

Electromagnetic Compatibility Test Report

Test Report No: AVR 080811 Issued on: August 08, 2011

Product Name: Remote Unit 2308

Tested According to FCC 47 CFR, Part 24

Tests Performed for Alvarion Ltd.

21A Habarzel street, P.O.Box 13139 Ramat Hachayal 61131 Tel Aviv, Israel Tel: 972-3-9250800

QualiTech EMC Laboratory, ECI Telecom

30 Hasivim Street,

Petah-Tikva, 49517, Israel Tel: +972-3-926 8443 Fax: +972-3-928 7490

Date: 08.08.2011

The information contained herein is the property of QualiTech, EMC Lab and is supplied without liability for errors or omissions.

The copyright for this document vests in QualiTech, EMC Lab. All rights reserved.

This Test Report may not be reproduced, by any method, without the written permission of the QualiTech, EMC Lab.

If and when such permission is granted, the report must be reproduced only in the full format.

Test Personnel

Tests Performed By:

Michael Shtier Sergey Kapustin

Report Prepared By:

Bina Talkar

Report Reviewed By:

Rami Nataf
EMC Lab. Manager

QualiTech EMC Laboratory

Date: 08.08.2011

Test Report details:

Issued on: 08.08.2011

Assessment information:

This report contains an assessment of the EUT against Electromagnetic Compatibility based upon tests carried out on the samples submitted. The results contained in this report relate only to the items tested. Manufactured products will not necessarily give identical results due to production and measurement tolerances. QualiTech, EMC Lab does not assume responsibility for any conclusion and generalization drawn from the test results with regards to other specimens or samples of type of the equipment represented by test item.

The EUT was set up and exercised using the configuration, modes of operation and arrangements defined in this report only.

Modifications:

Modifications made to the EUT

None.

Modifications made to the Test Standard

None.

Test Report: AVR 080811 Date: 08.08.2011

Summary of Compliance Status

Test Spec. Clause	Test Case	Remarks
§24.232 (c) & §2.1046	RF Power Output, Conducted	Pass
§24.235 & §2.1055	Frequency Stability	Pass
§24.238 & §2.1049	Occupied Bandwidth	Pass
§24.238 & §2.1053	Out of Band Emissions - radiated	Pass
§24.238 & §2.1051	Out of Band Emissions and Inter-modulation – Conducted	Pass
§24.238	Block Edge Emissions and Inter-modulation - conducted	Pass

Test Report: AVR 080811 Date: 08.08.2011

Table of Contents

1.	GENERAL DESCRIPTION	6
2.	METHOD OF MEASUREMENTS	7
2.1.	Conducted RF Power Output Measurements:	7
2.2.	Radiated Out of Band Emissions Measurements:	8
2.3.	Conducted Spurious Emissions at antenna terminal Measurements:	9
2.4.	Occupied BW Measurements:	10
2.5.	Frequency stability measurements:	10
3.	TEST FACILITY & UNCERTAINTY OF MEASUREMENT	
3.1.	Accreditation/ Registration reference:	11
3.2.	Test Facility description	
4.	FCC 47 CFR, PART 24 REPORT OF MEASUREMENTS AND EXAMINATIONS	12
4.1.	RF Power Output, Conducted Measurements	12
4.2.	Frequency stability	13
4.3.	Occupied Bandwidth	14
4.4.	Out of Band Emissions, Radiated Measurements	29
4.5.	Out of Band Emissions and Inter-modulation- Conducted Measurements	30
4.6.	Block Edge Emissions and Inter-Modulation, Conducted Measurements	50
5.	APPENDIX	60

Date: 08.08.2011

1. General Description

Description of the EUT system/test Item:

Product name: Remote Unit 2308

Model: 2308

EUT Description:

The Remote Unit 2308 resides in the customer's location (home, hotel-room, etc.). The purpose of the Remote Unit 2308 is taking the RF signals that propagated via the cables, convert it to the native wireless frequency and transmit it to the air inside the customer's location. The Remote Unit 2308 connects to the cable outlet and receives power from the electrical grid. The Remote Unit 2308 contains a miniature inverse UDC for frequency conversion, a transmitter and an antenna. The Remote Unit 2308 comes in two power ratings:

• 0 dBm

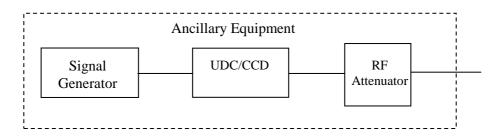
15 dBm

Bands and Modulations:

Mode	Direction	Modulation	Frequency Band	Maximum Output Power
GSM	Downlink	GMSK		15.0 dBm
EDGE	Downlink	8PSK		15.0 dBm
CDMA 2000	Downlink	CDMA 2000	1930 - 1990 MHz	15.0 dBm
CDMA 2000- 1xEVDO	Downlink	CDMA 2000-1xEVDO		15.0 dBm

Mode	Direction	Modulation	Frequency Band	Maximum Output Power
GSM	Downlink	GMSK		15.0 dBm
EDGE	Downlink	8PSK		15.0 dBm
CDMA 2000	Downlink	CDMA 2000	869 - 894 MHz	15.0 dBm
CDMA 2000- 1xEVDO	Downlink	CDMA 2000-1xEVDO		15.0 dBm

Alvarion Ltd. Page 6 of 81 Remote Unit 2308



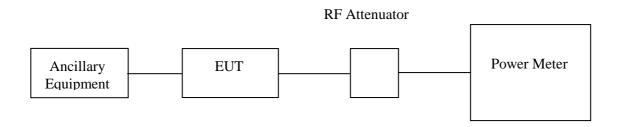
Date: 08.08.2011

Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational features to the EUT.

The system was configured in a typical fashion, as it would be normally used. However, the ancillary equipment can influence the test results.

2. Method of Measurements


2.1. Conducted RF Power Output Measurements:

The ancillary equipment is configured to generate continuous signals with PRBS data modulation.

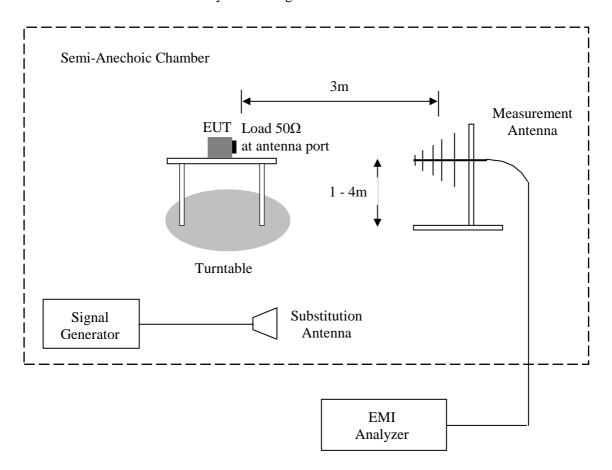
The transmitter output was connected to the Peak Power Meter via an RF attenuator, and the output power of the EUT was adjusted to be 15dBm as this was the maximum expected output power for all frequencies and modulations including system tolerance.

 $EIRP\ Emission\ [dBm] = Measured\ [dBm]\ - Cable\ Loss\ [dB]\ + Substitution\ Antenna\ Gain\ [dBi]\ ERP\ can\ be\ calculated\ from\ EIRP\ by\ subtracting\ 2.1dBi$

Test Setup # 2.1

Date: 08.08.2011

2.2. Radiated Out of Band Emissions Measurements:


The ancillary equipment was configured to generate CW signals, and the output power of the EUT is adjusted to be 15dBm.

The antenna output was terminated with 50Ω load and measurements made to detect spurious emissions that may radiate directly from the cabinet, control circuit, power leads under normal conditions of installation and operation.

The spectrum was investigated from 30MHz to the 10th harmonic of the highest frequency generated within the EUT, which is the transmitted carrier that can be as high as 1990MHz. For each spurious frequency, the antenna mast was raised and lowered from 1 to 4 meters and the turntable is rotated 360degrees to obtain a maximum reading on the spectrum analyzer. The maximum reading was recorded. The amplitude of spurious emissions which are attenuated more than 20dB below the permissible value need not be reported. Radiated emissions measurements are made at the upper, mid, and lower carrier frequencies of the 850/1900 bands.

After all spurious emissions were recorded; the antenna substitution method is used to determine the equivalent radiated power at spurious frequencies. The EUT was replaced with a substitution antenna with a known gain, fed by a signal generator, in accordance to TIA/EIA 603. With the signal generator tuned to a particular spurious frequency, the antenna mast was raised and lowered from 1 to 4 meters to obtain a maximum reading on the spectrum analyzer. The signal source level was adjusted to repeat the previously measured level. The power readings in dBm should be corrected for the cable loss, and compared to the §24.238 limits.

EIRP Peak Power [dBm] = Measured [dBm] - Cable Loss [dB] + Substitution Antenna Gain [dBi] ERP can be calculated from EIRP by subtracting 2.1dBi.

Date: 08.08.2011

2.3. Conducted Spurious Emissions at antenna terminal Measurements:

The ancillary equipment was configured to generate continuous signals with PRBS data modulation, and the output power of the EUT was adjusted to be 15dBm.

The transmitter output was connected to the input of the Spectrum analyzer through an attenuator. The external attenuators and cable loss were added to the reading.

For spurious emissions measurement, the spectrum from the lowest radio frequency generated in the equipment up to the 10th harmonic of the carrier frequency, rounded to 20GHz was investigated with the transmitter set to the lowest, middle and highest channel frequencies.

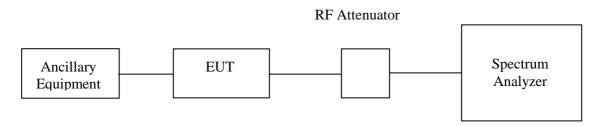
For Block Edge measurements in 1MHz bands immediately outside and adjacent to the frequency block, conducted emissions were measured using a RBW of at least 1% of the occupied BW.

For inter-modulation measurements, two modulated signals were combined and injected at the EUT input. Both signals were set to be equal at maximum drive level (15dBm at the output). The signals were chosen and spaced so that will potentially produce both in-band and out-of-band 3rd order inter-modulation products.

The spectrum analyzer was set to 30 kHz RBW and 300 kHz VBW. One carrier was set at the band edge and the other spaced 200 kHz for GSM and Edge and 1.25MHz for IDMA & 1xEVDO.

	f ₁ [MHz]	f ₂		
	[WITIZ]	[WILIZ]		
CDMA	1930.7	1931.95	1929.45	1933.2
CDMA	1989.8	1930.4	1990.55	1986.8
GSM & EDGE	1930.2	1930.4	1930	1930.6
GSM & EDGE	1989.8	1989.6	1930	1989.4

Alvarion Ltd. Page 9 of 81 Remote Unit 2308



Date: 08.08.2011

2.4. Occupied BW Measurements:

The transmitter output was connected to the input of the Spectrum analyzer through an attenuator. The ancillary equipment was configured to generate continuous signals with PRBS data modulation, and the output power of the EUT was adjusted to be 15dBm. The modulated spectrum of the output was measured and compared to the input modulated spectrum.

The RBW was set to be at least 1% of the Emission BW. Peak detector was used to capture the emission. The Occupied BW between -26dBc points and also the 99% power BW were measured using the built in Occupied BW Measurements function.

2.5. Frequency stability measurements:

2.5.1 Frequency Stability with Voltage Variation:

The EUT was placed in an environmental chamber and allowed to stabilize at +20°C for at least 15 minutes. The spectrum analyzer and signal generator is phase locked with the same 10 MHz reference frequency by connecting the 10 MHz ref. With the voltage input to the EUT set to 85% of nominal voltage, the transmitter carrier output frequency was measured in 1 minute intervals for a period of 5 minutes. This procedure was repeated at 115% of nominal voltage.

