

SAR Compliance Test Report

Test report no.: Not numbered Date of report: 2004-03-23 Number of pages: 32 Nokia Corporation Client: **Nokia Corporation Testing laboratory:** Elektroniikkatie 10 Elektroniikkatie 10 P.O. Box 50 P.O. Box 50 FIN-90571 OULU FIN-90571 OULU Finland **Finland** Tel. +358-7180-08000 Tel. +358-7180-08000 Fax+358-7180-47222 Fax+358-7180-47222 Janne Siltari Responsible test Product contact Anne Kiviniemi engineer: person: Anne Kiviniemi Measurements made by: **Tested device:** RM-37 LJPRM-37 FCC ID (USA): **Industry Canada ID:** 661E-RM37 **Supplement reports:** DTX10200-EN

Testing has been carried out in accordance with:

47CFR §2.1093

Radiofreguency Radiation Exposure Evaluation: Portable Devices

FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency **Electromagnetic Fields**

RSS-102

Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields

IEEE 1528 - 2003

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:

Measurement Techniques

Documentation: This document is archived for 15 years at TCC Oulu

Test results: The tested device complies with the requirements in respect of all parameters subject to the

test. The test results and statements relate only to the items tested. The test report shall not

be reproduced except in full, without written approval of the laboratory.

Date and signatures:

2004-03-23

For the contents:

Anne Kiviniemi **Test Engineer**

Oulu

CONTENTS

1. SUMMARY OF SAR	TEST REPORT	3
1.1 TEST DETAILS		3
1.2 Maximum Resu	JLTS	3
	figuration	
	n Configuration	
	Drift	
1.2.4 Measurem	nent Uncertainty	3
2. DESCRIPTION OF T	HE DEVICE UNDER TEST	4
2.1 PICTURE OF THE	Device	4
2.2 DESCRIPTION OF	F THE ANTENNA	4
3. TEST CONDITIONS		4
3.1 TEMPERATURE A	AND HUMIDITY	4
3.2 TEST SIGNAL, F	REQUENCIES, AND OUTPUT POWER	5
4. DESCRIPTION OF T	HE TEST EQUIPMENT	5
4.1 Measurement	System and Components	5
	E-field Probe ET3DV6	
•		
4.3 SIMULATING LIC	QUIDS	7
4.3.1 Liquid Red	cipes	7
4.3.2 Verification	on of the System	7
4.3.3 Tissue Sim	nulants used in the Measurements	8
5. DESCRIPTION OF T	HE TEST PROCEDURE	9
5.1 DEVICE HOLDER		9
5.2 Test Positions	S	9
	hantom Head	9
	n Configuration	
	RES	
5.4 SAR Averagin	G METHODS	11
6. MEASUREMENT UN	ICERTAINTY	12
7. RESULTS		13
APPENDIX A: VALIDATIO	ON SCANS	14
APPENDIX B: MEASUREM	MENT SCANS	15
APPENDIX C: PROBE CAL	.IBRATION REPORT	16
	LIDATION KIT REPORT	

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Period of test	2004-03-09, 2004-03-10
SN, HW and SW numbers of	SN: 004400/43/164694/0; HW: 1465; SW: 3.00
tested device	
Batteries used in testing	BLD-3
Headsets used in testing	HDS-3
Other accessories used in	-
testing	
State of sample	prototype
Notes	-

1.2 Maximum Results

The maximum measured SAR values for Head configuration and Body Worn configuration are given in section 1.2.1 and 1.2.2 respectively. The device conforms to the requirements of the standard(s) when the maximum measured SAR value is less than or equal to the limit.

1.2.1 Head Configuration

Mode	Ch / f (MHz)	Conducted power/ EIRP	Position	SAR limit (1g avg)	Measured SAR value (1g avg)	Result
GSM 1900	512/1850.2	32.1 dBm	Right, Tilt	1.6 W/kg	0.97 W/kg	PASSED

1.2.2 Body Worn Configuration

Mode	Ch / <i>f</i> (MHz)	Conducted power/ EIRP	Separation distance	SAR limit (1g avg)	Measured SAR value (1g avg)	Result
GPRS 1900	661/1880	31.2 dBm	2.2 cm	1.6 W/kg	1.05 W/kg	PASSED

1.2.3 Maximum Drift

Maximum drift during measurements	0.08 dB

1.2.4 Measurement Uncertainty

Extended Uncertainty (k=2) 95%	± 29.1 %

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	portable
Exposure environment	uncontrolled

Modes and Bands of Operation	GSM 1900	GPRS (GSM)
Modulation Mode	GMSK	GMSK
Duty Cycle	1/8	1/8 or 2/8
Transmitter Frequency Range (MHz)	1850.2 - 1909.8	1850.2 - 1909.8

Outside of USA and Canada, the transmitter of the device is capable of operating also in GSM900 and GSM1800, which are not part of this filing.

2.1 Picture of the Device

2.2 Description of the Antenna

The device has an internal antenna.

