/ 9 50 MI 17	ACP-IBW				2.3266 ms
			L	ower	pper		
	1 37.02 dBm / 9.500 MHz O	B 500 MH7	Integ BW dBc 1 000 MHz 51 24	di3m di3c 14.21 52.57	dism Filte	G	ate Method 🕨
		7.500 MHz	1.000 MHz -52.27	-15.25 -53.62	-16.60 OFF		LO
		8.500 MHz	1.000 MHz -53.70	-16.68 -54.81	-17.79 OFF		
		9.500 MI Iz	1.000 MHz 5/1.32	17.30 55.30	18.27 OFF		More
		11.50 MHz	1.000 MHz -56.16	-19.13 -58.35	-21.33 OFF		1 of 2
	100			071710			
	MSG			STATUS			

🗰 Agilent Spectrum Analyzer - Swept SA				🖟 Agilent Spectrum Analyzer - Swept SA			
04 5012 A Video BW 3.0 MHz Gate: L0 Input: RI 1400: Las →	AC CLINICIANI ALIGNACITO Avg Type: Pwr(RMS) Trig: Free Run Avg Hold: 100/100	10:01:02 PM Apr 12, 2010 IRACE 1 2 3 4 1 01 TYPE A	BW	Marker 1 2.690039000000 GHz Gate: L0 Input: RI 1980: 1 a	AC SUNSLENT AVg T	ALIGNAUTO 10:0024 PMApr 12; 2010 ype: Pwr(RMS) 18422 18424 1844 bid: 100/100 TVTE A	Peak Search
10 dB/div Ref 6.00 dBm	#Atten:24 dB Ext Gain:-33.50 dB Mkr1	2.679 677 GHz -19.365 dBm	Res BW 110 kHz to <u>Man</u>	10 dB/div Ref 6.00 dBm	w #Atten:24 dB Ext Gz	Mkr1 2.690 039 GHz -20.047 dBm	Next Peak
4.00		Aut	Video BW 3.0 MHz to <u>Man</u>	4.00		.13 M (Br)	Next Right
-11.0 -21.0 Altracity in the state of the st	المرابع المرجع المرجع المرجع المرجع المراجع المراجع المراجع المرجع المرجع المرجع المرجع المرجع المرجع المرجع ال		/BW:3dB RBW 100 m <u>to</u> Man	-14.0 1 -24.0 1011/1011/1011/1011/1011/1011/1011/10	ying for factors and the second spectrum of the second second second second second second second second second	Halathalldgatradingtradingtoragene	Next Left
04 N 44 N		Sp <u>Aut</u>	pan:3d B RBW 106 <u>to</u> Man	44 N			Marker Delta
-54.0		F [G	RBW Control Gauceian, 3 dB]	-54.0			Mkr→CF
-74 N				-74 በ			Mkr→RefLvi
Center 2.6795000 GHz		Span 1.000 MHz		Start 2.6900000 GHz		Stop 2.6910000 GHz	More 1 of 2
#Res BW 110 kHz #VBW	Sweep	50.0 ms (1001 pts)		#Res BW 110 kHz #1	/BW	Sweep 50.0 ms (1001 pts)	
MSG	SIAIU	s	,	//sig		STATUS	

Test specification:	Section 27.53(m)(2), Cond	lucted spurious emissions	at the band edges
Test procedure:	Section 27.53(m)(2)		
Test mode:	Compliance	Verdict	DV66
Date:	4/25/2010	verdict.	FA33
Temperature: 24.6 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.7 Emission mask test results at low carrier frequency, 5 MHz EBW

