

DFS Portion of FCC CFR47 PART 15 SUBPART E DFS Portion of INDUSTRY CANADA RSS-210 ISSUE 7

CERTIFICATION TEST REPORT

FOR

BreezeMax Extreme, 802.16e 5 GHz U-NII Base Station Radio

MODEL NUMBER: XTRM-BS-1DIV-5.4-90

FCC ID: LKT-EXTR-50

IC: 2514A-EXTR50

REPORT NUMBER: 09U12441-1

ISSUE DATE: APRIL 16, 2009

Prepared for ALVARION, LTD. 21A HA BARZEL STREET TEL AVIV 69710, ISRAEL

Prepared by COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

R

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	04/16/09	Initial Issue	M. Heckrotte

Page 2 of 76

TABLE OF CONTENTS

1.	ATTE	ESTATION OF TEST RESULTS	4
2.	TES	ſ METHODOLOGY	5
3.	FAC	LITIES AND ACCREDITATION	5
4.	CALI	BRATION AND UNCERTAINTY	5
4	.1.	MEASURING INSTRUMENT CALIBRATION	5
4	.2.	MEASUREMENT UNCERTAINTY	5
5.	DYN	AMIC FREQUENCY SELECTION	6
5	5.1.	OVERVIEW	6
	5.1.1	. LIMITS	6
	5.1.2	. TEST AND MEASUREMENT SYSTEM	9
	5.1.3	. SETUP OF EUT	2
	5.1.4	. DESCRIPTION OF EUT1	4
5	.2.	RESULTS FOR 5 MHz BANDWIDTH 1	15
	5.2.1	. TEST CHANNEL 1	5
	5.2.2	. PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC1	5
	5.2.3	. CHANNEL AVAILABILITY CHECK TIME	22
	5.2.4	. OVERLAPPING CHANNEL TESTS	27
	5.2.5	. MOVE AND CLOSING TIME	29
	5.2.6		5
	5.2.1		
	0.2.0		0
5	.3.	RESULTS FOR 10 MHz BANDWIDTH	15
	5.3.1	. TEST CHANNEL	-5
	5.3.2	. PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC	-5
	5.3.3	CHANNEL AVAILABILITY CHECK TIME	52
	5.3.4	. OVERLAPPING CHANNEL LESTS)/ -
	5.3.5)9)F
	5.3.0 5.3.7		00
	5.3.1 5.2 0		20
	J.J.O		0
6.	SETI	JP PHOTOS	'5

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	ALVARION, LTD. 214 BARZEL STREET					
	69710, ISRAEL					
EUT DESCRIPTION:	BreezeMax Extreme, 802.16e	5 GHz U-NII Base Station Radio				
MODEL:	XTRM-BS-1DIV-5.4-90	XTRM-BS-1DIV-5.4-90				
SERIAL NUMBER:	02159	02159				
DATE TESTED:	MARCH 27 to APRIL 06, 2009					
APPLICABLE STANDARDS						
5	TEST RESULTS					
DES Portion of	CEP 47 Part 15 Subpart E	Pass				

DFS Portion of CFR 47 Part 15 Subpart E Pass
DFS Portion of INDUSTRY CANADA RSS-210 Issue 7 Annex 9 Pass

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

M, H

MICHAEL HECKROTTE DIRECTOR OF ENGINEERING COMPLIANCE CERTIFICATION SERVICES

Douclas Conclusion

DOUGLAS ANDERSON EMC TECHNICIAN COMPLIANCE CERTIFICATION SERVICES

Page 4 of 76

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 15, FCC 06-96, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Power Line Conducted Emission	+/- 2.3 dB
Radiated Emission	+/- 3.4 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 76

5. DYNAMIC FREQUENCY SELECTION

5.1. OVERVIEW

5.1.1. LIMITS

INDUSTRY CANADA

IC RSS-210 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-210 Issue 7 A9.4 (b) (ii) Channel Availability Check Time: ...

Additional requirements for the band 5600-5650 MHz: Until further notice, devices subject to this Section shall not be capable of transmitting in the band 5600-5650 MHz, so that Environment Canada weather radars operating in this band are protected.

RSS-210 Issue 7 A9.4 (b) (iv) **Channel closing time:** the maximum channel closing time is 260 ms.

