

DFS Portion of FCC CFR47 PART 15 SUBPART E DFS Portion of INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

BreezeMax Extreme 802.16e 5 GHz UNII CPE Radio

MODEL NUMBER: XTRM-SU-OD-1D-4.9-UL-A

FCC ID: LKT-EXTR-CPE-50

IC: 2514A-EXTRCPE50

REPORT NUMBER: 09U12441-2

ISSUE DATE: AUGUST 02, 2011

Prepared for
ALVARION, LTD.
21A HA BARZEL STREET
TEL AVIV
69710, ISRAEL

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS)
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000

FAX: (510) 661-0888

REPORT NO: 09U12441-2 DATE: AUGUST 2, 2011 FCC ID: LKT-EXTR-CPE-50 IC: 2514A-EXTRCPE50

Revision History

Rev.	Issue Date	Revisions	Revised By
	08/02/2011	Initial Issue	M. Heckrotte

TABLE OF CONTENTS

1. ATTES	TATION OF TEST RESULTS	4
2. TEST N	METHODOLOGY	5
3. FACILI	TIES AND ACCREDITATION	5
4. CALIBE	RATION AND UNCERTAINTY	5
4.1. ME	ASURING INSTRUMENT CALIBRATION	5
4.2. ME	ASUREMENT UNCERTAINTY	5
5. DYNAM	IIC FREQUENCY SELECTION	6
5.1. OV	'ERVIEW	6
5.1.1.		
5.1.2.	TEST AND MEASUREMENT SYSTEM	
5.1.3. 5.1.4.	SETUP OF EUT DESCRIPTION OF EUT	
52 RF	SULTS FOR 5 MHz BANDWIDTH	
5.2.1.	TEST CHANNEL	
5.2.2.	PLOTS OF RADAR WAVEFORM AND WLAN TRAFFIC	
5.2.3.	MOVE AND CLOSING TIME	16
5.2.4.	NON-OCCUPANCY	21
5.3. RE	SULTS FOR 10 MHz BANDWIDTH	22
5.3.1.	TEST CHANNEL	22
5.3.2.	PLOTS OF RADAR WAVEFORM AND WLAN TRAFFIC	
5.3.3.	MOVE AND CLOSING TIME	
5.3.4.	NON-OCCUPANCY	29
c cetup	PLIOTOC	20

REPORT NO: 09U12441-2 FCC ID: LKT-EXTR-CPE-50

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: ALVARION, LTD.

21A BARZEL STREET

69710, ISRAEL

EUT DESCRIPTION: BreezeMax Extreme 802.16e 5 GHz UNII CPE Radio

MODEL: XTRM-SU-OD-1D-4.9-UL-A

SERIAL NUMBER: W847002738

DATE TESTED: APRIL 06, 2009

APPLICABLE STANDARDS

STANDARD TEST RESULTS

DATE: AUGUST 2, 2011

IC: 2514A-EXTRCPE50

DFS Portion of CFR 47 Part 15 Subpart E Pass

DFS Portion of INDUSTRY CANADA RSS-210 Issue 8 Annex 9 Pass

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By: Tested By:

MICHAEL HECKROTTE DIRECTOR OF ENGINEERING

MH

UL CCS

DOUGLAS ANDERSON EMC TECHNICIAN UL CCS

Douglas Combuser

REPORT NO: 09U12441-2 FCC ID: LKT-EXTR-CPE-50

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 15, FCC 06-96 and RSS-210 Issue 8.

DATE: AUGUST 2, 2011

IC: 2514A-EXTRCPE50

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Power Line Conducted Emission	+/- 2.3 dB
Radiated Emission	+/- 3.4 dB

Uncertainty figures are valid to a confidence level of 95%.

5. DYNAMIC FREQUENCY SELECTION

5.1. OVERVIEW

5.1.1. LIMITS

INDUSTRY CANADA

IC RSS-210 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

DATE: AUGUST 2, 2011

IC: 2514A-EXTRCPE50

RSS-210 Issue 7 A9.4 (b) (ii) Channel Availability Check Time: ...