3. TEST CONDITIONS

3.1 Temperature and Humidity

Period of measurement:	09.03.2004 to 10.03.2004	
Ambient temperature (°C):	21.9 to 22.8	
Ambient humidity (RH %):	30	

SAR Report DTX10200-EN

DIXIOZOO-LIN

Applicant: Nokia Corporation

3.2 Test Signal, Frequencies, and Output Power

The device was put into operation by using a call tester. Communication between the device and the call tester was established by air link.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on lowest, middle and highest channels.

The power output was measured by a separate test laboratory on the same unit as used for SAR testing.

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY 4 software version 4.1, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements on the device was the 'worst-case extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration interval	Calibration expiry	
DAE 3	371	12 months	11/2004	
E-field Probe ET3DV6	1381	12 months	11/2004	
Dipole Validation Kit, D1900V2	511	24 months	02/2005	

Additional test equipment used in testing:

0	u	lι

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Signal Generator	Agilent E4433B	GB40050947	12 months	09/2004
Amplifier	Amplifier Research 5S1G4	27573	-	-
Power Meter	R&S NRT	835065/049	12 months	06/2004
Power Sensor	R&S NRT-Z44	835374/021	12 months	06/2004
Radio Communication tester	R&S CMU200	101026	12 months	12/2004
Network Analyzer	Hewlett Packard 8753D	3410A05782	12 months	05/04
Dielectric Probe Kit	Agilent 850700	US99360106	-	-
Thermometer	Fluke 5411	77800145	-	-

4.1.1 Isotropic E-field Probe ET3DV6

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection system

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., butyl

diglycol)

Calibration Calibration certificate in Appendix C

Frequency 10 MHz to 3 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 3 GHz)

Optical Surface ± 0.2 mm repeatability in air and clear liquids over diffuse

Detection reflecting surfaces

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.4 dB in HSL (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB

Dimensions Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application General dosimetry up to 3 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

The phantom used for all tests i.e. for both validation testing and device testing, was the twinheaded "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

SAR Report DTX10200-EN

Applicant: Nokia Corporation

Type: RM-37

Validation tests were performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Simulating Liquids

Recommended values for the dielectric parameters of the simulating liquids are given in IEEE 1528 - 2003 and FCC Supplement C to OET Bulletin 65. All tests were carried out using liquids whose dielectric parameters were within $\pm\,5\%$ of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the liquid was 15.0 ± 0.5 cm measured from the ear reference point during validation and device measurements.

4.3.1 Liquid Recipes

The following recipes were used for Head and Body liquids:

1900MHz band

1700iiii E Baila						
Ingredient	Head (% by weight)	Body (% by weight)				
Deionised Water	54.88	69.02				
Butyl Diglycol	44.91	30.76				
Salt	0.21	0.22				

4.3.2 Verification of the System

The manufacturer calibrates the probes annually. Dielectric parameters of the simulating liquids were measured every day using the dielectric probe kit and the network analyser. A SAR measurement was made following the determination of the dielectric parameters of the liquids, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The validation results (dielectric parameters and SAR values) are given in the table below.

System verification, head tissue simulant

6[NALI_]	Decembelon	SAR [W/kg],		Dielectric Parameters		
/ [IVIHZ]	f[MHz] Description		Er	σ [S/m]	[°C]	
1000	Reference result	10.3	38.6	1.46	N/A	
1900	± 10% window	9.3 – 11.3				
	09.03.2004	10.7	38.5	1.47	22	

System verification, body tissue simulant

6[BALL_]	Decembrican	SAR [W/kg],	Dielectric F	Parameters	Temp	
f[MHz]	Description	1g	1g ε _r σ[:		[°C]	
	Reference result	10.6	51.2	1.59	N/A	
1900	± 10% window	9.5 – 11.7				
	10.03.2004	10.2	51.6	1.58	22	

Plots of the Verification scans are given in Appendix A.

4.3.3 Tissue Simulants used in the Measurements

Head tissue simulant measurements

€[NALI=1	Description	Dielectric F	Tomp [00]	
f[MHz]	Hz] Description		σ [S/m]	Temp [°C]
	Recommended value	40.0	1.40	N/A
1880	± 5% window	38.0 – 42.0	1.33 – 1.47	
	09.03.2004	38.5	1.46	22

Body tissue simulant measurements

f[MHz]	Description	Dielectric F	Temp [°C]	
/ [IVITZ]	Description	Er	σ [S/m]	remp [*c]
	Recommended value	53.3	1.52	N/A
1880	± 5% window	50.6 – 56.0	1.44 – 1.60	
	10.03.2004	51.4	1.57	22

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

A Nokia designed spacer (illustrated below) was used to position the device within the SPEAG holder. The spacer positions the device so that the holder has minimal effect on the test results but still holds the device securely. The spacer was removed before the tests.

Nokia spacer

5.2 Test Positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

NOKIA

Oulu

Photo of the device in "cheek" position



Photo of the device in "tilt" position

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder using the Nokia spacer and placed below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance indicated in the photo below using a separate flat spacer that was removed before the start of the measurements. The device was oriented with its antenna facing the phantom since this orientation gave higher results.