ASSIGNED FREQUENCY DETECTOR USED: MODULATION: MODULATING SIGNAL: TRANSMITTER OUTPUT	Y RANGE: POWER SETTINGS:	2496.0 – 26 Average 64QAM PRBS Maximum	90.0 MHz
	Agilent Spectrum Analyzer - ACP		
	Center Freq 2.498500000 GHz	Center Freq: 2.498500000 GHz	Radio Std: None
	Gate: LO Input: RF	IFGain:Luw #Atten: 18 dB Ext Gain	1: -33.50 dB Radio Device: BTS
	10 dB/div Pef 40 dBm		
	20	0.6 36.4 dBm	
		Re Values - Assertion - Phylographic	aBc aBc aBc aBc aBc
	-10		
		Nith With Million Mill	Why with my have been and a second
	-47 brokedon in touch in the second of		A second of the bound of the bound of the bound
	611		
	Center 2.499 GHz		Span 19 MHz
	#Res BW 51 KHZ	#VBW 510 KHZ	Sweep 21.33 ms
	I otal Carrier Power 30:400 dBm/4.	SUMHZ ACP-IBW	RRC Filter : Off
	Carrier Power	Offset Freq Integ BW dBc dBm	dBc dBm
	1 36.40 dBm / 4.800 MHz	4.000 MHz 1.000 MHz -50.63 -14.23	-50.28 -13.88
		6.000 MHz 1.000 MHz -54.80 -18.40	-56.05 -19.65
		7.000 MHz 1.000 MHz -57.59 -21.19 - 8.000 MHz 1.000 MHz -60.00 -23.60 -	-58.71 -22.31
		9.000 MHz 1.000 MHz -62.36 -25.96	-62.35 -25.95
	MSG	STATUS	
🗊 Aglient Spectrum Analyzer - Swept SA		🗐 🖾 📝 💽 Aglient Spectrum Analyzer - Swa	apt SA
Video BW 3.0 MHz	SENSE:INT ALIGNAUTO Avg Type: Pwr(RMS)	U1:46:10.0M Apr 22, 20:00 0X 50 8 NAXE: 12:23 4:01 Video BW 3.0 MHz	AC SENSECINI ALBANADIO AVg T
Gato: LO Input: RF PNO: Fai			

Vide	o BW	3.0 Gate	MHZ s: LO li	ıput: K⊩ II	PNO: Fai	Trig: Free Atten: 6 di	Run B	Avg Type: Avg Hold: 1 Ext Gain: -3	Pwr(RMS) 00/100 13.60 dB	1	KACE 1 2 3 4 5 1 TYPE A WWWWW DLI A NNNNN	Vide	90 BW 3.0	D MHZ ato: LO	Input: KF	PNO: Fan	, Trig: Free Atten: 6 c	Run	Avg Type: Avg Hold: Ext Gain: 4	Pwr(RM\$) 100/100 83.60 dB	02.01	KACE 1 2 3 4 5 1 TYPE A WWWWW ULL A NINININ
10 dE	B/dlv	Ref 6	.00 dBm						M	kr1 2.496 -17.	000 GHz 372 dBm	10 di	Bidiv R ef	6.00 dBm	1					М	cr1 2.501 -16.	133 GHz 655 dBm
4.00												4.00										
-14.U											-15000 1	-14.0		1								-13 (1) (19 0
24.0	uludh	ol Maha	hin whe	pilet was	h hhhhhh	et the house	espellitering	all while	W. Martin Ma		htilwiikk	24.0	n fan ar fan de fan	lun lan	hydy, hyw	MANNAN .	wijinda praditi	ny manalada	in hand	A. A	the way	WWW.
:14 N												:14 N				•					i A tradi	1
-44 N	\vdash											-44.0										
54 N	\vdash											54 N										
64.0												64.0										
-74.0												-74.0										
-84.0												-81.0										
Star #Re:	1 2.495 s BW 5	0000 1 kHz	GHz		#VB	w			Swe	Stop 2.49 ep 20.0 m	60000 GHz s (1001 pts)	Star #Re	1 2.501000 s BW 51 kl	0 GHz Hz		#VE	w			Swee	Stop 2.50	20000 GHz s (1001 pts)
MSG								STATUS				MSG							SIAIUS			

