

2006-09-20

P.O. Box 300

Yrttipellontie 6

Niko Balabanis

IC: 661E-RX34

Nokia Corporation

FIN-90230 OULU, FINLAND

Tel. +358 (0) 7180 08000

Fax. +358 (0) 7180 58300

19

SAR Compliance Test Report

Date of report:

Client:

Number of pages:

Product contact

person:

Test report no.: **Template version: Testing laboratory:** Cph SAR 0638 03 2.0

TCC Nokia Copenhagen

Laboratory Frederikskaj 1790 COPENHAGEN V

Leif F Klysner

DENMARK Tel. +45 33 292929 Fax. +45 33 292934

Responsible test engineer:

Measurements made by:

Mia-Maria Nielsen, Jesper Nielsen

Tested device:

FCC ID: LJPRX-34

Supplement reports:

Testing has been carried out in accordance with:

RX-34

Cph SAR 0638 04

47CFR §2.1093

Radiofreguency Radiation Exposure Evaluation: Portable Devices

FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency

Electromagnetic Fields

RSS-102

Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields

IEEE 1528 - 2003

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:

Measurement Techniques

Documentation: The documentation of the testing performed on the tested devices is archived for 15 years at

TCC Nokia.

Test results: The tested device complies with the requirements in respect of all parameters subject to the

test. The test results and statements relate only to the items tested. The test report shall not

be reproduced except in full, without written approval of the laboratory.

Date and signatures:

For the contents:

SAR Report Cph_SAR_0638_03 **Applicant: Nokia Corporation**

CC	NTENT	IS .	
1.	SUM	MARY OF SAR TEST REPORT	3
	1.1 1.2 1.2.2 1.2.2 1.2.3	2 Maximum Drift	3 3 3
2.	DESC	CRIPTION OF THE DEVICE UNDER TEST	4
	2.1	DESCRIPTION OF THE ANTENNA	4
3.	TEST	CONDITIONS	4
	3.1	TEMPERATURE AND HUMIDITY	
	3.2	TEST SIGNAL, FREQUENCIES AND OUTPUT POWER	
4.		CRIPTION OF THE TEST EQUIPMENT	
	4.1 4.2 4.3 4.3.3 4.3.3	PHANTOMSTISSUE SIMULANTS	6 7 7
	4.3.3		
5.	DESC	CRIPTION OF THE TEST PROCEDURE	9
6.	5.1 5.2 5.3 MEA	DEVICE HOLDER	9
7.	DECI	JLTS1	2
ΑF	PPENDIX	(A: SYSTEM CHECKING SCANS1	.3
ΑF	PENDIX	(B: MEASUREMENT SCANS1	4
ΑF	PENDIX	C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)1	8.
Αŀ	PENDIX	CD: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)	9

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Period of test	2006-09-18
SN, HW and SW numbers of	SN: 03A088610, HW: 1101, SW: wk36-17, DUT: 27920
tested device	
Batteries used in testing	BP-5L, DUT: 27921, 27923
Headsets used in testing	HS-48, DUT: 27919
Other accessories used in	Memory card, Type: MU-17, DUT: 27927
testing	
State of sample	Prototype unit
Notes	-

1.2 Maximum Results

The maximum measured SAR values for Body Worn configuration is given in section 1.2.1. The device conforms to the requirements of the standard(s) when the maximum measured SAR value is less than or equal to the limit.

1.2.1 Body Worn Configuration

Mode	Ch / f (MHz)	Radiated power	Separation distance	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
WLAN2450	1 / 2412.0	22.01 dBm EIRP	0.95cm	0.409 W/kg	0.46 W/kg	1.6 W/kg	PASSED

^{*}SAR values are scaled up by 12% to cover measurement drift.

