

Report No. : FC862137

FCC EMI TEST REPORT

FCC ID	:	LHJ-WT50NA01
Equipment	:	WT50NA01
Brand Name	:	WT50NA01
Model Name	:	WT50NA01
Applicant	:	Continental Automotive Systems, Inc. 21440 W Lake Cook Rd.
Manufacturer	:	Continental Automotive Systems, Inc. 21440 W Lake Cook Rd.
Standard	:	FCC 47 CFR FCC Part 15 Subpart B

The product was received on Jun. 21, 2018 and testing was started from Jul. 09, 2018 and completed on Jul. 09, 2018. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI C63.4-2014 and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERTIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Jones Tsai

Approved by: Jones Tsai SPORTON INTERTIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	.3
Sur	nmary	v of Test Result	.4
1.	Gene	ral Description	5
	1.1. 1.2.	Modification of EUT	5
	1.4.	Test Location Applicable Standards	5
2.	Test	Configuration of Equipment Under Test	.6
	2.3. 2.4.	Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup	6 6 6
3.		Result	
	3.1.	Test of Radiated Emission Measurement	.7
4.	List c	f Measuring Equipment	.9
5.	Unce	rtainty of Evaluation	10
Ap	pendix	A. Radiated Emission Test Result	

Appendix B. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FC862137	01	Initial issue of report	Jul. 23, 2018

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark			
-	15.107	AC Conducted Emission	Not Required	-			
3.1	15.109	Radiated Emission	Pass	Under limit 6.65 dB at 729.100 MHz			
Note: Not require	Note: Not required means after assessing, test items are not necessary to carry out.						

Reviewed by: Louis Wu

Report Producer: Maggie Chiang

1. General Description

1.1. Product Feature of Equipment Under Test

GSM/WCDMA/LTE and GNSS

Product Specification subjective to this standard				
Antenna Type	WWAN: Fixed External Antenna			
Antenna Type	GPS/GIonass/BDS/Galileo/SBAS: Fixed External Antenna			

1.2. Modification of EUT

No modifications are made to the EUT during all test items.

1.3. Test Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1098 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

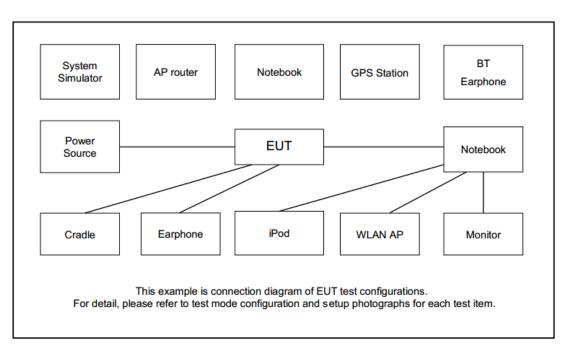
Test Site	SPORTON INTERNATIONAL INC.		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. 03CH10-HY		

1.4. Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC 47 CFR FCC Part 15 Subpart B
- ANSI C63.4-2014

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.


2. Test Configuration of Equipment Under Test

2.1. Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (30MHz to the 5th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

Test Items	Function Type		
	Mode 1 : LTE Band 2 Idle + DC 12V Mode 2 : WCDMA Band V Idle + DC 12V		
Remark: The worst case of RE is mode 2; only the test data of this mode was reported.			

2.2. Connection Diagram of Test System

2.3. Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m

2.4. EUT Operation Test Setup

The EUT was in LTE or WCDMA idle mode during the testing. The EUT was synchronized with the BCCH, and had been continuous receiving mode by setting paging reorganization of the system simulator.

