

FCC RADIO TEST REPORT

FCC ID	:	LHJ-BL28NARD1
Equipment	:	BL28NA-RD1
Brand Name	:	BL28NA-RD1
Model Name	:	BL28NA-RD1
Marketing Name	:	BL28NA-RD1
Applicant	:	Continental Automotive Systems, Inc. 21440 W Lake Cook Rd.
Manufacturer	:	Continental Automotive Systems, Inc.
		21440 W Lake Cook Rd.
Standard	:	47 CFR Part 2, 22(H), 24(E), 27

The product was received on Mar. 14, 2019 and testing was started from May 12, 2019 and completed on May 24, 2019. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA-603-E and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Jones Tsai

Approved by: Jones Tsai SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	story o	f this test report	3
Su	mmary	/ of Test Result	4
1	Gene	ral Description	6
	1.1	Product Feature of Equipment Under Test	6
	1.2	Modification of EUT	6
	1.3	Testing Location	6
	1.4	Applicable Standards	7
2	Test	Configuration of Equipment Under Test	8
	2.1	Test Mode	8
	2.2	Connection Diagram of Test System	10
	2.3	Support Unit used in test configuration and system	10
	2.4	Measurement Results Explanation Example	10
	2.5	Frequency List of Low/Middle/High Channels	11
3	Cond	ucted Test Items	14
	3.1	Measuring Instruments	14
	3.2	Conducted Output Power and ERP/EIRP	15
	3.3	Peak-to-Average Ratio	16
	3.4	Occupied Bandwidth	17
	3.5	Conducted Band Edge	18
	3.6	Conducted Spurious Emission	20
	3.7	Frequency Stability	21
4	Radia	ated Test Items	22
	4.1	Measuring Instruments	22
	4.2	Radiated Spurious Emission Measurement	23
5	List c	of Measuring Equipment	24
6	Unce	rtainty of Evaluation	25
Ар	pendix	A. Test Results of Conducted Test	
Ар	pendix	B. Test Results of ERP/EIRP and Radiated Test	

Appendix C. Test Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date	
FG931416B	01	Initial issue of report	May 30, 2019	
FG931416B	02	Add near photos of Ant. Horizontal and Ant. Vertical to the Appendix C	Jun. 03, 2019	
FG931416B	03	Remove antenna gain	Dec. 07, 2022	

Summary of Test Result

§2.1046 §22.913 (a)(2) §27.50 (b)(10) §27.50 (c)(10) §24.232 (c) §27.50 (h)(2) §27.50 (d)(4)	Conducted Output Power Effective Radiated Power (Band 5) Effective Radiated Power (Band 12) (Band 13) Equivalent Isotropic Radiated Power (Band 2) (Band 7)	Reporting only Pass	_
§27.50 (b)(10) §27.50 (c)(10) §24.232 (c) §27.50 (h)(2)	(Band 5) Effective Radiated Power (Band 12) (Band 13) Equivalent Isotropic Radiated Power	Pass	_
§27.50 (c)(10) §24.232 (c) §27.50 (h)(2)	(Band 12) (Band 13) Equivalent Isotropic Radiated Power	Pass	-
§27.50 (h)(2)		1 455	
§27.50 (d)(4)	(Balla E) (Balla I)		
• • • • • • • • • • • • • •	Equivalent Isotropic Radiated Power (Band 4)		
§24.232 (d) §27.50 (d)(5)	Peak-to-Average Ratio	Pass	-
§2.1049	Occupied Bandwidth	Reporting only	-
§2.1051 §22.917 (a) §24.238 (a) §27.53 (c)(2)(4) §27.53 (g)	Conducted Band Edge Measurement (Band 2) (Band 4) (Band 5) (Band 12) (Band 13)	Pass	-
§2.1051 §27.53 (m)(4)	Conducted Band Edge Measurement (Band 7)		
§2.1051 §22.917 (a) §24.238 (a) §27.53 (c)(2) §27.53 (g) §2.1051 §27.53 (m)(4)	Conducted Spurious Emission (Band 2) (Band 4) (Band 5) (Band 12) (Band 13) Conducted Spurious Emission (Band 7)	Pass	-
§2.1055 §22.355 §24.235 §27.54	Frequency Stability Temperature & Voltage	Pass	-
§2.1053 §22.917 (a) §24.238 (a) §27.53 (c)(2) §27.53 (f) §27.53 (g)	Radiated Spurious Emission (Band 2) (Band 4) (Band 5) (Band 12) (Band 13) Radiated Spurious Emission	Pass	Under limit 8.51 dB at 5076.000 MHz
	\$2.1051 27.53 (m)(4) \$2.1055 \$22.355 \$24.235 \$27.54 \$2.1053 \$22.917 (a) \$24.238 (a) \$27.53 (c)(2) \$27.53 (f) \$27.53 (g) \$27.53 (h)	§2.1051 Conducted Spurious Emission 27.53 (m)(4) (Band 7) §2.1055 Frequency Stability §22.355 Frequency Stability §24.235 Temperature & Voltage §27.54 \$ §2.1053 \$ §22.917 (a) \$ §24.238 (a) Radiated Spurious Emission \$27.53 (c)(2) (Band 2) (Band 4) (Band 5) §27.53 (f) (Band 12) (Band 13) §27.53 (g) \$ §27.53 (h) Radiated Spurious Emission	§2.1051 Conducted Spurious Emission 27.53 (m)(4) (Band 7) §2.1055 Frequency Stability §22.355 Frequency Stability §24.235 Temperature & Voltage §27.54 Pass §2.1053 Second Secon