Photo of the device positioned for Body SAR measurement. The spacer was removed for the tests.

5.3 Scan Procedures

First coarse scans were used for determination of the field distribution. Next a cube scan, 5x5x7 points covering a volume of 30x30x30 mm was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the coarse scan and again at the end of the cube scan.

SAR Report DTX10200-EN

Applicant: Nokia Corporation

Type: RM-37

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the cube scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the cube scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

6. MEASUREMENT UNCERTAINTY

Table 6.1 – Measurement uncertainty evaluation

l able 6.1 – Measur		ertainty	evaluat	ion			
Uncertainty Component	Section in IEEE 1528	Tol. (%)	Prob Dist	Div	Ci	c _i .u _i (%)	Vi
Measurement System							
Probe Calibration	E2.1	±4.8	N	1	1	±4.8	8
Axial Isotropy	E2.2	±4.7	R	√3	$(1-c_p)^{1/2}$	±1.9	∞
Hemispherical Isotropy	E2.2	±9.6	R	√3	$(c_p)^{1/2}$	±3.9	8
Boundary Effect	E2.3	±8.3	R	√3	1	±4.8	8
Linearity	E2.4	±4.7	R	√3	1	±2.7	8
System Detection Limits	E2.5	±1.0	R	√3	1	±0.6	8
Readout Electronics	E2.6	±1.0	N	1	1	±1.0	8
Response Time	E2.7	±0.8	R	√3	1	±0.5	8
Integration Time	E2.8	±2.6	R	√3	1	±1.5	8
RF Ambient Conditions - Noise	E6.1	±3.0	R	√3	1	±1.7	8
RF Ambient Conditions - Reflections	E6.1	±3.0	R	√3	1	±1.7	8
Probe Positioner Mechanical Tolerance	E6.2	±0.4	R	√3	1	±0.2	8
Probe Positioning with respect to Phantom Shell	E6.3	±2.9	R	√3	1	±1.7	8
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5.2	±3.9	R	√3	1	±2.3	8
Test sample Related							
Test Sample Positioning	E4.2.1	±6.0	N	1	1	±6.0	11
Device Holder Uncertainty	E4.1.1	±5.0	N	1	1	±5.0	7
Output Power Variation - SAR drift measurement	6.6.3	±10.0	R	√3	1	±5.8	8
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	±4.0	R	√3	1	±2.3	8
Liquid Conductivity Target - tolerance	E3.2	±5.0	R	√3	0.64	±1.8	8
Liquid Conductivity - measurement uncertainty	E3.3	±5.5	N	1	0.64	±3.5	5
Liquid Permittivity Target tolerance	E3.2	±5.0	R	√3	0.6	±1.7	8
Liquid Permittivity - measurement uncertainty	E3.3	±2.9	N	1	0.6	±1.7	5
Combined Standard Uncertainty			RSS			±14.5	187
Coverage Factor for 95%			k=2				
Expanded Standard Uncertainty						±29.1	

7. RESULTS

The measured Head SAR values for the test device are tabulated below:

1900MHz Head SAR results

Mode and			SAR, averaged over 1g (W/kg)			
Band		Position	Ch 512 1850.2 MHz	Ch 661 1880 MHz	Ch 810 1909.8 MHz	
	Po	ower level	32.1 dBm	31.2 dBm	29.5 dBm	
	Left	Cheek		0.57		
GSM1900	Leit	Tilt		0.79		
	Right	Cheek	0.92	0.87	0.30	
	Rigitt	Tilt	0.97	0.92	0.42	

The measured Body SAR values for the test device are tabulated below:

1900MHz Body SAR results

Mode and	Pody worn location	SAR, averaged over 1g (W/kg)			
Band	Body-worn location setup	Ch 512 1850.2 MHz	Ch 661 1880 MHz	Ch 810 1909.8 MHz	
	Power level	32.1 dBm	31.2 dBm	29.5 dBm	
GPRS1900	Without headset	0.85	1.05	0.72	
	Headset HDS-3	0.92	1.04	0.78	

Plots of the Measurement scans are given in Appendix B.