Additional requirements for the band 5600-5650 MHz: Until further notice, devices subject to this Section shall not be capable of transmitting in the band 5600-5650 MHz, so that Environment Canada weather radars operating in this band are protected.

RSS-210 Issue 7 A9.4 (b) (iv) **Channel closing time:** the maximum channel closing time is 260 ms.

FCC

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

REPORT NO: 09U12441-2 DATE: AUGUST 2, 2011 FCC ID: LKT-EXTR-CPE-50 IC: 2514A-EXTRCPE50

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode				
	Master	Client (without radar detection)	Client (with radar detection)		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
Uniform Spreading	Yes	Not required	Not required		

Table 2: Applicability of DFS requirements during normal operation

rabio 2. Applicability of Dr o requirements during normal operation							
Requirement	Operational Mode						
	Master	Master Client					
		(without DFS)	(with DFS)				
DFS Detection Threshold	Yes	Not required	Yes				
Channel Closing Transmission Time	Yes	Yes	Yes				
Channel Move Time	Yes	Yes	Yes				

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Montoning	
Maximum Transmit Power	Value
	(see note)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

FAX: (510) 661-0888

REPORT NO: 09U12441-2 DATE: AUGUST 2, 2011 FCC ID: LKT-EXTR-CPE-50 IC: 2514A-EXTRCPE50

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
Channel Closing Transmission Time	200 milliseconds +
	approx. 60 milliseconds
	over remaining 10 second
	period

The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the Burst.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Table 5 - Short Pulse Radar Test Waveforms

i abic o Gi	ioit i dioc itadai	Tool Harolollino			
Radar	Pulse Width	PRI	Pulses	Minimum	Minimum
Туре	(Microseconds)	(Microseconds)		Percentage of	Trials
				Successful	
				Detection	
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (F	Radar Types 1-4)			80%	120

Table 6 - Long Pulse Radar Test Signal

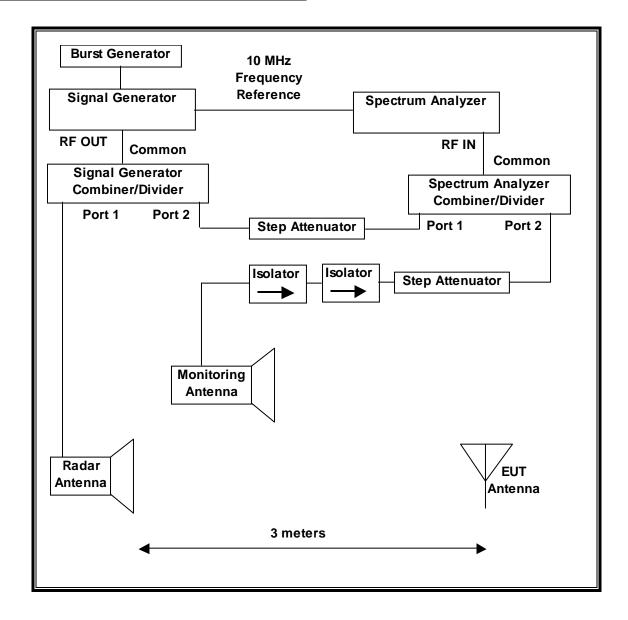

Table 0 - Long Fulse Nadar Test Signal								
Radar	Bursts	Pulses	Pulse	Chirp	PRI	Minimum	Minimum	
Waveform		per	Width	Width	(µsec)	Percentage	Trials	
		Burst	(µsec)	(MHz)		of Successful		
						Detection		
5	8-20	1-3	50-100	5-20	1000-	80%	30	
					2000			