1.2.2 Maximum Drift

Maximum drift covered by 12% scaling up of the SAR values	Maximum drift during measurements	
0.5dB	0.13dB	

1.2.3 Measurement Uncertainty

Expanded Uncertainty (k=2) 95%	± 25.8%
--------------------------------	---------

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	Portable
Exposure environment	General population / uncontrolled

Modes and Bands of Operation	ВТ	WLAN
Modulation Mode	GFSK	
Duty Cycle		1
Transmitter Frequency Range (MHz)	2402-2480	2412-2472

2.1 Description of the Antenna

The device has an internal antenna.

3. TEST CONDITIONS

3.1 Temperature and Humidity

Ambient temperature (°C):	20.5 to 22.5
Ambient humidity (RH %):	35 to 55

3.2 Test Signal, Frequencies and Output Power

The device was put into operation using control software.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on lowest, middle and highest channels.

The radiated output power of the device was measured by a separate test laboratory on the same unit(s) as used for SAR testing.

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY4, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements was the 'advanced extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration interval	Calibration expiry
DAE3	339	12 months	2007-08
E-field Probe ET3DV6	1786	12 months	2007-02
Dipole Validation Kit, D2450V2	750	24 months	2008-02
DASY4 software	Version 4.7	•	-

Additional test equipment used in testing:

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Signal Generator	SME06	848650/011	36 months	2008-07
Amplifier	ZHL-42W	E012903	-	-
Power Meter	NRP	100808	24 months	2008-03
Power Sensor	NRP-Z51	100412	12 months	2007-02
Vector Network Analyzer	AT8753ES	MY40001091	12 months	2007-08
Dielectric Probe Kit	HP85070B	US33020403	-	-

4.1.1 Isotropic E-field Probe Type ET3DV6

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection system

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., butyl

diglycol)

Calibration Calibration certificate in Appendix C

Frequency 10 MHz to 3 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 3 GHz)

Optical Surface Detection ± 0.2 mm repeatability in air and clear liquids over diffuse

reflecting surfaces

Directivity \pm 0.2 dB in HSL (rotation around probe axis)

± 0.4 dB in HSL (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB

Dimensions Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application General dosimetry up to 3 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twinheaded "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEEE 1528 - 2003 and FCC Supplement C to 0ET Bulletin 65. All tests were carried out using simulants whose dielectric parameters were within \pm 5% of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the tissue simulant was 15.0 \pm 0.5 cm measured from the ear reference point during system checking and device measurements.

4.3.1 Tissue Simulant Recipes

The following recipes were used for Head and Body tissue simulants:

2450MHz band

Ingredient	Head (% by weight)	Body (% by weight)
Deionised Water	56.0	70.2
Tween 20	44.0	29.62
Salt	-	0.18

4.3.2 System Checking

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below.

System checking, head tissue simulant

		SAR [W/kg],	Dielectric Parameters		Temp
f [MHz]	Description	1 g	€r	σ [S/m]	[°C]
	Reference result	13.7	38.5	1.79	
	$\pm10\%$ window	12.3 - 15.1			
2450	2006-09-18	14.9	37.9	1.86	20.8

Plots of the system checking scans are given in Appendix A.

4.3.3 Tissue Simulants used in the Measurements

Body tissue simulant measurements

		Dielectric F	Temp				
f [MHz]	Description	Er	σ [S/m]	[°C]			
	Recommended value	52.7	1.94				
	± 5% window	50.1 – 55.3	1.85 - 2.04				
2442	2006-09-18	51.7	1.98	20.8			

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

A Nokia designed spacer (illustrated below) was used to position the device within the SPEAG holder. The spacer positions the device so that the holder has minimal effect on the test results but still holds the device securely. The spacer was removed before the tests.

