

Test Report No.8212308340 Rev.1

For Alvarion (formerly Breezecom & Floware) Ltd.

Equipment Under Test: BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

From The Standards Institution Of Israel Industry Division Telematics Laboratory EMC Section

.....

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Page 1 of 73 Pages

Order placed by:	Alvarion (formerly Breezecom & Floware) Ltd.
Address:	P.O. Box 13139 Tel Aviv 61131 Israel
Sample for test selected by:	The orderer
The date of test:	09/04/2002.

Description of Equipment Under Test (EUT):

BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system of the BreezeAccess V family Alvarion (formerly Breezecom & Floware) Ltd.

Reference Documents:

Manufactured by:

CFR 47 FCC:	"Rules and Regulations";
	Part 15. "Radio frequency devices";
	Subpart C: "Intentional radiators"

Test Results: The EUT was found to be in compliance with the requirements of FCC Rules Part 15 Subpart C Sec.15.205, 15.207,15.209, 15.247 (c).

This Test Report contains 73 pages	This Test Report applies only to the specimen tested and may not
and may be used only in full.	be applied to other specimens of the same product.

Test Report No.: 8212308340 Rev.1	Page 2 of 73 Pages
Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system	

Table of Contents

1. General	3
1.1 BreezeACCESS 5.7GHz GFSK system description:1.2 Scope:	3 7
2. Test specification, Methods and Procedures	8
3. Measurements, examinations and derived results	8
 3.1 Location of the Test Site: 3.2 Test condition: 3.3 Conducted emission test: 3.4 Radiated emission test: 3.5 Restricted bands: 3.6 Spurious Emission, Antenna conducted: 	8 8 9 15 19 35
4. Compliance with specification	59
5. Appendix 1: Test equipment used	60
6. Appendix 2: Antenna Factor and Cable Loss	61
7. Appendix 3: Test configuration illustration	63

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Page 3 of 73 Pages

1 General

1.1 BreezeACCESS 5.7GHz GFSK system description:

Description of Equipment Under Test (EUT):

BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system Alvarion (formerly Breezecom & Floware) Ltd.

Manufactured by:

The BreezeAccess 5.7GHz (BreezeAccess V) GFSK frequency hopping spread spectrum (FHSS) system is a modification of the BreeAccess 2.4GHz GFSK (FCC ID: LKT-IF-24) frequency hopping spread spectrum (FHSS) transceiver used for WLANs and similar applications. This system is designed to support the 5725-5850MHz band and is a two box system containing an outdoor unit and an indoor unit. The indoor unit is the same unit for all BreezeAccess products. In order to change the system frequency band some modifications are done in the radio section of the outdoor unit.

The modification is the high frequency radio part changed to support the 5.7GHz band instead of the 2.4GHz band. The changes include the LNA, front-end filter and mixer in the receive part of the system. Mixer, pre-amplifier, power amplifier and filters in the transmit part of the system. The TX/RX switch was changed to a switch that can support the band. The PLL was upgraded by adding a frequency doubler to support the 5.7GHz band the PLL component was not changed. All other parts of the system: modem, CPU, IF section, power supply, internal clocks and control were not changed and are similar to the 2.4GHz system.

The 5.7GHz band operates in the same frequency regime as the 2.4GHz system. There was no change in the modem software or hardware. The RF PLL setting to 5.7GHz band instead of the 2.4GHz band does the frequency shift.

The modulation is done in the indoor unit that is common to all BreezeAccess products and therefore all modulation characteristics are kept and are identical to the 2.4GHz band.

The tests done on the 5.7GHz system cover all the radio changes and include antenna port test, harmonic radiation test, restricted band test and output power test.

All other characteristic and description are identical to the LKT-IF-24 and can be taken from there.

The block diagram of IF 5.7 GHz outdoor unit RF section is shown in Figure 1. Items marked in red are replaced from the original 2.4 GHz system for the 5.7GHz system.

The block diagram of IF 5.7 GHz indoor unit is shown in Figure 2.

The EUT was tested with two antennas:

- 1. Sector antenna: Manufacture: European antenna Model No: SA17-55V/450 Gain: 17dBi
 - Integrated antenna: Manufacture: MARS antenna & RF systems Model: ANT.MA575820V Gain: 20 dBi

The EUTs internal view is shown in Figure 3.

Page 4 of 73 Pages

IF 5.7GHz OUTDOOR UNIT RF SECTION Block Diagram

Items marked in RED are replaced from the original 2.4GHz system for the 5.7GHz system

Figure 1

IF 5.7GHz INDOOR UNIT - Block Diagram

Figure 2

Page 6 of 73 Pages

Figure 3 EUTs internal view.

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Page 7 of 73 Pages

1.2 Scope:

This test report contains results of the tests, performed on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system according to the following requirements of CFR 47 FCC Part 15 Subpart C:

- 1. Conducted emission measurements per Sec. 15.207;
- 2. Spurious emission measurements up to 7 th harmonic for low, middle and high channels per C Sec.15.209;
- 3. Radiated emission measurements in two restricted bands 5.35-5.46 GHz and 10.6-12.7 GHz per Sec.15.205, 15.35.
- 4. Spurious emission. Antenna conducted per Sec.15.247 (c).

