



# **FCC EMI TEST REPORT**

| FCC ID       | : | LHJ-FE4RW0110                                                 |
|--------------|---|---------------------------------------------------------------|
| Equipment    | : | FE4RW0110                                                     |
| Brand Name   | : | Continental                                                   |
| Model Name   | : | FE4RW0110                                                     |
| Applicant    | : | Continental Automotive Systems, Inc.<br>21440 W Lake Cook Rd. |
| Manufacturer | : | Continental Automotive Systems, Inc.<br>21440 W Lake Cook Rd. |
| Standard     | : | FCC 47 CFR FCC Part 15 Subpart B Class B                      |

The product was received on May 06, 2021 and testing was started from May 15, 2021 and completed on May 18, 2021. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI C63.4-2014 and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu Sporton International Inc. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)



# **Table of Contents**

| His | tory o                               | f this test report                                                                                                                                       | 3           |
|-----|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Sur | nmary                                | / of Test Result                                                                                                                                         | 4           |
| 1.  | Gene                                 | ral Description                                                                                                                                          | 5           |
|     | 1.1.<br>1.2.<br>1.3.<br>1.4.<br>1.5. | Product Feature of Equipment Under Test<br>Product Specification of Equipment Under Test<br>Modification of EUT<br>Test Location<br>Applicable Standards | 5<br>6<br>7 |
| 2.  | Test                                 | Configuration of Equipment Under Test                                                                                                                    | 8           |
|     | 2.1.<br>2.2.<br>2.3.<br>2.4.         | Test Mode<br>Connection Diagram of Test System<br>Support Unit used in test configuration and system<br>EUT Operation Test Setup                         | 9<br>9      |
| 3.  | Test I                               | Result                                                                                                                                                   | 10          |
|     | 3.1.<br>3.2.                         | Test of AC Conducted Emission Measurement<br>Test of Radiated Emission Measurement                                                                       |             |
| 4.  | List o                               | of Measuring Equipment                                                                                                                                   | 14          |
| 5.  | Unce                                 | rtainty of Evaluation                                                                                                                                    | 15          |
| Арј | oendix                               | A. AC Conducted Emission Test Result                                                                                                                     |             |
| Ap  | oendix                               | B. Radiated Emission Test Result                                                                                                                         |             |

Appendix C. Setup Photographs



# History of this test report

| Report No.  | Version | Description             | Issued Date   |
|-------------|---------|-------------------------|---------------|
| FC150634-01 | 01      | Initial issue of report | Jun. 07, 2021 |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |



# **Summary of Test Result**

| Report<br>Clause | Ref Std.<br>Clause | Test Items            | Result<br>(PASS/FAIL) | Remark                                    |
|------------------|--------------------|-----------------------|-----------------------|-------------------------------------------|
| 3.1              | 15.107             | AC Conducted Emission | Pass                  | Under limit<br>18.66 dB at<br>0.501 MHz   |
| 3.2              | 15.109             | Radiated Emission     | Pass                  | Under limit<br>12.70 dB at<br>958.290 MHz |

#### Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

#### Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

#### **Reviewed by: Yun Huang**

**Report Producer: Lucy Wu** 



# 1. General Description

# 1.1. Product Feature of Equipment Under Test

|                                 | Product Feature                |
|---------------------------------|--------------------------------|
| Equipment                       | FE4RW0110                      |
| Brand Name                      | Continental                    |
| Model Name                      | FE4RW0110                      |
| FCC ID                          | LHJ-FE4RW0110                  |
| EUT supports Radios application | GPRS/EGPRS/WCDMA/HSPA/LTE/GNSS |
| HW Version                      | P4                             |
| EUT Stage                       | Identical Prototype            |

Remark: The above EUT's information was declared by manufacturer.

# 1.2. Product Specification of Equipment Under Test

| Product Specification subjective to this standard |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Tx Frequency                                      | GSM850: 824.2 MHz ~ 848.8 MHz<br>GSM1900: 1850.2 MHz ~ 1909.8 MHz<br>WCDMA Band V: 826.4 MHz ~ 846.6 MHz<br>WCDMA Band IV : 1712.4 MHz ~ 1752.6 MHz<br>WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz<br>LTE Band 2 : 1850.7 MHz ~ 1909.3 MHz<br>LTE Band 4 : 1710.7 MHz ~ 1754.3 MHz<br>LTE Band 5 : 824.7 MHz ~ 848.3 MHz<br>LTE Band 7 : 2502.5 MHz ~ 2567.5 MHz<br>LTE Band 38 : 2572.5 MHz ~ 2617.5 MHz<br>LTE Band 41 : 2498.5 MHz ~ 2687.5 MHz                                                                             |  |  |
| Rx Frequency                                      | GSM850: 869.2 MHz ~ 893.8 MHz<br>GSM1900: 1930.2 MHz ~ 1989.8 MHz<br>WCDMA Band V: 871.4 MHz ~ 891.6 MHz<br>WCDMA Band IV: 2112.4 MHz ~ 2152.6 MHz<br>WCDMA Band II: 1932.4 MHz ~ 1987.6 MHz<br>LTE Band 2 : 1930.7 MHz ~ 1989.3 MHz<br>LTE Band 4 : 2110.7 MHz ~ 2154.3 MHz<br>LTE Band 5 : 869.7 MHz ~ 893.3 MHz<br>LTE Band 7 : 2622.5 MHz ~ 2687.5 MHz<br>LTE Band 38 : 2572.5 MHz ~ 2687.5 MHz<br>LTE Band 41 : 2498.5 MHz ~ 2687.5 MHz<br>GNSS : 1.57542 GHz; 1176.45 MHz<br>(GPS / Glonass / Galileo / BDS / SBAS) |  |  |



| Product Specification subjective to this standard |                                                              |  |  |
|---------------------------------------------------|--------------------------------------------------------------|--|--|
| Antenna Type                                      | Fixed External Antenna<br>Antenna Model name: SPDA24700/2700 |  |  |
|                                                   | Antenna Manufactory: Pulse electronics                       |  |  |
|                                                   | 698-960 MHz : 2dBi                                           |  |  |
| Antenna Gain                                      | 1710-2170 MHz : 2dBi                                         |  |  |
|                                                   | 2500-2700MHz : 2dBi                                          |  |  |
|                                                   | GSM/GPRS: GMSK                                               |  |  |
|                                                   | EDGE(MCS 0-4): GMSK/(MCS 5-9): 8PSK                          |  |  |
|                                                   | WCDMA: QPSK (Uplink)                                         |  |  |
| Type of Modulation                                | HSDPA: 64QAM (Downlink)                                      |  |  |
|                                                   | HSUPA : OPSK (Uplink)                                        |  |  |
|                                                   | LTE: QPSK / 16QAM / 64QAM                                    |  |  |
|                                                   | GNSS: BPSK                                                   |  |  |

**Remark:** The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

### **1.3. Modification of EUT**

No modifications are made to the EUT during all test items.