Table 7 – Frequency Hopping Radar Test Signal

		7			ga.		
Radar	Pulse	PRI	Burst	Pulses	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	Length	per	Rate	Percentage of	Trials
	(µsec)		(ms)	Нор	(kHz)	Successful	
						Detection	
6	1	333	300	9	.333	70%	30

5.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

REPORT NO: 09U12441-2 FCC ID: LKT-EXTR-CPE-50

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

DATE: AUGUST 2, 2011

IC: 2514A-EXTRCPE50

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

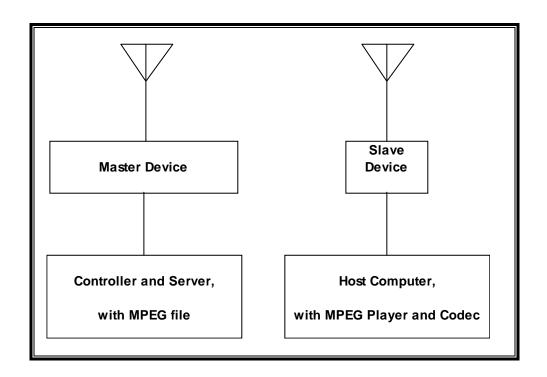
A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from –64 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

Establish a link between the Master and Slave, adjusting the distance between the units as needed to provide a suitable received level at the Master and Slave devices.


TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST								
Description Manufacturer Model Serial Number Cal Due								
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C00986	02/03/10				
Vector signal generator, 20GHz	Agilent / HP	E8267C	C01066	11/16/09				

5.1.3. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP

DATE: AUGUST 2, 2011

IC: 2514A-EXTRCPE50

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

SUPPORT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

DATE: AUGUST 2, 2011 IC: 2514A-EXTRCPE50

PERIPHERAL SUPPORT EQUIPMENT LIST								
Description Manufacturer Model Serial Number FCC ID								
BreezeMax Extreme, 802.16e	Alvarion, Ltd.	XTRM-BS-	02322	LKT-EXTR-50				
5 GHz U-NII Base Station		1DIV-5.4-90						
Radio (Master Device)								
AC/DC Power Supply (Master	Mean Well	SP-200-48	RA88057739	DoC				
EUT)								
P.O.E. Injector (Slave EUT)	Alvarion, Ltd.	0334B5555	A30443139313	DoC				
Notebook PC (Host PC for	Dell	PP11L	CN-0D4571-	DoC				
Master)			48643-51S-0557					
AC Adapter (Master PC)	Dell	ADP-65JB B	CN-OF8834-	DoC				
			48661-5CI-6NO3					
Notebook PC (Slave)	Dell	PP11L	CN-0C4708-	DoC				
			48643-54F-4144					
AC Adapter (Slave PC)	Lite On	PA-1900-02D	CN-09T215-	DoC				
	Technology		71615-4BE-4082					
Airport Express Base Station	Apple	A1084	HS43U6GS0V0	BCGA1084				
(for Host PC)								
10/100 Fast Ethernet Switch	Netgear	FS105	1D1793704A8A	DoC				
AC Adapter (Ethernet Switch)	DVE	DSA-9R-05	3507 HB	DoC				

REPORT NO: 09U12441-2 FCC ID: LKT-EXTR-CPE-50

5.1.4. DESCRIPTION OF EUT

The EUT operates over the 5470-5725 MHz range.

The EUT is a Slave Device without Radar Detection.

The highest power level is 24.18 dBm EIRP at a bandwidth of 5 MHz and 26.9 dBm EIRP at a bandwidth of 10 MHz.

DATE: AUGUST 2, 2011

IC: 2514A-EXTRCPE50

The only antenna assembly utilized with the EUT has a gain of 17 dBi.

Two identical integral antennas are utilized to meet the diversity and MIMO operational requirements.

The EUT uses one transmitter/receiver chain and one receive only chain, each connected to a 17 dBi antenna during the test to perform radiated testing.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

The EUT utilizes the 802.16e architecture. Two nominal channel bandwidths are implemented: 5 MHz and 10 MHz.