Test specification:	Section 27.53(m)(2), Cond	ducted spurious emissions	at the band edges
Test procedure:	Section 27.53(m)(2)		
Test mode:	Compliance	Verdict	DV66
Date:	4/25/2010	verdict.	FA33
Temperature: 24.6 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.8 Emission mask test results at mid carrier frequency, 5 MHz EBW

ASSIGNED FREQUENCY DETECTOR USED: MODULATION: MODULATING SIGNAL:	' RANGE:			2 / E	0.0 M	IHz				
TRANSMITTER OUTPUT	POWER SET	INGS:		<u> </u>	Maximu	m				
	Magilent Spectrum Analyzer - A 100 50 Ω Center Freq 2.59300 Gate: L0	CP 00005 GHz Input: RF	AC FGain:Low	SENSE:INT Center Freq Trig: Free R #Atten: 18 d	/LIG/ : 2.693000006 G UN B	AUTO Hz Avg Hold>1 Ext Gain: -3	00/100 3.50 d⊟	0 Radio S Radio E	2:35:33 AM Ac Std: None Device: BTS	- = X # 22, 2010
	10 dB/dlv Ref 40 d	Bm								
	20 -60.0 -	-55.8 dD	io c M	36.2 c Million (1914)	iDm Դիլի <mark>լ _տիկլու</mark> թ	-	51.5 Bc -53.7	-57.0 -5	9.0 -61.6	-63.1
										unu
	30 -40 whenedly whenedly a state of	Normal International Post	postan secol			WHINK .	san hayana	1-in more	wip sectors	Averace Rocklapsky
	Center 2.593 GHz #Res BW 51 kHz			#VB\	N 510 kHz			Sv	Span 1 veep 21.	9 MHz .33 ms
	Total Carrier Power	36.230 dBm/ 1.8) MHz	ACP-IE	3W	RF	C Filter :	Off		
	Carrier Power		Offset Frec	Integ BW	Low/ dBc c	er IBm c	Uppe Bc dE	r Sm		
	1 36.23 dBm / 4.80)0 MHz	4.000 MHz 5.000 MHz 6.000 MHz 7.000 MHz 8.000 MHz 9.000 MHz	 1.000 MH; 1.000 MH; 1.000 MH; 1.000 MH; 1.000 MH; 1.000 MH; 	z -51.97 -1 z -54.50 -1 z -55.58 -1 z -58.38 -2 z -60.51 -2 z -62.81 -2	5.74 -51 8.27 -53 9.35 -56 2.16 -58 4.28 -61 6.58 -63	.52 -15 .72 -17 .99 -20 .99 -22 .58 -25 .14 -26	.29 .50 .76 .36 .91		
	MSG					STATUS				

