

6 Randolph Way Hillsborough, NJ 08876 Tel: (732) 560-9010

Fax: (732) 560-9173

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT

of

RADIO CONTROL TRANSMITTER MODEL: 906B FCC ID: LIE906B

July 10, 2002

This report concerns (check one): Original grantx Class II change Equipment type: Low Power Intentional Radiator						
Company agrees to notify the Com	f yes, defer until: (date)					
Transition Rules Request per 15.37? yes nox If no, assumed Part 15, Subpart B for unintentional radiators - the new 47 CFR [10-1-90 Edition] provision.						
Report prepared for: Report prepared by: Report number:	WELL-TECH TOYS CO., LTD. Advanced Compliance Lab 0048-020701-02T					

The test result in this report IS supported and covered by the NVLAP accreditation

Table of Contents

Report Cover Page	1
Table of Contents	2
Figures	3
1. GENERAL INFORMATION	4
1.1 Verification of Compliance	4
1.2 Equipment Modifications	
1.3 Product Information	
1.4 Test Methodology	6
1.5 Test Facility	
1.6 Test Equipment	
1.7 Statement of the Document Use	
2. PRODUCT LABELING	8
3. SYSTEM TEST CONFIGURATION	9
3.1 Justification	9
3.2 Special Accessories	
3.3 Configuration of Tested System	
4. SYSTEM SCHEMATICS	12
5. RADIATED EMISSION DATA	13
5.1 Field Strength Calculation	13
5.2 Test Methods and Conditions	
5.3 Test Data	13
6 PHOTOS OF TESTED FUT	15

Figures

Figure 2.1 FCC ID Label	3
Figure 2.2 Location of Label on Back of the EUT	3
Figure 3.1 Radiated Test Setup, Position 1	10
Figure 3.2 Radiated Test Setup, Position 2	10
Figure 3.3 Radiated Test Setup, Position 3	11
Figure 4.1 EUT Schematics	12
Figure 6.1 Front View1	15
Figure 6.2 Inside View, Cover Opened	16
Figure 6.3 Component Side	17
Figure 6.4 Foil Side 1	18

FCC ID: LIE906B

Date: July 10, 2002

1. GENERAL INFORMATION

1.1 Verification of Compliance

EUT: RADIO CONTROL TRANSMITTER

Model: 906B

Applicant: WELL-TECH TOYS CO., LTD..

RM 1004, CHINACHEM GOLDEN PLAZA 77 MODY ROAD, TSIMSHATSUI EAST

KOWLOON, HONGKONG

Test Type: FCC Part 15C CERTIFICATION

Result: PASS

Tested by: ADVANCED COMPLIANCE LABORATORY

Test Date: July 10, 2002

Report Number: 0048-020701-02T

The above equipment was tested by Compliance Laboratory, Advanced Technologies, Inc. for compliance with the requirement set forth in the FCC rules and regulations Part 15, subpart C. This said equipment in the configuration described in the report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

The estimated uncertainty of the test result is given as following. The method of uncertainty calculation is provided in Advanced Compliance Lab. Doc. No. 0048-01-01.

	Prob. Dist.	Uncertainty(dB)	Uncertainty(dB)	Uncertainty(dB)
		30-1000MHz	1-6.5GHz	Conducted
Combined Std. Uncertainty u_c	norm.	±2.36	±2.99	±1.83

Wei Li

Lab Manager

Advanced Compliance Lab

1	.2	Eo	ıuiı	oment	Mo	dific	cations

N/A

1.3 Product Information

System Configuration

ITEM	DESCRIPTION	FCC ID	CABLE
Product	RADIO CONTROL	LIE906B	
	TRANSMITTER 906B (1)		
Housing	PLASTICS		
Power Supply	9V DC Battery		
Clock/OSC Freq.	49.86 MHz		
Receiver	906B (RX)		
	(FCC Part15 Class B DOC)		

(1) EUT submitted for grant.

1.4 Test Methodology

Radiated tests were performed according to the procedures in ANSI C63.4-1992 at an antenna to EUT distance of 3 meters.

1.5 Test Facility

The open area test site and conducted measurement facility used to collect the radiated and conducted data are located at 50 Randolph Road, Somerset, New Jersey. This site has been accepted by FCC to perform measurements under Part 15 or 18 in a letter dated May 19, 1997 (Refer to: 31040/PRV 1300F2). The NVLAP Lab code for accreditation of FCC EMC Test Method is: 200101-0.