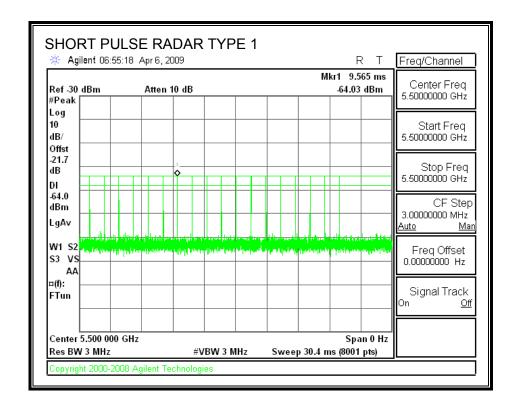
The software installed in the EUT is 1.7.2.5.

OVERVIEW OF MASTER DEVICE WITH RESPECT TO §15.407 (h) REQUIREMENTS

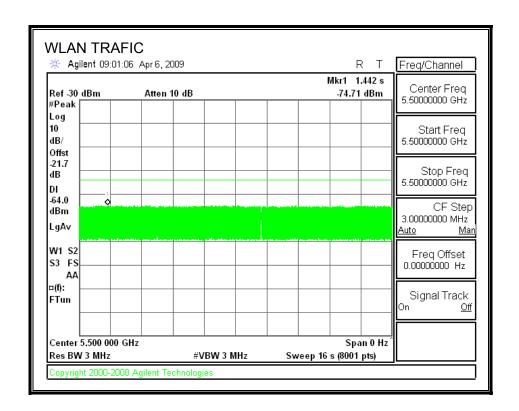
The Master Device is an Alvarion, Ltd. 802.16e Base Station, FCC ID: LKT-EXTR-50. The minimum antenna gain for the Master Device is 8 dBi. The software installed in the master device is version 1.0.0.65.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides margin to the limit.


5.2. RESULTS FOR 5 MHz BANDWIDTH

5.2.1. TEST CHANNEL


All tests were performed at a channel center frequency of 5500 MHz. Measurements were performed using conducted test methods.

5.2.2. PLOTS OF RADAR WAVEFORM AND WLAN TRAFFIC

PLOTS OF RADAR WAVEFORM

PLOT OF WLAN TRAFFIC

5.2.3. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

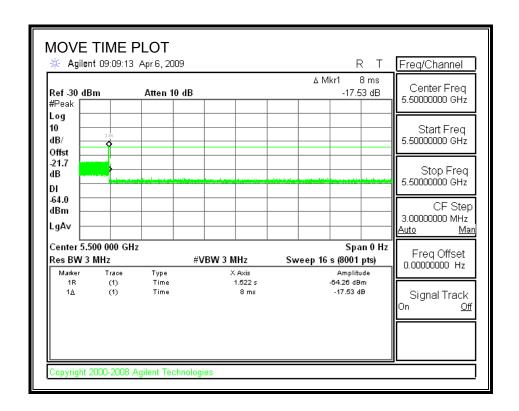
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

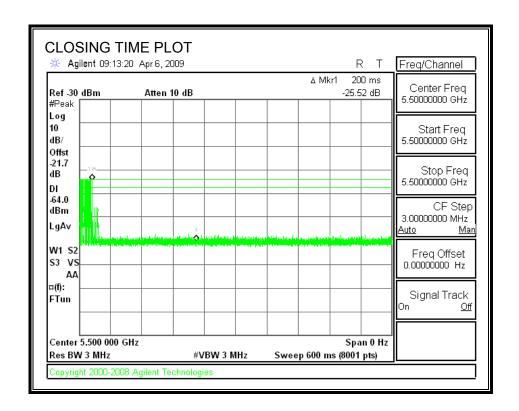
The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