M Ag	jiant Spartrum Analyzer - Swapt SA											🖻 🔀 💷 Agliant Spectrum Analyzer - Swept SA										- 8 🛛
00		50 Ω			AL.	SENSE:INT		ALIGNAUTO		U2:00:	51 AM Apr 22, 2010	(XI	50 12			AL.	SENSERNI		LIGNAUTO		02:09:0	3AM Apr 22, 2010
Vide	eo BW	3.0 MHz				Trie: Eros	Due	Avg lype: Avglueld:	Pwr(RMS)		TYTE K GOODAGO	Vide	eo BW 3.0) MHz			Trie: Eroo	Pun	Avg lype: Aug/Hold:	Pwr(RMS) 100/100	18	
		Gate: LO	Input: RI	19	NO:lar → `olmuloru	atten:6	i Runi IB	Ext Gain:	33 50 dB		DO ONNNN		Ga	ate: LO	Input: RI	l!NO:lai →	ing.rree	B	Ext Gain:	33.50 dB		DEL NINNNN
				10	Janneow						100.011					I Gamicow		_			10.00	
									IVI	KF1 2.590	492 GHZ									IVI	KF1 2.595	668 GHZ
10 d	dB/div Ref 6.00 dBm -18.592 dBi											10 dB/div Ref 6.00 dBm									-18.	135 dBm
Log												Log										
4.00												4.00										
-1411	L										-13 m /2			×1								-13 M (Bu
11.0											1 📢	1		· •								
										h at a	the area the		ht. Ketrah	بالعاقد و	den i	المراجب ال	A					
-24.0	1	Ad	the should be		مالهما وليو	al a shall all all a	a historia da la	Handa Landa	Part and the	化动物料料	LYFRINK W	-24.0	HAN ALL DIE	Par Shirty	and the second secon	他的情况和	机动物内心	加州和中心	前的机动	化晶体晶体	A Louis White Party	WHERE AN
	CT AN INV	Installation to	and the location of the set	ntelli La	stratifities data	hard, I minile.	den internet	al far and story	Linker offer a	all the set of					1.1.1.1		n e e re l	best of each of	to a she a	distant and the	and the second second	ah matair a
:14.0	L											:14.0										
4411												4411										
-54.0												-54.0										
64.0												64.0										
04.0												04.0										
-74 O												-74 0										
-84.0												-84.0										
Cer	ter 2.5	900000 GI	z							Spar	1.000 MHz	Cen	ter 2.59600	00 GHz							Span	1.000 MHz
#Re	S BW 5	1 kHz			#VE	3W			#Swe	ep 30.0 m	s (1001 pts)	#Re	s BW 51 kH	Iz		#VE	10/			Swe	ep 30.0 ms	(1001 pts)
mSG								STATUS				mSG							STATUS			

Test specification:	Section 27.53(m)(2), Con	ducted spurious emissions	at the band edges
Test procedure:	Section 27.53(m)(2)		
Test mode:	Compliance	Verdict:	DV66
Date:	4/25/2010	verdict.	FA33
Temperature: 24.6 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.9 Emission mask test results at high carrier frequency, 5 MHz EBW

ASSIGNED FREQUENCY DETECTOR USED: MODULATION: MODULATING SIGNAL:	RANGE:			249 Ave 640 PR	2496.0 – 2690.0 MHz Average 64QAM PRBS							
TRANSMITTER OUTPUT	POWER SET	TINGS:		Ma	ximum							
	Center Freq 2.6875 Gate: LO	ACP 500000 GHz Input: RF	AC S FGain:Low	ENSE:INT Center Freq: 2.68 Trig: Free Run #Atten: 18 dB	ALIGNAUTO 7600000 GHz Avg[Hol Ext Gale	ld: 100/100 n: -33.50 d⊟	02: Radio Ste Radio De	50:33 /M /gr 22, 2010 d: None svice: BTS				
	10 dBidly Ref 40	dBm										
			1	36.5 dDm		19.6		4 5671 563.9				
	10 dBc			n na manana	1949 H.4791-9	dBc dBc	dBc dB	e dBe dBe				
	-10 20 30 -00 -00	ujdmm.hmt.M41	lawaaan		Mwimi	ofuricityodytew	ulshq-mbayyba	Averace Werscherensfanzielen				
	Center 2.688 GHz #Res BW 51 kHz			#VBW 51	10 kHz		Swe	Span 19 MHz eep 21.33 ms				
	Total Carrier Power	36.550 dBm/ 4.8	0 MHz	ACP-IBW		RRC Filter	: Off					
	Carrier Power 1 36.55 dBm / 4.8	00 MHz	Offset Freq 4.000 MHz	Integ BW c 1.000 MHz -50	Lower IBc dBm).05 -13.51	Uppe dBc dB -49.57 -13	r Bm 3.03					
			5.000 MHz 6.000 MHz 7.000 MHz 8.000 MHz	1.000 MHz -53 1.000 MHz -54 1.000 MHz -58 1.000 MHz -60	3.20 -16.65 1.78 -18.24 3.23 -21.68 0.44 -23.90	-52.55 -16 -56.61 -20 -59.40 -22 -62.10 -25	000 0.06 0.86 0.56					
			9.000 MHz	1.000 MHz -62	2.57 -26.03	-63.94 -27	.40					
	MSG				STATUS							