<u>FCC</u>

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

Page 6 of 76

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode				
	Master	Client (without radar detection)	Client (with radar detection)		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
Uniform Spreading	Yes	Not required	Not required		

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode				
	Master	Client (without DES)	Client (with DFS)		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Closing Transmission Time	Yes	Yes	Yes		
Channel Move Time	Yes	Yes	Yes		

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value				
	(see note)				
≥ 200 milliwatt	-64 dBm				
< 200 milliwatt	-62 dBm				
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna					
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude					

of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Page 7 of 76

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
Channel Closing Transmission Time	200 milliseconds +
	approx. 60 milliseconds
	over remaining 10 second
	period

The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the Burst.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Table 5 – Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Pulses	Minimum	Minimum			
Туре	(Microseconds)	(Microseconds)		Percentage of	Trials			
-				Successful				
				Detection				
1	1	1428	18	60%	30			
2	1-5	150-230	23-29	60%	30			
3	6-10	200-500	16-18	60%	30			
4	11-20	200-500	12-16	60%	30			
Aggregate (F	Aggregate (Radar Types 1-4) 80% 120							

Table 6 – Long Pulse Radar Test Signal

Radar Waveform	Bursts	Pulses per Burst	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Trials
5	8-20	1-3	50-100	5-20	1000- 2000	80%	30

Table 7 – Frequency Hopping Radar Test Signal

Radar	Pulse	PRI	Burst	Pulses	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	Length	per	Rate	Percentage of	Trials
	(µsec)		(ms)	Нор	(kHz)	Successful	
				-		Detection	
6	1	333	300	9	.333	70%	30

Page 8 of 76

5.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

Page 9 of 76

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at runtime. The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from –64 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

Page 10 of 76

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

Establish a link between the Master and Slave, adjusting the distance between the units as needed to provide a suitable received level at the Master and Slave devices. Stream the video test file to generate WLAN traffic. Confirm that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold. For Master Device testing confirm that the displayed traffic does not include Slave Device traffic. For Slave Device testing confirm that the displayed traffic does not include Master Device traffic.

TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST								
Description Manufacturer Model Serial Number Cal Due								
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C00986	02/03/10				
Vector signal generator, 20GHz	Agilent / HP	E8267C	C01066	11/16/09				
Arbitrary Waveform Generator	Agilent / HP	33220A	C01146	05/05/09				

5.1.3. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP

Page 12 of 76

SUPPORT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

	PERIPHERAL	SUPPORT EQUIPMEN	IT LIST	
Description	Manufacturer	Model	Serial Number	FCC ID
AC/DC Power Supply	Mean Well	SP-200-48	RA88057739	DoC
(Master EUT)				
802.16e DTS/U-NII	Alvarion, Ltd.	XTRM-SU-OD-1D-4.9-	W847002738	LKT-EXTR-CPE-
Subscriber Unit (Slave EUT)		UL-A		50
P.O.E. Injector (Slave EUT)	Alvarion, Ltd.	0334B5555	A30443139313	DoC
Notebook PC (Master)	Dell	PP11L	CN-0D4571-48643-	DoC
			51S-0557	
AC Adapter (Master PC)	Dell	ADP-65JB B	CN-OF8834-48661-	DoC
			5CI-6NO3	
Notebook PC (Slave)	Dell	PP11L	CN-0C4708-48643-	DoC
			54F-4144	
AC Adapter (Slave PC)	Lite On	PA-1900-02D	CN-09T215-71615-	DoC
	Technology		4BE-4082	
Airport Express Base	Apple	A1084	HS43U6GS0V0	BCGA1084
Station				
10/100 Fast Ethernet Switch	Netgear	FS105	1D1793704A8A	DoC
AC Adapter (Ethernet	DVE	DSA-9R-05	3507 HB	DoC
Switch)				

Page 13 of 76

5.1.4. DESCRIPTION OF EUT

The EUT operates over the 5470-5725 MHz range.

The EUT is a Master Device.

The highest power level is 24.2 dBm EIRP at a bandwidth of 5 MHz and 27.2 dBm EIRP at a bandwidth of 10 MHz in the 5470-5725 MHz band.

The highest gain antenna assembly utilized with the EUT has a gain of 17 dBi in the 5470-5725 MHz band. The lowest gain antenna assembly utilized with the EUT has a gain of 8 dBi in the 5470-5725 MHz band.

Two identical antennas are utilized to meet the diversity and MIMO operational requirements.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides a margin to the limit.