Only the tests related to performed changes were made.

.....

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Page 8 of 73 Pages

2 Test specification, Methods and Procedures

Test Specification:

CFR 47 FCC: "Rules and Regulations";
 Part 15. "Radio frequency devices";
 Subpart C: "Intentional radiators".

Methods and Procedures:

 ANSI C63/4/1992: "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz".

3 Measurements, examinations and derived results

3.1 Location of the Test Site:

EMC laboratory of the Standards Institution of Israel in Tel-Aviv.

3.2 Test condition:

Temperature:22 °CHumidity:60 %

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Page 9 of 73 Pages

3.3 Conducted emission test:

3.3.1 <u>Requirements:</u>

EUTs conducted emission within the band 450 kHz to 30 MHz shall not exceed value required in section 15.207.

3.3.2 Test configuration:

The measurements were performed on the 110 VAC mains input of the EUT power adapter. The EUT was placed on a non-metallic table in a shielded chamber at a height of 80 cm from the floor of the shielded chamber and 40 cm from the wall of the shielded chamber.

3.3.3 <u>Test procedure:</u>

The EUT was operated to transmitting through the customer software. First, initial scans were performed. Final measurements were performed at the frequencies where emission exceeded the tolerance limit.

Test equipment (EMI receiver) setup was as follow:

In	itial	scan:

Detector type	Peak
Mode	Max hold
Bandwidth	9 kHz
Step size	Continuous sweep
Sweep time	>100 msec
<u>Measurements</u>	
Detector type	Quasi-peak, Avg (CISPR)
Bandwidth	9 kHz
Measurement time	200 seconds/MHz
Observation	>15 seconds

3.3.4 <u>Test results:</u>

The conducted emissions from the EUT were found below specified limit. Test results are shown in Table 1 and Plots #1 - #4.

Test Report No.: 8212308340 Rev.1 i Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Page 10 of 73 Pages

Table 1. Conducted emission test results on 110 VAC input of the EUT power adapter

Frequency (MHz)	Tested line	Detector type	Emissions (dBμV)	Limit (dBµV)	Margin (dB)	Results
		Peak	37.8	-	-	
1.726	Phase	QP	36.0	48	12.0	Complies
		AVG	33.2	-	-	
		Peak	34.9	-	-	
3.092	Phase	QP	32.2	48	15.8	Complies
		AVG	28.1	-	-	
		Peak	35.1	-	-	
3.629	Phase	QP	33.5	48	14.5	Complies
		AVG	30.1	-	-	
		Peak	34.2	-	-	
4.698	Phase	QP	31.6	48	16.4	Complies
		AVG	30.2	-	-	
		Peak	34.4	-	-	
6.951	Phase	QP	31.9	48	16.1	Complies
		AVG	28.2	-	-	
		Peak	32.4	-	-	
25.9	Phase	QP	28.9	48	19.1	Complies
		AVG	24.5	-	-	
		Peak	36.2	-	-	
0.537	Neutral	QP	34.3	48	13.7	Complies
		AVG	30.6	-	-	
		Peak	33.5	-	-	
1.739	Neutral	QP	29.7	48	18.3	Complies
		AVG	25.6	-	-	
		Peak	28.3	-	-	
2.695	Neutral	QP	23.6	48	24.4	Complies
		AVG	19	-	-	
		Peak	33.7	-	-	
4.665	Neutral	QP	31.4	48	16.6	Complies
		AVG	27.9	-	-	
		Peak	33.5	-	-	
7.088	Neutral	QP	31.4	48	16.6	Complies
		AVG	26.9	-	-	
		Peak	32.3	-	-	
27.48	Neutral	QP	28.7	48	19.3	Complies
		AVG	23.7	-	-	

..........

Page 11 of 73 Pages

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Plot 1. Conducted emissions measurement result Reference standard: FCC Part 15 Subpart C sec.15.207 Frequency range: 450 kHz-5 MHz line: phase

Page 12 of 73 Pages

Plot 2. Conducted emissions measurement result Reference standard: FCC Part 15 Subpart C sec.15.207 Frequency range: 5-30 MHz line: phase

Page 13 of 73 Pages

Plot 3. Conducted emissions measurement result Reference standard: FCC Part 15 Subpart C sec.15.207 Frequency range: 450 kHz-5 MHz line: neutral

Page 14 of 73 Pages

..........