APPENDIX A: VALIDATION SCANS

Date/Time: 03/09/04 08:59:45

Test Laboratory: Nokia Oulu, Elektroniikkatie 10

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 511

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Head 1900 MHz ($\sigma = 1.46569 \text{ mho/m}, \epsilon_r = 38.4934, \rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1381; ConvF(5.4, 5.4, 5.4); Calibrated: 21.11.2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn371; Calibrated: 20.11.2003
- Phantom: SAM_2; Type: SAM; Serial: TP-1003
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

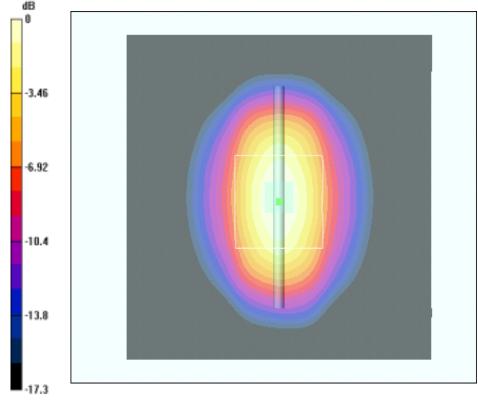
HSL 1900; T = 22.2 °C/Area Scan (71x71x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 96.8 V/m

Power Drift = 0.06 dB

Maximum value of SAR = 12.4 mW/g

HSL 1900; T = 22.2 °C/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 18.4 W/kg

SAR(1 g) = 10.7 mW/g; SAR(10 g) = 5.5 mW/g

Reference Value = 96.8 V/m

Power Drift = 0.06 dB

Maximum value of SAR = 12 mW/g

0 dB = 12 mW/g

Date/Time: 03/10/04 09:34:43

Test Laboratory: Nokia Oulu, Elektroniikkatie 10

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 511

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: muscle 1900 MHz ($\sigma = 1.57843 \text{ mho/m}, \epsilon_r = 51.6389, \rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1381; ConvF(4.9, 4.9, 4.9); Calibrated: 21.11.2003

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn371; Calibrated: 20.11.2003

- Phantom: SAM 1; Type: SAM; Serial: TP-1128

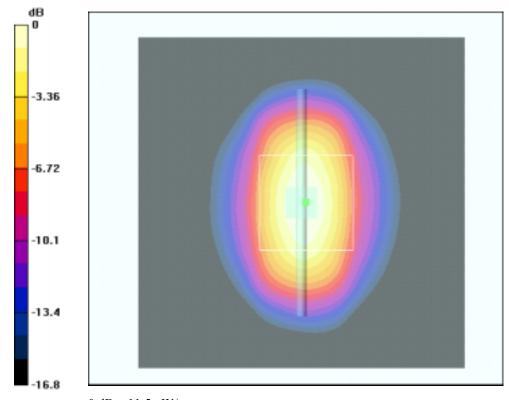
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

muscle 1900; T = 22.8 °C/Area Scan (71x71x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 92.8 V/m Power Drift = 0.009 dB

Maximum value of SAR = 12.2 mW/g

muscle 1900; T = 22.8 °C/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.38 mW/g

Reference Value = 92.8 V/m

Power Drift = 0.009 dB

Maximum value of SAR = 11.5 mW/g

0 dB = 11.5 mW/g

APPENDIX B: MEASUREMENT SCANS

Date/Time: 03/09/04 12:26:24

Test Laboratory: Nokia Oulu, Elektroniikkatie 10

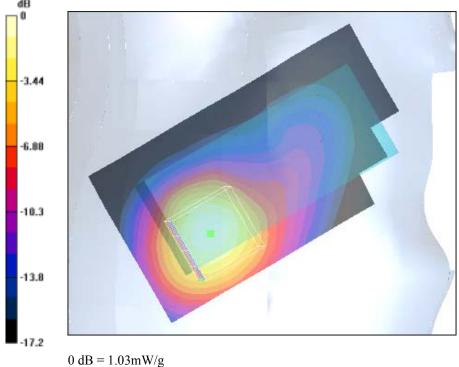
DUT: RM-37; Type: RM-37; Serial: 004400/43/164694/0

Communication System: GSM 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3 Medium: Head 1900 MHz ($\sigma = 1.42439 \text{ mho/m}, \epsilon_r = 38.833, \rho = 1000 \text{ kg/m}^3$)

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1381; ConvF(5.4, 5.4, 5.4); Calibrated: 21.11.2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn371; Calibrated: 20.11.2003
- Phantom: SAM_2; Type: SAM; Serial: TP-1003
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116


Tilted, T = 22.1 °C, worst case extrapolation/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 21.5 V/m Power Drift = 0.002 dB

Maximum value of SAR = 0.992 mW/g

Tilted, T = 22.1 °C, worst case extrapolation/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Peak SAR (extrapolated) = 1.96 W/kg SAR(1 g) = 0.974 mW/g; SAR(10 g) = 0.507 mW/gReference Value = 21.5 V/m Power Drift = 0.002 dBMaximum value of SAR = 1.03 mW/g

Date/Time: 03/09/04 10:04:40

Test Laboratory: Nokia Oulu, Elektroniikkatie 10

DUT: RM-37; Type: RM-37; Serial: 004400/43/164694/0

Communication System: GSM 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3 Medium: Head 1900 MHz ($\sigma = 1.42439 \text{ mho/m}, \epsilon_r = 38.833, \rho = 1000 \text{ kg/m}^3$)

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1381; ConvF(5.4, 5.4, 5.4); Calibrated: 21.11.2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn371; Calibrated: 20.11.2003
- Phantom: SAM_2; Type: SAM; Serial: TP-1003
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