The EUT uses two transmitter/receiver chains, each connected to a 50-ohm coaxial antenna port. The 8 dBi antennas were connected during the test.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

TPC is required since the maximum EIRP is greater than 500 mW (27 dBm).

The EUT utilizes the WiMax 802.16e architecture. Two nominal channel bandwidths are implemented: 5 MHz and 10 MHz.

The software installed in the access point is version 1.0.0.65

MANUFACTURER'S STATEMENT REGARDING UNIFORM CHANNEL SPREADING

This statement is in a separate document.

Page 14 of 76

5.2. RESULTS FOR 5 MHz BANDWIDTH

5.2.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5500 MHz. Measurements were performed using conducted test methods.

5.2.2. PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC

PLOTS OF RADAR WAVEFORMS

Page 15 of 76

Page 16 of 76

Pof 30 dBm		Atten 1	0 dB				MI	GT 2.0	55 ms dBm	Center Freq
#Peak	•	Allen						-04.00		5.50000000 GHz
Log 10 dB/										Start Freq 5.5000000 GHz
21.7	1									Stop Freq 5.5000000 GHz
DI -64.0 dBm										CF Ste
LgA∨			तन्त्र गत्त्व स्व	er de le ring te		are training arts	राज्य(स्पेजन प	ileren for berike		<u>Auto Ma</u>
W1 S2 S3 VS AA	habyarta silikaka)	n dag tag part data I	<mark>, fa dhalan dhe</mark>	(este politi	ulumater (des des des la las	selogna (dise	dela dela t	and make	Freq Offset 0.00000000 Hz
¤(f): FTun										Signal Track On O

Page 17 of 76

Page 18 of 76

					MI - 4 - 2 CO2		
Ref -30 dBm Peak	Atten	10 dB			-64.03 dE	ms Bm 5.50000	ər Freq 300 GHz
.og 0 B/						Sta	rt Freq 300 GHz
21.7 IB)I 64.0		1 •				Sta	p Freq 300 GHz
IBm ₋gA∨			- In a field of filling of the			3.00000	CH Step 300 MHz <u>Ma</u>
N1 S2 53 VS40104,0 AA	là Mada a b _{a d} a d <mark>ha para dha d</mark> ha	6,11, 11, 11, 11, 11, 11 , 11, 11, 11, 11, 11,	111-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	a <mark>l ka dan yant shun ƙwa</mark>	, d 64 54 54 54 54 54 54 54	Freq 0.00000	Offset 000 Hz
Tun						On Signa	il Track <u>Of</u>
Center 5 500 00	0 GHz				Snan () H ₇	

Page 19 of 76

Ref -30 d	Bm		Atten	10 dB			М	kr1 1.3 -64.08	33 ms dBm	Center Freq
Peak										5.5000000 GHz
10 10 1B/										Start Freq 5.5000000 GHz
21.7 IB			•							Stop Freq 5.5000000 GHz
64.0 IBm										CF Step 3.0000000 MHz
N1 S2 53 VS AA	in-quinn thqiqanipi	an Weyer Sidataa dig	itioni ^t er L _{uppl} eij	urundaten Urundaten		ingen ver	nn ar ann	navi main S. Dubitati	in a contra alla Ini a di dia a contra alla di	Freq Offset 0.00000000 Hz
¤(f): =Tun 										Signal Track On <u>Of</u>
Center 5.	500 000) GHz			 			Spa	n 0 Hz	

Page 20 of 76

PLOT OF WLAN TRAFFIC FROM MASTER

Page 21 of 76

5.2.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then a software reboot command was issued to the EUT. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

Page 22 of 76

QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
23.67	212.7	189.1	129.1

Radar Near Beginning of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
24.9	159.2	134.3	5.2

Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
24.12	209.8	185.7	56.6

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar	EUT marks Channel as active	Transmissions begin on channel
Triggered		after completion of the initial
		power-up cycle and the CAC
Within 0 to 6	EUT indicates radar detected	No transmissions on channel
second window		
Within 54 to 60	EUT indicates radar detected	No transmissions on channel
second window		

TIMING PLOT WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

No EUT transmissions were observed after the radar signal.

Page 25 of 76

TIMING PLOT WITH RADAR NEAR END OF CAC

No EUT transmissions were observed after the radar signal.