12:19:16 Apr 9, 2002 GFSK 5,7 GHZ NEUTRAL Mkr1 7.09 MHz Ref 58 dBµV Atten 5 dB Ext PG -10 dB 26.64 dBµV Peak Log 10 dB/ Mr Mar AWM NN month V1 S2 Stop 30 MHz Start 5 MHz #Res BW 9 kHz VBW 30 kHz Sweep 671 ms Peak Ampl Qp Ampl Avg Ampl QP & LL1 QP & LL2 Signal (6) Freq dBµV dBµV dBµV dB dB 537.9 kHz 36.20 34.30 30.65 1 2 1.739 MHz 33.49 29.74 25.62 3 28.31 23.55 2.695 MHz 17.97 4.665 MHz 33.71 31.42 27.90 4 5 7.088 MHz 33.52 31.37 26.91 27.48 MHz 6 32.32 28.69 23.66

<u>Plot 4</u>

<u>Conducted emissions measurement result</u> Reference standard: FCC Part 15 Subpart C sec.15.207 Frequency range: 5-30 MHz line: neutral

Test Report No.: 8212308340 Rev.1

Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Page 15 of 73 Pages

3.4 Radiated emission test:

3.4.1 <u>Requirements:</u>

EUTs radiated emission shall not exceed value required in section 15.209.

3.4.2 <u>Test procedure:</u>

The EUT was tested with two different antennas - sector and integrated.

The measurements were performed in the anechoic chamber. The EUT was arranged on a non-metallic table 0.8 m placed on the turntable. Measuring antennas used: Up to 22 GHz - Double Ridge **EMCO** model 3115 above 22 GHz - Alpha TRG model A361

Antenna height = 1 m.

Polarization: Vertical/Horizontal

Measurement distance = 1m.

The frequency range was investigated up to 40516 MHz.

The measurements were performed in vertical and horizontal polarization, the maximum reading recorded.

Measuring detector function and bandwidths:

Detector type	Peak
Resolution bandwidth	1MHz
Video bandwidth	1 MHz
Detector type	Average
Resolution bandwidth	1MHz
Video bandwidth	3 kHz*

3.4.3 Radiated emission test results and calculation ratio:

The test results with sector antenna are shown in table #1 to #3. The test results with integrated antenna are shown in table #4 to #6.

Note 1:

Up to 22000 MHz the emission level was calculated as:

E Reading (dB μ V) + measuring cable loss (dB) + measuring antenna factor (dB/m) + Distance correction factor

For measuring cable loss and measuring antenna factor refer to Appendix 2. Distance correction factor = -9.5 dB (correction to extrapolation reading from 1 m to 3m specified distance)

Above 22000 MHz the emission level was calculated as

E Reading (dB μ V) + measuring antenna factor (dB/m) + Distance correction factor. The measuring antenna was directly connected to the spectrum analyzer.

.....

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Page 16 of 73 Pages

Table 1. Spurious emissions test results

Antenna: s Frequency: l

sector Low operating frequency 5727 MHz

Frequency (GHz)	Emission Level (dBμV/m)		Lir @ (dBµ	nit 3m .V/m)	Mar (d	rgin B)	Results				
	Average	Peak	Average	Peak	Average	Peak					
11.454	47	47	54	54	- 54	54	47		7.0	27.0	Complies
17.181	37	37						17.0	37.0	Complies	
22.908	40	40					74	14.0	34.0	Complies	
28.635	27.5	27.5		74	26.5	46.5	Complies				
34.362	34.3	34.3			19.7	39.7	Complies				
40.089	43.2	43.2			10.8	30.8	Complies				

Table 2. Spurious emissions test results

<u>Antenna:</u> <u>Frequency</u>: sector Middle operating frequency 5788 MHz

Frequency (GHz)	Emission Level (dBμV/m)		Lir @ (dBµ	nit 3m V/m)	Mar (d	·gin B)	Results							
	Average	Peak	Average	Peak	Average	Peak								
11.576	51	51										3.0	23.0	Complies
17.364	44	44			10.0	30.0	Complies							
23.152	47	47	E A	74	7.0	27.0	Complies							
28.94	29.8	29.8	54	74	24.2	44.2	Complies							
34.720	39.5	39.5			14.5	34.5	Complies							
40.516	44.2	44.2			9.8	29.8	Complies							

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Page 17 of 73 Pages

Table 3. Spurious emissions test results

<u>Antenna:</u> sector <u>Frequency</u>: High operating frequency 5848 MHz

Frequency (GHz)	Emission Level (dBμV/m)		Lir @: (dBµ	nit 3m V/m)	Mar (d	rgin B)	Results			
	Average	Peak	Average	Peak	Average	Peak				
11.696	51.3	51.2	54	54				2.7	22.8	Complies
17.544	53	53						1.0	21.0	Complies
23.392	50.1	50.1			74	3.9	23.9	Complies		
29.24	31.7	31.7		74	22.3	42.3	Complies			
35.088	38.1	38.1			15.9	35.9	Complies			
40.936	41.9	41.9			12.1	32.1	Complies			

Table 4. Spurious emissions test results

Antenna:	Integrated
Frequency:	Low operating frequency 5727 MHz

Frequency (GHz)	Emission Level (dBμV/m)		hcy Emission Limit Level @ 3m) (dBμV/m) (dBμV/m)		Mar (d	Results													
	Average	Peak	Average	Peak	Average	Peak													
11.454	52.3	52.3	54														1.7	21.7	Complies
17.181	53	53			1.0	21.0	Complies												
22.908	51	51		54	54	۶ <i>۸</i>	۶ <i>۸</i>	54	E A	۶ <i>۸</i>	۶A	E A	۶A	54	74	3.0	23.0	Complies	
28.635	36.3	36.3			74	17.7	37.7	Complies											
34.362	42.9	42.9			11.1	31.1	Complies												
40.089	44.3	44.3			9.7	29.7	Complies												

.....