2.5.2 Frequency Stability with Temperature Variation:

The input voltage to the EUT was set to nominal voltage and the temperature of the environmental chamber was varied in 10 degree steps through the range -20°C to +50°C. The transmitter carrier output frequency was measured within 1 minute after powering up, at intervals of 1 minute thereafter, until 10 minutes have elapsed (or until sufficient measurements is obtained to indicate clearly that the frequency has stabilized, whichever time period is greater).

Alvarion Ltd. Page 10 of 81 Remote Unit 2308

Date: 08.08.2011

3. Test Facility & Uncertainty of Measurement

3.1. Accreditation/ Registration reference:

- A2LA Certificate Number: 1633.01

3.2. Test Facility description

The tests were performed at the EMC Laboratory, QualiTech Division, ECI Telecom Group

Address: 30, Hasivim St., Petah Tikva, Israel.

Tel: 972-3-926-8443

3m Anechoic Chamber:

The 3m-screened chamber is used in two configurations: the semi-anechoic configuration for Radiated Emission measurements and the full-anechoic configuration for Radiated Immunity tests.

Semi Anechoic Configuration:

Measurement distance	3m
Chamber dimensions	9.5m x 6.5m x 5.2m
Antenna height	1 - 4m
Shielding Effectiveness	Magnetic field ≥80dB at 15 kHz ≥90dB at 100 kHz Electric field >120dB from 1MHz to 1GHz >110dB from 1GHz to 10GHz
Absorbing material	Ferrite tiles on the walls and ceiling Frankonia hybrid absorbing material in selected positions on the walls
Normalized Site Attenuation measured at 5 positions	±3.49dB, 30MHz to 1GHz
Transmission Loss measured at 5 positions, at 1.5m height	±3dB, 1GHz to 18GHz

Full-Anechoic Configuration:

Measurement distance	3m
Chamber dimensions	7m x 4m x 3m
Antenna height	1.55m at Horizontal & Vertical polarizations
Shielding Effectiveness	Magnetic field ≥80dB at 15 kHz ≥90dB at 100 kHz Electric field >120dB from 1MHz to 1GHz >110dB from 1GHz to 10GHz
Absorbing material	Ferrite tiles on the walls and ceiling Frankonia hybrid absorbing material in selected positions on the walls and floor
Field Uniformity to EN61000-4-3	±3dB 80MHz to 18GHz

Alvarion Ltd. Page 11 of 81 Remote Unit 2308

Date: 08.08.2011

4. FCC 47 CFR, Part 24 Report of Measurements and examinations

4.1. RF Power Output, Conducted Measurements

Reference document:	47 CFR §24.232 (c) & §2.1046				
Limit:	Mobile/portable stations are limited to 2 watts EIRP peak power				
Test setup:	See sec 2.1	Pass			
Method of testing:	Conducted				
Operating conditions:	Under normal test conditions				
Environment conditions:	Ambient Temperature: 22°c	Relative Humidity: Atmospheric Pressure: 48% 1011.4 hPa			
Test Result:	See below	-			

Test results:

The output power was adjusted to be 15dBm as this is the maximum expected output power for all frequencies and modulations including system tolerances.

EIRP Peak Power [dBm] = Measured [dBm] - Cable Loss [dB] + Substitution Antenna Gain [dBi] ERP can be calculated from EIRP by subtracting 2.1dBi.

Prediction for part 24 (max antenna gain for mobile operations)

Maximum conducted peak power:15 dBm

Highest admissible antenna gain for 1900 MHz mobile operation (@20cm) where no routine evaluation is required according $\S 2.1091(c)$ and $\S 24.232$ for P= 2W EIRP

G=10log2000mW[EIRP]-15dBm =18.010 dBi

In order to meet OET Bulletin 65 requirements the highest admissible antenna gain for 1900 MHz band is 17 dBi

Alvarion Ltd. Page 12 of 81 Remote Unit 2308

Date: 08.08.2011

4.2. Frequency stability

Reference document:	47 CFR §24.235 & §2.1055			
Test Requirements:	The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.			
Test setup:	See Sec. 2.5	Pass		
Method of testing:	Conducted			
Operating conditions:	Under normal and extremes test conditions			
Environment conditions:	Ambient Temperature: 22°c	Relative Humidity: Atmospheric Pressure: 48% 1011.4 hPa		
Test Result:	See below	-		

Test results

AFC Frequency error vs. Voltage

Voltage [Vdc]	Frequency Error [Hz]	Frequency Error [%]	Frequency Error [ppm]	Limit [ppm]	Test Result		
	Carrier frequency at 22°C (115 VAC): 1960 MHz						
93.5-138 No Frequency Error observed				Pass			

AFC Frequency error vs. Temperature

Temperature [°C]	Frequency Error [Hz]	Frequency Error [%]	Frequency Error [ppm]	Limit [ppm]	Margin [ppm]
	(Carrier frequency at 22°C	(115 VAC): 1960 MHz		
-20	-30	-0.00000153	-0.015	2.5	-2.485
-10	-50	-0.00000255	-0.026	2.5	-2.474
0	-25	-0.00000128	-0.013	2.5	-2.487
10	25	0.00000128	0.013	2.5	-2.487
20	25	0.00000128	0.013	2.5	-2.487
30	50	0.00000255	0.026	2.5	-2.474
40	50	0.00000255	0.026	2.5	-2.474
50	50	0.00000255	0.026	2.5	-2.474

Date: 08.08.2011

4.3. Occupied Bandwidth

Reference document:	47 CFR §24.238 & §2.1049			
Test Requirements:	The occupied bandwidth that is the frequency bandwidth outside of which all emission are attenuated at least 26 dB below the transmitter power (99% power per §2.1049).			
Test setup:	See sec 2.4			
Method of testing:	Conducted	Pass		
Operating conditions:	Under normal test conditions			
S.A. Settings:	RBW: 3kHz/30kHz, VBW: 3kHz/300kHz			
Environment conditions:	Ambient Temperature: 22°c	Relative Humidity: Atmospheric Pressure: 1011.4 hPa		
Test Result:	See below	See Plot 4.3.1 to Plot 4.3.24		

Test results:

Modulation: CDMA 2000

Channel	Frequency [MHz]	-26dBc Occupied Bandwidth [kHz]	99 % Occupied Bandwidth [kHz]	Reference	
Low	1930.7	0.7 1377 1241		Plot 4.3.1	
Middle	1960	1384	1246	Plot 4.3.5	
High	1989.3	1376	1236	Plot 4.3.9	

^{*\$24.238(}b) requires a measurement RBW of at least 1% of the -26dBc Occupied Bandwidth. From these results, a RBW of 30 kHz was used.

Modulation: CDMA 2000-1xEVDO

Channel	Frequency [MHz]	-26dBc Occupied Bandwidth [kHz]	99 % Occupied Bandwidth Refere [kHz]	
Low	1930.7	1373	1236	Plot 4.3.2
Middle	1960	1378	1244	Plot 4.3.6
High	1989.3	1372	1228	Plot 4.3.10

^{\$24.238(}b) requires a measurement RBW of at least 1% of the -26dBc Occupied Bandwidth. From these results, a RBW of 30 kHz was used.

Alvarion Ltd. Page 14 of 81 Remote Unit 2308

Date: 08.08.2011

Modulation: GSM -GMSK

Channel	Frequency [MHz]	-26dBc Occupied Bandwidth [kHz]	99 % Occupied Bandwidth [kHz]	Reference	
Low	1930.2	323.7	249.4	Plot 4.3.3	
Middle	1960	316.4	247.5	Plot 4.3.7	
High	1989.8	314.7	242.8	Plot 4.3.11	

^{*§24.238(}b) requires a measurement RBW of at least 1% of the -26dBc Occupied Bandwidth. From these results, a RBW of 3 kHz was used.

Modulation: EDGE -8PSK

Channel	Frequency [MHz]			Reference	
Low	1930.2	314.9	246.3	Plot 4.3.4	
Middle	1960	314.0	242.9	Plot 4.3.8	
High	1989.8	321.1	248.4	Plot 4.3.12	

^{*§24.238(}b) requires a measurement RBW of at least 1% of the -26dBc Occupied Bandwidth. From these results, a RBW of 3 kHz was used.

Input

Modulation: CDMA 2000

Channel	Frequency [MHz]	-26dBc Occupied Bandwidth [kHz]	99 % Occupied Bandwidth [kHz]	Reference	
Low	973.0	1380	12442	Plot 4.3.13	
Middle	1003.0	1392 12562		Plot 4.3.17	
High	1018.0	1373	1249	Plot 4.3.21	

^{*\$24.238(}b) requires a measurement RBW of at least 1% of the -26dBc Occupied Bandwidth. From these results, a RBW of 30 kHz was used.

Alvarion Ltd. Page 15 of 81 Remote Unit 2308

Date: 08.08.2011

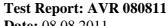
Modulation: CDMA 2000-1xEVDO

Channel	Frequency [MHz]	-26dBc Occupied Bandwidth [kHz]	99 % Occupied Bandwidth [kHz]	Reference	
Low	973.0	1383	1250	Plot 4.3.14	
Middle	1003.0	1378	1242	Plot 4.3.18	
High	1018.0	1380	1240	Plot 4.3.22	

^{*§24.238(}b) requires a measurement RBW of at least 1% of the -26dBc Occupied Bandwidth. From these results, a RBW of 30 kHz was used.

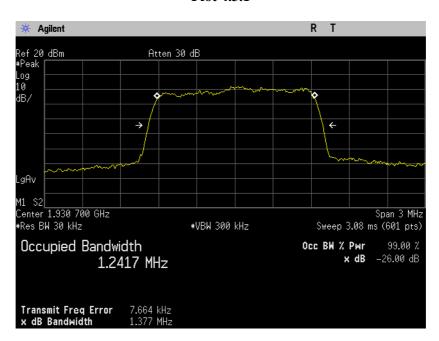
Modulation: GSM -GMSK

Channel	Frequency [MHz]	-26dBc Occupied Bandwidth [kHz]	99 % Occupied Bandwidth [kHz]	Reference	
Low	972.6	320.0	246.4	Plot 4.3.15	
Middle	1002.0	321.78	246.4	Plot 4.3.19	
High	1017.0	320.0	248.2	Plot 4.3.23	

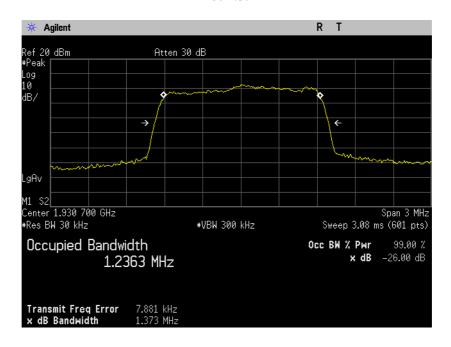

^{*\$24.238(}b) requires a measurement RBW of at least 1% of the -26dBc Occupied Bandwidth. From these results, a RBW of 3 kHz was used.

Modulation: EDGE -8PSK

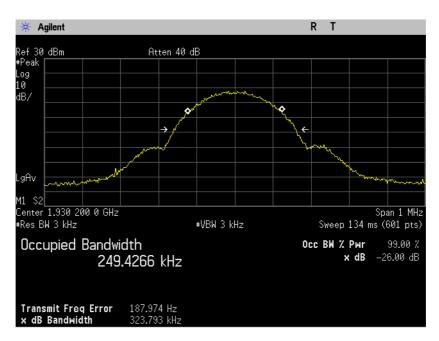
Channel	Frequency [MHz]	-26dBc Occupied Bandwidth [kHz]	99 % Occupied Bandwidth [kHz]	Reference
Low	972.6	309.8	242.4	Plot 4.3.16
Middle	1002.0	321.6	246.1	Plot 4.3.20
High	1017.0	307.6	241.9	Plot 4.3.24


^{*\$24.238(}b) requires a measurement RBW of at least 1% of the -26dBc Occupied Bandwidth. From these results, a RBW of 3 kHz was used.