1.6 Test Equipment

Manufacture	Model	Serial No.	Description	Last Cal	Cal
				dd/mm/yy	Due
					dd/mm/yy
Hewlett-Packard	HP8546A	3625A00341	EMI Receiver	18/01/02	18/01/03
Fischer Custom	LISN-2	900-4-008	Line Impedance Stabilization Networks	03/07/02	03/07/03
Fischer Custom	LISN-2	900-4-009	Line Impedance Stabilization Networks	03/07/02	03/07/03
AILTECH	94455-1	0933	30-200MHz Biconical Antenna	31/08/01	31/08/02
EMCO	3146	2860	200-1000MHz Log-Periodic Antenna	16/08/01	16/08/02

All Test Equipment Used are Calibrated Traceable to NIST Standards.

1.7 Statement for the Document Use

This report shall not be reproduced except in full, without the written approval of the laboratory. And this report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

2. PRODUCT LABELING

FCC ID: LIE906B

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation.

Figure 2.1 FCC ID Label

Figure 2.2 Location of Label on the Side of EUT

FCC ID: LIE906B

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it). And its antenna was permanently attached to the EUT with max. length, 12in.

This manually operated transmitter will deactivate immediately after any control switch was released.

Testing was performed as EUT was operated at frequency channel 49.86MHz continuously.

.

3.2 Special Accessories

N/A

3.3 Configuration of Tested System

Figure 3.1 to Figure 3.3 illustrate this system, which is tested standing along.

Figure 3.1 Radiated Test Setup, position 1

(see the attachment: setup.pdf/rad-1.jpg)

Figure 3.2 Radiated Test Setup, position 2

(see attachment: setup.pdf/rad-2.jpg)

Figure 3.3 Radiated Test Setup, position 3

(see attachment: setup.pdf/rad-3.jpg)

4. SYSTEM SCHEMATICS

Figure 4.1 System Schematics

(see attachment: schematic.jpg)

FCC ID: LIE906B

5. RADIATED EMISSION DATA

5.1 Field Strength Calculation

The corrected field strength is automatically calculated by EMI Receiver using following:

$$FS = RA + AF + CF + AG$$

where FS: Corrected Field Strength in dBµV/m

RA: Amplitude of EMI Receiver before correction in dBµV

AF: Antenna Factor in dB/m

CF: Cable Attenuation Factor in dB

AG: Built-in Preamplifier Gain in dB (Stored in receiver as part of the calibration data)

5.2 Test Methods and Conditions

The EUT exercise program was loaded during the radiated emission test. The initial step in collecting radiated data is a EMI Receiver scan of the measurement range 30MHz - 5GHz using peak detector.

5.3 Test Data

The following data lists the significant emission frequencies, polarity and position, peak reading of the EMI Receiver, the FCC limit, and the difference between the peak reading and the limit. Explanation of the correction and calculation are given in section 5.1.

Test Personnel:

Tester Signature

Typed/Printed Name: <u>David Tu</u> Date: <u>July 10, 2002</u>

Radiated Test Data (49.86MHz)

Frequency	Polarity [H, V]	Height	Azimuth	Peak(2) Reading	Class B(1) 3m Limit	Difference from limit
(MHz)	Position	(m)	(Degree)	(dBµV/m)	(dBµV/m)	(dB)
49.86	X,H	1.1	100	44.6	80	-35.4
149.56	X,H	1.0	90	27.3	43.5	-16.2
199.40	X,H	1.2	100	28.5	43.5	-15
49.86	X,V	1.4	000	40.2	80	-39.8
49.86	Y,H	1.1	10	47.0	80	-33
49.86	Y,V	1.1	000	58.1	80	-21.9
99.71	Y,V	1.0	000	32.8	43.5	-10.7
149.56	Y,V	1.0	10	26.4	43.5	-17.1
49.86	Z,H	1.2	80	45.0	80	-35
149.56	Z,H	1.2	90	28.0	43.5	-15.5
49.86	Z,V	1.5	10	41.3	80	-38.7
99.71	Z,V	1.3	10	26.7	43.5	-16.8

⁽¹⁾ The limit for emissions within the 49.82-49.90MHz band is 10,000uV(80dB). Sec. 15.235. The limit for other emissions is defined in Sec. 15.209. Bandwidth requirement in sec. 15.235 is met as shown in the attachment, emission-band.pdf.

⁽²⁾ Because each peak reading is less than the FCC average limit, it is not necessary to show the calculated average reading based on the pulse train characteristics.

6. PHOTOS OF TESTED EUT

The following photos show the inside details of the EUT.

See Attachments in the photo files of front.jpg, inside.jpg, compnt.jpg, foil.jpg