3. Test Result

3.1. Test of Radiated Emission Measurement

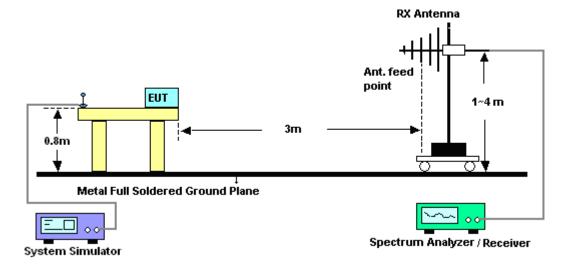
3.1.1. Limit of Radiated Emission

The emissions from an unintentional radiator shall not exceed the field strength levels specified in the following table:

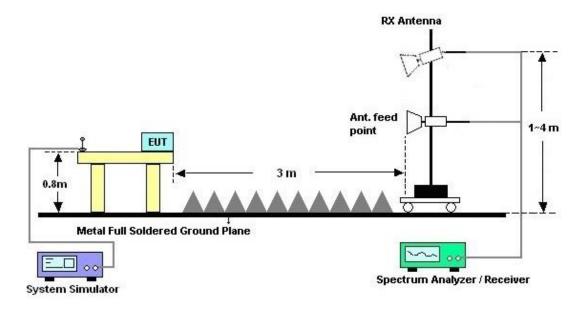
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.1.2. Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.1.3. Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a Bi-Log antenna and its height is adjusted between one to four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode (RBW=120kHz/VBW=300kHz for frequency below 1GHz; RBW=1MHz VBW=3MHz (Peak), RBW=1MHz/VBW=10Hz (Average) for frequency above 1GHz).
- 7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, peak values of EUT will be reported. Otherwise, the emission will be repeated by using the quasi-peak method and reported.
- 8. Emission level (dB μ V/m) = 20 log Emission level (μ V/m)
- 9. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level



3.1.4. Test Setup of Radiated Emission

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.1.5. Test Result of Radiated Emission

Please refer to Appendix A.

4. List of Measuring Equipment

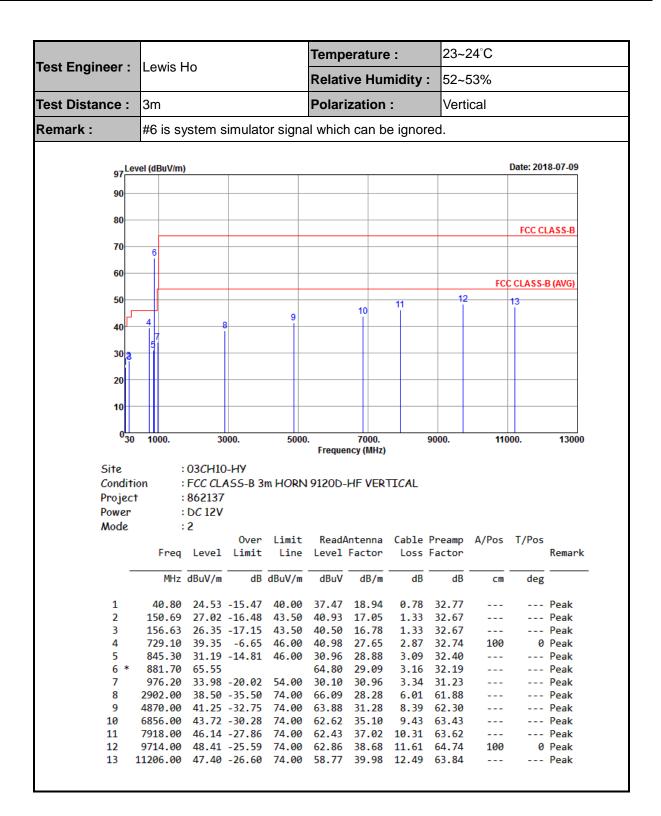
Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Amplifier	SONOMA	310N	187311	9kHz~1GHz	Oct. 19, 2017	Jul. 09, 2018	Oct. 18, 2018	Radiation (03CH10-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	35413&02	30MHz~1GHz	Dec. 18, 2017	Jul. 09, 2018	Dec. 17, 2018	Radiation (03CH10-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1325	1GHz ~ 18GHz	Sep. 27, 2017	Jul. 09, 2018	Sep. 26, 2018	Radiation (03CH10-HY)
Preamplifier	Jet-Power	JAP00101800 -30-10P	160118550004	1GHz~18GHz	Apr. 17, 2018	Jul. 09, 2018	Apr. 16, 2019	Radiation (03CH10-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200485	10Hz ~ 44GHz	Oct. 31, 2017	Jul. 09, 2018	Oct. 30, 2018	Radiation (03CH10-HY)
Antenna Mast	EMEC	AM-BS- 4500-B	N/A	1~4m	N/A	Jul. 09, 2018	N/A	Radiation (03CH10-HY)
Turn Table	EMEC	TT 2200	N/A	0~360 Degree	N/A	Jul. 09, 2018	N/A	Radiation (03CH10-HY)
Software	Audix	E3 6.2009-8-24	RK-001042	N/A	N/A	Jul. 09, 2018	N/A	Radiation (03CH10-HY)
EMI Test Receiver	Agilent	N9038A (MXE)	MY53290053	20Hz to 26.5GHz	Jan. 16, 2018	Jul. 09, 2018	Jan. 15, 2019	Radiation (03CH10-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104 / 102	MY11692/4PE, MY11693/4PE, MY2855/2	30M-1G	Nov. 14, 2017	Jul. 09, 2018	Nov. 13, 2018	Radiation (03CH10-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104 / 102	MY11692/4PE, MY11693/4PE, MY2855/2	1G-18G	Nov. 14, 2017	Jul. 09, 2018	Nov. 13, 2018	Radiation (03CH10-HY)

5. Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.6
of 95% (U = 2Uc(y))	5.8

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)


Measuring Uncertainty for a Level of Confidence	5.0
of 95% (U = 2Uc(y))	5.9

Appendix A. Radiated Emission Test Result

Test Engineer :	Lewis Ho 3m				Temperature : Relative Humidity : Polarization :			23~2	23~24°C 52~53% Horizontal			
								: 52~5				
Fest Distance :								Horiz				
Remark :	#6 is s	ystem s	simulate	or signa	al which	n can b	e ignor	ed.				
lav	ol (dBu\//m)									Date: 201	8.07.09	
	el (dBuV/m)	,								Dute. 201		
90												
80												
70										FCC CI	ASS-B	
70	Î											
60												
50										C CLASS-I 13	B (AVG)	
50				9		10	11		12			
40	4	8		Ť								
20	آ ج آ											
30 <mark>3</mark>												
20												
10												
030	1000	30	00	5000		7000		9000	110	00	13000	
0 <mark></mark>	1000.	30)00.	5000		7000. ncy (MHz)		9000.	110)00.	13000	
Site	:	30 03CH10		5000				9000.	110)00.	13000	
Site Conditio	: on :	03CH10 FCC CL/)-НУ 455-В 3	5000 m HORN	Freque	ncy (MHz)			110	000.	13000	
Site Conditio Project	on :	03CH10 FCC CL/ 862137)-НУ 455-В 3		Freque	ncy (MHz)	IZONT		110	000.	13000	
Site Conditio Project Power	on : :	03CH10 FCC CL/ 862137 DC 12V)-НУ 455-В 3		Freque	ncy (MHz)	RIZONT		110	000.	13000	
Site Conditio Project	on : :	03CH10 FCC CL/ 862137)-НУ 455-В 3		Freque	ncy (MHz) HF HOR					13000	
Site Conditio Project Power	on : : :	03CH10 FCC CL/ 862137 DC 12V)-HY ASS-B3 Over	m HORN Limit	Freque	ncy (MHz) HF HOR Intenna	Cable	AL			13000 Remark	
Site Conditio Project Power	on : : : : : : : :	03CH10 FCC CL/ 862137 DC 12V 2	O-HY ASS-B3 Over Limit	m HORN Limit	Freque 9120D- ReadA	ncy (MHz) HF HOR Intenna Factor	Cable	AL				
Site Conditio Project Power Mode	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 862137 DC 12V 2 Level dBuV/m	O-HY ASS-B3 Over Limit dB	m HORN Limit Line dBuV/m	Freque 9120D- ReadA Level dBuV	NCY (MHZ) HF HOR Intenna Factor dB/m	Cable Loss dB	Preamp Factor dB	A/Pos cm	T/Pos 	Remark	
Site Conditio Project Power	on : Freq MHz 30.00	03CH10 FCC CL4 862137 DC 12V 2 Level dBuV/m 23.03	0-HY 455-B3 0ver Limit dB -16.97	m HORN Limit Line	Freque 9120D- ReadA Level dBuV 30.56	HF HOR Intenna Factor dB/m 24.57	Cable Loss dB 0.60	AL Preamp Factor	A/Pos cm	T/Pos deg		
