Maximum Permissible Exposure (MPE) Calculation

Reference document:	47 CFR §15.247(i) \& §1.1310	
Test Requirements:	According to §1.1310, the criteria listed in tab. 1 shall be used to evaluate the environmental impact of human exposure to RF radiation as specified in §1.1307(b). For equipment authorization purposes the term co-location refers to simultaneously transmitting (co-transmitting) antennas located within 20cm of each other within a product.	
Limit	$1 \mathrm{~mW} / \mathrm{cm}^{2}$	Comply
Calculation Result*:	Power Density $=0.860 \mathrm{~mW} / \mathrm{cm} 2$ at a sphere of 20 cm.	

Prediction for part 22 (max antenna gain for mobile operations)
Maximum conducted peak power: 15 dBm
Highest admissible antenna gain for 850 MHz mobile operation (@20cm) where no routine evaluation is required according \S
2.1091(c) for $\mathrm{P}=1.5 \mathrm{~W}$ ERP
$\mathrm{G}=10 \log 1500 \mathrm{~mW}[E R P]-15 \mathrm{dBm}+2.14 \mathrm{~dB}=18.900 \mathrm{dBi}$
Prediction for part 24 (max antenna gain for mobile operations)
Maximum conducted peak power: 15 dBm
Highest admissible antenna gain for 1900 MHz mobile operation ($@ 20 \mathrm{~cm}$) where no routine evaluation is required according \S
2.1091(c) and § 24.232 for $\mathrm{P}=2 \mathrm{~W}$ EIRP
$\mathrm{G}=10 \log 2000 \mathrm{~mW}[E I R P]-15 \mathrm{dBm}=18.010 \mathrm{dBi}$
In order to meet OET Bulletin 65 requirements the highest admissible antennas gain for $850 \mathrm{MHz} \& 1900 \mathrm{MHz}$ bands are 17 dBi as calculate below:

* Equation given in OET Bulletin 65 is used to estimate the MPE distance.

$$
S=\frac{P G}{4 \pi R^{2}}
$$

$\mathrm{S}=$ power density, in $\mathrm{mW} / \mathrm{cm} 2$
$\mathrm{P}=$ power input to the antenna, in mW
$\mathrm{G}=$ numeric gain of the antenna,
$\mathrm{R}=$ distance to the center of the antenna, in cm
MPE levels at 20 cm are calculated as follows:
850 Band, Worst-Case

Frequency MHz	MPE Distance $[\mathrm{cm}]$	Max. Output Power [mW]	Max Antenna Gain [dBi]	Power density $[\mathrm{mW} / \mathrm{cm} 2]$	Limit [mW/cm2]
GSM850, Worst-Case					
869	20	31.62	17	0.3154	0.5793

1900 Band, Worst-Case

Frequency Band MHz	MPE Distance $[\mathrm{cm}]$	Output Power $[\mathrm{mW}]$	Max. Antenna Gain $[\mathrm{dBi}]$	Power density $[\mathrm{mW} / \mathrm{cm} 2]$	Limit $[\mathrm{mW} / \mathrm{cm} 2]$
1930	20	31.62	17	0.3154	1

Total MPEs for bands are transmitting simultaneously:
$0.3154 / 0.579+0.3154 / 1=0.860 \mathrm{~mW} / \mathrm{cm} 2<1 \mathrm{~mW} / \mathrm{cm} 2$