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Table 5. Spurious emissions test results

<u>Antenna:</u> <u>Frequency</u>:

Integrated Middle operating frequency 5788 MHz

Page 18 of 73 Pages

Frequency (GHz)	y Emission Limit Level @ 3m (dBµV/m) (dBµV/m)				Mar (d	Results												
	Average	Peak	Average	Peak	Average	Peak												
11.576	51.8	51.8	54												2.2	22.2	Complies	
17.364	53	53			1.0	21.0	Complies											
23.152	52.1	52.1		54	54	54	54	54	54	54	54	54	54	54	74	1.9	21.9	Complies
28.940	41.3	41.3				12.7	32.7	Complies										
34.720	45	45				9.0	29.0	Complies										
40.516	44.7	44.7			9.3	29.3	Complies											

Table 6. Spurious emissions test results

<u>Antenna:</u> <u>Frequency</u>: Integrated High operating frequency 5848 MHz

Frequency (GHz)	Emission Level (dBμV/m)		Lir @ (dBµ	nit 3m .V/m)	Maı (d	rgin B)	Results								
	Average	Peak	Average	Peak	Average	Peak]								
11.696	52.1	52.1			1.9	21.9	Complies								
17.544	53	53	54		1.0	21.0	Complies								
23.392	52.6	52.6		54	54	54	54	54	54	74	1.4	21.4	Complies		
29.240	42	42				74	12.0	32	Complies						
35.088	38.8	38.8													
40.936	42.3	42.3			11.7	31.7	Complies								

hopping spread spectrum (FHSS) system

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency

Page 19 of 73 Pages

3.5 Restricted bands:

3.5.1 <u>Requirements:</u>

Radiated emission in restricted bands should meet the requirements of section 15.205.

3.5.2 <u>Test procedure:</u>

The EUT was tested with two different antennas - sector and integrated. The measurements were performed in the anechoic chamber. The EUT was arranged on a non-metallic table 0.8 m placed on the turntable.

Measuring antennas used: Double Ridge EMCO model 3115

Antenna height = 1 m.

Measurement distance = 1m.

Measuring detector function and bandwidths:

Detector type	Peak
Resolution bandwidth	1MHz
Video bandwidth	1 MHz
Detector type	Average
Resolution bandwidth	1MHz
Video bandwidth	3 kHz*

3.5.3 <u>Test results and calculation ratio:</u>

EUT with sector antenna

The spurious emissions were found in two restricted bands: 5.35-5.46 GHz and 10.6-12.7 GHz.

The test results are shown in Plots #5 to # 16.

EUT with integrated antenna

The spurious emissions were found in three restricted bands: 5.35-5.46 GHz, 10.6-12.7 GHz and 22.01 - 23.12 GHz. The test results are shown in Plots #17 to #34.

Note 2:

The measurements in restricted bands were performed at 1 m distance instead of 3 m, thus the specified limit line in the plots 54 dB μ V/m (for Average detector) and 74 dB μ V/m (for Peak detector) was raised to 10 dB.

Page 20 of 73 Pages

Plot # 5 Radiated emissions measured in restricted band 5.35 –5.46 GHz Antenna: Sector operating frequency: Low

Page 21 of 73 Pages

Plot # 7 Radiated emissions measured in restricted band 5.35 –5.46 GHz Antenna: Sector operating frequency: Middle Detector used: Average

Plot # 8 Radiated emissions measured in restricted band 5.35 –5.46 GHz Antenna: Sector operating frequency: Middle Detector used: Peak

(Ip)	12:52:3	37 Apr	18,20	02							
GFSK 5	GFSK 5_7GHz SEC ANT MID Mkr1 5.4050 GHz										
Ref 94	<u>.99 dE</u>	3µV∕m	#Atten	0 dB				61	L.29 dE	3 µ V∕m	
Геак											
10	├ ──										
dB/											
1											
1			1 An	- de a ca		Martin .	Man and a second second	an nahar	when the second	and a com	
1	10 B-4 (149-94)								*** * 14**		
1											
1	L										
1											
M1 52											
S3 FC											
A AA											
1	<u> </u>										
1											
1											
Btart 5	3.35 GK 84 1 MH	HZ 		#U	вы 1 м	Ц->		2	top 5.4 Swaar	16 GHZ	
#Res B	W 1 MH	lz		#V	BW 1 M	Hz		Ň	Sweep	5 ms	