M Ag	ilent Spect	ent Spectrum Analyzer - Swept SA										_ B 🛛	🔀 💀 Agliant Spectrum Analyzer - Swept SA								- 3 🛛			
00		50.2			AL.	9	ENGLINT	A	LIGNAUTO		U2:50:	59 AM Apr 22, 2010	(XI	50.9			AL.	SENSE:3N1	A	OTUANOL		U2:54:2	5 AM Apr 22, 2010	
Vide	eo BW	3.0 MH	z			_	Tria: Eroo	P.m.	Avg lype:	Pwr(RMS) 400/400		TVTE X 0000000	Vide	eo BW 3.0	MHz			- Tria: Eroo	Dun	Avg Type: Avg Holdo	Pwr(RMS) 400/400	18		
		Gate: LC) Inj	put: Kl	I'NO; I a Il Coletto	പപ	Atten: 6 d	B	Ext Gain: <	33.50 dB		DEL O NNNN N		Ga	ite: LO	Input: Itl	l'N0:lar ∟, ⊡Galaniow	Atten: 6 d	B	Ext Gain: -	33.50 dB		DEL GINNNIN	
					II OUIIILO	/n						000 011-					odimeon					4.0.800	422.011-	
										IVI	KTT 2.060	000 GH2									IVII	-15 300 dBm		
10 d	B/div	Ref 6.00	l dBm								-10.	.238 aBm	10 di	Bidiv Ref	6.00 dBm							-18.809 dBm		
LOg													LOB									(
4.00																								
												4			. 1									
-1411	—											-13 Mic		<u> </u>	+		_						-13 M (Br)	
												آر بيايى ا												
	ed at k	attachte	Et add	in an an a	եստն	out 1	add do died		Letter to be	Adeals, and all	building and	14101-1814.81		hi jakin	Laboration	Which is also	ALCONT.	history,	a nu undrava	at she manado	allow a second	De last et l	վետալ,	
-24.0	and the	e protoca se		10101	and the state	71 V	a shirt at	MAN THE OWNER	11111111111111	11,11,1,1,1,1	the trace of			a la fair d		<u>։ իսրդույնը։</u>	1 Y 1 1 1 1 1 1 1	an handle seiter	A STREET		Mar No. Par		THE REPORT	
	1.1.1.			4																				
:14 N	<u> </u>																							
44.0													44.0											
-54.0													-54.0											
64.0																								
710																								
-84.0													-84.0											
0.4	ten 2 5	146000 /									Ones	4 000 1411		ton 2 50050	00 011-							0.0.0.0	4 000 1411-	
cer 45	ILET Z.04	54500000	1014			4000					span	1.000 WHZ	cen #D	ner 2.69050	OU GHZ			1102			a	span	1.000 IVIHZ	
1.1	STERN B	TINH2								awe	ep zu.u m	s (Tool pis)	1011	S 1997 9 I KI	12		#VL				Swei	sp. 4030 IIIs	r(noon pis)	
MSG									STATUS				MSG							STATUS				

Test specification:	Section 27.53(m)(2), Cor	Section 27.53(m)(2), Conducted spurious emissions at the band edges										
Test procedure:	Section 27.53(m)(2)											
Test mode:	Compliance	Vordict	DVCC									
Date:	4/25/2010	verdict.	FA33									
Temperature: 24.6 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC									
Remarks:		•										