Alvarion Ltd. Page 16 of 81 Remote Unit 2308



Lower Frequency Modulation: CDMA 2000 Plot 4.3.1

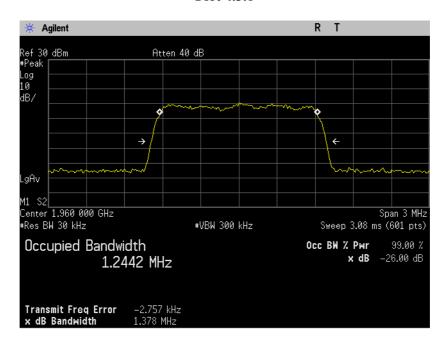


Modulation: CDMA 2000 1xEVDO Plot 4.3.2

Modulation: GSM –GMSK Plot 4.3.3

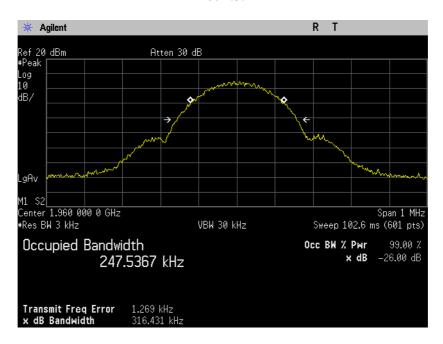
Modulation: EDGE-8PSK Plot 4.3.4

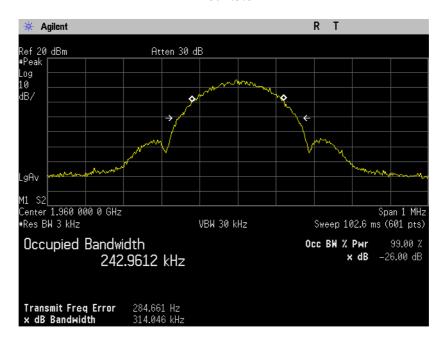
Alvarion Ltd. Page 18 of 81 Remote Unit 2308

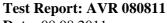


Date: 08.08.2011

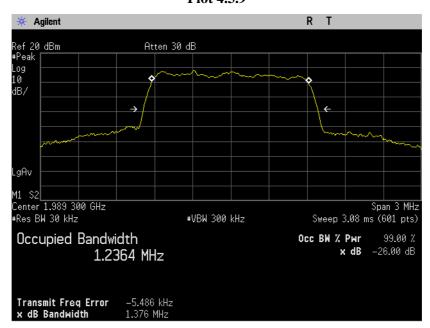
Middle Frequency Modulation: CDMA 2000 Plot 4.3.5

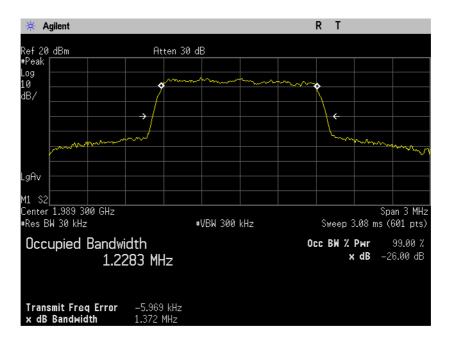

Modulation: CDMA 2000 1xEVDO Plot 4.3.6




Date: 08.08.2011

Modulation: GSM –GMSK Plot 4.3.7

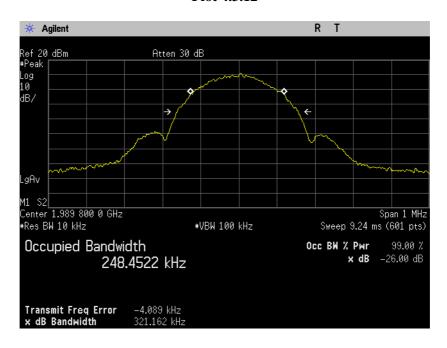

Modulation: EDGE-8PSK Plot 4.3.8



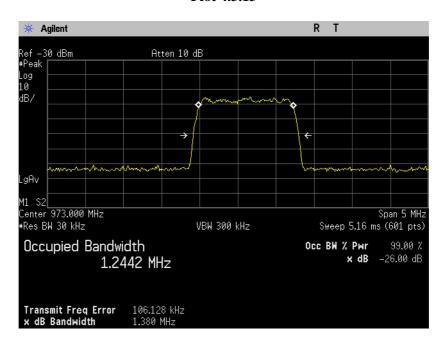
Upper Frequency Modulation: CDMA 2000 Plot 4.3.9

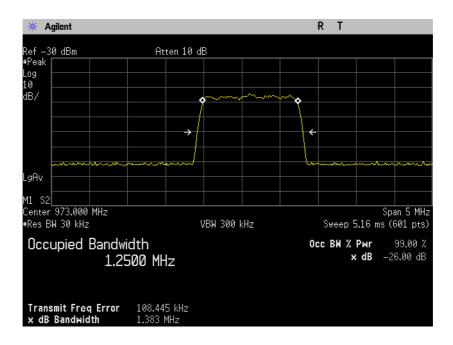


Modulation: CDMA 2000-1xEVDO Plot 4.3.10



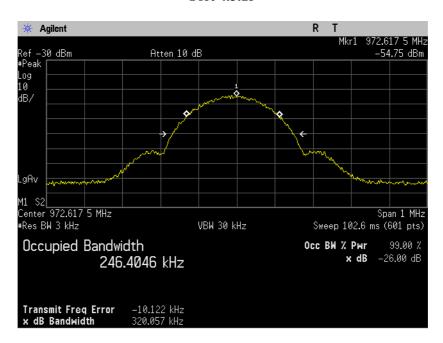
Modulation: GSM-GMSK Plot 4.3.11

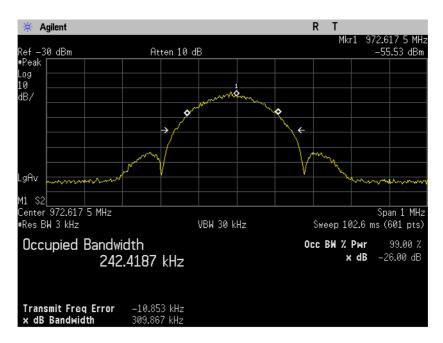

Modulation: EDGE-8PSK Plot 4.3.12



Date: 08.08.2011

INPUT Lower Frequency Modulation: CDMA 2000 Plot 4.3.13

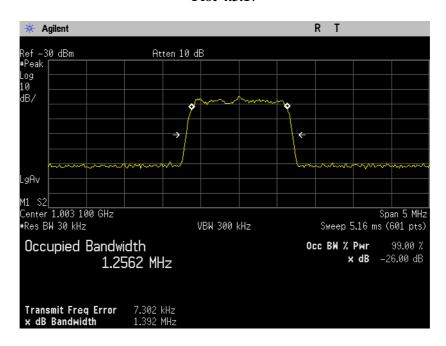

Modulation: CDMA 2000 1xEVDO Plot 4.3.14



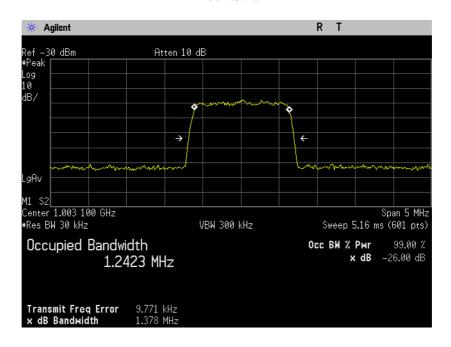
Date: 08.08.2011

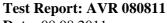
Modulation: GSM –GMSK Plot 4.3.15

Modulation: EDGE-8PSK Plot 4.3.16

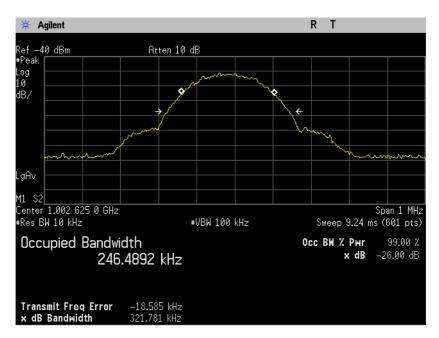


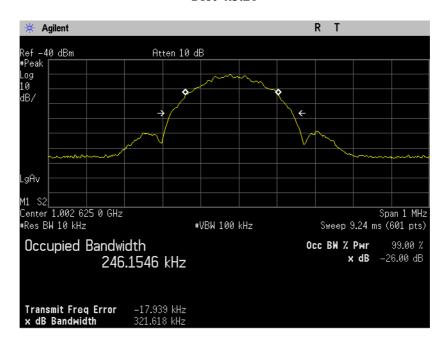
Alvarion Ltd. Page 24 of 81 Remote Unit 2308

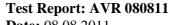



Date: 08.08.2011

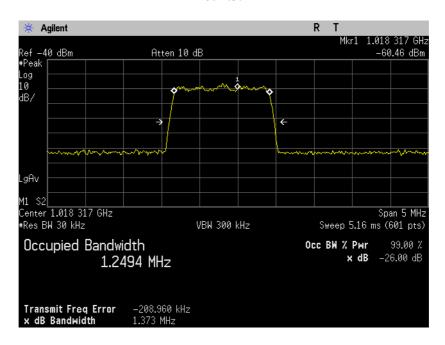
Middle Frequency Modulation: CDMA 2000 Plot 4.3.17

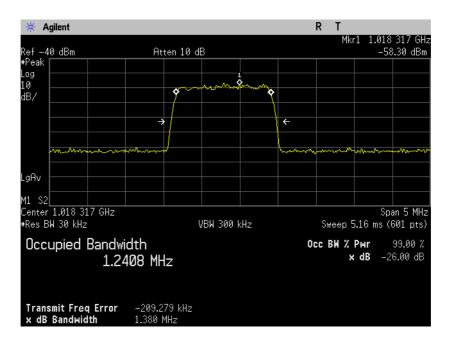

Modulation: CDMA 2000-1xEVDO Plot 4.3.18



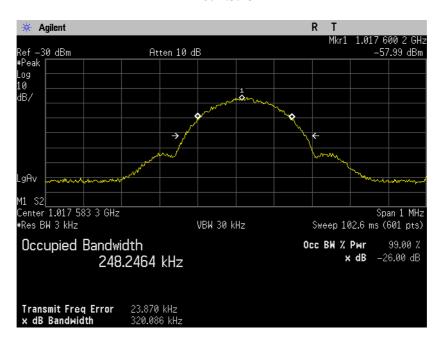


Modulation: GSM-GMSK Plot 4.3.19

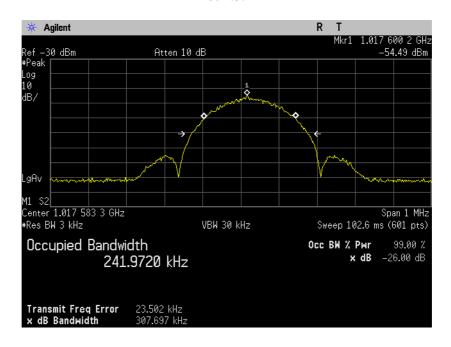

Modulation: EDGE-8PSK Plot 4.3.20



Upper Frequency Modulation: CDMA 2000 Plot 4.3.21



Modulation: CDMA 2000 1xEVDO Plot 4.3.22



Modulation: GSM –GMSK Plot 4.3.23

Modulation: EDGE-8PSK Plot 4.3.24

Date: 08.08.2011

4.4. Out of Band Emissions, Radiated Measurements

Reference document:	47 CFR §24.238 & §2.1053			
Test Requirements:	The power of any emission outside of the authorized operating frequency block shall be attenuated below the transmitting power (P, in Watts) by a factor of at least 43+10log(P) dB*.			
Test setup:	See Sec. 2.2			
Method of testing:	Radiated, CW Signal			
Operating conditions:	Under normal test conditions		Pass	
S.A. Settings:	f <1GHz: RBW: 120kHz,VBW: 1MHz f>1GHz: RBW: 1MHz, VBW: 3MHz			
Environment conditions:	Ambient Temperature: 22°c	Relative Humidity: Atmospheric Pressure 48% 1011.4 hPa		
Test Result:	See below	See Plots Appendix A		

^{*}It translates to a limit of -13dBm

Test results:

All measurements were done in horizontal and vertical polarizations; the table below shows the worst case.