42 Chaim Levanon St. Tel-Aviv 69977 Tel: 972-3-646-7800 Fax: 972-3-646-7779 www.sii.org.il

Page 22 of 73 Pages

Plot # 9 Radiated emissions measured in restricted band 5.35 –5.46 GHz Antenna: Sector operating frequency: High Detector used: Average

Plot # 10 Radiated emissions measured in restricted band 5.35 –5.46 GHz Antenna: Sector operating frequency: High Detector used: Peak

Page 23 of 73 Pages

Plot # 11 Radiated emissions measured in restricted band 10.6 –12.7GHz Antenna: Sector operating frequency: Low Detector used: Average

Plot # 12 Radiated emissions measured in restricted band 10.6 –12.7GHz Antenna: Sector operating frequency: Low Detector used: Peak

Plot # 13							
Radiated emissions measured in restricted band 10.6 -12.7GHz							
Antenna:	Sector						
operating frequency:	Middle						
Detector used	Average						

Page 25 of 73 Pages

Plot # 15 Radiated emissions measured in restricted band 10.6 –12.7GHz Antenna: Sector operating frequency: High Detector used: Average

 Plot # 16

 Radiated emissions measured in restricted band 10.6 –12.7GHz

 Antenna:
 Sector

 operating frequency:
 High

 Detector used:
 Peak

GFSK 5	13:02:29 5_7GHz S	9 Apr 18 EC ANT H	, 2002 IGH						Mkr1 11.	708 GHz
Ref 94	Ref 94.99 dBµV/m #Atten 0 dB									
Peak Log										
dB/						1				
	m	m	m	method	mann	warman w	Same .	m	- uman	
M1 S2										
S3 FC A AA										
Start 1 <u>#Res B</u>	L0.6 GHz 3W 1 MHz				∗VBW 1 M	Hz			Stop 1 Sweep	2.7 GHz 5.25 ms

Page 26 of 73 Pages

Plot # 18 Radiated emissions measured in restricted band 5.35 –5.46 GHz							
Antenna:	INTEGRATED						
operating frequency:	Low						
Detector used:	Peak						

Page 27 of 73 Pages

Plot # 20 Radiated emissions measured in restricted band 5.35 –5.46 GHz Antenna: INTEGRATED operating frequency: MID Detector used: Peak

Page 28 of 73 Pages

	Plot # 22 Radiated emissions measured in restricted band 5.35 –5.46 GHz											
		ED										
			opera	ating frec	uency:	H	ligh					
			Dete	ctor used	i :	Р	eak					
(IP)	16:00:04	4 Apr 18	,2002									
GFSK 5	5_7GHz I	NT ANT H	I		_				Mkr1 5.4	1042 GHz		
Ref 90 Poak	.99 dBµ'	V/m	А	tten 5 dl	B				67.38	dBµV/m		
Log												
10												
dB/					1							
	mark	Ann	\sim	mm	mm	whow	manner	mm	mon	mm		
M1 S2							_					
							_					
Start 5	5.35 GHz								Stop 5	.46_GHz		
Kes Bh	I I MHZ			1	#VRM I M	HZ			SWe	ep 5 ms		

42 Chaim Levanon St. Tel-Aviv 69977 Tel: 972-3-646-7800 Fax: 972-3-646-7779 www.sii.org.il

-----Page 29 of 73 Pages

Plot # 23 Radiated emissions measured in restricted band 10.6 -12.7 GHz **INTEGRATED** Antenna: operating frequency: Low Detector used: Average

Plot # 24 Radiated emissions measured in restricted band 10.6 -12.7 GHz Antenna: INTEGRATED operating frequency: Low

Detector used:

Peak

Page 30 of 73 Pages

Plot # 25 Radiated emissions measured in restricted band 10.6 –12.7 GHz Antenna: INTEGRATED operating frequency: MID Detector used: Average

Plot # 26 Radiated emissions measured in restricted band 10.6 –12.7 GHz Antenna: INTEGRATED operating frequency: MID Detector used: Peak

62 16:04:40 Apr 18 2002										
GESK 5_7GHz INT ANT MID Mkr1 12.474 GHz										
Paf 90 99 ABuV/m = #Attan 0 dR = 73 Ab dRtv/c										
Ref 90.33 dDPV/m #Htten 0 dD /3.4	40 aD P V/m									
10 dB/										
www.moneywarehalester and a second a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									
Marker										
12.474000000 GHz										
M1 S2										
S3 EC										
Start 10.6 GHz										
Start 10.00 GHZ Start	an 5 25 ms									

42 Chaim Levanon St. Tel-Aviv 69977 Tel: 972-3-646-7800 Fax: 972-3-646-7779 www.sii.org.il

Page 31 of 73 Pages

Plot # 27 Radiated emissions measured in restricted band 10.6 –12.7 GHz Antenna: INTEGRATED operating frequency: High Detector used: Average