Page 26 of 76

5.2.4. OVERLAPPING CHANNEL TESTS

PROCEDURE

The EUT was set to block all channels except 5497.5MHz, 5500 MHz and 5502.5 MHz, which are overlapping. The active channel was 5500 MHz and the radar test frequency was 5500 MHz.

A link was established on the active channel with the video file streaming.

A radar burst was triggered and a stopwatch timer was started. A second radar burst was triggered approximately 45 seconds after the first. A third radar burst was triggered approximately 45 seconds after the second.

The EUT channel was monitored on the spectrum analyzer during the entire test procedure.

RESULTS

No beacons or traffic was observed on the spectrum analyzer after the first radar burst was transmitted.

Page 27 of 76

TEST RESULTS

No EUT transmissions were observed on the test channels during the observation time.

Page 28 of 76

5.2.5. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.016	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	12.0	260

Page 29 of 76

MOVE TIME

Page 30 of 76

CHANNEL CLOSING TIME

Page 31 of 76

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.

Page 32 of 76

Only intermittent transmissions are observed during the IC aggregate monitoring period.

Page 33 of 76

LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.

Page 34 of 76

5.2.6. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time. The EUT performed a CAC after the end of the Non-Occupancy period, and reinitiated transmissions.

Page 35 of 76

5.2.7. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5495	5506	11	4.678	235.1	80

Page 36 of 76
DETECTION BANDWIDTH PROBABILITY

Detection Band	width Test Results			
FCC Type 1 Wa	veform: 1 us Pulse V	Vidth, 1428 us PRI, 1	8 Pulses per f	Burst
Frequency	Number of Trials	Number Detected	Detection	Mark
(MHz)			(%)	
5494	10	1	10	
5495	10	10	100	FL
5496	10	10	100	
5497	10	10	100	
5498	10	10	100	
5499	10	9	90	
5500	10	10	100	
5501	10	10	100	
5502	10	10	100	
5503	10	10	100	
5504	10	10	100	
5505	10	10	100	
5506	10	10	100	FH
5507	10	1	10	

Page 37 of 76

5.2.8. IN-SERVICE MONITORING

RESULTS

Signal Type	Number of Trials	Detection	Limit	Pass/Fail
		(%)	(%)	
FCC Short Pulse Type 1	30	100.00	60	Pass
FCC Short Pulse Type 2	30	100.00	60	Pass
FCC Short Pulse Type 3	30	100.00	60	Pass
FCC Short Pulse Type 4	30	100.00	60	Pass
Aggregate		100.00	80	Pass
FCC Long Pulse Type 5	30	100.00	80	Pass
FCC Hopping Type 6	39	87.18	70	Pass

Page 38 of 76

TYPE 1 DETECTION PROBABILITY

	20 03 1 10, 10 1 01363 per Dura
Trial	Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

Page 39 of 76

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
2001	2.4	180.00	23	Yes
2002	2.6	155.00	23	Yes
2003	1.1	226.00	27	Yes
2004	4.1	165.00	25	Yes
2005	1.8	165.00	28	Yes
2006	1.9	227.00	23	Yes
2007	2.1	224.00	27	Yes
2008	5	183.00	29	Yes
2009	3.1	212.00	29	Yes
2010	3.8	197.00	23	Yes
2011	3.8	228.00	27	Yes
2012	4.9	180.00	29	Yes
2013	1.3	230.00	25	Yes
2014	2.9	215.00	25	Yes
2015	4.4	205.00	28	Yes
2016	2.8	217.00	23	Yes
2017	2.6	167.00	27	Yes
2018	3.9	191.00	29	Yes
2019	1.3	163.00	28	Yes
2020	2.6	208.00	24	Yes
2021	3.1	193.00	29	Yes
2022	2.3	166.00	26	Yes
2023	4.9	194.00	28	Yes
2024	4	197.00	26	Yes
2025	4.6	155.00	27	Yes
2026	1.1	150.00	29	Yes
2027	1.4	220.00	26	Yes
2028	4.2	212.00	28	Yes
2029	1.2	182.00	25	Yes
2030	1.6	178.00	25	Yes