### 1.4. Test Location

| Test Site          | Sporton International Inc. EMC & Wireless Communications Laboratory         |
|--------------------|-----------------------------------------------------------------------------|
|                    | No.52, Huaya 1st Rd., Guishan Dist.,                                        |
| Test Site Location | Taoyuan City 333, Taiwan (R.O.C.)                                           |
|                    | TEL: +886-3-327-3456                                                        |
|                    | FAX: +886-3-328-4978                                                        |
| Test Site No.      | Sporton Site No.                                                            |
| Test Sile NO.      | CO05-HY                                                                     |
|                    |                                                                             |
| Test Site          | Sporton International Inc. Wensan Laboratory                                |
|                    | No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist.,                    |
| Test Site Location | Taoyuan City 333010, Taiwan (R.O.C.)                                        |
| Test Sile Location | TEL: +886-3-327-0868                                                        |
|                    | FAX: +886-3-327-0855                                                        |
| Test Site No.      | Sporton Site No.                                                            |
|                    | 03CH10-HY (TAF Code: 3786)                                                  |
| Remark             | The Radiated Emission test item subcontracted to Sporton International Inc. |
|                    | Wensan Laboratory.                                                          |

FCC designation No.: TW1093 and TW1132

### **1.5. Applicable Standards**

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC 47 CFR FCC Part 15 Subpart B Class B
- + ANSI C63.4-2014

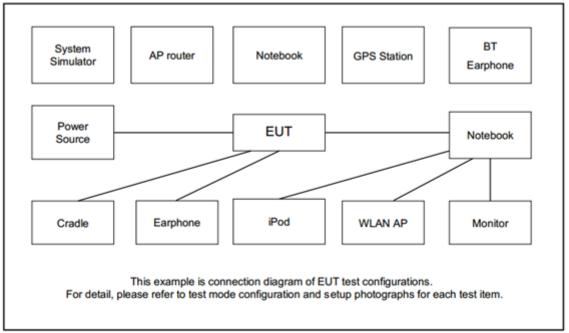
**Remark:** All test items were verified and recorded according to the standards and without any deviation during the test.



# 2. Test Configuration of Equipment Under Test

### 2.1. Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application.


Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (30MHz to the 5th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

| Test Items            | Function Type                                                               |  |  |  |  |
|-----------------------|-----------------------------------------------------------------------------|--|--|--|--|
| AC Conducted          | Mode 1: GSM850 (GPRS Class 8) Idle + WWAN Antenna *2 + Car Battery (DC 12V) |  |  |  |  |
| Emission              | Mode 2: WCDMA Band II Idle + WWAN Antenna *2 + Car Battery (DC 12V)         |  |  |  |  |
| LIIISSION             | Mode 3: LTE Band 41 Idle + WWAN Antenna *2 + Car Battery (DC 12V)           |  |  |  |  |
| Dedicted              | Mode 1: GSM850 (GPRS Class 8) Idle + WWAN Antenna *2 + Car Battery (DC 12V) |  |  |  |  |
| Radiated<br>Emissions | Mode 2: WCDMA Band II Idle + WWAN Antenna *2 + Car Battery (DC 12V)         |  |  |  |  |
| Emissions             | Mode 3: LTE Band 41 Idle + WWAN Antenna *2 + Car Battery (DC 12V)           |  |  |  |  |
| Remark:               |                                                                             |  |  |  |  |
| 1. The worst of       | st case of AC is mode 2; only the test data of this mode was reported.      |  |  |  |  |
| 2. The worst of       | worst case of RE is mode 2; only the test data of this mode was reported.   |  |  |  |  |

 For radiation emission after pre-scanned the cellular band between 30MHz ~ 960MHz (GSM850); only the worst case for cellular band test data of this mode was reported.



# 2.2. Connection Diagram of Test System



### 2.3. Support Unit used in test configuration and system

| Item | Equipment        | Brand Name | Model Name     | FCC ID | Data Cable | Power Cord        |
|------|------------------|------------|----------------|--------|------------|-------------------|
| 1.   | System Simulator | Anritsu    | MT8820C        | N/A    | N/A        | Unshielded, 1.8 m |
| 2.   | Dipole Antenna   | Larsen     | SPDA24700/2700 | N/A    | N/A        | N/A               |
| 3.   | Car Battery      | GS         | 65B24LS        | N/A    | N/A        | N/A               |

# 2.4. EUT Operation Test Setup

The EUT was in GSM or WCDMA or LTE idle mode during the test. The EUT was synchronized with the BCCH, and had been continuous receiving mode by setting paging reorganization of the system simulator.

| TEL : 886-3-327-3456                       | Page Number    | : 9 of 15       |
|--------------------------------------------|----------------|-----------------|
| FAX : 886-3-328-4978                       | Issued Date    | : Jun. 07, 2021 |
| Report Template No.: BU5-FD15B Version 2.5 | Report Version | : 01            |



# 3. Test Result

### **3.1. Test of AC Conducted Emission Measurement**

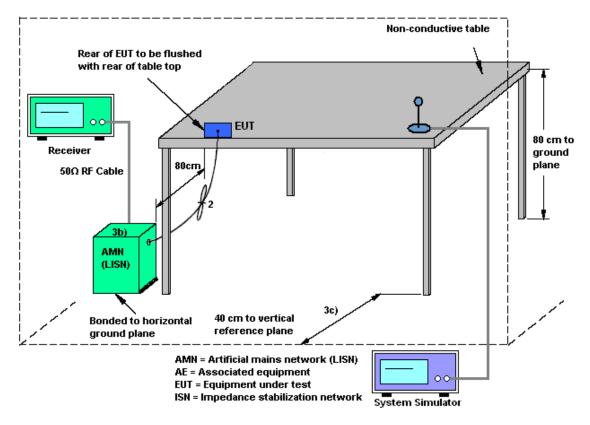
### 3.1.1. Limits of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

| Frequency of emission | Conducted  | limit (dBuV) |
|-----------------------|------------|--------------|
| (MHz)                 | Quasi-peak | Average      |
| 0.15-0.5              | 66 to 56*  | 56 to 46*    |
| 0.5-5                 | 56         | 46           |
| 5-30                  | 60         | 50           |

\*Decreases with the logarithm of the frequency.