Plot # 28 Radiated emissions measured in restricted band 10.6 –12.7 GHz Antenna: INTEGRATED operating frequency: High Detector used: Peak

42 Chaim Levanon St. Tel-Aviv 69977 Tel: 972-3-646-7800 Fax: 972-3-646-7779 www.sii.org.il

Page 32 of 73 Pages

Plot # 29 Radiated emissions measured in restricted band 22.01 –23.12 GHz Antenna: INTEGRATED

Low

Average

Operating frequency: Detector used:

16:10:53 Apr 18, 2002 Ð GFSK 5_7GHz INT ANT LOW Ref 90<u>.99 dB**µ**V/m #Atten 0 dB</u> r1 23.059 GHz
60.83 dB**µ**V∕m Mkr1 Peak Log 10 dB/ 1 DI 64.0 dBµV/ W1 S2 S3 FC A AA Stop 23.12 GHz Sweep 46.25 s Start 22.01 GHz #Res BW 30 kHz #VBW 1 kHz

> Plot # 30 Radiated emissions measured in restricted band 22.01 –23.12 GHz Antenna: INTEGRATED Operating frequency: Low Detector used: Peak

(bp)	<u>က</u> ်ခု 16:08:54 Apr 18, 2002										
GFSK 5	5_7GHz IM	NT ANT LI	OM						Mkr1 23.	059 GHz	
Ref 90	≷ef 90.99 dB µ V∕m #Atten 0 dB								80.88	dB µ V/m_	
Peak Log 10 dB/	manah	www	apmanage	Marana a	V~V~~~	proversionally	w~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ᡐᢇᡐᢦᠬᢦ	maghar		
V1 S2 S3 EC											
Ă AĂ											
 Start 2 <u>Res B</u> k	Start 22.01 GHz Stop 23.12 GHz Res BW 1 MHz #VBW 1 MHz Sweep 11.1 ms									.12 GHz 11.1 ms	

Page 33 of 73 Pages

Plot # 31 Radiated emissions measured in restricted band 22.01 –23.12 GHz Antenna: INTEGRATED Operating frequency: MID Detector used: Average

Plot # 32 Radiated emissions measured in restricted band 22.01 –23.12 GHz Antenna: INTEGRATED Operating frequency: MID Detector used: Peak

(dp)	16:15:0	07 Apr	18,20	02						
GFSK 5_7GHz INT ANT MID Ref 90.99 dBµV/m #Atten 0 dB								Mkr1 22.865 GHz 80.71 dB µ V/m		
Peak Log								1		
10 dB/	- and a second	m	www	e e e e e e e e e e e e e e e e e e e	and the second		Jondino	- The second	and the second sec	
V1 S2 S3 FC										
A AA										
Start 22.01 GHz #Res BW 1 MHz				₩VBW 1 MHz				Stop 23.12 GHz Sweep 11.1 ms		

Page 34 of 73 Pages

Plot # 33 Radiated emissions measured in restricted band 22.01 –23.12 GHz Antenna: INTEGRATED Operating frequency: High Detector used: Average

Plot # 34 Radiated emissions measured in restricted band 22.01 –23.12 GHz Antenna: INTEGRATED operating frequency: High Detector used: Peak

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Page 35 of 73 Pages

3.6 Spurious Emission, Antenna conducted:

3.6.1 <u>Requirements:</u>

RF conducted spurious emissions shall not exceed value required in sections 15.247 (c).

3.6.2 <u>Test procedure:</u>

The EUTs antenna connector was connected to the spectrum analyzer input via 20 dB attenuator.

The measurements were performed from 30 MHz to 40 GHz for low, middle and high channels were the unit was set to packetized transmission.

3.6.3 <u>Test results:</u>

Test results are shown in Plots #35 to # 99.

 Test Report No.: 8212308340 Rev.1
 Page

 Title: Test on
 BreezeAccess 5.7GHz GFSK frequency

 hopping spread spectrum (FHSS) system

Page 36 of 73 Pages

Plot # 35 Antenna conducted, Output power, Low operating frequency

Test Report No.: 8212308340 Rev.1	Page 37 of 73 Pages
Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system	

Plot # 36 Antenna conducted, Output power, MID operating frequency

(bp)	17:07:32	2 Apr 18	, 2002						
GFSK 5	5_7GHz C	ond Mid					М	kr1 5.78	800 GHz
Ref 32	dBm		A	tten 5 dE	3		 	25	.37 dBm
Peak					1				
Log									
10 dB/									
0ffst 41 dB									
							<		
W1 S2							m		
S3 FC AA	mm	NWAN	Mansh					-mm-map	www
Center	5.788 G	iHz						Spar	20 MHz
#Res B	W 1 MHz				VBW 1 MH	łz		Śwe	ep 5 ms

Test Report N	o.: 8212308340 Rev.1	Page 38 of 73 Pages
Title: Test on	BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system	