Frequency [MHz]	Radiated Emission Level [dBµV/m]	Radiated Emission Level* EIRP [dBm]	Limit [dBm]	Margin [dB]	Result		
	PCS 1900 Low 1930.2 MHz						
49.5	39.21	-61.1	-13	-48.06	Pass		
1300	46.21	-53.6	-13	-40.57	Pass		
1600	45.42	-52.8	-13	-39.80	Pass		
2127.56	47.37	-53.0	-13	-39.98	Pass		
3860.4	48.47	-49.8	-13	-36.82	Pass		
5790.6	49.67	-49.6	-13	-36.56	Pass		
		PCS 1900 Middle 1960MHz					
53.7	38.53	-61.7	-13	-48.74	Pass		
1300	44.32	-55.5	-13	-42.46	Pass		
1600	44.66	-53.6	-13	-40.56	Pass		
2146.3	46.91	-53.4	-13	-40.44	Pass		
3920	47.82	-50.5	-13	-37.47	Pass		
5880	65.37	-33.9	-13	-20.86	Pass		
7840	49.51	-45.7	-13	-32.67	Pass		
		PCS 1900 High 1989.8 MHz					
51	37.79	-62.5	-13	-49.48	Pass		
1300	44.56	-55.2	-13	-42.22	Pass		
1600	43.69	-54.5	-13	-41.53	Pass		
2172.567	49.83	-50.5	-13	-37.52	Pass		
5.969	52.45	-47.6	-13	-34.56	Pass		
8.562	49.3	-46.2	-13	-33.21	Pass		

 $\label{eq:cable_loss} \begin{cal}{l} Radiated\ Emission\ [dBm] = Measured\ [dBm] - Cable\ Loss\ [dB] + Substitution\ Antenna\ Gain\ [dBi], \\ ERP\ can\ be\ calculated\ from\ EIRP\ by\ subtracting\ 2.1dBi. \\ \end{cal}$

Date: 08.08.2011

4.5. Out of Band Emissions and Inter-modulation- Conducted Measurements

Reference document:	47 CFR §24.238 & §2.1051			
Test Requirements:	The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10log (P) dB*.			
Test setup:	See sec 2.3			
Method of testing:	Conducted	Pass		
Operating conditions:	Under normal test conditions			
S.A. Settings:	RBW:1 MHz, VBW: 1 MHz			
Environment conditions:	Ambient Temperature: 22°c	Relative Humidity: 48%	Atmospheric Pressure: 1011.4 hPa	
Test Result:	See below	See Plot 4.5.1- Plot 4.5.36		

^{*}It translates to a limit of -13dBm

Test results:

Modulation: CDMA 2000

Frequency [MHz]	Emission Level* [dBm]	Limit [dBm]	Reference	Actual Attenuation [dBc]	Margin [dB]	Result
1930.7 & 1931.950	15.0					Carrier
All Spurious at le	east 20 dB blow the limit	-13	Plot 4.5.1- Plot 4.5.3	>28dBc	>20dB	Pass
1960	15.0					Carrier
All Spurious at le	All Spurious at least 210 dB blow the limit		Plot4.5.13- Plot 4.5.15	>28dBc	>20dB	Pass
1989.3 & 1988.05	15.0					Carrier
All Spurious at le	east 20 dB blow the limit	-13	Plot 4.5.25- Plot 4.5.27	>28dBc	>20dB	Pass

^{*} Spurious Emission [dBm] = Measured [dBm] - Attenuations [dB]

Modulation: CDMA 2000 1xEVDO

Frequency [MHz]	Emission Level* [dBm]	Limit [dBm]	Reference	Actual Attenuation [dBc]	Margin [dB]	Result
1930.7 & 1931.950	15.0					Carrier
All Spurious at least 20 dB blow the limit		-13	Plot 4.5.4- Plot 4.5.6	>28dBc	>20dB	Pass
1960	15.0					Carrier
All Spurious at least 20 dB blow the limit		-13	Plot 4.5.16- Plot 4.5.18	>28dBc	>20dB	Pass
1989.3 & 1988.05	15.0					Carrier
All Spurious at least 20 dB blow the limit		-13	Plot 4.5.28- Plot 4.5.30	>28dBc	>20dB	Pass

^{*} Spurious Emission [dBm] = Measured [dBm] - Attenuations [dB]

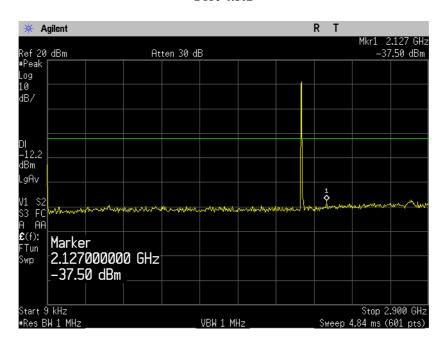
Date: 08.08.2011

Modulation: GSM -GMSK

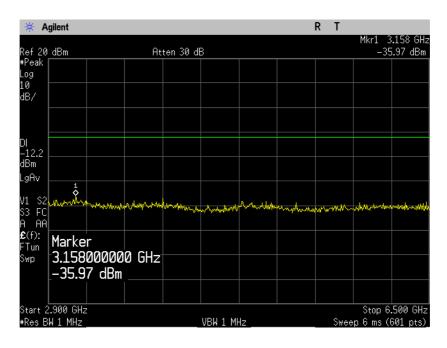
Frequency [MHz]	Emission Level* [dBm]	Limit [dBm]	Reference	Actual Attenuation [dBc]	Margin [dB]	Result
1930.2 & 1930.4	15.0					Carrier
All Spurious at least 20 dB blow the limit		-13	Plot 4.5.7- Plot 4.5.9	>28dBc	>20dB	Pass
1960	15.0					Carrier
All Spurious at least 20 dB blow the limit		-13	Plot 4.5.19- Plot 4.5.21	>28dBc	>20dB	Pass
1989.8 & 1989.6	15.0					Carrier
All Spurious at least 20 dB blow the limit		-13	Plot 4.5.31- Plot 4.5.33	>28dBc	>20dB	Pass

^{*} Spurious Emission [dBm] = Measured [dBm] - Attenuations [dB]

Modulation: EDGE-8PSK

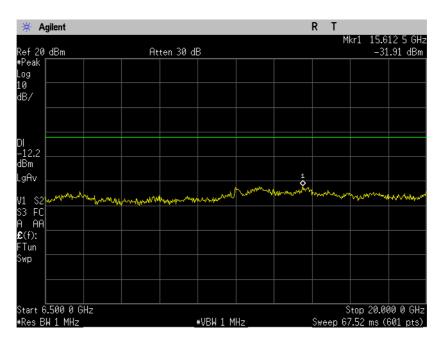

Frequency [MHz]	Emission Level* [dBm]	Limit [dBm]	Reference	Actual Attenuation [dBc]	Margin [dB]	Result
1930.2 & 1930.4	15.0					Carrier
All Spurious at least 20 dB blow the limit		-13	Plot 4.5.10- Plot 4.5.12	>28dBc	>20dB	Pass
1960	15.0					Carrier
All Spurious at least 20 dB blow the limit		-13	Plot 4.5.22- Plot 4.5.24	>28dBc	>20dB	Pass
1989.8 & 1989.6	15.0					Carrier
All Spurious at least 20 dB blow the limit		-13	Plot 4.5.34- Plot 4.5.36	>28dBc	>20dB	Pass

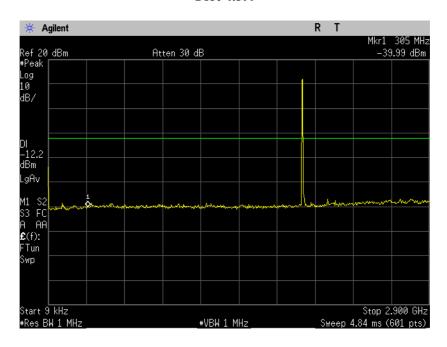
^{*} Spurious Emission [dBm] = Measured [dBm] - Attenuations [dB]



Date: 08.08.2011

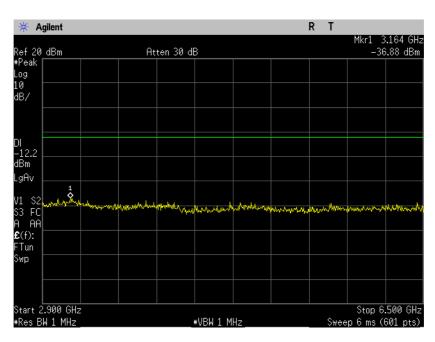
Lower frequency Modulation: CDMA 2000 Plot 4.5.1