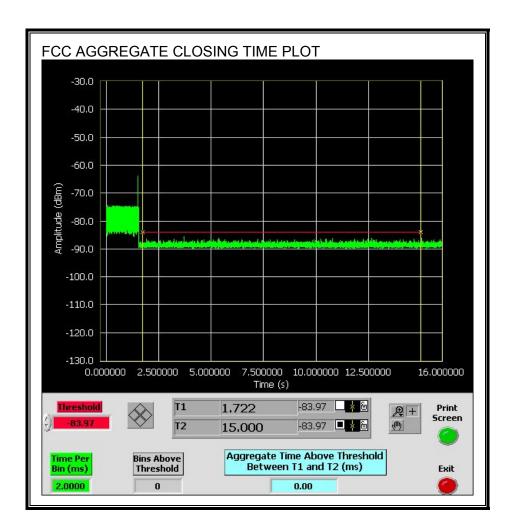

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.008	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	8.0	260


DATE: AUGUST 2, 2011

IC: 2514A-EXTRCPE50

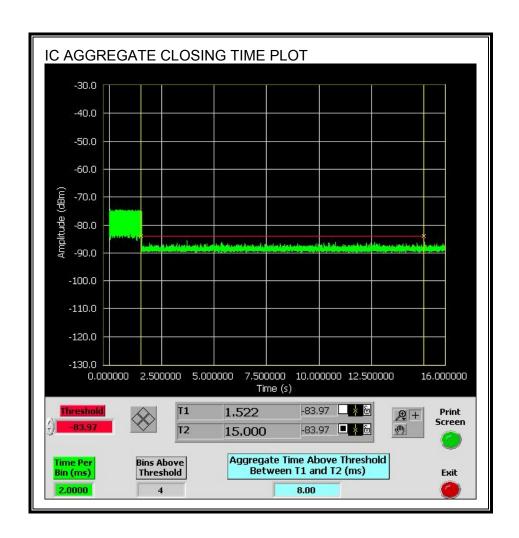
MOVE TIME



CHANNEL CLOSING TIME

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.



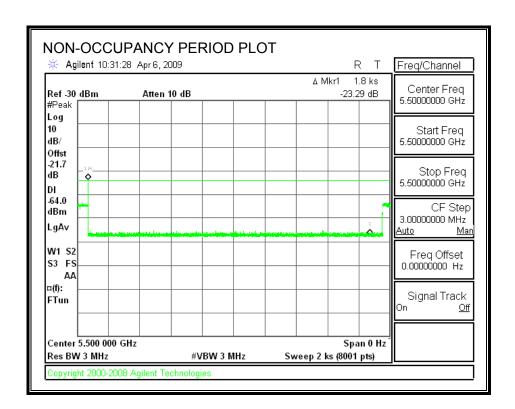
DATE: AUGUST 2, 2011

IC: 2514A-EXTRCPE50

FAX: (510) 661-0888

Only intermittent transmissions are observed during the IC aggregate monitoring period.

5.2.4. NON-OCCUPANCY

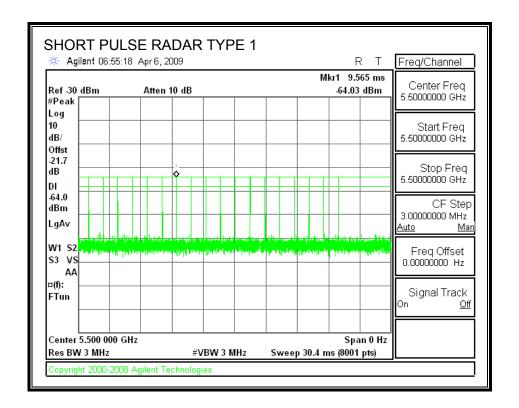

TEST PROCEDURE

The spectrum analyzer is monitoring the emissions from the Slave.

The AP and Slave are linked in a 5 MHz bandwidth mode, with streaming video. The spectrum analyzer trace is started, then the radar is triggered, and the channel is monitored for > 30 minutes.