### 3.1.2. Measuring Instruments


Refer a test equipment and calibration data table in this test report.

### 3.1.3. Test Procedure

- The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.



### 3.1.4. Test Setup



### 3.1.5. Test Result of AC Conducted Emission

Please refer to Appendix A.



### **3.2. Test of Radiated Emission Measurement**

### 3.2.1. Limit of Radiated Emission

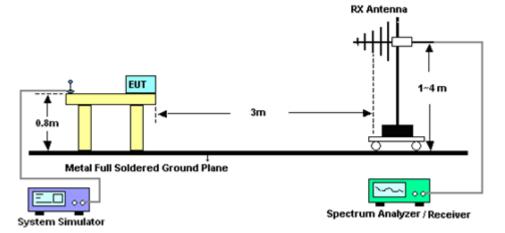
The emissions from an unintentional radiator shall not exceed the field strength levels specified in the following table:

#### <Class B>

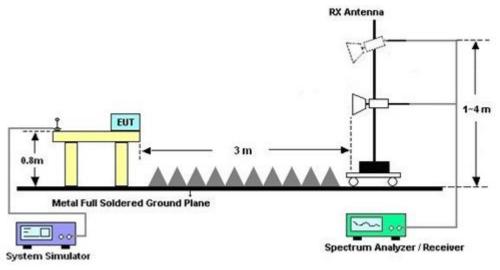
| Frequency<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance<br>(meters) |
|--------------------|--------------------------------------|----------------------------------|
| 30 – 88            | 100                                  | 3                                |
| 88 – 216           | 150                                  | 3                                |
| 216 - 960          | 200                                  | 3                                |
| Above 960          | 500                                  | 3                                |

#### 3.2.2. Measuring Instruments

Refer a test equipment and calibration data table in this test report.


### 3.2.3. Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a Bi-Log antenna and its height is adjusted between one to four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode (RBW=120 kHz/VBW=300 kHz for frequency below 1 GHz; RBW=1 MHz VBW=3 MHz (Peak), RBW=1 MHz/VBW=10 Hz (Average) for frequency above 1 GHz).
- 7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, peak values of EUT will be reported. Otherwise, the emission will be repeated by using the quasi-peak method and reported.
- 8. Emission level (dB $\mu$ V/m) = 20 log Emission level ( $\mu$ V/m)
- 9. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level




### 3.2.4. Test Setup of Radiated Emission

#### For radiated emissions from 30MHz to 1GHz



#### For radiated emissions above 1GHz



### 3.2.5. Test Result of Radiated Emission

Please refer to Appendix B.



# 4. List of Measuring Equipment

| Instrument           | Brand Name         | Model No.                         | Serial No.                               | Characteristics                  | Calibration<br>Date | Test Date    | Due Date      | Remark                   |
|----------------------|--------------------|-----------------------------------|------------------------------------------|----------------------------------|---------------------|--------------|---------------|--------------------------|
| Amplifier            | SONOMA             | 310N                              | 187311                                   | 9kHz~1GHz                        | Oct. 21, 2020       | May 15, 2021 | Oct. 20, 2021 | Radiation<br>(03CH10-HY) |
| Bilog<br>Antenna     | TESEQ              | CBL 6111D &<br>00800N1D01N<br>-06 | 35413 & 02                               | 30MHz~1GHz                       | Feb. 10, 2021       | May 15, 2021 | Feb. 09, 2022 | Radiation<br>(03CH10-HY) |
| Horn<br>Antenna      | SCHWARZBE<br>CK    | BBHA 9120 D                       | 9120D-02114                              | 1GHz~18GHz                       | Aug. 04, 2020       | May 15, 2021 | Aug. 03, 2021 | Radiation<br>(03CH10-HY) |
| Preamplifier         | Jet-Power          | JAP00101800-<br>30-10P            | 160118550004                             | 1GHz~18GHz                       | Mar. 01, 2021       | May 15, 2021 | Feb. 28, 2022 | Radiation<br>(03CH10-HY) |
| Spectrum<br>Analyzer | Keysight           | N9010A                            | MY53470118                               | 10Hz~44GHz                       | Jan. 15, 2021       | May 15, 2021 | Jan. 14, 2022 | Radiation<br>(03CH10-HY) |
| Controller           | EMEC               | EM 1000                           | N/A                                      | Control Turn<br>table & Ant Mast | N/A                 | May 15, 2021 | N/A           | Radiation<br>(03CH10-HY) |
| Antenna<br>Mast      | EMEC               | AM-BS-4500-B                      | N/A                                      | 1~4m                             | N/A                 | May 15, 2021 | N/A           | Radiation<br>(03CH10-HY) |
| Turn Table           | EMEC               | TT 2200                           | N/A                                      | 0~360 Degree                     | N/A                 | May 15, 2021 | N/A           | Radiation<br>(03CH10-HY) |
| Software             | Audix              | E3<br>6.2009-8-24                 | RK-001042                                | N/A                              | N/A                 | May 15, 2021 | N/A           | Radiation<br>(03CH10-HY) |
| EMI Test<br>Receiver | Agilent            | N9038A(MXE)                       | MY55420170                               | 20MHz~8.4GHz                     | May 21, 2020        | May 15, 2021 | May 20, 2021  | Radiation<br>(03CH10-HY) |
| RF Cable             | HUBER +<br>SUHNER  | SUCOFLEX<br>104 / 102             | MY11692/4PE,<br>MY11693/4PE,<br>MY2855/2 | 30MHz~1GHz                       | Nov. 06, 2020       | May 15, 2021 | Nov. 05, 2021 | Radiation<br>(03CH10-HY) |
| RF Cable             | HUBER +<br>SUHNER  | SUCOFLEX<br>104 / 102             | MY11692/4PE,<br>MY11693/4PE,<br>MY2855/2 | 1GHz~18GHz                       | Nov. 06, 2020       | May 15, 2021 | Nov. 05, 2021 | Radiation<br>(03CH10-HY) |
| DC- LISN             | ROLF HEINE         | LN-KFZ/200                        | 03/10219                                 | 100kHz –<br>108MHz               | Nov. 18, 2020       | May 18, 2021 | Nov. 17, 2021 | Conduction<br>(CO05-HY)  |
| DC- LISN             | ROLF HEINE         | LN-KFZ/200                        | 03/10220                                 | 100kHz –<br>108MHz               | Nov. 18, 2020       | May 18, 2021 | Nov. 17, 2021 | Conduction<br>(CO05-HY)  |
| EMI Test<br>Receiver | Rohde &<br>Schwarz | ESR3                              | 102388                                   | 9kHz~3.6GHz                      | Nov. 30, 2020       | May 18, 2021 | Nov. 29, 2021 | Conduction<br>(CO05-HY)  |
| Hygrometer           | Testo              | 608-H1                            | 34913912                                 | N/A                              | Nov. 18, 2020       | May 18, 2021 | Nov. 17, 2021 | Conduction<br>(CO05-HY)  |
| Software             | Rohde &<br>Schwarz | EMC32<br>V10.30                   | N/A                                      | N/A                              | N/A                 | May 18, 2021 | N/A           | Conduction<br>(CO05-HY)  |
| ISN Cable            | MVE                | RG-400                            | 200260                                   | N/A                              | Dec. 31, 2020       | May 18, 2021 | Dec. 30, 2021 | Conduction<br>(CO05-HY)  |
| Pulse Limiter        | Rohde &<br>Schwarz | ESH3-Z2                           | 100851                                   | N/A                              | Feb. 25, 2021       | May 18, 2021 | Feb. 24, 2022 | Conduction<br>(CO05-HY)  |