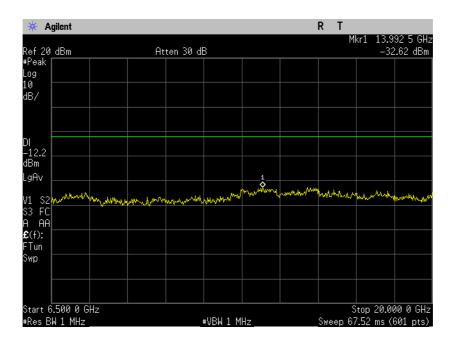

Plot 4.5.2



Date: 08.08.2011

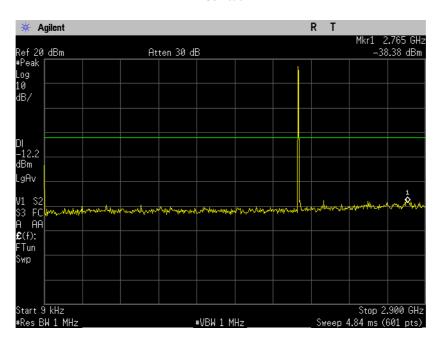
Plot 4.5.3

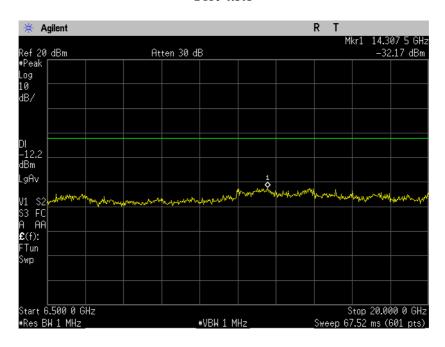

Modulation: CDMA 2000 1xEVDO Plot 4.5.4



Date: 08.08.2011

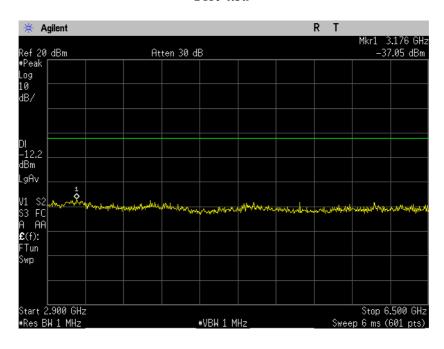
Plot 4.5.5

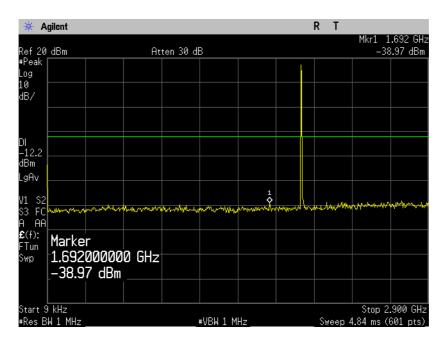

Plot 4.5.6



Date: 08.08.2011

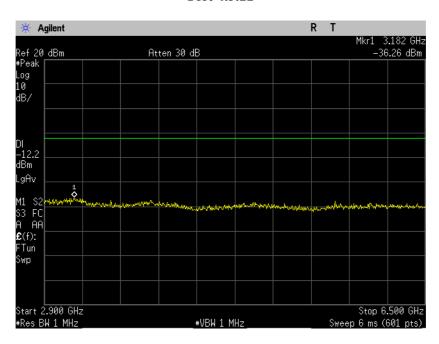
Modulation: GSM –GMSK Plot 4.5.7

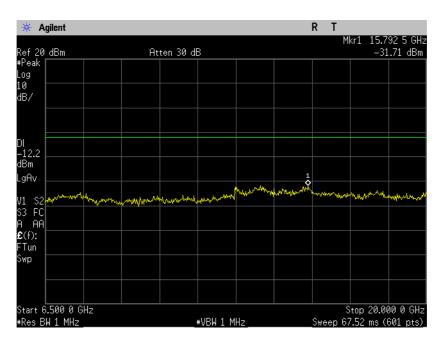

Plot 4.5.8



Date: 08.08.2011

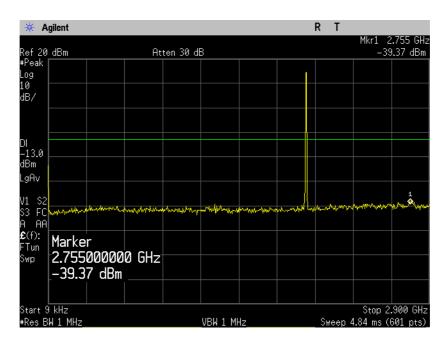
Plot 4.5.9

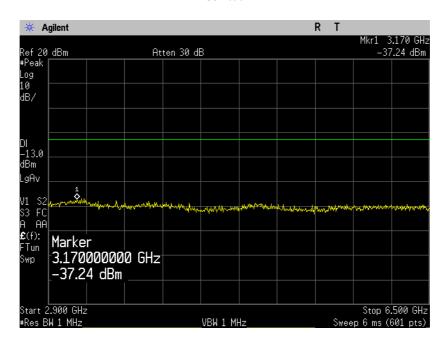

Modulation: EDGE-8PSK Plot 4.5.10



Date: 08.08.2011

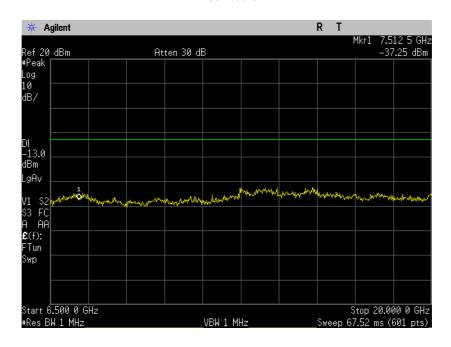
Plot 4.5.11

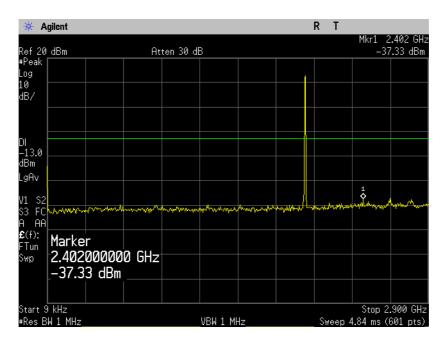

Plot 4.5.12



Date: 08.08.2011

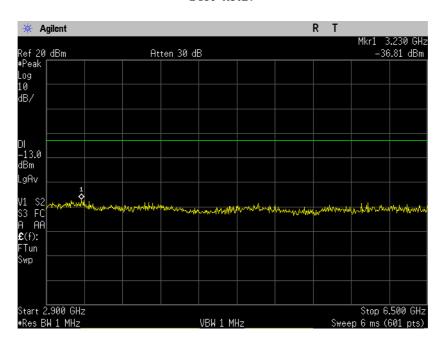
Middle Frequency Modulation: CDMA 2000 Plot 4.5.13

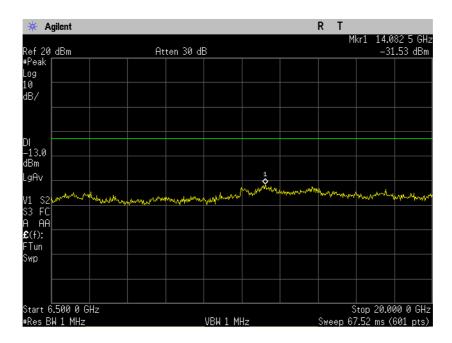

Plot 4.5.14



Date: 08.08.2011

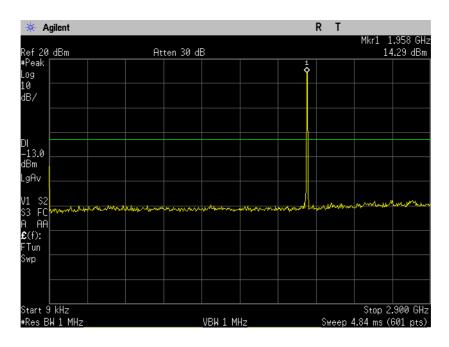
Plot 4.5.15

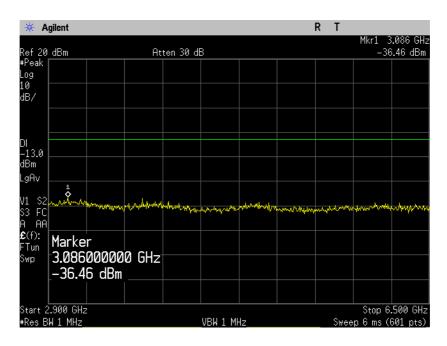

Modulation: CDMA 2000 1xEVDO Plot 4.5.16



Date: 08.08.2011

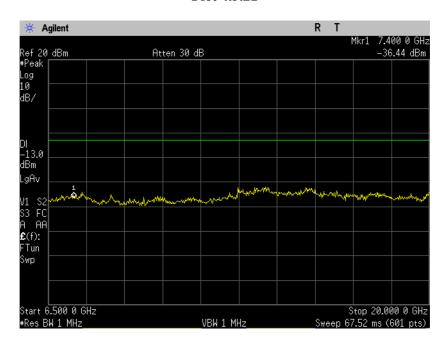
Plot 4.5.17

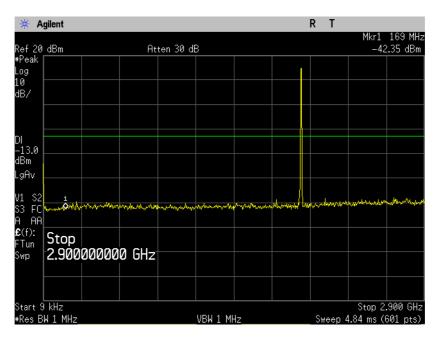

Plot 4.5.18



Date: 08.08.2011

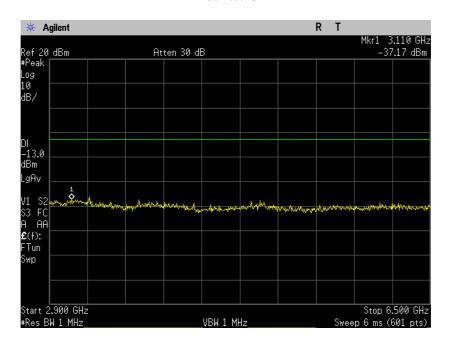
Modulation: GSM –GMSK Plot 4.5.19

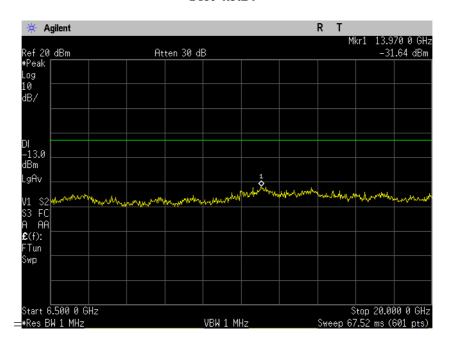

Plot 4.5.20



Date: 08.08.2011

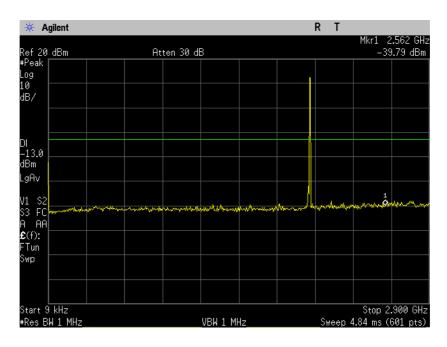
Plot 4.5.21

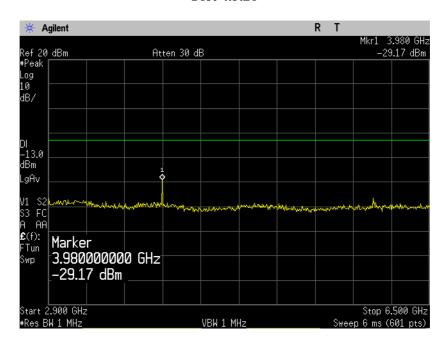

Modulation: EDGE-8PSK Plot 4.5.22



Date: 08.08.2011

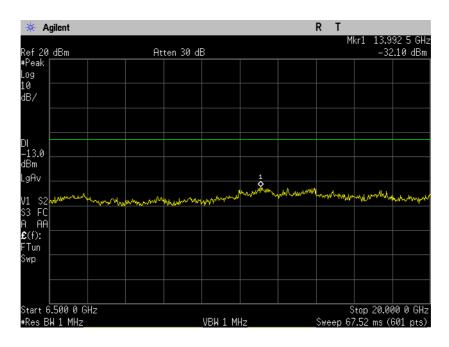
Plot 4.5.23

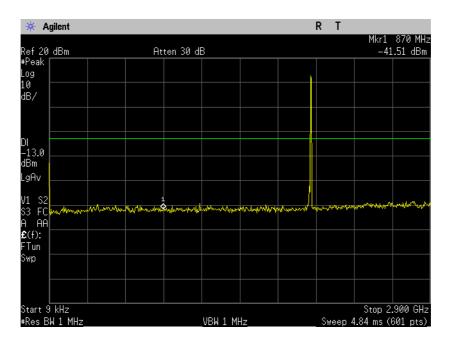

Plot 4.5.24



Date: 08.08.2011

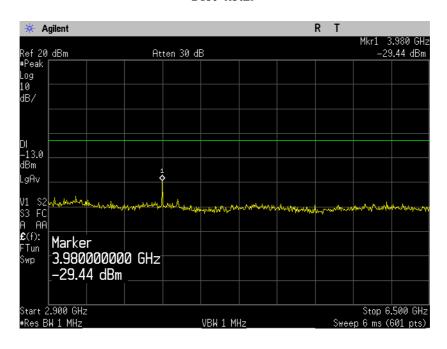
Upper Frequency Modulation: CDMA 2000 Plot 4.5.25