Site Conditio Project Power Mode 	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 862137 DC 12V 2 Level dBuV/m 23.03 25.03 24.19	O-HY 455-B 3 Over Limit dB -16.97 -18.47 -19.31	m HORN Limit Line dBuV/m 40.00 43.50 43.50	Freque 9120D- ReadA Level dBuV 30.56 38.98 38.31	HF HOR Intenna Factor dB/m 24.57 17.01 16.82	Cable Loss dB 0.60 1.33 1.33	Preamp Factor dB 32.78 32.67 32.67	A/Pos 	T/Pos 	Remark Peak Peak Peak	
Site Conditio Project Power Mode 1 2 3 4	on : Freq MHz 30.00 150.96 156.36 730.50	03CH10 FCC CL/ 862137 DC 12V 2 Level dBuV/m 23.03 25.03 24.19 34.86	O-HY 455-B 3 Over Limit -16.97 -18.47 -19.31 -11.14	m HORN Limit Line dBuV/m 40.00 43.50 43.50 46.00	Freque 9120D- ReadA Level dBuV 30.56 38.98 38.31 36.44	ncy (MHz) HF HOR Intenna Factor dB/m 24.57 17.01 16.82 27.70	Cable Loss dB 0.60 1.33 1.33 2.87	Preamp Factor dB 32.78 32.67 32.67 32.74	A/Pos 	T/Pos 	Remark Peak Peak Peak Peak Peak	
Site Conditio Project Power Mode 	on : Freq MHz 30.00 150.96 156.36 730.50 828.50	03CH10 FCC CL/ 862137 DC 12V 2 Level dBuV/m 23.03 25.03 24.19 34.86 31.33	O-HY 455-B 3 Over Limit -16.97 -18.47 -19.31 -11.14	m HORN Limit Line dBuV/m 40.00 43.50 43.50	Freque 9120D- ReadA Level dBuV 30.56 38.98 38.31 36.44 31.72	ncy (MHz) HF HOR Intenna Factor dB/m 24.57 17.01 16.82 27.70	Cable Loss dB 0.60 1.33 1.33 2.87 3.04	Preamp Factor dB 32.78 32.67 32.67 32.74 32.49	A/Pos 	T/Pos deg 0	Remark Peak Peak Peak Peak Peak	
Site Conditio Project Power Mode 1 2 3 4 5	on Freq MHz 30.00 150.96 156.36 730.50 828.50 881.70	03CH10 FCC CL/ 862137 DC 12V 2 Level dBuV/m 23.03 25.03 24.19 34.86 31.33 68.01	O-HY ASS-B 3 Over Limit dB -16.97 -18.47 -19.31 -11.14 -14.67	m HORN Limit Line dBuV/m 40.00 43.50 43.50 46.00	Freque 9120D- ReadA Level dBuV 30.56 38.98 38.31 36.44 31.72 67.26	ncy (MHz) HF HOR ntenna Factor dB/m 24.57 17.01 16.82 27.70 28.41 29.09	Cable Loss dB 0.60 1.33 1.33 2.87 3.04 3.16	Preamp Factor dB 32.78 32.67 32.67 32.74	A/Pos 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak	
Site Conditio Project Power Mode 1 2 3 4 5 6 * 7 8	Ereq Freq MHz 30.00 150.96 156.36 730.50 828.50 881.70 982.50 2758.00	03CH10 FCC CL/ 862137 DC 12V 2 Level dBuV/m 23.03 25.03 24.19 34.86 31.33 68.01 33.91 39.16	O-HY ASS-B 3 Over Limit -16.97 -18.47 -19.31 -11.14 -14.67 -20.09 -34.84	m HORN Limit Line dBuV/m 40.00 43.50 43.50 43.50 46.00 46.00 54.00 74.00	Freque 9120D- ReadA Level dBuV 30.56 38.98 38.31 36.44 31.72 67.26 30.08 67.25	ncy (MHz) HF HOR ntenna Factor dB/m 24.57 17.01 16.82 27.70 28.41 29.09 30.84 27.95	Cable Loss dB 0.60 1.33 1.33 2.87 3.04 3.16 3.34 5.81	Preamp Factor dB 32.78 32.67 32.67 32.74 32.49 32.19 31.16 61.85	A/Pos	T/Pos deg 0 0	Remark Peak Peak Peak Peak Peak Peak Peak Pea	