# 5. Uncertainty of Evaluation

#### Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

| Measuring Uncertainty for a Level of Confidence | 2.2 |
|-------------------------------------------------|-----|
| of 95% (U = 2Uc(y))                             | 2.3 |

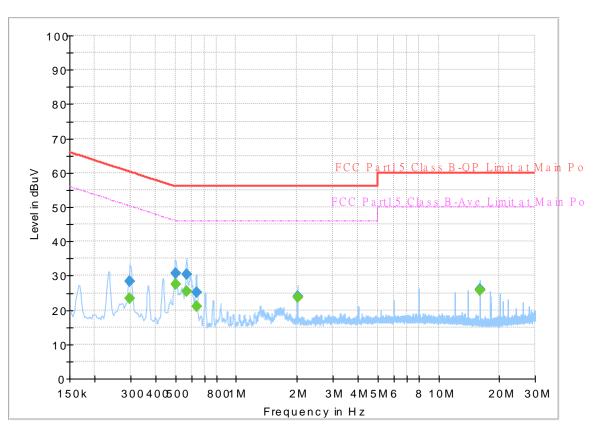
#### Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

| Measuring Uncertainty for a Level of Confidence | 4.7 |
|-------------------------------------------------|-----|
| of 95% (U = 2Uc(y))                             | 4.7 |

#### Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

| Measuring Uncertainty for a Level of Confidence | 5.1 |
|-------------------------------------------------|-----|
| of 95% (U = 2Uc(y))                             | 5.1 |




# Appendix A. AC Conducted Emission Test Results

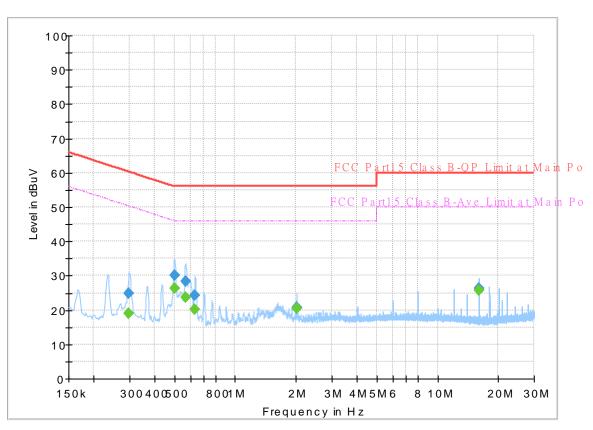
| Test Engineer : | Tom Loo | Temperature :       | <b>23~26</b> ℃ |
|-----------------|---------|---------------------|----------------|
| rest Engineer . |         | Relative Humidity : | 40~50%         |

# **EUT Information**

| Report NO :    |  |
|----------------|--|
| Test Mode :    |  |
| Test Voltage : |  |
| Phase :        |  |

150634-01 Mode 2 12V DC Positive




#### FullSpectrum

### Final\_Result

| Frequency | QuasiPeak | CAverage | Limit  | Margin | Line     | Corr. |
|-----------|-----------|----------|--------|--------|----------|-------|
| (MHz)     | (dBuV)    | (dBuV)   | (dBuV) | (dB)   |          | (dB)  |
| 0.298320  | 28.50     |          | 60.29  | 31.79  | Positive | 10.0  |
| 0.298320  |           | 23.32    | 50.29  | 26.97  | Positive | 10.0  |
| 0.500820  | 30.68     |          | 56.00  | 25.32  | Positive | 10.1  |
| 0.500820  |           | 27.34    | 46.00  | 18.66  | Positive | 10.1  |
| 0.567150  | 30.38     |          | 56.00  | 25.62  | Positive | 10.1  |
| 0.567150  |           | 25.58    | 46.00  | 20.42  | Positive | 10.1  |
| 0.636090  | 25.08     |          | 56.00  | 30.92  | Positive | 10.2  |
| 0.636090  |           | 20.98    | 46.00  | 25.02  | Positive | 10.2  |
| 2.006430  | 23.86     |          | 56.00  | 32.14  | Positive | 10.3  |
| 2.006430  |           | 23.79    | 46.00  | 22.21  | Positive | 10.3  |
| 16.055880 | 25.96     |          | 60.00  | 34.04  | Positive | 10.4  |
| 16.055880 |           | 25.75    | 50.00  | 24.25  | Positive | 10.4  |