Plot 7.3.10 Emission mask test results at low carrier frequency, 10 MHz EBW

ASSIGNED FREQUENCY RANGE: DETECTOR USED: MODULATION: MODULATING SIGNAL: TRANSMITTER OUTPUT POWER SETTINGS: 2496.0 – 2690.0 MHz Average 64QAM PRBS Maximum

a without a becum	in analyzer - a	00P									
(X) 5/	no		AC	SENSE:INT		ALIGN AUTO			00	:32:41 PMU	Apr.21, 2016
Gate Delay	742.70 µ	s		Center Fre	q: 2.5010000	00 GHz		· ·	Radio St	d: None	
	Gate: LO	Input: KF		Irig: Free I	Run	Avgine	514: 100/10				
			IFGain:Low	#Atten: 14	a8	Ext Ga	in: -33.50	a13 1	kadio De	avice: B I	5
10 dB/div	Ref 40 d	Bm									
Log											
30				36.8	dBm						
20	• •	• •							· ·	· ·	· ·
~			party in the second	when the manufacture of the	e l'annaithe	HAL AN ALCOMONY	-9				
10											
			4								
-10											
-20							A DATE OF				00000
30	and probably	All the state of the					and a	- hole with the	PLAN AND	4 hopesta	in the second second
											1.1.1
-40											
Center 2.501	1 GHz									Snan '	25 MHz
#Pac BMI 11	0 kHz			#VE	M 1 1 M	H7			Ċ	woon	20 me
WINGS DOV 11	V KHZ					112				aweep	20 1113
Total Carrier	Power	36-780 dBm/ 9	150 MH 7	ACP-I	BW		RRC F	ilter : Off			
					1	ower		Inner			
Carrier Powe	er		Offset Fred	Integ BV	V dBc	dBm	dBc	dBm			
1 36.78 d	Bm / 9.50	00 MHz	6.500 MHz	1.000 MH	lz -52.00	-15.22	-50.99	-14.21			
			7 500 MHz	1 000 MH	12 -53 21	16.42	-52.26	15.47			
			0.500 MIL	1.000 MI	- 5455	17.70	52.20	10.10			
			0.500 MHz		12 - 54.55	-17.76	-52.94	-10.10			
			9.500 MHz	: 1.000 MF	iz -55.44	-18.65	-53.69	-16.91			
			10.50 MHz	1.000 MH	lz -56.41	-19.63	-55.22	-18.44			
			11.50 MHz	1.000 MH	z -57.19	-20.41	-57.29	-20.51			
1											
MSG						STATUS					

μΩ Λe	🕫 Agliant Spectrum Analyzer - Swapt SA 🔲 🔲											🕽 🏛 Agilant Spectrum Analyzer - Swept SA 🔹 🗐 🖾										
Vid	eo BW	50 Ω 1.0 Gate	MHz LO	Input: RF	PNO: Far Cy IFGain: I rw	Trig: Free #Atten: 14	Run dB	Avg Type: Avg[Hold9 Ext Galn: -	Pwr(RMS) -100/100 33.50 dB	UU:37: I	121M Apr 21, 2010 NACL 1 2 3 4 5 0 TYPE A COMMON P	Vide	eo BW 3.0 G	D MHz ate: LO	Input: RF	AL PNO: Far (_	Trig: Free #Atten: 14	Run IdB	Avg Type: Avg Hold> Ext Gain: -3	Pwr(RMS) 100/100 33.50 dB	00:30:	UTMAP 21,2010 RAU 12,3,4,5 C TYPE A UNITARI DET A NINNIN
10 d Log	B/dlv	Ref 6.	.00 dBm						M	kr1 2.495 -19	214 GHz 549 dBm	10 di Log	Bidiv Ref	6.00 dBm						M	kr1 2.506 -16	003 GHz 833 dBm
-411												-410										
-14.0				1								-14.0	1									-10.00 dDm
-24.0	(PRIMA	hiniha	depart-sold	stilles portion	pHistophinster	inger hier landy	www.wy.ho	all the states of the states o	ipodlywdaety	wardenthallype	nternel helperty	-24.0	konfiliparian pos	nnuthunut	(despollytheored	likeli Shirepad	W. Hulling and In	nedykahlaval	markilmaidhiy	where prese	andyhallappily	anyonilliothern
.04 n												:04 N										
-44.0												-44.0										
-84.0												-64.0										
-74.0												-/4.U										
84.0												84.U										
Sta #Re	nt 2.495 Is BW 1	0000 10 kH	GHZ		#VE	3W			Swe	Stop 2.49	60000 GHz s (1001 pts)	Cen #Re	ter 2.50650 s BW 110 k	000 GHZ kHz		#VE	3W			Swe	Spar ep 20.0 m	1.000 MHz s (1001 pts)
MISI								MSG							STATUS							