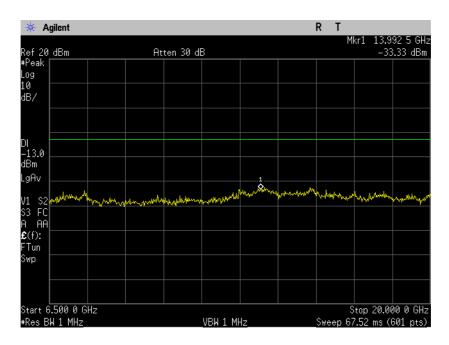

Plot 4.5.26



Date: 08.08.2011

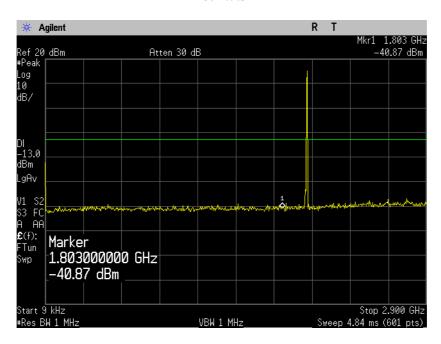
Plot 4.5.27

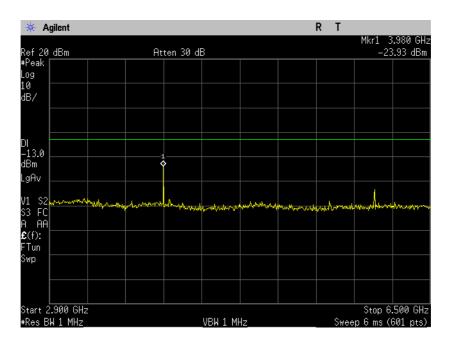

Modulation: CDMA 2000 1xEVDO Plot 4.5.28



Date: 08.08.2011

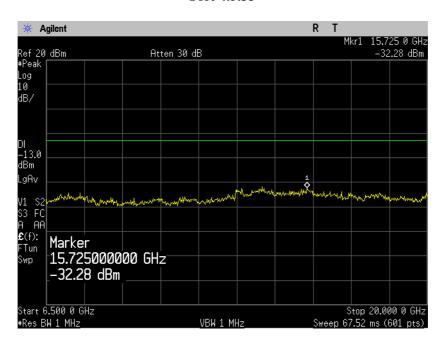
Plot 4.5.29

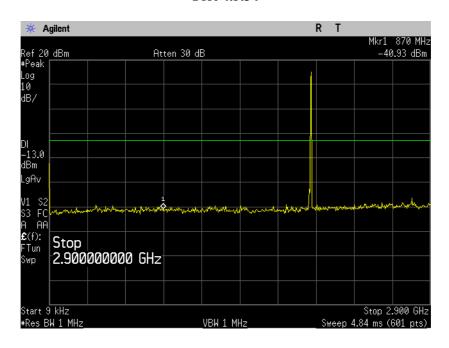

Plot 4.5.30



Date: 08.08.2011

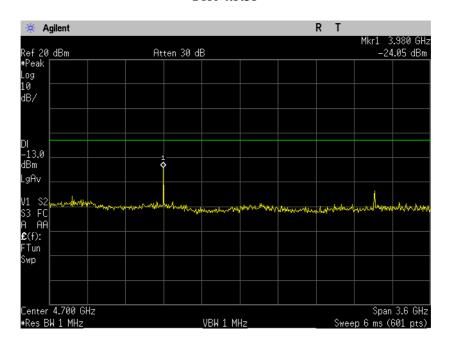
Modulation: GSM –GMSK Plot 4.5.31

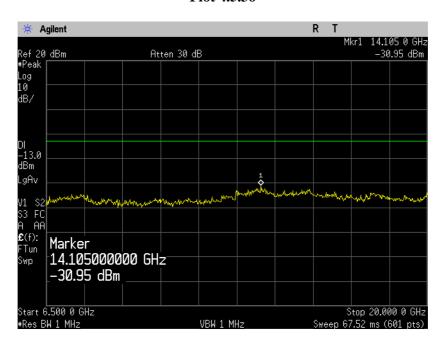

Plot 4.5.32



Date: 08.08.2011

Plot 4.5.33


Modulation: EDGE-8PSK Plot 4.5.34



Date: 08.08.2011

Plot 4.5.35

Plot 4.5.36

Date: 08.08.2011

4.6. Block Edge Emissions and Inter-Modulation, Conducted Measurements

Reference document:	47 CFR §24.238				
Test Requirements:	The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10log (P) dB*. In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least 1% of the EBW may be employed.				
Test setup:	See sec 2.3	_			
Method of testing:	Conducted				
Operating conditions:	Under normal test conditions	Pass			
S.A. Settings:	RBW: 30kHz, VBW: 300kHz				
Environment conditions:	Ambient Temperature: 22°c	Relative Atmospheric Pressure Humidity: 1011.4 hPa 48%			
Test Result:	See below	See Plot 4.6.1 - Plot 4.6.16			

^{*}It translates to a limit of -13dBm

Test results:

Modulation: CDMA 2000

Frequency [MHz]	Emission Level* [dBm]	Limit [dBm]	Reference	Actual Attenuation [dBc]	Margin [dB]	Result
1930.7 & 1931.950	15.0					Carrier
1930	-32.10	-13	4.6.2	47.1	-19.1	pass
All other Spurious levels at least 20 dB blow the limit						Pass
1989.3 & 1988.05 15.0						Carrier
1990	-24.77	-13	4.6.10	39.77	-11.77	Pass
All other Spurious levels at least 20 dB blow the limit						Pass

^{*} Spurious Emission [dBm] = Measured [dBm] - Attenuations [dB]

Date: 08.08.2011

Modulation: CDMA 2000 1xEVDO

Frequency [MHz]	Emission Level* [dBm]	Limit [dBm]	Reference	Actual Attenuation [dBc]	Margin [dB]	Result
1930.7 & 1931.950	15.0					Carrier
1930	-33.71	-13	Plot 4.6.4	48.71	-20.71	pass
All Other Spurious at least 20 dB blow the limit						
1989.3 & 1988.05					Carrier	
1990	-23.67	-13	Plot 4.6.12	38.67	-10.67	Pass
All Spurious at least 20 dB blow the limit						Pass

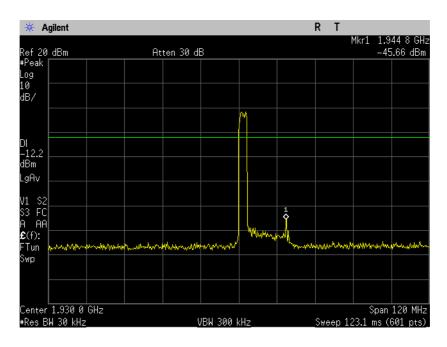
^{*} Spurious Emission [dBm] = Measured [dBm] - Attenuations [dB]

Modulation: GSM –GMSK

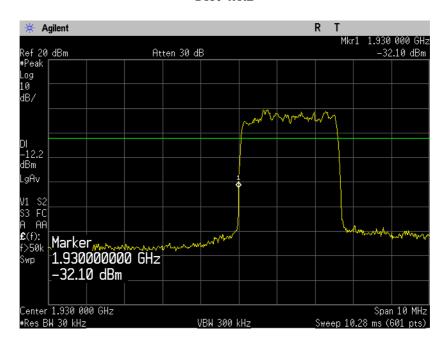
Frequency [MHz]	Emission Level* [dBm]	Limit [dBm]	Reference	Actual Attenuation [dBc]	Margin [dB]	Result
1930.2 & 1930.4	15.0					Carrier
1930	-22.27	-13	Plot 4.6.6	37.27	-9.27	pass
All Other Spurious at least 10 dB blow the limit						
1989.8 & 1989.6	15.0					Carrier
1990	-20.6	-13	Plot 4.6.14	35.6	-7.6	Pass
All Spurious at least 20 dB blow the limit						Pass

^{*} Spurious Emission [dBm] = Measured [dBm] - Attenuations [dB]

Modulation: EDGE-8PSK

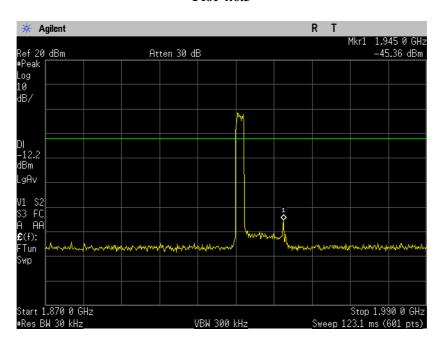

Frequency [MHz]	Emission Level* [dBm]	Limit [dBm]	Reference	Actual Attenuation [dBc]	Margin [dB]	Result
1930.2 & 1930.4	15.0					Carrier
1930	-26.20	-13	Plot 4.6.8	41.2	-13.2	pass
All Other Spurious at least 20 dB blow the limit						Pass
1989.8 & 1989.6	15.0					Carrier
1990	-26.88	-13	Plot 4.6.16	41.88	-13.88	Pass
All Spurious at least 20 dB blow the limit						Pass

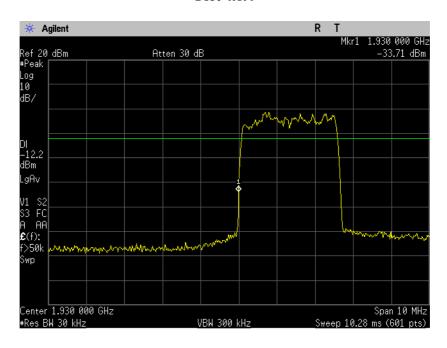
^{*} Spurious Emission [dBm] = Measured [dBm] - Attenuations [dB]



Date: 08.08.2011

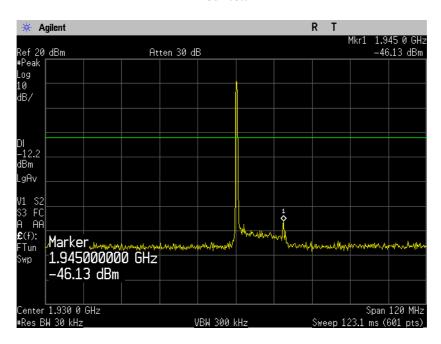
Lower frequency Modulation: CDMA 2000 Plot 4.6.1