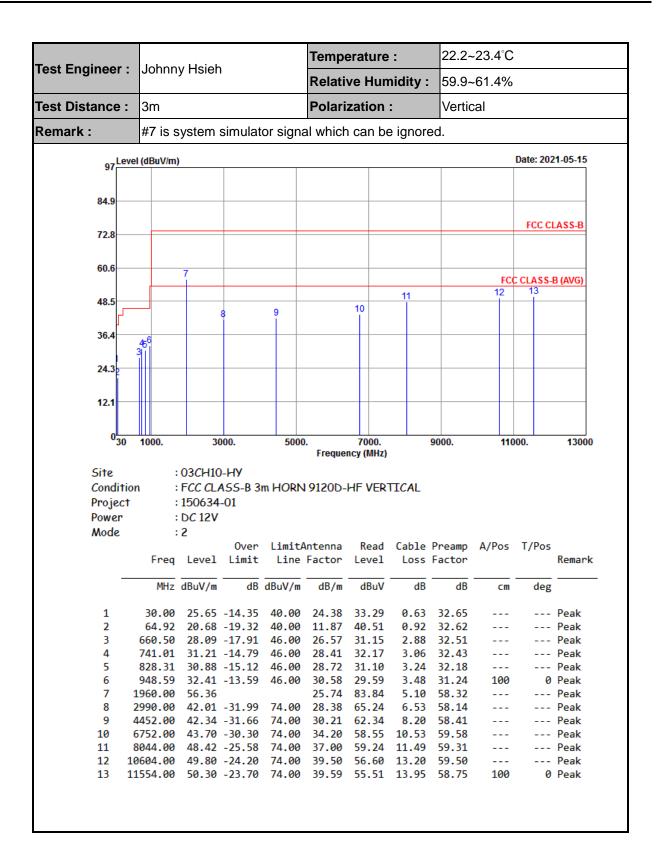
### **EUT Information**

Report NO : Test Mode : Test Voltage : Phase : 150634-01 Mode 2 12V DC Negative



#### Full Spectrum

### Final\_Result


| Frequency | QuasiPeak | CAverage | Limit  | Margin | Line     | Corr. |
|-----------|-----------|----------|--------|--------|----------|-------|
| (MHz)     | (dBuV)    | (dBuV)   | (dBuV) | (dB)   |          | (dB)  |
| 0.298500  |           | 18.89    | 50.28  | 31.39  | Negative | 10.0  |
| 0.298500  | 24.80     |          | 60.28  | 35.48  | Negative | 10.0  |
| 0.501000  |           | 26.22    | 46.00  | 19.78  | Negative | 10.1  |
| 0.501000  | 30.01     |          | 56.00  | 25.99  | Negative | 10.1  |
| 0.566250  |           | 23.62    | 46.00  | 22.38  | Negative | 10.2  |
| 0.566250  | 28.43     |          | 56.00  | 27.57  | Negative | 10.2  |
| 0.633750  |           | 20.09    | 46.00  | 25.91  | Negative | 10.2  |
| 0.633750  | 24.35     |          | 56.00  | 31.65  | Negative | 10.2  |
| 2.006250  |           | 20.45    | 46.00  | 25.55  | Negative | 10.4  |
| 2.006250  | 20.74     |          | 56.00  | 35.26  | Negative | 10.4  |
| 16.053000 |           | 25.62    | 50.00  | 24.38  | Negative | 10.4  |
| 16.053000 | 26.40     |          | 60.00  | 33.60  | Negative | 10.4  |