Cheek, T = 21.9 °C, worst case extrapolation/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

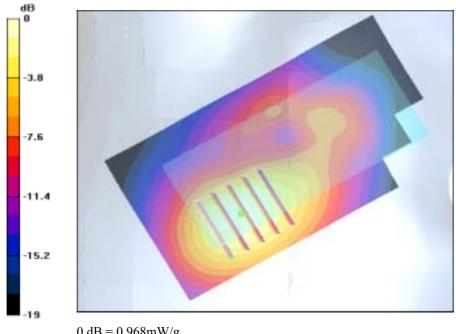
Reference Value = 16 V/m

Power Drift = 0.05 dB

Maximum value of SAR = 0.999 mW/g

Cheek, T = 21.9 °C, worst case extrapolation/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm


Peak SAR (extrapolated) = 1.84 W/kg

SAR(1 g) = 0.918 mW/g; SAR(10 g) = 0.484 mW/g

Reference Value = 16 V/m

Power Drift = 0.05 dB

Maximum value of SAR = 0.968 mW/g

Date/Time: 03/09/04 13:44:21

Test Laboratory: Nokia Oulu, Elektroniikkatie 10

DUT: RM-37; Type: RM-37; Serial: 004400/43/164694/0

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium: Head 1900 MHz (σ = 1.46272 mho/m, ϵ_r = 38.5296, ρ = 1000 kg/m³)

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1381; ConvF(5.4, 5.4, 5.4); Calibrated: 21.11.2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn371; Calibrated: 20.11.2003
- Phantom: SAM_2; Type: SAM; Serial: TP-1003
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

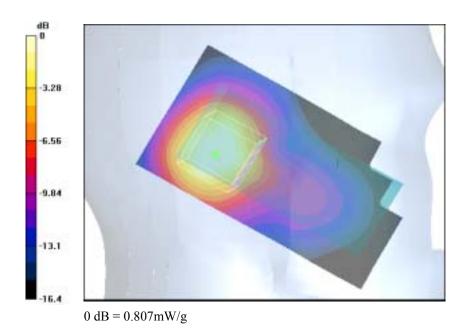
Tilted, T = 22.5 °C, worst case extrapolation/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 21.4 V/m

Power Drift = 0.05 dB

Maximum value of SAR = 0.828 mW/g

Tilted, T = 22.5 °C, worst case extrapolation/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 0.787 mW/g; SAR(10 g) = 0.428 mW/g

Reference Value = 21.4 V/m

Power Drift = 0.05 dB

Maximum value of SAR = 0.807 mW/g

Date/Time: 03/09/04 13:29:16

Test Laboratory: Nokia Oulu, Elektroniikkatie 10

DUT: RM-37; Type: RM-37; Serial: 004400/43/164694/0

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium: Head 1900 MHz ($\sigma = 1.46272 \text{ mho/m}, \varepsilon_r = 38.5296, \rho = 1000 \text{ kg/m}^3$)

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1381; ConvF(5.4, 5.4, 5.4); Calibrated: 21.11.2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn371; Calibrated: 20.11.2003
- Phantom: SAM_2; Type: SAM; Serial: TP-1003
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

Cheek, T = 22.4 °C, worst case extrapolation/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 17.2 V/m

Power Drift = 0.04 dB

Maximum value of SAR = 0.597 mW/g

Cheek, T = 22.4 °C, worst case extrapolation/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.572 mW/g; SAR(10 g) = 0.326 mW/g

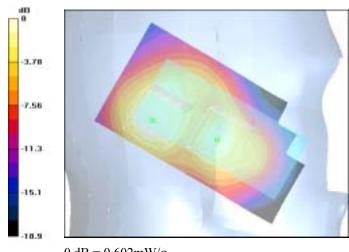
Reference Value = 17.2 V/m

Power Drift = 0.04 dB

Maximum value of SAR = 0.587 mW/g

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Cheek, T = 22.4 °C, worst case extrapolation/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Peak SAR (extrapolated) = 0.999 W/kg

SAR(1 g) = 0.496 mW/g; SAR(10 g) = 0.252 mW/g

Reference Value = 17.2 V/m

Power Drift = 0.04 dB

Maximum value of SAR = 0.602 mW/g

0 dB = 0.602 mW/g

Date/Time: 03/10/04 10:10:02

Test Laboratory: Nokia Oulu, Elektroniikkatie 10

DUT: RM-37; Type: RM-37; Serial: 004400/43/164694/0

Communication System: GPRS 1900; Frequency: 1880 MHz; Duty Cycle: 1:4.2 Medium: muscle 1900 MHz (σ = 1.56717 mho/m, ϵ_r = 51.3576, ρ = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1381; ConvF(4.9, 4.9, 4.9); Calibrated: 21.11.2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn371; Calibrated: 20.11.2003
- Phantom: SAM_1; Type: SAM; Serial: TP-1128
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