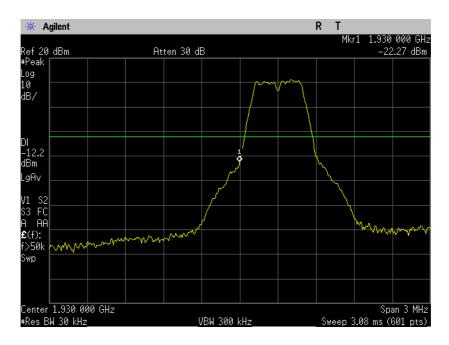

Plot 4.6.2



Date: 08.08.2011

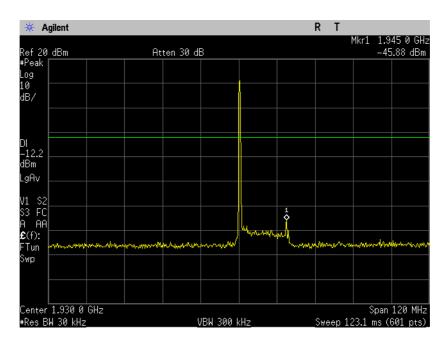
Modulation: CDMA 2000 1xEVDO Plot 4.6.3

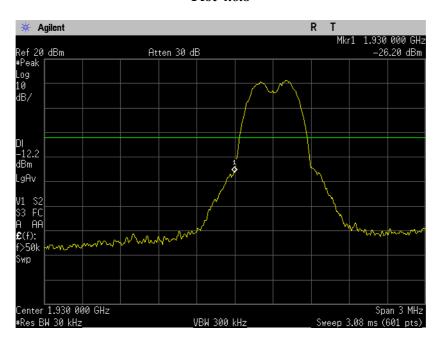

Plot 4.6.4



Date: 08.08.2011

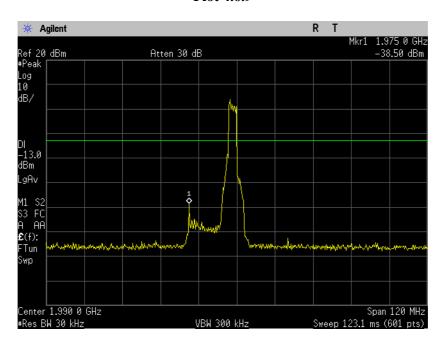
Modulation: GSM –GMSK Plot 4.6.5

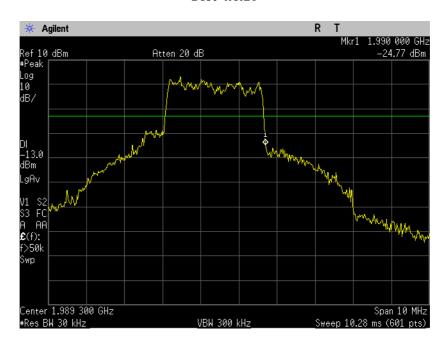

Plot 4.6.6



Date: 08.08.2011

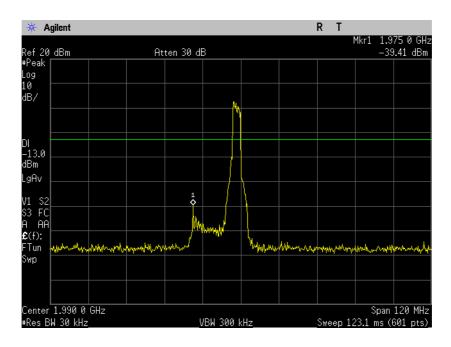
Modulation: EDGE-8PSK Plot 4.6.7

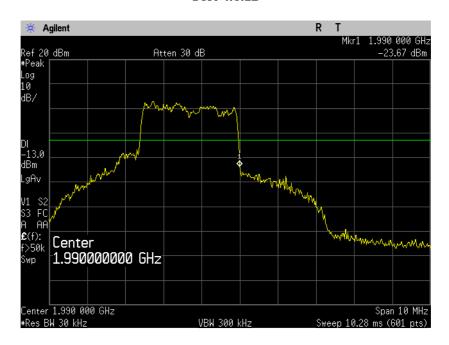

Plot 4.6.8



Date: 08.08.2011

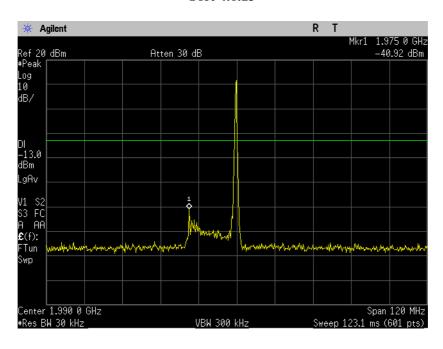
Upper Frequency Modulation: CDMA 2000 Plot 4.6.9

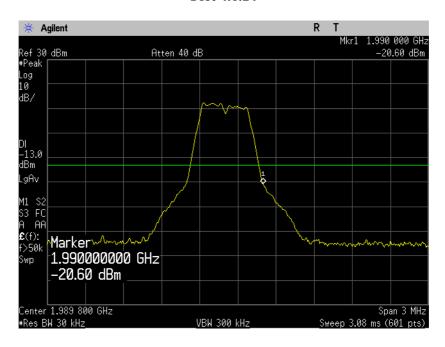

Plot 4.6.10



Date: 08.08.2011

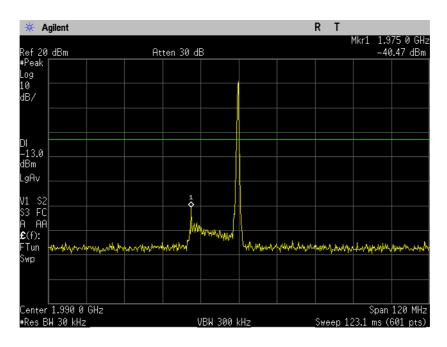
Modulation: CDMA 2000 1xEVDO Plot 4.6.11

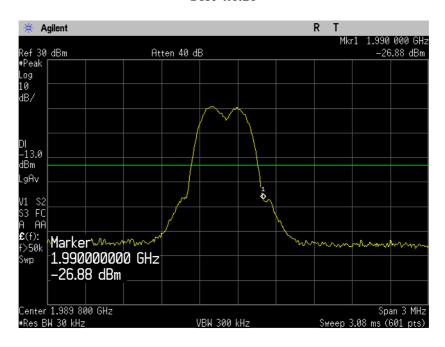

Plot 4.6.12



Date: 08.08.2011

Modulation: GSM –GMSK Plot 4.6.13


Plot 4.6.14

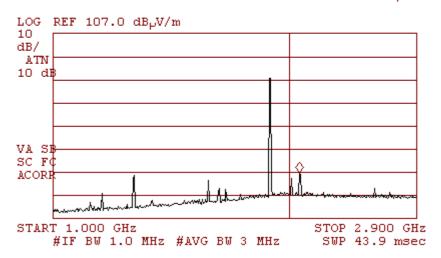


Date: 08.08.2011

Modulation: EDGE-8PSK Plot 4.6.15

Plot 4.6.16

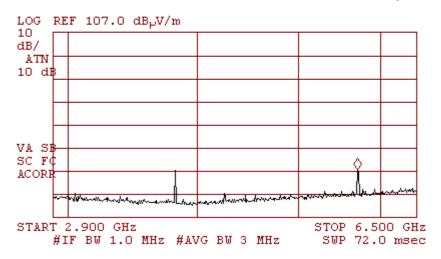
Date: 08.08.2011


5. Appendix

Appendix A: Spurious emissions test plots PCS 1900 & 1930.2MHz

Lowest frequency Horizontal & Vertical Polarization Plot 1

ÞΩ

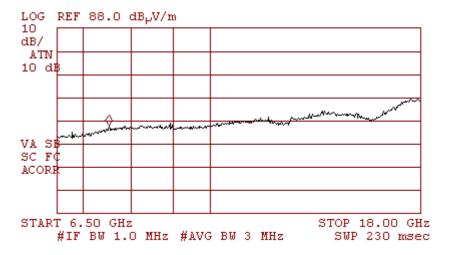

ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR 2.125 GHz
46.76 dB_pV/m

Horizontal & Vertical Polarization Plot 2

þρ

ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR 5.796 GHz
47.75 dB_pV/m

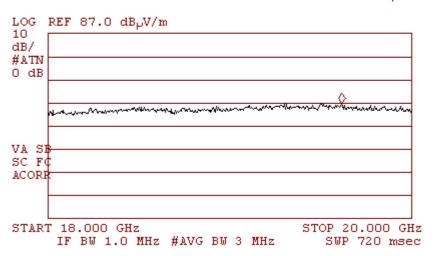
Date: 08.08.2011


Horizontal & Vertical Polarization Plot 3

þσ

ACTV DET: PEAK

MEAS DET: PEAK QP AVG


MKR 7.73 GHz 45.84 dB_PV/m

Horizontal & Vertical Polarization Plot 4

ÞΩ

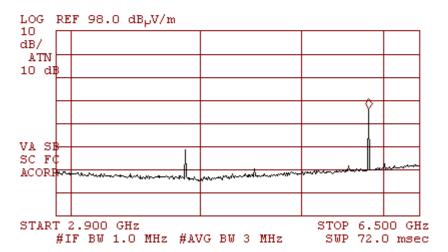
ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR 19.598 GHz
56.46 dB_pV/m

Date: 08.08.2011

Middle frequency 1960 MHz Horizontal & Vertical Polarization Plot 5

þρ

ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR 2.149 GHz
45.88 dB_pV/m



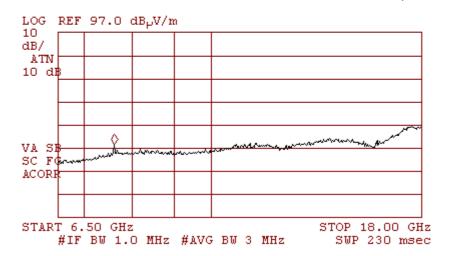
Horizontal & Vertical Polarization Plot 6

þα

ACTV DET: PEAK MEAS DET: PEAK QP AVG

MKR 5.894 GHz 64.07 dBpV/m

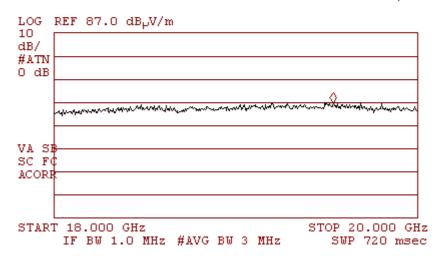
Alvarion Ltd. Page 62 of 81 Remote Unit 2308



Date: 08.08.2011

Horizontal & Vertical Polarization Plot 7

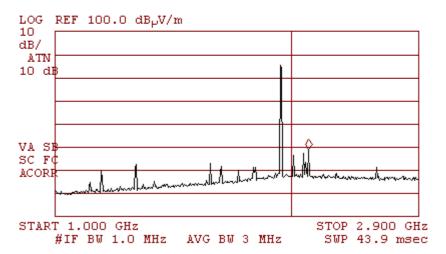
þα


ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR 7.84 GHz
48.40 dB_pV/m

Horizontal & Vertical Polarization Plot 8

þα

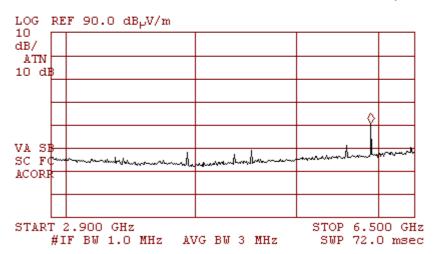
ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR 19.518 GHz
56.52 dB_pV/m



Date: 08.08.2011

Upper frequency 1989.8 MHz, CW Horizontal & Vertical Polarization Plot 9

þα

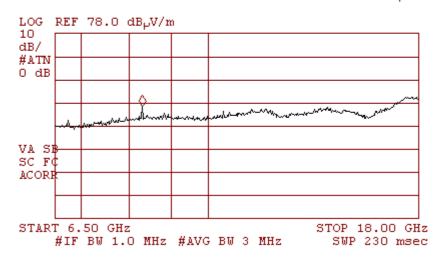

ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR 2.173 GHz
48.79 dB_pV/m

Horizontal & Vertical Polarization Plot 10

ÞΩ

ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR 5.980 GHz
50.49 dB_pV/m

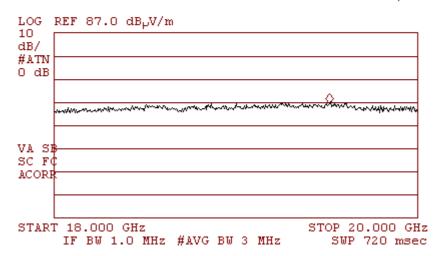
Alvarion Ltd. Page 64 of 81 Remote Unit 2308


Date: 08.08.2011

Horizontal & Vertical Polarization Plot 11

þα

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 8.57 GHz

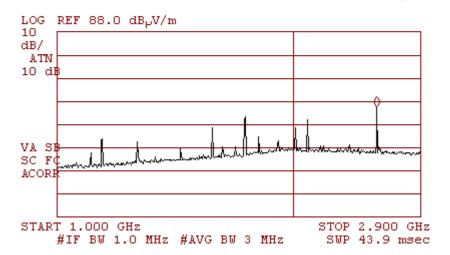

46.46 dB_PV/m

Plot 12

þα

ACTV DET: PEAK
MEAS DET: PEAK QP AVG MKR 19.498 GHz 56.20 dBpV/m

Alvarion Ltd. Page 65 of 81 Remote Unit 2308

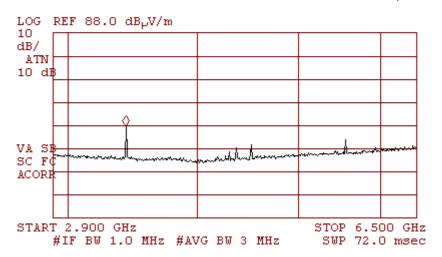

Date: 08.08.2011

GSM 850

Lowest frequency 869.2 MHz Horizontal & Vertical Polarization Plot 13

þσ

ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR 2.612 GHz
55.44 dB_pV/m


Horizontal & Vertical Polarization Plot 14

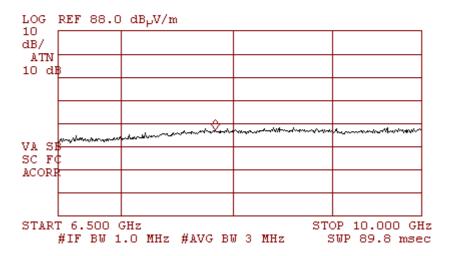
ÞΩ

ACTV DET: PEAK

MEAS DET: PEAK QP AVG

MKR 3.476 GHz 47.41 dB_pV/m

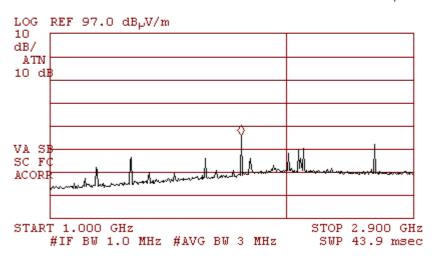
Alvarion Ltd. Page 66 of 81 Remote Unit 2308