ASSOCIATED TEST RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time. The associated Master device performed a CAC after the end of the Non-Occupancy period, and reinitiated transmissions.

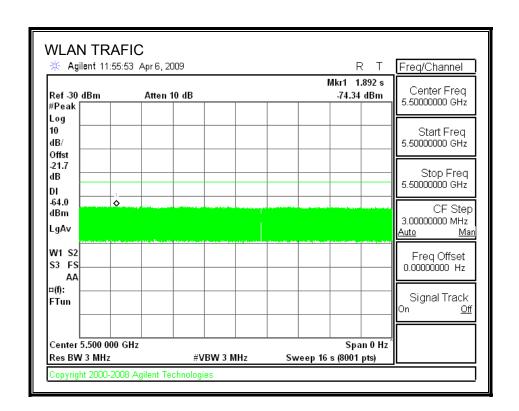

5.3. **RESULTS FOR 10 MHz BANDWIDTH**

5.3.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5500 MHz. Measurements were performed using conducted test methods.

5.3.2. PLOTS OF RADAR WAVEFORM AND WLAN TRAFFIC

PLOTS OF RADAR WAVEFORM



DATE: AUGUST 2, 2011

IC: 2514A-EXTRCPE50

DATE: AUGUST 2, 2011

PLOT OF WLAN TRAFFIC

5.3.3. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

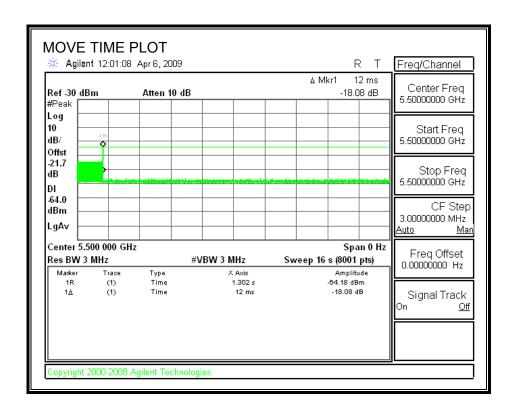
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

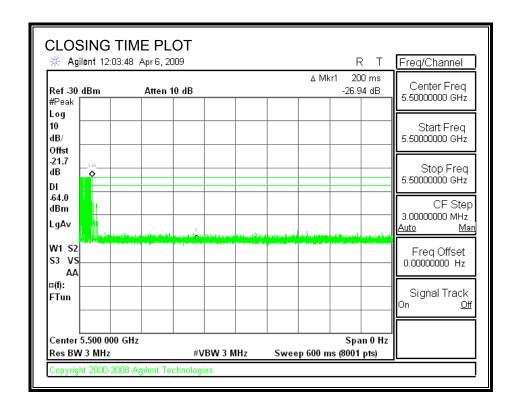
The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

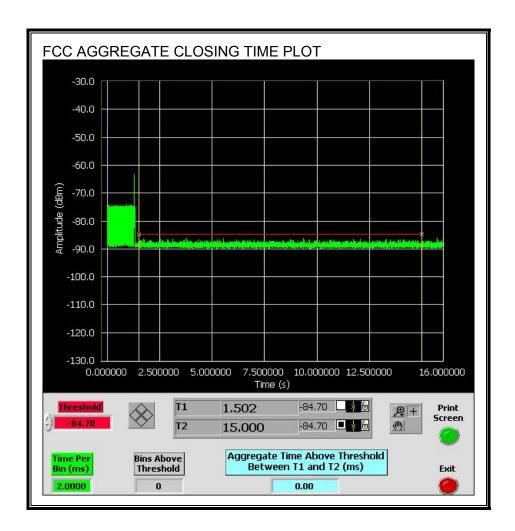

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.012	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	10.0	260