Nokia spacer

5.2 Scan Procedures

First, area scans were used for determination of the field distribution. Next, a zoom scan, a minimum of 5x5x7 points covering a volume of at least 30x30x30mm, was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.3 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

6. MEASUREMENT UNCERTAINTY

Table 6.1 – Measurement uncertainty evaluation

Uncertainty Component	Section in IEEE 1528	Tol. (%)	Prob Dist	Div	Ci	C _i .U _i (%)	Vi
Measurement System							
Probe Calibration	E2.1	±5.9	N	1	1	±5.9	∞
Axial Isotropy	E2.2	±4.7	R	√3	(1-c _p)1/2	±1.9	∞
Hemispherical Isotropy	E2.2	±9.6	R	√3	(C _p)1/2	±3.9	∞
Boundary Effect	E2.3	±1.0	R	√3	1	±0.6	8
Linearity	E2.4	±4.7	R	√3	1	±2.7	∞
System Detection Limits	E2.5	±1.0	R	√3	1	±0.6	8
Readout Electronics	E2.6	±1.0	N	1	1	±1.0	8
Response Time	E2.7	±0.8	R	√3	1	±0.5	∞
Integration Time	E2.8	±2.6	R	√3	1	±1.5	8
RF Ambient Conditions - Noise	E6.1	±3.0	R	√3	1	±1.7	8
RF Ambient Conditions - Reflections	E6.1	±3.0	R	√3	1	±1.7	∞
Probe Positioner Mechanical Tolerance	E6.2	±0.4	R	√3	1	±0.2	8
Probe Positioning with respect to Phantom Shell	E6.3	±2.9	R	√3	1	±1.7	∞
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5	±3.9	R	√3	1	±2.3	8
Test sample Related							
Test Sample Positioning	E4.2	±6.0	N	1	1	±6.0	11
Device Holder Uncertainty	E4.1	±5.0	N	1	1	±5.0	7
Output Power Variation - SAR drift measurement	6.6.3	±0.0	R	√3	1	±0.0	8
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	±4.0	R	√3	1	±2.3	∞
Conductivity Target - tolerance	E3.2	±5.0	R	√3	0.64	±1.8	∞
Conductivity - measurement uncertainty	E3.3	±5.5	N	1	0.64	±3.5	5
Permittivity Target - tolerance	E3.2	±5.0	R	√3	0.6	±1.7	∞
Permittivity - measurement uncertainty E3.3 ± 2.9		±2.9	N	1	0.6	±1.7	5
Combined Standard Uncertainty			RSS			±12.9	116
Coverage Factor for 95%							
Expanded Uncertainty						±25.8	

7. RESULTS

The measured Body SAR values for the test device are tabulated below:

2450MHz Body SAR results

		SAR, averaged over 1g (W/kg)				
Option used	Test configuration	Ch 1 2412.0 MHz	Ch 7 2442.0 MHz	Ch 11 2462.0 MHz		
WLAN	Power	22.01 dBm	19.98 dBm	19.96 dBm		
Without MC	Without headset	0.377	0.200	0.176		
Without MC	With Headset HS-48	0.369	0.192	0.168		
With MC	With MC Without headset		-	-		
With MC	With MC Without headset, Camera extended		-	-		

Plots of the Measurement scans are given in Appendix B.

APPENDIX A: SYSTEM CHECKING SCANS

Date/Time: 2006-09-18 09:27:09

Test Laboratory: TCC Copenhagen Type: D2450V2; Serial: 750

Communication System: Continuous Wave Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: Head 2450; Medium Notes: Medium Temperature: t=20.8 C

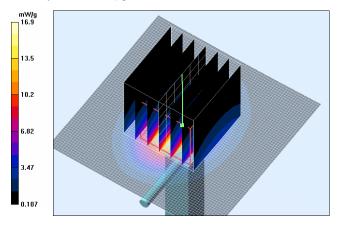
Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ mho/m}$; $\epsilon r = 37.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1786; Probe Notes:

- ConvF(4.43, 4.43, 4.43); Calibrated: 2006-02-21
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn339; Calibrated: 2006-08-22
- Phantom: SAM 1; Type: Twin Phantom; Serial: TP-1215
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171


d=10, Pin=250W, probe=SN1786/Area Scan (71x71x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 17.4 mW/g

d=10, Pin=250W, probe=SN1786/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.2 V/m; Power Drift = 0.008 dB