Page 40 of 76

TYPE 3 DETECTION PROBABILITY

Vaveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
3001	7.9	401.00	16	Yes
3002	5	485.00	16	Yes
3003	7	402.00	16	Yes
3004	7.9	289.00	17	Yes
3005	7.9	500.00	17	Yes
3006	9	459.00	16	Yes
3007	7.8	496.00	17	Yes
3008	9.2	394.00	16	Yes
3009	7	346.00	17	Yes
3010	6	298.00	16	Yes
3011	7.9	420.00	16	Yes
3012	6.1	343.00	16	Yes
3013	8.4	285.00	16	Yes
3014	8.1	342.00	18	Yes
3015	8.5	251.00	18	Yes
3016	6.9	374.00	18	Yes
3017	6.9	358.00	16	Yes
3018	5.8	472.00	18	Yes
3019	8.7	458.00	18	Yes
3020	10	360.00	16	Yes
3021	5.9	459.00	18	Yes
3022	7	448.00	18	Yes
3023	8.1	354.00	18	Yes
3024	8.2	330.00	18	Yes
3025	8	446.00	16	Yes
3026	8	331.00	17	Yes
3027	8.5	432.00	17	Yes
3028	7	449.00	18	Yes
3029	7.6	259	17	Yes
3030	7.6	351	18	Yes

COMPLIANCE CERTIFICATION SERVICES FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of CCS.

Page 41 of 76

TYPE 4 DETECTION PROBABILITY

Vaveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
4001	18.4	459.00	13	Yes
4002	13.8	296.00	16	Yes
4003	16.4	414.00	12	Yes
4004	10.6	412.00	13	Yes
4005	18.1	323.00	16	Yes
4006	16.9	474.00	14	Yes
4007	13	418.00	13	Yes
4008	12.1	474.00	15	Yes
4009	17.8	412.00	12	Yes
4010	12.2	381.00	16	Yes
4011	18	498.00	14	Yes
4012	11.8	288.00	14	Yes
4013	19.2	275.00	16	Yes
4014	17.7	359.00	15	Yes
4015	14.3	306.00	16	Yes
4016	17.9	341.00	12	Yes
4017	16.2	348.00	12	Yes
4018	18.8	319.00	16	Yes
4019	11.7	361.00	15	Yes
4020	15.2	335.00	16	Yes
4021	13.3	255.00	16	Yes
4022	19.2	331.00	15	Yes
4023	17	260.00	12	Yes
4024	14.8	295.00	12	Yes
4025	18.7	480.00	13	Yes
4026	13.5	256.00	16	Yes
4027	17.3	441.00	13	Yes
4028	14.4	477.00	13	Yes
4029	16.2	369.00	16	Yes
4030	19.4	489.00	13	Yes

COMPLIANCE CERTIFICATION SERVICES FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of CCS.

Page 42 of 76

TYPE 5 DETECTION PROBABILITY

Trial	Successful Detection (Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

Note: The Type 5 randomized parameters are shown in a separate document.

Page 43 of 76

TYPE 6 DETECTION PROBABILITY

Trial	Starting Index Within Sequence	quence Signal Generator Frequency (MHz)	Hops within Detection BW	Successful Detection (Yes/No)
1	274	5495	5	Yes
2	749	5496	3	Yes
3	1224	5497	2	Yes
4	1699	5498	4	Yes
5	2174	5499	1	Yes
6	2649	5500	3	Yes
7	3124	5501	3	Yes
8	3599	5502	4	Yes
9	4074	5503	1	Yes
10	4549	5504	3	Yes
11	5024	5505	2	Yes
12	5499	5506	3	Yes
13	5974	5507	3	No
14	6449	5495	3	Yes
15	6924	5496	4	Yes
16	7399	5497	2	Yes
17	7874	5498	1	No
18	9299	5499	3	Yes
19	9774	5500	2	Yes
20	10249	5501	2	Yes
21	10724	5502	4	Yes
22	11199	5503	2	Yes
23	11674	5504	2	Yes
24	12149	5505	2	Yes
25	12624	5506	2	Ves
26	13099	5507	3	No
27	13574	5495	1	Yes
28	14049	5496	4	Yes
29	14524	5497	4	Ves
30	14999	5498	2	Ves
31	15474	5499	3	Vas
32	15949	5500	6	Ves
33	16424	5501	2	Vas
34	16900	5502	2	Vae
35	10099	5502	3	Vac
36	17374	5503	3	Vac
27	1/849	5504	2	Yes
3/	18324	5505	2	Yes
38	18799	5506	3	NO

Page 44 of 76

5.3. RESULTS FOR 10 MHz BANDWIDTH

5.3.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5500 MHz. Measurements were performed using conducted test methods.