# Appendix B. Radiated Emission Test Result

| Toot Ene  | nincor                                                 | lohnn                                                                                                                              |                                                                                                                                                                  |                                                                                                                                   |                                                                                                                              | Tempe                                                                                                                                    | erature                                                                                                         | :                                                                                                             | 22.2~                                                                                                                           | -23.4°C                        |                                           |                                                                       |
|-----------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------|-----------------------------------------------------------------------|
| Test Eng  | Jineer                                                 | : Johnn                                                                                                                            | y nsier                                                                                                                                                          | I                                                                                                                                 |                                                                                                                              | Relativ                                                                                                                                  | ve Hun                                                                                                          | nidity :                                                                                                      | 59.9~                                                                                                                           | -61.4%                         |                                           |                                                                       |
| Test Dist | tance :                                                | : 3m                                                                                                                               |                                                                                                                                                                  |                                                                                                                                   |                                                                                                                              | Polari                                                                                                                                   | zation                                                                                                          | :                                                                                                             | Horiz                                                                                                                           | ontal                          |                                           |                                                                       |
| Remark    | •                                                      | #8 is s                                                                                                                            | ystem                                                                                                                                                            | simulat                                                                                                                           | or signa                                                                                                                     | al which                                                                                                                                 | n can be                                                                                                        | eignore                                                                                                       | ed.                                                                                                                             |                                |                                           |                                                                       |
|           | 97                                                     | vel (dBuV/m)                                                                                                                       |                                                                                                                                                                  |                                                                                                                                   |                                                                                                                              |                                                                                                                                          |                                                                                                                 |                                                                                                               |                                                                                                                                 |                                | Date: 202                                 | 1-05-15                                                               |
|           |                                                        |                                                                                                                                    |                                                                                                                                                                  |                                                                                                                                   |                                                                                                                              |                                                                                                                                          |                                                                                                                 |                                                                                                               |                                                                                                                                 |                                |                                           |                                                                       |
|           | 84.9                                                   |                                                                                                                                    |                                                                                                                                                                  |                                                                                                                                   |                                                                                                                              |                                                                                                                                          |                                                                                                                 |                                                                                                               |                                                                                                                                 |                                |                                           |                                                                       |
|           |                                                        |                                                                                                                                    |                                                                                                                                                                  |                                                                                                                                   |                                                                                                                              |                                                                                                                                          |                                                                                                                 |                                                                                                               |                                                                                                                                 |                                | FCC CL                                    | ASS-B                                                                 |
|           | 72.8                                                   |                                                                                                                                    |                                                                                                                                                                  |                                                                                                                                   |                                                                                                                              |                                                                                                                                          |                                                                                                                 |                                                                                                               |                                                                                                                                 |                                |                                           |                                                                       |
|           |                                                        |                                                                                                                                    |                                                                                                                                                                  |                                                                                                                                   |                                                                                                                              |                                                                                                                                          |                                                                                                                 |                                                                                                               |                                                                                                                                 |                                |                                           |                                                                       |
|           | 60.6                                                   |                                                                                                                                    | 8                                                                                                                                                                |                                                                                                                                   |                                                                                                                              |                                                                                                                                          |                                                                                                                 |                                                                                                               |                                                                                                                                 | FC                             | C CLASS-I                                 | B (AVG)                                                               |
|           | 48.5                                                   | 7                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                   |                                                                                                                              |                                                                                                                                          |                                                                                                                 | 11                                                                                                            |                                                                                                                                 | 12                             |                                           | 3                                                                     |
|           | 40.0<br>-                                              |                                                                                                                                    |                                                                                                                                                                  |                                                                                                                                   | 9                                                                                                                            |                                                                                                                                          | 10                                                                                                              |                                                                                                               |                                                                                                                                 |                                |                                           |                                                                       |