Peak SAR (extrapolated) = 31.2 W/kg

SAR(1 g) = 14.9 mW/g; SAR(10 g) = 6.95 mW/gMaximum value of SAR (measured) = 16.9 mW/g

SAR Report Cph_SAR_0638_03 Applicant: Nokia Corporation Type: RX-34

APPENDIX B: MEASUREMENT SCANS

See the following pages

Date/Time: 2006-09-18 16:10:54

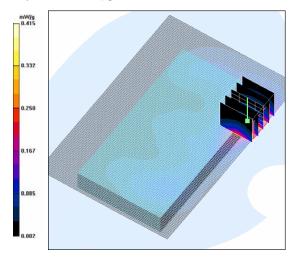
Test Laboratory: TCC Copenhagen Type: RX-34; Serial: 03A088610

Communication System: WLAN2450 Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: Body 2450; Medium Notes: Medium Temperature: t=20.8 C

Medium parameters used: f = 2412 MHz; σ = 1.95 mho/m; ϵ r = 51.8; ρ = 1000 kg/m³

Phantom section: Flat Section


DASY4 Configuration:

- Probe: ET3DV6 SN1786; Probe Notes:
- ConvF(4.09, 4.09, 4.09); Calibrated: 2006-02-21
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn339; Calibrated: 2006-08-22
- Phantom: SAM 2; Type: Twin Phantom; Serial: TP-1037
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body - Low - No Accessory/Area Scan (81x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.395 mW/g

Body - Low - No Accessory/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 5.43 V/m; Power Drift = -0.068 dB Peak SAR (extrapolated) = 0.765 W/kg

SAR(1 g) = 0.377 mW/g; SAR(10 g) = 0.193 mW/gMaximum value of SAR (measured) = 0.415 mW/g

SAR Report Cph_SAR_0638_03 Applicant: Nokia Corporation

Date/Time: 2006-09-18 16:26:29

Test Laboratory: TCC Copenhagen Type: RX-34; Serial: 03A088610

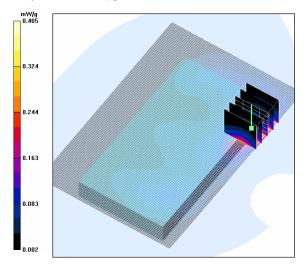
Communication System: WLAN2450 Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: Body 2450; Medium Notes: Medium Temperature: t=20.8 C

Medium parameters used: f = 2412 MHz; σ = 1.95 mho/m; ϵ r = 51.8; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1786; Probe Notes:

- ConvF(4.09, 4.09, 4.09); Calibrated: 2006-02-21
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn339; Calibrated: 2006-08-22
- Phantom: SAM 2; Type: Twin Phantom; Serial: TP-1037
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body - Low - HS-48/Area Scan (81x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.379 mW/g

Body - Low - HS-48/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 5.29 V/m; Power Drift = 0.004 dB Peak SAR (extrapolated) = 0.766 W/kg

SAR(1 g) = 0.369 mW/g; SAR(10 g) = 0.187 mW/gMaximum value of SAR (measured) = 0.405 mW/g

SAR Report Cph_SAR_0638_03 Applicant: Nokia Corporation

Date/Time: 2006-09-18 16:50:30

Test Laboratory: TCC Copenhagen Type: RX-34; Serial: 03A088610

Communication System: WLAN2450 Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: Body 2450; Medium Notes: Medium Temperature: t=20.8 C

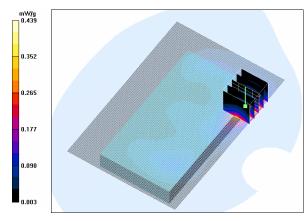
Medium parameters used: f = 2412 MHz; $\sigma = 1.95 \text{ mho/m}$; $\epsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1786; Probe Notes:

- ConvF(4.09, 4.09, 4.09); Calibrated: 2006-02-21
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn339; Calibrated: 2006-08-22
- Phantom: SAM 2; Type: Twin Phantom; Serial: TP-1037
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171