5.3.2. PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC

PLOTS OF RADAR WAVEFORMS

Page 45 of 76

Page 46 of 76

Pof 30 dB	n			tton	10) AI	R					М	kr1 2.0)55 ms dBm	Center Freq
#Peak	<u> </u>			aten	Ť	/ ui	<u> </u>	Τ					-04.00		5.50000000 GHz
Log 10 dB/															Start Freq 5.5000000 GHz
21.7 B		• •					_								Stop Freq
DI -64.0 dBm															CF Ste
LgAv		1-11-21	11. 11.			ret in			ristrikasi	-	Petrovil and	nature) primere	line in the		<u>Auto Ma</u>
W1 S2 S3 VS AA	di bi _l atu	an a	4124	11PR	1	η Ir	44 <u>7</u> 1		enternette	n Marian I.	i de atoresta la	y stan y Caix.	urleidadeley	and make	Freq Offset 0.00000000 Hz
¤(f): FTun					+										Signal Track On O

Page 47 of 76

Page 48 of 76

· · ·					MI 4 0.000	
Ref-30 dBm #Peak	Atte	en 10 dB			_64.03 dBm	Center Freq 5.5000000 GHz
∟og l0 lB/						Start Freq 5.5000000 GHz
21.7 IB		_1				Stop Freq 5.5000000 GHz
IBm ₋gAv				- twicht, bbie sussessed. I		CF Ster 3.0000000 MHz <u>Auto Ma</u>
W1 S2 53 VS <mark>41244</mark> 4 AA		<u> 11, 16, 15 , 16 16 16 1</u>	ine of the second second second	<u>, 1 (1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - </u>		Freq Offset 0.00000000 Hz
-Tun						Signal Track On <u>Of</u>
Center 5.500 0	00 GHz				Span 0 H	z

Page 49 of 76

Rof.30 d	Bm		Atter	10	dB				MI	kr1 1.3	333 ms tdBm	Center Freq
#Peak				T				Τ		-04.00		5.50000000 GHz
Log 10 dB/												Start Freq 5.5000000 GHz
-21.7 dB												Stop Freq 5.5000000 GHz
64.0 dBm												CF Step 3.00000000 MHz
W1 S2 S3 VS AA	in grind Tuji (Liiu		erriande L		ning televen Let ning televen	ne son a Vijupije		ar dar Hiri pi	alerator A ^{ler} atela	neri ^l aqeir 6.,19,1411	i de a terrerale Litter de la composite	Freq Offset 0.00000000 Hz
¤(f): FTun												Signal Track On <u>Of</u>
Center 5.	.500 00	0 GHz				DW 2	 			Spa	an 0 Hz	

Page 50 of 76

PLOT OF WLAN TRAFFIC FROM MASTER

Page 51 of 76

5.3.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then a software reboot command was issued to the EUT. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

Page 52 of 76

QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
23.4	212.6	189.2	129.2

Radar Near Beginning of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
23.49	155.8	132.3	3.1

Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
24.06	210.0	185.9	56.7

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar	EUT marks Channel as active	Transmissions begin on channel
Triggered		after completion of the initial
		power-up cycle and the CAC
Within 0 to 6	EUT indicates radar detected	No transmissions on channel
second window		
Within 54 to 60	EUT indicates radar detected	No transmissions on channel
second window		

TIMING PLOT WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

No EUT transmissions were observed after the radar signal.

Page 55 of 76

TIMING PLOT WITH RADAR NEAR END OF CAC

No EUT transmissions were observed after the radar signal.

Page 56 of 76

5.3.4. OVERLAPPING CHANNEL TESTS

PROCEDURE

The EUT was set to block all channels except 5495MHz, 5500 MHz and 5505 MHz, which are overlapping. The active channel was 5500 MHz and the radar test frequency was 5500 MHz.

A link was established on the active channel with the video file streaming.

A radar burst was triggered and a stopwatch timer was started. A second radar burst was triggered approximately 45 seconds after the first. A third radar burst was triggered approximately 45 seconds after the second.

The EUT channel was monitored on the spectrum analyzer during the entire test procedure.

RESULTS

No beacons or traffic were observed on the spectrum analyzer after the first radar burst was transmitted.

Page 57 of 76

TEST RESULTS

No EUT transmissions were observed on the test channels during the observation time.