|           | 36.4                                                   | 6                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                   |                                                                                                                              |                                                                                                                                          |                                                                                                                 |                                                                                                               |                                                                                                                                 |                                |                                           |                                                                       |
|           |                                                        | Ð                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                   |                                                                                                                              |                                                                                                                                          |                                                                                                                 |                                                                                                               |                                                                                                                                 |                                |                                           |                                                                       |
|           | 24.3                                                   | գ_∭                                                                                                                                |                                                                                                                                                                  |                                                                                                                                   |                                                                                                                              |                                                                                                                                          |                                                                                                                 |                                                                                                               |                                                                                                                                 |                                |                                           |                                                                       |
|           | 2                                                      |                                                                                                                                    |                                                                                                                                                                  |                                                                                                                                   |                                                                                                                              |                                                                                                                                          |                                                                                                                 |                                                                                                               |                                                                                                                                 |                                |                                           |                                                                       |
|           |                                                        |                                                                                                                                    |                                                                                                                                                                  |                                                                                                                                   |                                                                                                                              |                                                                                                                                          |                                                                                                                 |                                                                                                               |                                                                                                                                 |                                |                                           |                                                                       |
|           | 12.1                                                   |                                                                                                                                    |                                                                                                                                                                  |                                                                                                                                   |                                                                                                                              |                                                                                                                                          |                                                                                                                 |                                                                                                               |                                                                                                                                 |                                |                                           |                                                                       |
|           | 12.1                                                   |                                                                                                                                    |                                                                                                                                                                  |                                                                                                                                   |                                                                                                                              |                                                                                                                                          |                                                                                                                 |                                                                                                               |                                                                                                                                 |                                |                                           |                                                                       |
|           |                                                        | 1000.                                                                                                                              | 30                                                                                                                                                               | 000.                                                                                                                              | 5000                                                                                                                         |                                                                                                                                          | 7000.                                                                                                           |                                                                                                               | 9000.                                                                                                                           | 110                            | 000.                                      | 13000                                                                 |
|           | 12.1<br>0 <sub>30</sub>                                | 1000.                                                                                                                              | 3(                                                                                                                                                               | 000.                                                                                                                              | 5000                                                                                                                         |                                                                                                                                          | 7000.<br>ncy (MHz)                                                                                              |                                                                                                               | 9000.                                                                                                                           | 110                            | 000.                                      | 13000                                                                 |
|           | 0 <sub>30</sub><br>Site                                | :                                                                                                                                  | 03CH10                                                                                                                                                           | )-НУ                                                                                                                              |                                                                                                                              | Freque                                                                                                                                   | ncy (MHz)                                                                                                       |                                                                                                               |                                                                                                                                 | 110                            | 000.                                      | 13000                                                                 |
|           | 0 <sub>30</sub><br>Site<br>Conditi                     | :<br>ion :                                                                                                                         | 03CH10<br>FCC CL/                                                                                                                                                | )-НУ<br>455-В 3                                                                                                                   | 5000<br>m HORN                                                                                                               | Freque                                                                                                                                   | ncy (MHz)                                                                                                       |                                                                                                               |                                                                                                                                 | 110                            | 000.                                      | 13000                                                                 |
|           | 0 <sub>30</sub><br>Site<br>Conditi<br>Project          | :<br>ion :<br>t :                                                                                                                  | 03CH10<br>FCC CL/<br>150634                                                                                                                                      | )-НУ<br>455-В 3                                                                                                                   |                                                                                                                              | Freque                                                                                                                                   | ncy (MHz)                                                                                                       |                                                                                                               |                                                                                                                                 | 110                            | 000.                                      | 13000                                                                 |
|           | 0 <sub>30</sub><br>Site<br>Conditi                     | ion :<br>t :                                                                                                                       | 03CH10<br>FCC CL/                                                                                                                                                | )-НУ<br>455-В 3                                                                                                                   |                                                                                                                              | Freque                                                                                                                                   | ncy (MHz)                                                                                                       |                                                                                                               |                                                                                                                                 | 110                            | 000.                                      | 13000                                                                 |