Plot # 37 Antenna conducted, Output power, HIGH operating frequency

(bp)	17:08:20) Apr <u>1</u> 8	, 2002						
GFSK 5	5_7GHz C	ond high					М	kr1 5.84	4800 GHz
Ref 32	dBm		A	tten 5 df	3			25	.71 dBm
Peak					1				
Log							 		
10 dB/									
Uffst 41 dB					/				
QD.				/					
M1 S2									
S3 FC AA			0400000						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Center	5.848 G	iHz						Spar	20 MHz
#Res B	3W 1 MHz				VBW 1 MH	łz		Swe	ep 5 ms

Page 39 of 73 Pages

Plot # 38 High operating frequency Time domain, single channel

Page 40 of 73 Pages

Plot # 86 20 dB channel bandwidth, FSK Low

Page 41 of 73 Pages

Plot # 87 20 dB channel bandwidth, FSK Middle

Page 42 of 73 Pages

Plot # 93 20 dB channel bandwidth, FSK High

Page 43 of 73 Pages

Plot # 85 20 dB channel bandwidth, 4FSK Low

Plot # 88 20 dB channel bandwidth, 4FSK Middle

Plot # 92 20 dB channel bandwidth, 4FSK High

Page 46 of 73 Pages

Plot # 84 20 dB channel bandwidth, 8FSK Low

Page 47 of 73 Pages

Plot # 90 20 dB channel bandwidth, 8FSK Middle

Page 48 of 73 Pages

Plot # 91 20 dB channel bandwidth, 8FSK High

Page 49 of 73 Pages

Plot # 94 Time domain, FSK Beacon

Test Report No.: 8212308340 Rev.1 Page 50 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Page 50 of 73 Pages

20:24:34 May 23, 2002 Agilent GFSK 5.7GHZ HOP CH OCCUP 15 s Mkr1 Ref 41 dBm Atten 30 dB -20.07 dBm Peak Log 10 dB/ Offst 21 dB DL 0.8 dBm W1 S2 S3 FS AA Center 5.788 GHz Span 0 Hz #Res BW 1 MHz VBW 1 MHz #Sweep 30 s (401 pts)

Plot # 96 Channel dwell time plot for 30 second period

Page 51 of 73 Pages

Plot # 98 Time Domain

Page 52 of 73 Pages

Plot # 99 Time Domain

Test Report No.: 8212308340 Rev.1						
BreezeAccess 5.7GHz GFSK frequency						
nopping spread spectrum (FHSS) system						

Page 53 of 73 Pages

Plot # 39 Antenna conducted spurious emissions operating frequency: Low

Frequency range

Low 30 MHz- 26 GHz

42 Chaim Levanon St. Tel-Aviv 69977 Tel: 972-3-646-7800 Fax: 972-3-646-7779 www.sii.org.il

Page 54 of 73 Pages

Plot # 41 Antenna conducted spurious emissions in restricted band 22.01-23.12 operating frequency: Low Detector: Average

Plot # 42 Antenna conducted spurious emissions in restricted band 22.01-23.12 operating frequency: Low Detector: Peak

GFSK 5	17:50:02 5_7GHz C 3_dBm	2 Apr 18 OND LOW	,2002 A	tten 5 df	3				Mkr1 22. –46	.840 GHz 32 dBm
Peak Log 10								\$.		
dB/ Offst 21 dB	many	un anno 1998 anno 19	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Lanne	- free more	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•~~~~~~	mount
DI -41.2 dBm										
M1 S2										
ÂA										
Start 22.01 GHz #Res BW 1 MHz							Stop 23 Sweep	.12 GHz 11.1 ms		

Page 55 of 73 Pages

Plot # 43 Antenna conducted spurious emissions operating frequency: MID Frequency range 30 MHz - 26 GHz

Page 56 of 73 Pages

Plot # 45 Antenna conducted spurious emissions in restricted band 22.01-23.12 operating frequency: MID Detector: Average

Plot # 46 Antenna conducted spurious emissions in restricted band 22.01-23.12 operating frequency: MID Detector: Peak

Page 57 of 73 Pages

Plot # 47 Antenna conducted spurious emissions operating frequency: High Frequency range 30 - 26 GHz

42 Chaim Levanon St. Tel-Aviv 69977 Tel: 972-3-646-7800 Fax: 972-3-646-7779 www.sii.org.il

Page 58 of 73 Pages

Plot # 49 Antenna conducted spurious emissions in restricted band 22.01-23.12 operating frequency: High Detector Average

the	17.46.05	5 Apr 18	2002							
CESK R										
DAF 3	12/082 C			++~~ 5 d	>			1.1	KII 22.1 59	77 JBm
Peak				tten 5 ut	, 				-55	
Loa										
10										
dBZ										
Offst										
21										
dB		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
DI										
-41.2										
dBm										
W1 S2										
S3 FC										
AA										
Start 2	22.01 GH	z							Stop 23	.01 GHz
<u>#Res BW 1 MHz </u>					Sweep 6	69.2 ms				

Plot # 50 Antenna conducted spurious emissions in restricted band 22.01-23.12 operating frequency: High Detector Peak

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Page 59 of 73 Pages

4 Compliance with specification

Test	FCC Part 15 Subpart C Sec #	Test result
Conducted emission	Sec.15.207	Complies
Spurious radiated emission	Sec.15.209	Complies
Radiated emissions in restricted bands	Sec.15.205	Complies
Spurious emissions antenna conducted	Sec.15.247 (c)	Complies

Telematics Laboratory 29 May, 2002

Name: Eng. Yuri Rozenberg Position: Head of EMC Branch Name Maxim Reizin Position: Testing Technician

.....