Body - Low - No Accessory - MC/Area Scan (81x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.426 mW/g


Body - Low - No Accessory - MC/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 5.32 V/m; Power Drift = -0.040 dB

Peak SAR (extrapolated) = 0.853 W/kg

SAR(1 g) = 0.409 mW/g; SAR(10 g) = 0.207 mW/g Maximum value of SAR (measured) = 0.439 mW/g

SAR Report Cph_SAR_0638_03 Applicant: Nokia Corporation Type: RX-34

APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

See the following pages

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

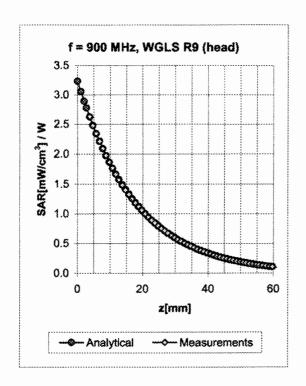
S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

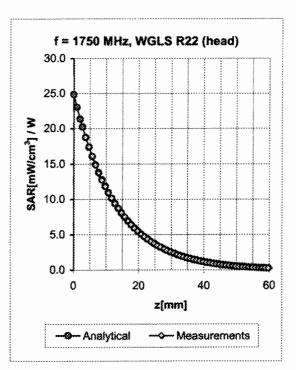
Issued: February 21, 2006

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

Nokia Denmark A/S


Certificate No. ET3-1786 Feb06


Object ET3DV6 - SN:1786 QA CAL-01 v6 Calibration procedure(s) Calibration procedure for dosimetric E-field probes Calibration date: February 21, 2006 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) **Primary Standards** 1D# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 3-May-05 (METAS, No. 251-00466) May-06 Power sensor E4412A MY41495277 3-May-05 (METAS, No. 251-00466) May-06 Power sensor E4412A MY41498087 3-May-05 (METAS, No. 251-00466) May-06 Reference 3 dR Attenuator SN: S5054 (3c) 11-Aug-05 (METAS, No. 251-00499) Aug-06 Reference 20 dB Attenuator SN: S5086 (20b) 3-May-05 (METAS, No. 251-00467) May-06 Reference 30 dB Attenuator SN: S5129 (30b) 11-Aug-05 (METAS, No. 251-00500) Aug-06 Reference Probe ES3DV2 SN: 3013 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) Jan-07 DAE4 SN: 654 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Feb-07 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (SPEAG, in house check Nov-05) In house check: Nov-07 Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Nov-05) In house check: Nov 06 Name Function Signature Calibrated by: Katja Pokovic Technical Manager ileis Kuster Approved by: Quality Manager

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

ET3DV6 SN:1786

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.48	1.89	6.60 ± 11.0% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.46	2.00	6.43 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.63	1.59	5.22 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.65	1.63	4.96 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.75	1.50	4.90 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.78	1.28	4.43 ± 11.8% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.46	2.04	6.23 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.49	2.02	6.00 ± 11.0% (k≈2)
1750	±50/±100	Body	53.4 ± 5%	1.49 ± 5%	0.72	1.86	4.67 ± 11.0% (k=2)
1900	±50/±100	Body	53.3 ± 5%	1.52 ± 5%	0.68	2.01	4.44 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.53	2.42	4.42 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.76	1.36	4.09 ± 11.8% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