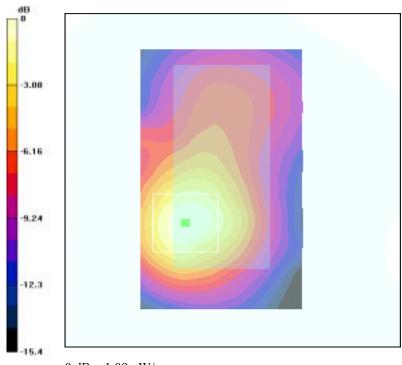
Body worn + 22 mm, T = 22.2 °C/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 16 V/m

Power Drift = 0.05 dB

Maximum value of SAR = 1.08 mW/g

Body worn + 22 mm, T = 22.2 °C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Peak SAR (extrapolated) = 2.24 W/kg

SAR(1 g) = 1.05 mW/g; SAR(10 g) = 0.579 mW/g

Reference Value = 16 V/m

Power Drift = 0.05 dB

Maximum value of SAR = 1.09 mW/g

0 dB = 1.09 mW/g

Date/Time: 03/09/04 12:26:24

Test Laboratory: Nokia Oulu, Elektroniikkatie 10

DUT: RM-37; Type: RM-37; Serial: 004400/43/164694/0

Communication System: GSM 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3 Medium: Head 1900 MHz ($\sigma = 1.42439 \text{ mho/m}$, $\varepsilon_r = 38.833$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1381; ConvF(5.4, 5.4, 5.4); Calibrated: 21.11.2003

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn371; Calibrated: 20.11.2003

- Phantom: SAM_2; Type: SAM; Serial: TP-1003

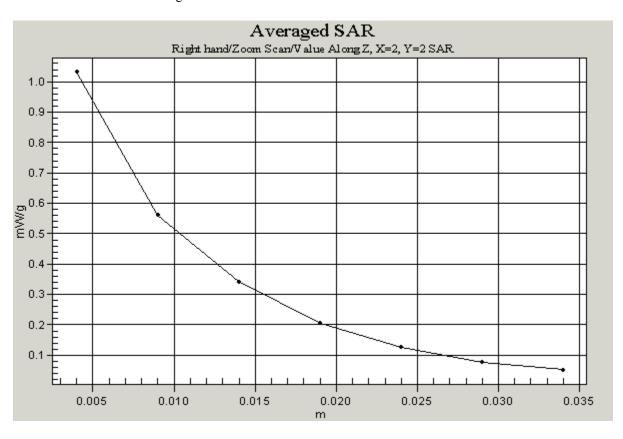
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

Tilted, T = 22.1 °C, worst case extrapolation/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 21.5 V/m Power Drift = 0.002 dB

Maximum value of SAR = 0.992 mW/g

Tilted, T = 22.1 °C, worst case extrapolation/**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Peak SAR (extrapolated) = 1.96 W/kg

SAR(1 g) = 0.974 mW/g; SAR(10 g) = 0.507 mW/g

Reference Value = 21.5 V/m

Power Drift = 0.002 dB

Maximum value of SAR = 1.03 mW/g

Date/Time: 03/10/04 10:10:02

Test Laboratory: Nokia Oulu, Elektroniikkatie 10

DUT: RM-37; Type: RM-37; Serial: 004400/43/164694/0

Communication System: GPRS 1900; Frequency: 1880 MHz; Duty Cycle: 1:4.2 Medium: muscle 1900 MHz (σ = 1.56717 mho/m, ϵ_r = 51.3576, ρ = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1381; ConvF(4.9, 4.9, 4.9); Calibrated: 21.11.2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn371; Calibrated: 20.11.2003
- Phantom: SAM_1; Type: SAM; Serial: TP-1128
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

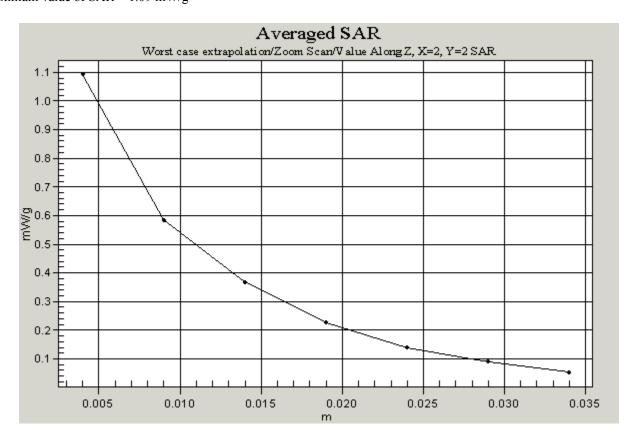
Body worn + 22 mm, T = 22.2 °C/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 16 V/m

Power Drift = 0.05 dB

Maximum value of SAR = 1.08 mW/g

Body worn + **22 mm, T** = **22.2** °**C/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Peak SAR (extrapolated) = 2.24 W/kg