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

5 Appendix 1: Test equipment used

All measurements equipment is on SII calibration schedule with a recalibration interval not exceeding once a year.

Instrument	Manufac- turer	Model	Serial No.	Last calibration date	Next calibration date
Spectrum analyzer 10 KHz-26.5 GHz	HP	E7405a	SII 4944	04/02	04/03
Spectrum analyzer 9 KHz-50 GHz	HP	8565E	3517A00347	07/01	07/02
Antenna Double Ridge 1-18 GHz	EMCO	3115	SII4873	03/02	03/03
Antenna Standard Gain Horn 26.5-40 GHz	WILTRON	Alpha TRG A361	861A/590	01/02	01/03
LISN 9 kHz – 30 MHz	FCC	LISN- 50/250-32-4- 16	SII 5023	05/02	05/03
Transient limiter 0.009-200 MHz	HP	11947A	31074A3105	05/02	05/03
Attenuator 20 dB	HP	8491B	3929M5039 4	05/02	05/03

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system Page 61 of 73 Pages

6 Appendix 2: Antenna Factor and Cable Loss

Cable Loss Type: Sucoflex 104PE; Ser.No.21324/4PE; 4 m length

Point	Frequency (GHz)	Cable Loss (dB)
0	0.0-1.8	1.67
1	1.8 – 3.6	2.39
2	3.6 - 5.4	3.04
3	5.4-7.2	3.58
4	7.2-9.0	4.06
5	9.0-10.8	4.49
6	10.8-12.6	4.91
7	12.6-14.4	5.31
8	14.4-16.2	5.66
9	16.2-18.00	6.01

Antenna Factor Double Ridged Guide Antenna mfr EMCO model 3115

Point	Frequency (MHz)	Antenna Factor (dB/m)
1	2000	27.4
2	2500	28.9
3	3000	31.0
4	4000	33.1
5	4500	32.5
6	5000	32.4
7	6000	53.7
8	6500	35.6
9	7000	36.4
10	7500	36.9
11	8000	37.0
12	8500	38.0
13	9000	38.6
14	9500	38.4
15	10000	38.4
16	10500	38.4
17	11000	38.9
18	11500	39.6
19	12000	39.4
20	12500	39.2
21	13000	40.3
22	13500	41.0
23	14000	41.2
24	14500	41.3
25	15000	40.0
26	15500	38.0
27	16000	38.1
28	16500	40.3
29	17000	42.2
30	17500	44.6
31	18000	46.2

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Page 62 of 73 Pages

Antenna Factor Standard Gain Horn 2600 – 4000 MHz Alpha TRG Model A361

Point	Frequency (MHz)	Antenna Factor (dB/m)
1	26000	35.22
2	27000	35.40
3	28000	35.52
4	29000	35.64
5	30000	35.76
6	31000	35.90
7	32000	36.07
8	33000	36.16
9	34000	36.31
10	35000	36.46
11	36000	36.60
12	37000	36.74
13	38000	36.93
14	39000	37.21
15	40000	37.28

Page 63 of 73 Pages

7 Appendix 3: Test configuration illustration

Photo #1. EUT with integral antenna

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Page 64 of 73 Pages

Photo #2. EUT with integral antenna. Radiated emission test

Page 65 of 73 Pages

Photo #3 EUT with integral antenna. Radiated emission test

Page 66 of 73 Pages

Photo #4 EUT with sector antenna

42 Chaim Levanon St. Tel-Aviv 69977 Tel: 972-3-646-7800 Fax: 972-3-646-7779 www.sii.org.il

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Page 67 of 73 Pages

Photo #5 EUT with sector antenna. Radiated emission test

Page 68 of 73 Pages

Photo #6 EUT with sector antenna. Radiated emission test

Page 69 of 73 Pages

Photo #7 antenna marking label

Page 70 of 73 Pages

Photo #8 EUT with sector antenna. Radiated emissiion test

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Page 71 of 73 Pages

Photo #9 Radiated emission test

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Page 72 of 73 Pages

Photo #10 Spurious conducted antenna test. Measuring equipment

Test Report No.: 8212308340 Rev.1 Title: Test on BreezeAccess 5.7GHz GFSK frequency hopping spread spectrum (FHSS) system

Page 73 of 73 Pages

Photo #11 Spurious conducted antenna test. Measuring equipment