|           | 0 <sub>30</sub><br>Site<br>Conditi<br>Project<br>Power | :<br>ion :<br>t :<br>:                                                                                                             | 03CH10<br>FCC CL/<br>150634<br>DC 12V<br>2                                                                                                                       | )-HY<br>455-B3<br>-01<br>Over                                                                                                     | m HORN<br>LimitA                                                                                                             | Freque                                                                                                                                   | ncy (MHz)<br>HF HOR<br>Read                                                                                     | IZONT<br>Cable                                                                                                | AL                                                                                                                              |                                |                                           |                                                                       |
|           | 0 <sub>30</sub><br>Site<br>Conditi<br>Project<br>Power | :<br>ion :<br>t :<br>:                                                                                                             | 03CH10<br>FCC CL/<br>150634<br>DC 12V<br>2                                                                                                                       | )-HY<br>455-B3<br>-01<br>Over                                                                                                     | m HORN                                                                                                                       | Freque                                                                                                                                   | ncy (MHz)<br>HF HOR<br>Read                                                                                     | IZONT<br>Cable                                                                                                | AL                                                                                                                              |                                |                                           | 13000<br>Remark                                                       |
|           | 0 <sub>30</sub><br>Site<br>Conditi<br>Project<br>Power | ion :<br>t :<br>Freq                                                                                                               | 03CH10<br>FCC CL/<br>150634<br>DC 12V<br>2                                                                                                                       | )-HY<br>ASS-B3<br>-01<br>Over<br>Limit                                                                                            | m HORN<br>LimitA                                                                                                             | Freque                                                                                                                                   | ncy (MHz)<br>HF HOR<br>Read                                                                                     | IZONT<br>Cable                                                                                                | AL                                                                                                                              |                                |                                           |                                                                       |
|           | 0 <sub>30</sub><br>Site<br>Conditi<br>Project<br>Power | ion :<br>t :<br>Freq<br>MHz                                                                                                        | 03CH10<br>FCC CL/<br>150634<br>DC 12V<br>2<br>Level<br>dBuV/m                                                                                                    | O-HY<br>ASS-B3<br>-01<br>Over<br>Limit<br>dB                                                                                      | m HORN<br>LimitA<br>Line                                                                                                     | Freque<br>9120D-<br>Antenna<br>Factor<br>dB/m                                                                                            | NCY (MHZ)<br>HF HOR<br>Read<br>Level<br>dBuV                                                                    | IZONT<br>Cable<br>Loss<br>dB                                                                                  | AL<br>Preamp<br>Factor                                                                                                          | A/Pos                          | T/Pos<br>                                 |                                                                       |
|           | 030<br>Site<br>Conditi<br>Project<br>Power<br>Mode     | ion :<br>t :<br>Freq<br>MHz<br>30.97<br>162.89                                                                                     | 03CH10<br>FCC CL/<br>150634<br>DC 12V<br>2<br>Level<br>dBuV/m<br>21.50<br>17.91                                                                                  | 0-HY<br>455-B 3<br>-01<br>0ver<br>Limit<br>-18.50<br>-25.59                                                                       | m HORN<br>LimitA<br>Line<br>dBuV/m<br>40.00<br>43.50                                                                         | Freques<br>9120D-<br>Antenna<br>Factor<br>dB/m<br>23.84<br>16.11                                                                         | Read<br>Level<br>dBuV<br>29.66<br>32.89                                                                         | Cable<br>Loss<br>dB<br>0.64<br>1.44                                                                           | AL<br>Preamp<br>Factor<br>dB<br>32.64<br>32.53                                                                                  | A/Pos<br>cm                    | T/Pos<br>deg                              | Remark                                                                |
|           | 030<br>Site<br>Conditi<br>Project<br>Power<br>Mode     | ion :<br>t :<br>Freq<br>MHz<br>30.97<br>162.89<br>340.40                                                                           | 03CH10<br>FCC CL/<br>150634<br>DC 12V<br>2<br>Level<br>dBuV/m<br>21.50<br>17.91<br>22.79                                                                         | 0-HY<br>455-B 3<br>-01<br>0ver<br>Limit<br>-18.50<br>-25.59<br>-23.21                                                             | m HORN<br>LimitA<br>Line<br>dBuV/m<br>40.00<br>43.50<br>46.00                                                                | Freque<br>9120D-<br>antenna<br>Factor<br>dB/m<br>23.84<br>16.11<br>20.11                                                                 | Read<br>Level<br>dBuV<br>29.66<br>32.89<br>33.02                                                                | Cable<br>Loss<br>dB<br>0.64<br>1.44<br>2.06                                                                   | AL<br>Preamp<br>Factor<br>dB<br>32.64<br>32.53<br>32.40                                                                         | A/Pos<br>                      | T/Pos<br>                                 | Remark<br>Peak<br>Peak<br>Peak                                        |
|           | 030<br>Site<br>Conditi<br>Project<br>Power<br>Mode     | ion :<br>t :<br>Freq<br>MHz<br>30.97<br>162.89<br>340.40<br>784.66                                                                 | 03CH10<br>FCC CL/<br>150634<br>DC 12V<br>2<br>Level<br>dBuV/m<br>21.50<br>17.91<br>22.79<br>29.79                                                                | 0-HY<br>455-B 3<br>-01<br>0ver<br>Limit<br>-18.50<br>-25.59<br>-23.21<br>-16.21                                                   | m HORN<br>LimitA<br>Line<br>dBuV/m<br>40.00<br>43.50<br>46.00<br>46.00                                                       | Freque<br>9120D-<br>antenna<br>Factor<br>0B/m<br>23.84<br>16.11<br>20.11<br>28.52                                                        | Read<br>Level<br>dBuV<br>29.66<br>32.89<br>33.02<br>30.47                                                       | Cable<br>Loss<br>dB<br>0.64<br>1.44<br>2.06<br>3.17                                                           | AL<br>Preamp<br>Factor<br>dB<br>32.64<br>32.53<br>32.40<br>32.37                                                                | A/Pos<br>                      | T/Pos<br>                                 | Remark<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak                        |
|           | 030<br>Site<br>Conditi<br>Project<br>Power<br>Mode     | ion :<br>t :<br>Freq<br>MHz<br>30.97<br>162.89<br>340.40                                                                           | 03CH10<br>FCC CL/<br>150634<br>DC 12V<br>2<br>Level<br>dBuV/m<br>21.50<br>17.91<br>22.79<br>29.79<br>30.71                                                       | 0-HY<br>455-B 3<br>-01<br>0ver<br>Limit<br>-18.50<br>-25.59<br>-23.21<br>-16.21<br>-15.29                                         | m HORN<br>LimitA<br>Line<br>dBuV/m<br>40.00<br>43.50<br>46.00                                                                | Freque<br>9120D-<br>antenna<br>Factor<br>dB/m<br>23.84<br>16.11<br>20.11                                                                 | Read<br>Level<br>dBuV<br>29.66<br>32.89<br>33.02                                                                | Cable<br>Loss<br>dB<br>0.64<br>1.44<br>2.06                                                                   | AL<br>Preamp<br>Factor<br>dB<br>32.64<br>32.53<br>32.40<br>32.37<br>31.95                                                       | A/Pos<br>                      | T/Pos<br>                                 | Remark<br>Peak<br>Peak<br>Peak                                        |
|           | 0<br>30<br>Site<br>Conditi<br>Project<br>Power<br>Mode | ion :<br>t :<br>Freq<br>MHz<br>30.97<br>162.89<br>340.40<br>784.66<br>867.11                                                       | 03CH10<br>FCC CL/<br>150634<br>DC 12V<br>2<br>Level<br>dBuV/m<br>21.50<br>17.91<br>22.79<br>29.79<br>30.71<br>33.30                                              | O-HY<br>455-B 3<br>-O1<br>0ver<br>Limit<br>-18.50<br>-25.59<br>-23.21<br>-16.21<br>-15.29<br>-12.70                               | m HORN<br>LimitA<br>Line<br>dBuV/m<br>40.00<br>43.50<br>46.00<br>46.00<br>46.00                                              | Freque<br>9120D-<br>antenna<br>Factor<br>23.84<br>16.11<br>20.11<br>28.52<br>29.14<br>31.02<br>24.38                                     | Read<br>Level<br>dBuV<br>29.66<br>32.89<br>33.02<br>30.47<br>30.22<br>29.93<br>76.80                            | Cable<br>Loss<br>dB<br>0.64<br>1.44<br>2.06<br>3.17<br>3.30                                                   | AL<br>Preamp<br>Factor<br>dB<br>32.64<br>32.53<br>32.40<br>32.37<br>31.95<br>31.14                                              | A/Pos<br>                      | T/Pos<br>                                 | Remark<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak                |
|           | 030<br>Site<br>Conditi<br>Project<br>Power<br>Mode     | ion :<br>t :<br>Freq<br>MHz<br>30.97<br>162.89<br>340.40<br>784.66<br>867.11<br>958.29<br>1062.00<br>1960.00                       | 03CH10<br>FCC CL/<br>150634<br>DC 12V<br>2<br>Level<br>dBuV/m<br>21.50<br>17.91<br>22.79<br>29.79<br>30.71<br>33.30<br>46.50<br>55.38                            | O-HY<br>455-B 3<br>-O1<br>0ver<br>Limit<br>-18.50<br>-25.59<br>-23.21<br>-16.21<br>-15.29<br>-12.70<br>-27.50                     | m HORN<br>LimitA<br>Line<br>dBuV/m<br>40.00<br>43.50<br>46.00<br>46.00<br>46.00<br>46.00<br>74.00                            | Freque<br>9120D-<br>antenna<br>Factor<br>23.84<br>16.11<br>20.11<br>28.52<br>29.14<br>31.02<br>24.38<br>25.74                            | Read<br>Level<br>dBuV<br>29.66<br>32.89<br>33.02<br>30.47<br>30.22<br>29.93<br>76.80<br>82.86                   | Cable<br>Loss<br>dB<br>0.64<br>1.44<br>2.06<br>3.17<br>3.30<br>3.49<br>3.68<br>5.10                           | AL<br>Preamp<br>Factor<br>dB<br>32.64<br>32.53<br>32.40<br>32.37<br>31.95<br>31.14<br>58.36<br>58.32                            | A/Pos<br>                      | T/Pos<br>                                 | Remark<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Pea |
|           | 030<br>Site<br>Conditi<br>Project<br>Power<br>Mode     | ion :<br>t :<br>Freq<br>MHz<br>30.97<br>162.89<br>340.40<br>784.66<br>867.11<br>958.29<br>1062.00<br>1960.00<br>4498.00            | 03CH10<br>FCC CL/<br>150634<br>DC 12V<br>2<br>Level<br>dBuV/m<br>21.50<br>17.91<br>22.79<br>29.79<br>30.71<br>33.30<br>46.50<br>55.38<br>43.36                   | O-HY<br>455-B 3<br>-O1<br>Over<br>Limit<br>-18.50<br>-25.59<br>-23.21<br>-16.21<br>-15.29<br>-12.70<br>-27.50<br>-30.64           | m HORN<br>LimitA<br>Line<br>dBuV/m<br>40.00<br>43.50<br>46.00<br>46.00<br>46.00<br>74.00<br>74.00                            | Freque<br>9120D-<br>antenna<br>Factor<br>23.84<br>16.11<br>20.11<br>28.52<br>29.14<br>31.02<br>24.38<br>25.74<br>30.39                   | Read<br>Level<br>dBuV<br>29.66<br>32.89<br>33.02<br>30.47<br>30.22<br>29.93<br>76.80<br>82.86<br>63.15          | Cable<br>Loss<br>dB<br>0.64<br>1.44<br>2.06<br>3.17<br>3.30<br>3.49<br>3.68<br>5.10<br>8.21                   | AL<br>Preamp<br>Factor<br>dB<br>32.64<br>32.53<br>32.40<br>32.37<br>31.95<br>31.14<br>58.36<br>58.32<br>58.39                   | A/Pos<br>                      | T/Pos<br>deg<br><br><br>0<br><br>         | Remark<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Pea |
|           | 030<br>Site<br>Conditi<br>Project<br>Power<br>Mode     | ion :<br>t :<br>Freq<br>MHz<br>30.97<br>162.89<br>340.40<br>784.66<br>867.11<br>958.29<br>1062.00<br>1960.00<br>4498.00<br>6972.00 | 03CH10<br>FCC CL/<br>150634<br>DC 12V<br>2<br>Level<br>dBuV/m<br>21.50<br>17.91<br>22.79<br>29.79<br>30.71<br>33.30<br>46.50<br>55.38<br>43.36<br>43.79          | O-HY<br>455-B 3<br>-01<br>Over<br>Limit<br>-18.50<br>-25.59<br>-23.21<br>-16.21<br>-15.29<br>-12.70<br>-27.50<br>-30.64<br>-30.21 | m HORN<br>LimitA<br>Line<br>dBuV/m<br>40.00<br>43.50<br>46.00<br>46.00<br>46.00<br>46.00<br>74.00<br>74.00<br>74.00          | Freque<br>9120D-<br>antenna<br>Factor<br>23.84<br>16.11<br>20.11<br>28.52<br>29.14<br>31.02<br>24.38<br>25.74<br>30.39<br>35.09          | Read<br>Level<br>dBuV<br>29.66<br>32.89<br>33.02<br>30.47<br>30.22<br>29.93<br>76.80<br>82.86<br>63.15<br>57.27 | Cable<br>Loss<br>dB<br>0.64<br>1.44<br>2.06<br>3.17<br>3.30<br>3.49<br>3.68<br>5.10<br>8.21<br>11.09          | AL<br>Preamp<br>Factor<br>dB<br>32.64<br>32.53<br>32.40<br>32.37<br>31.95<br>31.14<br>58.36<br>58.32<br>58.39<br>59.66          | A/Pos<br>cm<br><br>100<br><br> | T/Pos<br>deg<br><br><br>0<br><br><br>     | Remark<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Pea |
|           | 030<br>Site<br>Conditi<br>Project<br>Power<br>Mode     | ion :<br>t :<br>Freq<br>MHz<br>30.97<br>162.89<br>340.40<br>784.66<br>867.11<br>958.29<br>1062.00<br>1960.00<br>4498.00            | 03CH10<br>FCC CL/<br>150634<br>DC 12V<br>2<br>Level<br>dBuV/m<br>21.50<br>17.91<br>22.79<br>29.79<br>30.71<br>33.30<br>46.50<br>55.38<br>43.36<br>43.79<br>48.30 | O-HY<br>455-B 3<br>-O1<br>Over<br>Limit<br>-18.50<br>-25.59<br>-23.21<br>-16.21<br>-15.29<br>-12.70<br>-27.50<br>-30.64           | m HORN<br>LimitA<br>Line<br>dBuV/m<br>40.00<br>43.50<br>46.00<br>46.00<br>46.00<br>46.00<br>74.00<br>74.00<br>74.00<br>74.00 | Freque<br>9120D-<br>antenna<br>Factor<br>23.84<br>16.11<br>20.11<br>28.52<br>29.14<br>31.02<br>24.38<br>25.74<br>30.39<br>35.09<br>36.92 | Read<br>Level<br>dBuV<br>29.66<br>32.89<br>33.02<br>30.47<br>30.22<br>29.93<br>76.80<br>82.86<br>63.15<br>57.27 | Cable<br>Loss<br>dB<br>0.64<br>1.44<br>2.06<br>3.17<br>3.30<br>3.49<br>3.68<br>5.10<br>8.21<br>11.09<br>11.59 | AL<br>Preamp<br>Factor<br>dB<br>32.64<br>32.53<br>32.40<br>32.37<br>31.95<br>31.14<br>58.36<br>58.32<br>58.39<br>59.66<br>59.36 | A/Pos<br>                      | T/Pos<br>deg<br><br><br>0<br><br><br><br> | Remark<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Pea |