Page 58 of 76

5.3.5. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.012	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	12.0	260

Page 59 of 76

MOVE TIME

Page 60 of 76

CHANNEL CLOSING TIME

Page 61 of 76

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.

Page 62 of 76

Only intermittent transmissions are observed during the IC aggregate monitoring period.

Page 63 of 76

LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.

Page 64 of 76

5.3.6. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time. The EUT performed a CAC after the end of the Non-Occupancy period, and reinitiated transmissions.

Page 65 of 76

5.3.7. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5495	5506	11	9.615	114.4	80

Page 66 of 76

DETECTION BANDWIDTH PROBABILITY

tection Band	width Test Results			
C Type 1 Wa	veform: 1 us Pulse V	Vidth, 1428 us PRI, 1	8 Pulses per f	Burst
Frequency	Number of Trials	Number Detected	Detection	Mark
(MHz)			(%)	
5494	10	2	20	
5495	10	10	100	FL
5496	10	10	100	
5497	10	10	100	
5498	10	10	100	
5499	10	9	90	
5500	10	10	100	
5501	10	10	100	
5502	10	10	100	
5503	10	10	100	
5504	10	10	100	
5505	10	10	100	
5506	10	10	100	FH
5507	10	2	20	

Page 67 of 76

5.3.8. IN-SERVICE MONITORING

RESULTS

Signal Type	Number of Trials	Detection	Limit	Pass/Fail
		(%)	(%)	
FCC Short Pulse Type 1	30	100.00	60	Pass
FCC Short Pulse Type 2	30	100.00	60	Pass
FCC Short Pulse Type 3	30	100.00	60	Pass
FCC Short Pulse Type 4	30	100.00	60	Pass
Aggregate		100.00	80	Pass
FCC Long Pulse Type 5	30	93.33	80	Pass
FCC Hopping Type 6	36	91.67	70	Pass

Page 68 of 76

TYPE 1 DETECTION PROBABILITY

Trial	Successful Detection
man	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

Page 69 of 76 COMPLIANCE CERTIFICATION SERVICES FORM NO: CCSUP4031B 47173 BENICIA STREET EREMONT CA 94538 USA TEL: (510) 771-1000 EAX: (510) 661-0888

TYPE 2 DETECTION PROBABILITY

Vaveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
2001	24	180.00	23	Ves
2001	2.4	155.00	23	Vae
2002	2.0	226.00	25	Vae
2003	4.1	165.00	25	Vae
2004	1.1	165.00	29	Vas
2005	1.0	227.00	23	Ves
2000	21	224.00	25	Vae
2007	5	193.00	20	Vae
2000	31	212.00	20	Vae
2003	3.0	197.00	23	Vae
2010	3.0	229.00	23	Vae
2011	J.0 4.9	190.00	20	Vae
2012	4.9	230.00	29	Vac
2013	1.5	230.00	25	Vec
2014	2.9	215.00	20	Vee
2015	4.4	205.00	28	Yes
2010	2.6	217.00	23	Yee
2017	2.0	167.00	21	Yes
2018	3.9	191.00	29	Yes
2019	1.3	163.00	28	Yes
2020	2.6	208.00	24	Yes
2021	3.1	193.00	29	Yes
2022	2.3	166.00	26	Yes
2023	4.9	194.00	28	Yes
2024	4	197.00	26	Yes
2025	4.6	155.00	27	Yes
2026	1.1	150.00	29	Yes
2027	1.4	220.00	26	Yes
2028	4.2	212.00	28	Yes
2029	1.2	182.00	25	Yes
2030	1.6	178.00	25	Yes

Page 70 of 76

TYPE 3 DETECTION PROBABILITY

Vaveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
3001	7.9	401.00	16	Yes
3002	5	485.00	16	Yes
3003	7	402.00	16	Yes
3004	7.9	289.00	17	Yes
3005	7.9	500.00	17	Yes
3006	9	459.00	16	Yes
3007	7.8	496.00	17	Yes
3008	9.2	394.00	16	Yes
3009	7	346.00	17	Yes
3010	6	298.00	16	Yes
3011	7.9	420.00	16	Yes
3012	6.1	343.00	16	Yes
3013	8.4	285.00	16	Yes
3014	8.1	342.00	18	Yes
3015	8.5	251.00	18	Yes
3016	6.9	374.00	18	Yes
3017	6.9	358.00	16	Yes
3018	5.8	472.00	18	Yes
3019	8.7	458.00	18	Yes
3020	10	360.00	16	Yes
3021	5.9	459.00	18	Yes
3022	7	448.00	18	Yes
3023	8.1	354.00	18	Yes
3024	8.2	330.00	18	Yes
3025	8	446.00	16	Yes
3026	8	331.00	17	Yes
3027	8.5	432.00	17	Yes
3028	7	449.00	18	Yes
3029	7.6	259	17	Yes
3030	7.6	351	18	Yes

COMPLIANCE CERTIFICATION SERVICES FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of CCS.