See the following pages

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

Nokia Denmark A/S

Certificate No. D2450V2-750 Feb06

CALIBRATION CERTIFICATE

Object D2450V2 + SN: 750

Calibration procedure(s) QA CAL-05 v6

Calibration procedure for dipole validation kits

Calibration date: February 16, 2006

Condition of the calibrated item in Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	04-Oct-05 (METAS, No. 251-00516)	Oct-06
Power sensor HP 8481A	US37292783	04-Oct-05 (METAS, No. 251-00516)	Oct-06
Reference 20 dB Attenuator	SN: 5086 (20g)	11-Aug-05 (METAS, No 251-00498)	Aug-06
Reference 10 dB Attenuator	SN: 5047.2 (10r)	11-Aug-05 (METAS, No 251-00498)	Aug-06
Reference Probe ES3DV2	SN 3025	28-Oct-05 (SPEAG, No. ES3-3025_Oct05)	Oct-06
DAE4	SN 601	15-Dec-05 (SPEAG, No. DAE4-601_Dec05)	Dec-06
Secondary Standards	1D#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-05)	In house check: Oct-07
RF generator Agilent E4421B	MY41000675	11-May-05 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Nov-05)	In house check: Nov-06
	Name	Function	Signature
Calibrated by:	Judith Müller	Laboratory Technician	And the second
			100000000000000000000000000000000000000
Approved by:	Katja Pokovic	Technical Manager	
			Later State

Issued: February 16, 2006

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-750_Feb06

Page 1 of 9

DASY4 Validation Report for Head TSL.

Date/Time: 16.02.2006 15:43:44

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN750

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 2450 MHz; $\sigma = 1.79$ mho/m; $\varepsilon_r = 38.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ES3DV2 - SN3025 (HF); ConvF(4.4, 4.4, 4.4); Calibrated: 28.10.2005

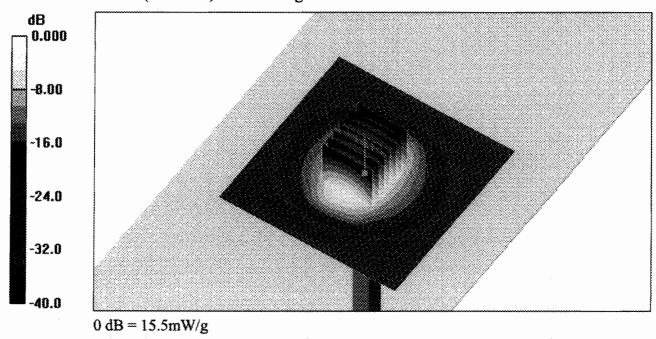
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 15.12.2005

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;;

Measurement SW: DASY4, V4.6 Build 57; Postprocessing SW: SEMCAD, V1.8 Build 160

Pin = 250 mW; d = 10 mm/Area Scan (71x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 17.2 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.5 V/m; Power Drift = -0.038 dB

Peak SAR (extrapolated) = 28.4 W/kg

SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.34 mW/g

Maximum value of SAR (measured) = 15.5 mW/g

DASY4 Validation Report for Body TSL

Date/Time: 13.02.2006 12:45:42

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN750

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10;

Medium parameters used: f = 2450 MHz; $\sigma = 1.97 \text{ mho/m}$; $\epsilon_r = 53.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ES3DV2 - SN3025 (HF); ConvF(4.06, 4.06, 4.06); Calibrated: 28.10.2005

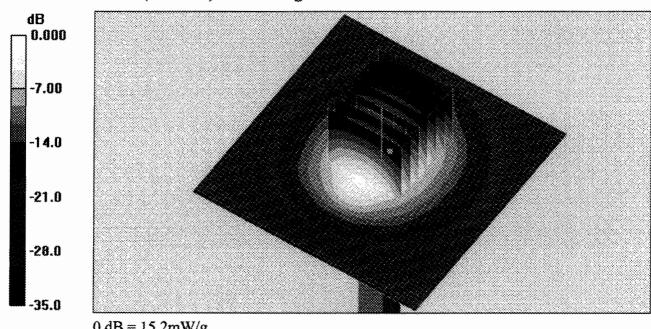
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 15.12.2005

Phantom: Flat Phantom 4.9L; Type: QD000P49AA;

Measurement SW: DASY4, V4.6 Build 56; Postprocessing SW: SEMCAD, V1.8 Build 160

Pin = 250 mW; d = 10 mm/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 16.7 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.7 V/m; Power Drift = -0.117 dB

Peak SAR (extrapolated) = 28.6 W/kg

SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.27 mW/g

Maximum value of SAR (measured) = 15.2 mW/g

0 dB = 15.2 mW/g