Site Conditio Project Power Mode 1 2 3 4 5 6 * 7 8 9	on : Freq MHz 30.00 150.96 156.36 730.50 828.50 881.70 982.50 2758.00 4852.00	03CH10 FCC CL/ 862137 DC 12V 2 Level dBuV/m 23.03 25.03 24.19 34.86 31.33 68.01 33.91 39.16 42.19	O-HY ASS-B 3 Over Limit dB -16.97 -18.47 -19.31 -11.14 -14.67 -20.09 -34.84 -31.81	m HORN Limit Line dBuV/m 40.00 43.50 43.50 43.50 46.00 46.00 54.00 74.00 74.00	Freque 9120D- ReadA Level dBuV 30.56 38.98 38.31 36.44 31.72 67.26 30.08 67.25 64.84	ncy (MHz) HF HOR ntenna Factor dB/m 24.57 17.01 16.82 27.70 28.41 29.09 30.84 27.95 31.25	Cable Loss dB 0.60 1.33 1.33 2.87 3.04 3.16 3.34 5.81 8.40	Preamp Factor dB 32.78 32.67 32.67 32.74 32.49 32.19 31.16 61.85 62.30	A/Pos	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	
Site Conditio Project Power Mode 1 2 3 4 5 6 * 7 8 9 10	Ereq Freq MHz 30.00 150.96 156.36 730.50 828.50 881.70 982.50 2758.00	03CH10 FCC CL/ 862137 DC 12V 2 Level dBuV/m 23.03 25.03 24.19 34.86 31.33 68.01 33.91 39.16 42.19 44.69	O-HY ASS-B 3 Over Limit -16.97 -18.47 -19.31 -11.14 -14.67 -20.09 -34.84 -31.81 -29.31	m HORN Limit Line dBuV/m 40.00 43.50 43.50 46.00 46.00 54.00 74.00 74.00 74.00	Freque 9120D- ReadA Level dBuV 30.56 38.98 38.31 36.44 31.72 67.26 30.08 67.25 64.84 63.97	ncy (MHz) HF HOR antenna Factor dB/m 24.57 17.01 16.82 27.70 28.41 29.09 30.84 27.95 31.25 34.20	Cable Loss dB 0.60 1.33 1.33 2.87 3.04 3.16 3.34 5.81 8.40 9.53	Preamp Factor dB 32.78 32.67 32.67 32.74 32.49 32.19 31.16 61.85	A/Pos	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	
Site Conditio Project Power Mode 	on : Freq MHz 30.00 150.96 156.36 730.50 828.50 881.70 982.50 2758.00 4852.00 6506.00	03CH10 FCC CL/ 862137 DC 12V 2 Level dBuV/m 23.03 25.03 24.19 34.86 31.33 68.01 33.91 39.16 42.19 44.69 45.68 48.45	O-HY ASS-B 3 Over Limit -16.97 -18.47 -19.31 -11.14 -14.67 -20.09 -34.84 -31.81 -29.31 -28.32 -25.55	m HORN Limit Line dBuV/m 40.00 43.50 43.50 46.00 46.00 54.00 74.00 74.00 74.00 74.00 74.00	Freque 9120D- ReadA Level dBuV 30.56 38.98 38.31 36.44 31.72 67.26 30.08 67.25 64.84 63.97 61.76 61.48	ncy (MHz) HF HOR ntenna Factor dB/m 24.57 17.01 16.82 27.70 28.41 29.09 30.84 27.95 31.25 34.20 37.10 39.59	Cable Loss dB 0.60 1.33 1.33 2.87 3.04 3.16 3.34 5.81 8.40 9.53 10.43 11.84	AL Preamp Factor dB 32.78 32.67 32.67 32.74 32.67 32.74 32.19 31.16 61.85 62.30 63.01 63.61 64.46	A/Pos 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	