Test specification:	Section 27.53(m)(2), Cor	nducted spurious emissions	at the band edges
Test procedure:	Section 27.53(m)(2)		
Test mode:	Compliance	Verdict	DV66
Date:	4/25/2010	verdict.	FAGO
Temperature: 24.6 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC
Remarks:			

pr 21, 2010
Avenge Mangeler
5 MHz 20 ms

🔽 Agliant Spectrum Analyzer - Swept SA 📃										- 6 🛛	🛛 🗊 Agilent Spectrum Analyzer - Swept SA 📃 🗖 🔀										
Video B	50 A Gate	MHz B: LO I	nput: KI	AC I'NO:Tar ↔ IFGain:Low	SENSE:INT - Trig:Free Atten:6 d	Run IB	LIGNAUTO Avg Type: Avg Hold: 1 Ext Gain: -3	Pwr(RMS) 100/100 33.50 dB	04:01:	14 AM Apr 22, 2010 IMACH 2 3 4 5 5 TYPE A 00000000 INT A N N N N N	Vide	50 S 50 BW 1.0 G	O MHz Sate: LO	Input: RF	PNO: Far G	SENSE ONT Trig: Fre #Atten: 1	• Run 4 dB	Avg Type: Avg Hold> Ext Gain: 4	Pwr(RMS) 100/100 33.50 dB	00:22# T	05 PM Apr 21, 2010 PACE 2 0 4 5 0 TYPE A DET A NNNN 1
10 dB/div	Ref 6	.00 dBm						М	kr1 2.587 -20	299 GHz .045 dBm	10 dE	3/div Ref	6.00 dBm	1					М	kr1 2.598 -18	003 GHz
4.00											4.00										
-14.0	ير يار			1					al	-13.00 dBn	14.0	1									13.00 dBn
-24.0	к.М.#/	YA MAYAYA	Mandalan	Hindu Andread Andread Andread Andread Andread Andread Andread	kan terte pilokan kan kan kan kan kan kan kan kan kan	ANY ANY	litter of the state of the stat	aller af talisty	allan an a	MANAN AND	-24.0	and the second	hind in Frinder	i i i i i i i i i i i i i i i i i i i	ellifed the state of the	ha fhailtean d	******	┿ <mark>╢╎┾┵╎┉┾╖╢</mark> ┥	ht of a lot	hand an	ati thintpore
44 N											44 1										
-54.0											-54.0										
-64.0											-64.0										
74 N 84 N											74 N 84 N										
Start 2.5	5870000	GHz							Stop 2.58	380000 GHz	Star	t 2.598000	0 GHz							Stop 2.59	90000 GH2
#Res BV	N 110 KH	iz		#VI	3W		5	Weep (#Sv	/p) 20.0 m	s (1001 pts)	#Re:	s BW 110 I	kHz		#VI	BW			Swe	ep 20.0 m	s (1001 pts
MNG							STATUS				MSG							STATUS			

Test specification:	Section 27.53(m)(2), Cor	nducted spurious emissions	at the band edges
Test procedure:	Section 27.53(m)(2)		
Test mode:	Compliance	Verdict:	DVCC
Date:	4/25/2010	verdict.	FA33
Temperature: 24.6 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC
Remarks:			