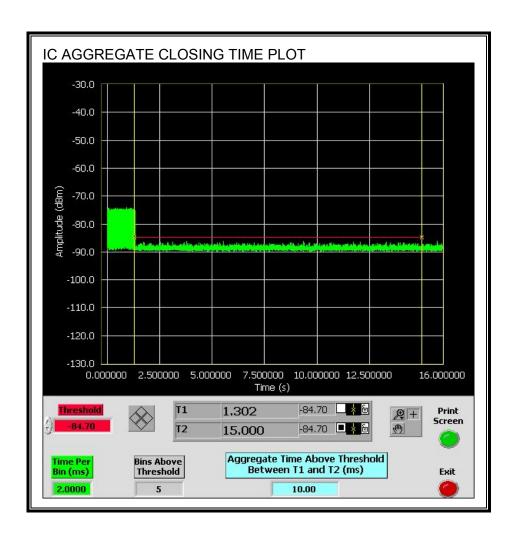

DATE: AUGUST 2, 2011

IC: 2514A-EXTRCPE50

MOVE TIME



CHANNEL CLOSING TIME

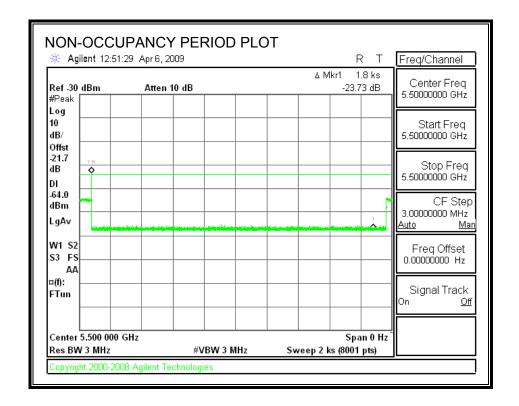


AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.

Only intermittent transmissions are observed during the IC aggregate monitoring period.

5.3.4. NON-OCCUPANCY

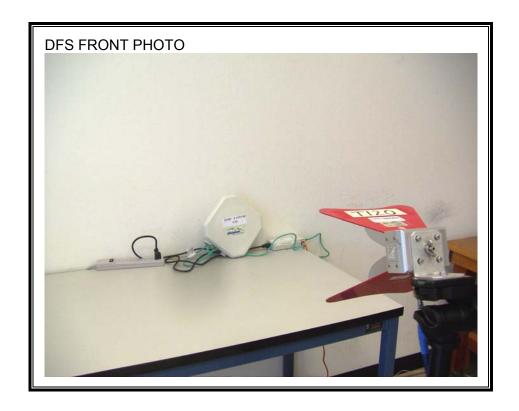

TEST PROCEDURE

The spectrum analyzer is monitoring the emissions from the Slave.

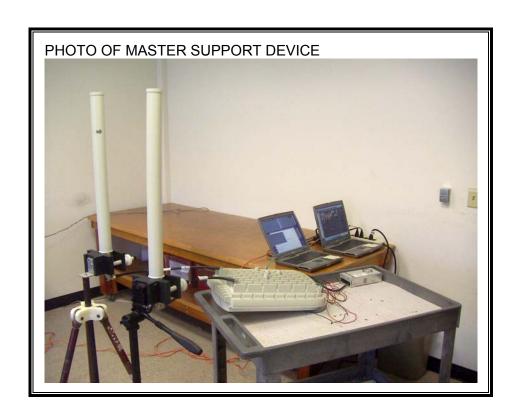
The AP and Slave are linked in a 10 MHz bandwidth mode, with streaming video. The spectrum analyzer trace is started, then the radar is triggered, and the channel is monitored for > 30 minutes.

TEST RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time. The associated Master device performed a CAC after the end of the Non-Occupancy period, and reinitiated transmissions.



DATE: AUGUST 2, 2011


IC: 2514A-EXTRCPE50

6. SETUP PHOTOS

DYNAMIC FREQUENCY SELECTION MEASUREMENT SETUP

END OF REPORT