Page 71 of 76

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
4001	18.4	459.00	13	Yes
4002	13.8	296.00	16	Yes
4003	16.4	414.00	12	Yes
4004	10.6	412.00	13	Yes
4005	18.1	323.00	16	Yes
4006	16.9	474.00	14	Yes
4007	13	418.00	13	Yes
4008	12.1	474.00	15	Yes
4009	17.8	412.00	12	Yes
4010	12.2	381.00	16	Yes
4011	18	498.00	14	Yes
4012	11.8	288.00	14	Yes
4013	19.2	275.00	16	Yes
4014	17.7	359.00	15	Yes
4015	14.3	306.00	16	Yes
4016	17.9	341.00	12	Yes
4017	16.2	348.00	12	Yes
4018	18.8	319.00	16	Yes
4019	11.7	361.00	15	Yes
4020	15.2	335.00	16	Yes
4021	13.3	255.00	16	Yes
4022	19.2	331.00	15	Yes
4023	17	260.00	12	Yes
4024	14.8	295.00	12	Yes
4025	18.7	480.00	13	Yes
4026	13.5	256.00	16	Yes
4027	17.3	441.00	13	Yes
4028	14.4	477.00	13	Yes
4029	16.2	369.00	16	Yes
4030	19.4	489.00	13	Yes

Page 72 of 76
TYPE 5 DETECTION PROBABILITY

Trial	Successful Detection (Yes/No)	
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	Yes	
6	Yes	
7	Yes	
8	Yes	
9	Yes	
10	Yes	
11	Yes	
12	Yes	
13	Yes	
14	Yes	
15	Yes	
16	Yes	
17	Yes	
18	Yes	
19	No	
20	Yes	
21	Yes	
22	Yes	
23	No	
24	Yes	
25	Yes	
26	Yes	
27	Yes	
28	Yes	
29	Yes	
30	Yes	

Note: The Type 5 randomized parameters are shown in a separate document.

Page 73 of 76

TYPE 6 DETECTION PROBABILITY

us Puls	e Width, 333 us PRI,	9 Pulses per Burst,	1 Burst per Hop	•
FIA Aug	ust 2005 Hopping Se	quence		
Trial	Starting Index Within Sequence	Signal Generator Frequency (MHz)	Hops within Detection BW	Successful Detection (Yes/No)
1	257	5495	5	Yes
2	732	5496	3	Yes
3	1207	5497	2	Yes
4	1682	5498	1	Yes
5	2157	5499	1	No
6	2632	5500	4	Yes
7	3107	5501	3	Yes
8	3582	5502	4	Yes
9	4057	5503	4	Yes
10	5007	5504	2	Yes
11	5482	5505	4	Yes
12	5957	5506	2	Yes
13	6432	5495	2	Yes
14	6907	5496	4	Yes
15	7382	5497	1	Yes
16	7857	5498	1	No
17	8332	5499	1	Yes
18	9282	5500	1	No
19	9757	5501	1	Yes
20	10232	5502	1	Yes
21	10707	5503	4	Yes
22	11182	5504	2	Yes
23	11657	5505	2	Yes
24	12132	5506	2	Yes
25	12607	5495	2	Yes
26	13082	5496	3	Yes
27	13557	5497	1	Yes
28	14032	5498	4	Yes
29	14507	5499	3	Yes
30	14982	5500	2	Yes
31	15457	5501	3	Yes
32	15932	5502	4	Yes
33	16407	5503	3	Yes
34	16882	5504	3	Yes
35	17357	5505	4	Yes
36	17832	5506	2	Yes

Page 74 of 76

6. SETUP PHOTOS

DYNAMIC FREQUENCY SELECTION MEASUREMENT SETUP

Page 75 of 76

END OF REPORT

Page 76 of 76