ASSIGNED FREQUENCY DETECTOR USED: MODULATION: MODULATING SIGNAL: TRANSMITTER OUTPUT	Y RANGE:	IGS:		24 Av 64 Pf M	196.0 – 2 verage IQAM RBS aximum	690.0	MHz		
	📴 Agilent Spectrum Analyzer - ACP				astiniani				
	700 500 VBW 1.1000 MHz		AC SE Center F	NSE:0NT req: 2.685000000	ALIGN AUTO D GHz	07:34:22 Radio St	2 PM Apr 21, 2010 d: None	BW	
	Gate: LO Input: H	- IFGain:Lo	w Trig: Fre #Atten: 1	eRun Av 4 dB E≽	vg Hold: 100/100 xt Gain: -33.50 d⊟	Radio De	avice: BTS	Resi	вw
	10 dB/dlv Ref 40 dBm							110 Auto	kHz <u>Man</u>
	20 20 10		36.2 htipleenstelenstelen	t dBm gelefinkterffiggeblev	4~~~~			Video I 1.1000 M Auto	BW 4Hz <u>4an</u>
	-10 20 30 <mark></mark>	*****			landehude	Maria Maria I. J	Natal Statist		
	Center 2.685 GHz					Sp	an 25 MHz		
	#Res BW 110 kHz		#VE	3W 1.1 MHz		Swe	eep 20 ms	RBW Contro	ol,
	Total Carrier Power 36.3	60 dBm/ 9 5	0 MHz	ACP-IBV	v .	RRC F	ilter : Off	[Gaussian, -3 dl	3]
	Carrier Power		Offset Freq	Integ BW	dBc dBm	dBc	upper dBm		
	1 36.36 dBm / 9.500 N	Hz	6.500 MHz 7.500 MHz 8.500 MHz	1.000 MHz 1.000 MHz 1.000 MHz	-51.51 -15.16 -52.73 -16.38 -54.59 -18.23	6 -52.04 8 -53.48 8 -54.11	-15.69 -17.12 -17.75		
			9.500 MHz 10.50 MHz	1.000 MHz · 1.000 MHz ·	-55.57 -19.22 -56.65 -20.29	2 -55.24) -56.65	-18.88		
			11.50 MHz	1.000 MHz	-57.57 -21.2	-59.10	-22.74		
	MSG				STAT	US			

🎘 Agliant Spectrum Analyzer - Swept SA		🗖 🔀 🎘 Agilent Spectrum Analyzer - Swept SA		
Marker 1 2.679123000000 GHz AC Selice.urt Aug Type: Pwr(RMS) Gate: L0 Input: RL PR0; Ear Trig: Free Run Avg Type: Pwr(RMS)	07:38:46 PM Apr 21, 2010 Heral 2 3 4 7 1 TYPE A	Ch Marker 1 2.690003000000 GHz Gate: LO Imput RF PN0: Fair	AC SENSE:INT ALIGNAUTO Avg Type: Pwr(RMS) Trig: Free Run Avg Hold: 100/100	07:37:10 PM Apr 21, 2010 H2VQL 1 2 3 4 5 1 TYPE A
It-Gaind now #Atten: 14 dB Ext Gain: 38.80 dB Mkr1 2. 10 dB/div Ref 6.00 dBm	.679 123 GHz -19.149 dBm	Peak 10 dB/dlv Ref 6.00 dBm	#Atten:14 dB Ext Gain:-33.60 dB Mkr1 2	.690 003 GHz -18.482 dBm
.im	Ne	Right .4m		Next Right
	un and a state of the state of	t Left 2240 ที่ไม่ผู้หม่งในให้หม่งไม่เห็นไม่สุดทา	dh/4karntrepperfatraktionallerntechnisk	Way FU W W W W
340 	Mark	Delta		Marker Delta
etu sun	N	r→CF sun		Mkr→CF
340	Mkr-	efLvi -///		Mkr→RefLvl
Start 2.5790000 GHz Stop #Res BW 110 kHz #VBW Sweep 20.	2.6800000 GHz .0 ms (1001 pts)	More 1 of 2 Start 2.6900000 GHz #Res BW 110 kHz #VB	Stoj N Sweep 20	More p 2.6910000 GHz 1 of 2 0.0 ms (1001 pts)
MSG STATUS		MSG	STATUS	