SAR(1 g) = 1.05 mW/g; SAR(10 g) = 0.579 mW/g

Reference Value = 16 V/m

Power Drift = 0.05 dB

Maximum value of SAR = 1.09 mW/g

APPENDIX C: PROBE CALIBRATION REPORT

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Nokla Dulu

Object(s)			
oujecus)			
Calibration procedure(s)	SA GAN-WHAT Self-briton pro	cedure for dosimulas E field proce	ig I
Calibration date:		F10 3 (6)	
Condition of the calibrated item		according (in the seperational bration	rdocument) antidas
This calibration statement document 17025 international standard.	ts traceability of M&TE	used in the calibration procedures and conformity of	the procedures with the ISO/IEC
		ry facility: environment temperature 22 +/- 2 degrees	Celsius and humidity < 75%.
Calibration Equipment used (M&TE Model Type		ry facility: environment temperature 22 +/- 2 degrees Cal Date (Calibrated by, Certificate No.)	Celsius and humidity < 75%. Scheduled Calibration
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B	critical for calibration)	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250)	Scheduled Calibration Apr-04
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A	critical for calibration) ID # GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250)	Scheduled Calibration Apr-04 Apr-04
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b)	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340	Scheduled Calibration Apr-04 Apr-04 Apr-04
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340 8-Sep-03 (Sintrel SCS No. E-030020)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340 8-Sep-03 (Sintrel SCS No. E-030020)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C Network Analyzer HP 8753E	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02) 18-Oct-01 (SPEAG, in house check Oct-03)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Aug-05
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C Network Analyzer HP 8753E	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02) 18-Oct-01 (SPEAG, in house check Oct-03)	Scheduled Calibration Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Oct 05 In house check: Oct 05
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02) 18-Oct-01 (SPEAG, in house check Oct-03) Function	Scheduled Calibration Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Oct 05 In house check: Oct 05

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

880-KP0301061-A

DASY - Parameters of Probe: ET3DV6 SN:1381

Sensitivity in Free Space Diode Compression

NormX	1.55 μV/(V/m) ²	DCP X	93	mV
NomY	1.65 μV/(V/m) ²	DCP Y	93	mV
Norm7	1.74 uV/(V/m) ²	DCP Z	93	mV

Sensitivity in Tissue Simulating Liquid

Head	835 MHz	$\varepsilon_r = 41.5 \pm 5\%$	σ = 0.90 ± 5% mho/m
Valid for f=750-950	MHz with Head Tissue S	imulating Liquid accordin	ng to EN 60361, P1526-200X

ConvF X	6.7 ± 9.5% (k=2)	Boundary eff	ect:
ConvF Y	6.7 ± 9.5% (k=2)	Alpha	0.48
ConvF Z	6.7 ± 9.5% (k=2)	Depth	2.33

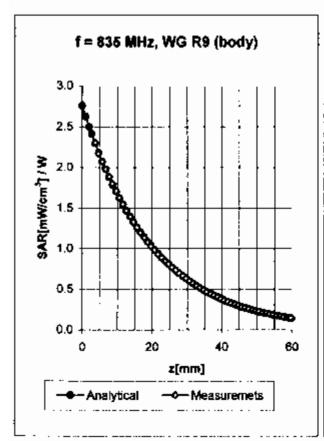
Head 1880 MHz $\epsilon_{\rm r}$ = 40.0 ± 5% σ = 1.40 ± 5% mho/m Valid for f=1800-2000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

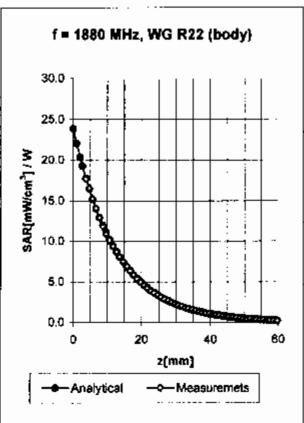
ConvF X	5.2 ± 9.5% (k=2)	Boundary et	fect:
ConvF Y	5.2 ± 9.5% (k=2)	Alpha	0.59
ConvF Z	5.2 ± 9.5% (k=2)	Depth	2.54

Boundary Effect

Head 835 MHz Typical SAR gradient: 5 % per mm

Probe Tip to Boundary		1 mm	2 mm	
	\$AR _{be} [%]	Without Correction Algorithm	11.3	6.2
	SAR _™ [%]	With Correction Algorithm	0.4	0.6


Head 1880 MHz Typical SAR gradient: 10 % per mm


Probe Tip to Boundary		1 mm	2 mm
SAR _▶ [%] W	ithout Correction Algorithm	15.7	10.2
SARL [%] W	ith Correction Algorithm	0.2	0.0

Sensor Offset

Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	1.2 ± 0.2	mm

Conversion Factor Assessment

Body 835 MHz $\epsilon_{r} = 55.2 \pm 5\%$ $\sigma = 0.97 \pm 5\%$ mho/m

Valid for f=750-950 MHz with Body Tiesus Simulating Liquid according to OET 66 Suppl. C

ConvF X **6.3** ± 9.5% (k=2) Boundary effect:

ConvF Y **6.3** ± 9.5% (k=2) Alpha **0.51**

ConvF Z 6.3 ± 9.5% (k=2) Depth 2.29

Body 1880 MHz ε_r = 53.3 ± 5% σ = 1.52 ± 5% mho/m

Valid for f=1800-2000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X 4.8 ± 9.5% (k=2) Boundary effect:

ConvF Y 4.8 ± 9.5% (k=2) Alpha 0.75

ConvF Z 4.8 ± 9.5% (k=2) Depth 2.34

APPENDIX D: DIPOLE VALIDATION KIT REPORT

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

Client

Nokia Mobile Rhones (Oulu)

Calibration Laboratory of Schmid & Partner Engineering AG is completed.