Date: 08.08.2011

Horizontal & Vertical Polarization Plot 15

ÞΩ

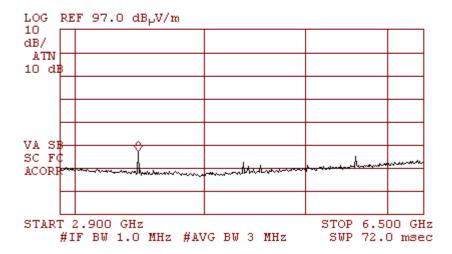

ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR 8.014 GHz
45.06 dB_pV/m

Middle frequency 880 MHz Horizontal & Vertical Polarization Plot 16

þσ

ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR 1.759 GHz
52.63 dB_pV/m

Alvarion Ltd. Page 67 of 81 Remote Unit 2308



Date: 08.08.2011

Horizontal & Vertical Polarization Plot 17

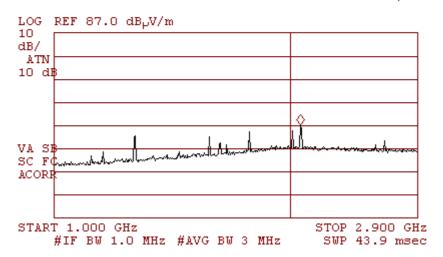
þα


ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR 3.519 GHz
44.07 dB_pV/m

Horizontal & Vertical Polarization Plot 18

ÞΩ

ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR 9.772 GHz
45.34 dB_pV/m

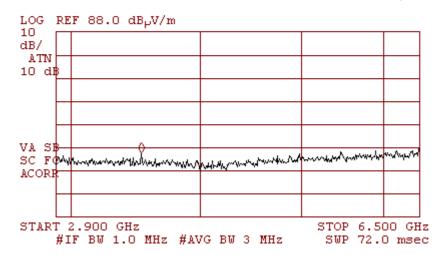


Date: 08.08.2011

Highest frequency 893.8 MHz Horizontal & Vertical Polarization Plot 19

þσ

ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR 2.125 GHz
46.95 dB_pV/m



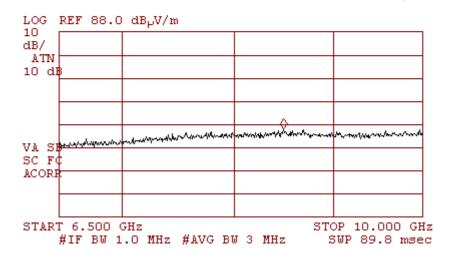
Horizontal & Vertical Polarization Plot 20

þα

ACTV DET: PEAK MEAS DET: PEAK QP AVG

MKR 3.576 GHz 35.53 dB_PV/m

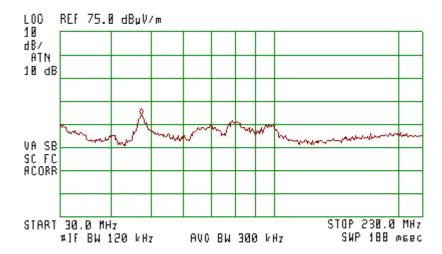
Alvarion Ltd. Page 69 of 81 Remote Unit 2308



Date: 08.08.2011

Horizontal & Vertical Polarization Plot 21

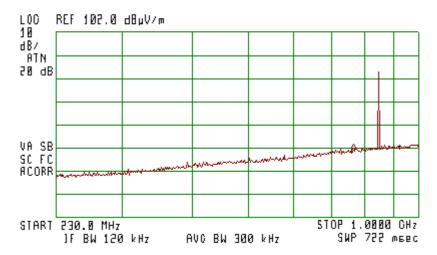
ÞΩ


ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR 8.661 GHz
45.92 dB_pV/m

Lowest frequency Worst case of all frequency Bands Vertical & Horizontal Polarization Plot 22

(%)

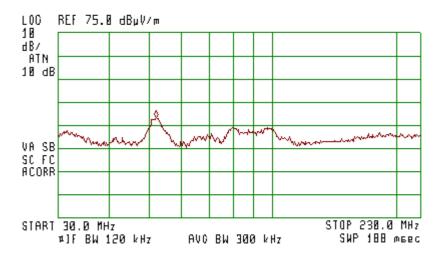
ACTV DET: PEAK MERS DET: PEAK OP AVG NKR 49.5 MHz 39.21 dByV/n



Date: 08.08.2011

Plot 23

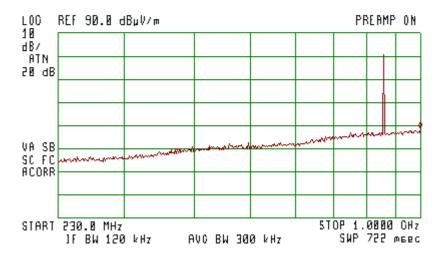
(%)


ACTV DET: PEAK MERS DET: PEAK OP AVG MKR 790.3 MHz 50.96 dByV/m

Middle Frequency Plot 24

(%)

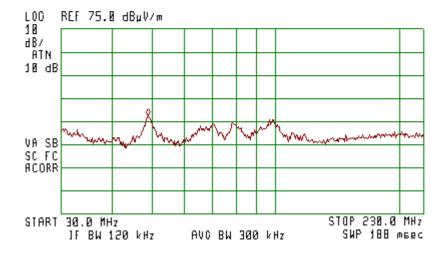
ACTV DET: PEAK MERS DET: PEAK OP AVG NKR 53.7 MHz 38.53 dByV/n



Date: 08.08.2011

Plot 25

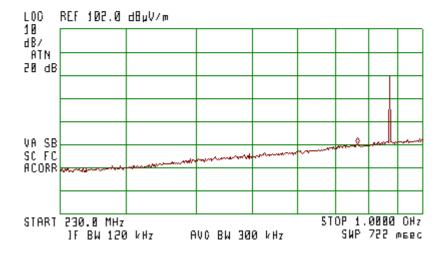
(%)


AGTV DET: PEAK MEAS DET: PEAK OP AVG MKR 997.1 MHz 48.88 dByV/n

Highest Frequency Horizontal Polarization Plot 26

(%)

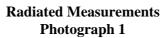
AGTV DET: PEAK MERS DET: PEAK OP AVG NKR 51.0 MHz 37.79 dByV/n

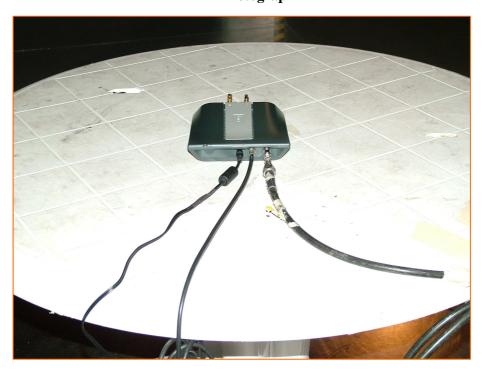


Date: 08.08.2011

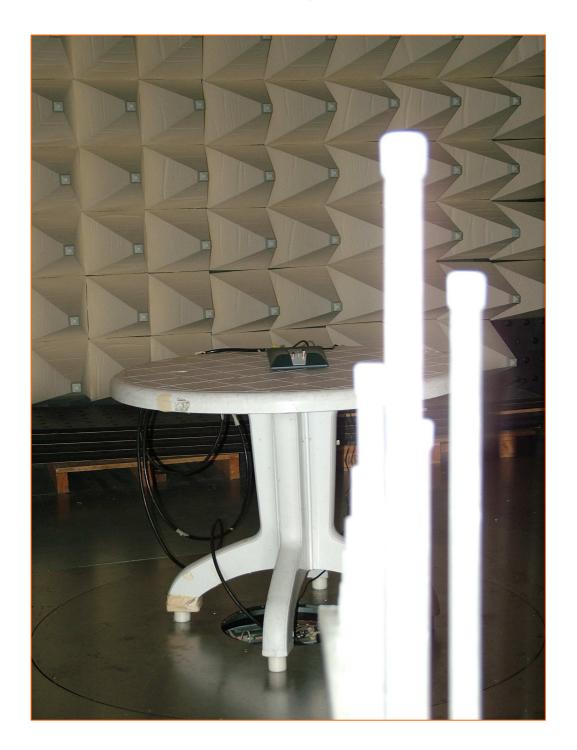
Vertical Polarization Plot 27

(%)


ACTV DET: PEAK MERS DET: PEAK OP AVG MKR 790.3 MHz 52.36 dByV/n


Date: 08.08.2011

Appendix B: Test Photographs


Photograph 2

Test Report: AVR 080811 Date: 08.08.2011

Photograph 3

Date: 08.08.2011

Conducted measurements Photograph 4

Frequency Stability measurement Photograph 5

Date: 08.08.2011

Frequency Stability measurement Photograph 6

Date: 08.08.2011

Appendix C: Auxiliary Equipment

Date: 08.08.2011

Appendix D: List of Measuring Equipment used:

Equipment	Manufacturer/ Model	Serial Number	Due date	
CISPR16 EMI Receiver	HP8546A	3710A00392	30.06.2012	
Spectrum Analyzer 9kHz ÷ 22 GHz	HP 8593EM	3536A00131	30.06.2012	
Spectrum Analyzer 100 Hz ÷ 26.5 GHz	Agilent E7405A	US41160436	30.06.2012	
LNA Amplifier 1 GHz ÷ 18 GHz	AMP – 5D-010180-30-10P-GW	618653	01.01.2012	
Dual Ridged Guide Ant.1-18 GHz	EMCO 3115	9602-4677	01.01.2012	
Signal generator	Agilent E4432B	GB40051138	25.07.2012	
Signal generator	Agilent E4438C	GB39430233	30.07.2012	
Antenna 18 GHz ÷ 26.5 GHz	Alpha Industry 861A/599	505	01.01.2012	
Turn table	HD100	100/693	-	
Antenna Mast	HD 100	100/693	-	
Biconical 20 –200 MHz	Schwarzbeck VHBB9124	9124/0255	30.06.2012	
Log-Periodic 200 – 1000 MHz	Schwarzbeck VUSLP9111	VUSLP9111184	30.06.2012	
Pre-Amplifier	MiTeq, AMF-5F-18002650-30-10P	945372	01.01.2012	
LISN	Fischer 50/250-25-2	-	30.06.2012	
Transient Limiter	HP11947A	-	30.06.2012	
Notch Filter	Micro-Tronics BRM50702-05	0001	01.01.2012	
Antenna 15G-40 GHz	Schwarzbeck BBHA 9170	BBHA9170214	01.01.2012	
High pass Filter	Wainwright WHK 1.2/15G-10EF	3	30.06.2012	
High pass Filter	Wainwright WHK2.4/18G-10EF	1	30.06.2012	
Oven	Tenneg Ten	10.158-5	30.06.2012	
LISN	Fischer 50/250-25-2	-	30.06.2012	
Transient Limiter	HP11947A	-	30.06.2012	

Date: 08.08.2011

Appendix E: Accreditation Certificate

Accredited Laboratory

A2LA has accredited

QUALITECH (ECI TELECOM)

Petach-Tikva, ISRAEL for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated & January 2009).

Presented this 22nd day of March 2011.

President & CEO
For the Accreditation Council
Certificate Number 1633.01
Valid to September 30, 2012

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Alvarion Ltd. Page 80 of 81 Remote Unit 2308

Test Report: AVR 080811 Date: 08.08.2011

End of the Test Report

Page 81 of 81 Remote Unit 2308 **Alvarion Ltd.**