880-KP0301061-A

GEARIER VAR (ON	######################################		
Object(s)	7/1900V2 - SRE	11	
Calibration procedure(s)	QA QAL 05 v2 Calibration proc	edure for dipole validation	kits.
Calibration date:	Estimary 27, 20		
Condition of the calibrated item	In Tolerance (ac	cording to the specific cal	ioration document)
This calibration statement docume 17025 international standard.	ents traceability of M&TE us	ed in the calibration procedures and co	nformity of the procedures with the ISO/IEC
All calibrations have been conduct	led in the closed laboratory	facility; environment temperature 22 +/-	2 degrees Celsius and humidity < 75%.
Calibration Equipment used (M&TE critical for calibration)			
l Model Type	ID#	Cal Date	Scheduled Calibration
RF generator R&S SML-03	100698	27-Mar-2002	In house check: Mar-05
Power sensor HP 8481A	MY41092317	18-Oct-02	Oct-04
Power sensor HP 8481A	US37292783	30-Oct-02	Oct-03
Power meter EPM E442	GB37480704	30-Oct-02	Oct-03
Network Analyzer HP 8753E	US38432426	3-May-00	In house check: May 03
	Name	Function	Signature
Calibrated by:	Kaja Pikonc	Laboratory Director	They'r Kart
-			
Approved by:	Niels Kuster	Quality Manager	Nipolos
			Date issued: February 27, 2003
This calibration certificate is issued	d as an intermediate solution	n until the accreditation process (based	on ISO/IEC 17025 International Standard) for

Page 1 (1)

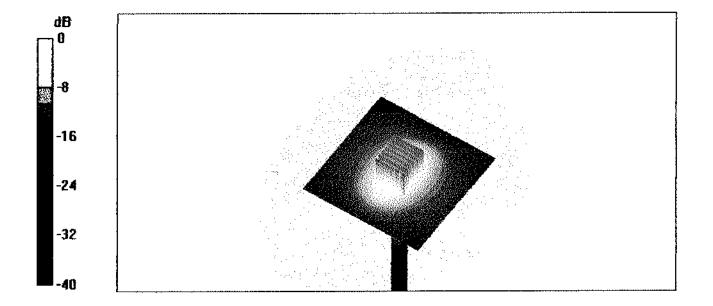
Date/Time: 02/26/03 18:15:55

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN511 SN1507 HSL1900 260203.da4

DUT: Dipole 1900 MHz; Serial: D1900V2 - SN511

Program: Dipole Calibration

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL 1900 MHz; ($\sigma = 1.46 \text{ mho/m}$, $\epsilon_r = 38.6$, $\rho = 1000 \text{ kg/m}^3$)


Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(5.2, 5.2, 5.2); Calibrated: 1/18/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 25; Postprocessing SW: SEMCAD, V1.6 Build 105

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.1 V/m

Reference Value = 94.1 V/m Peak SAR = 18.2 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.2 mW/g Power Drift = 0.06 dB

Date/Time: 02/27/03 13:38:17

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN511_SN1507_M1900_270203.da4

DUT: Dipole 1900 MHz; Serial: D1900V2 - SN511

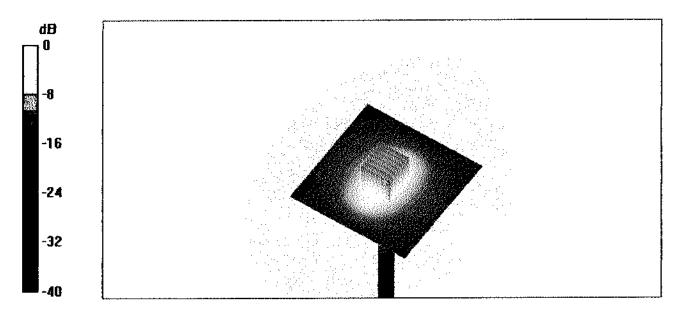
Program: Dipole Calibration

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: Muscle 1900 MHz; ($\sigma = 1.59 \text{ mho/m}$, $\epsilon_r = 51.2$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.8, 4.8, 4.8); Calibrated: 1/18/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 25; Postprocessing SW: SEMCAD, V1.6 Build 105


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.8 V/m

Peak SAR = 18.8 W/kg

SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.41 mW/g

Power Drift = 0.06 dB