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Maggie Chiang

1 General Description

1.1 Product Feature of Equipment Under Test

GSM/WCDMA/LTE and GNSS

Product Specification subjective to this standard				
Antonna Tuna	WWAN: Fixed External Antenna			
Antenna Type	GPS/Glonass/BDS/Galileo/SBAS: Fixed External Antenna			

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	SPORTON INTERNATIONAL INC.					
	No.52, Huaya 1st Rd., Guishan Dist.,					
Test Site Location	Taoyuan City, Taiwan (R.O.C.)					
	TEL: +886-3-327-3456					
	FAX: +886-3-328-4978					
Test Site No.	Sporton Site No.					
Test Site NO.	TH05-HY					
Test Engineer	Benjamin Lin					
Temperature	21~24°C					
Relative Humidity	51~55%					

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.
Test Site Location No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855	
Test Site No.	Sporton Site No.
Test Sile NO.	03CH13-HY
Test Engineer	Alex Jheng, JC Liang, and Wilson Wu
Temperature	24~25 °C
Relative Humidity	50~51%

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC Designation No.: TW1190 and TW0007

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- ANSI C63.26-2015
- ANSI / TIA-603-E
- 47 CFR Part 2, 22(H), 24(E), 27
- + FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01

Remark:

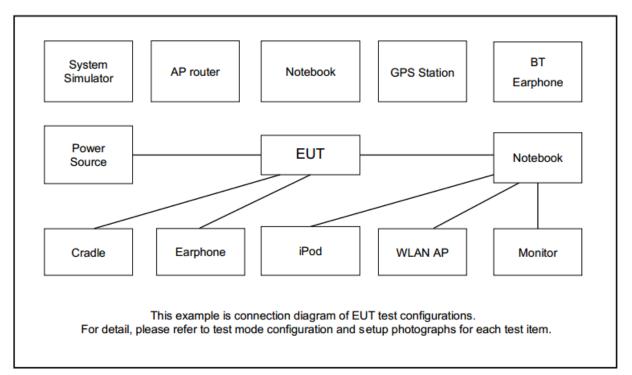
- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Test Mode

Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.

For radiated measurement, pre-scanned in two angles of antenna, Horizontal angle and Vertical angle. The worst cases (Ant. Horizental for LTE Band 7 and 12; Ant. Vertical for LTE Band 2, 4, 5, and 13) were recorded in this report.


	Band	Bandwidth (MHz)						Modulation	RB #			Test Channel		
Test Items		1.4	3	5	10	15	20	QPSK	1	Half	Full	L	м	н
	2	v	v	v	v	v	v	v	v	v	v	v	v	v
	4	v	v	v	v	v	v	v	v	v	v	v	v	v
Max. Output	5	v	v	v	v	-	-	v	v	v	v	v	v	v
Power	7	-	-	v	v	v	v	v	v	v	v	v	v	v
	12	v	v	v	v	-	-	v	v	v	v	v	v	v
	13	-	-	v	v	-	-	v	v	v	v	v	v	v
	2						v	v	v		v	v	v	v
	4						v	v	v		v	v	v	v
Peak-to-Av	5				v	-	-	v	v		v	v	v	v
erage Ratio	7	-	-				v	v	v		v	v	v	v
	12				v	-	-	v	v		v	v	v	v
	13	-	-		v	-	-	v	v		v		v	
	2	v	v	v	v	v	v	v			v	v	v	v
	4	v	v	v	v	v	v	v			v	v	v	v
26dB and 99%	5	v	v	v	v	-	-	v			v	v	v	v
Bandwidth	7	-	-	v	v	v	v	v			v	v	v	v
	12	v	v	v	v	-	-	v			v	v	v	v
	13	-	-	v	v	-	-	v			v	v	v	v
	2	v	v	v	v	v	v	v	v		v	v		v
	4	v	v	v	v	v	v	v	v		v	v		v
Conducted	5	v	v	v	v	-	-	v	v		v	v		v
Band Edge	7	-	-	v	v	v	v	v	v		v	v		v
	12	v	v	v	v	-	-	v	v		v	v		v
	13	-	-	v	v	-	-	v	v		v	v		v

_			B	andwid	th (M⊦	lz)		Modulation	Modulation RB #			Tes	t Chanr	nel
Test Items	Band	1.4	3	5	10	15	20	QPSK	1	Half	Full	L	М	Н
	2	v	v	v	v	v	v	v	v			v	v	v
	4	v	v	v	v	v	v	v	v			v	v	v
Conducted	5	v	v	v	v	-	-	v	v			v	v	v
Spurious Emission	7	-	-	v	v	v	v	v	v			v	v	v
	12	v	v	v	v	-	-	v	v			v	v	v
	13	-	-	v	v	-	-	v	v			v	v	v
	2				v			v			v		v	
	4				v			v			v		v	
Frequency	5				v	-	-	v			v		v	
Stability	7	-	-		v			v			v		v	
	12				v	-	-	v			v		v	
	13	-	-		v	-	-	v			v		v	
	2	v	v	v	v	v	v	v	v			v	v	v
	4	v	v	v	v	v	v	v	v			v	v	v
E.R.P /	5	v	v	v	v	-	-	v	v			v	v	v
E.I.R.P	7	-	-	v	v	v	v	v	v			v	v	v
	12	v	v	v	v	-	-	v	v			v	v	v
	13	-	-	v	v	-	-	v	v			v	v	v
	2						Wo	rst Case				v	v	v
	4						Wo	rst Case				v	v	v
Radiated Spurious	5						Wo	rst Case				v	v	v
Emission	7						Wo	rst Case				v	v	v
	12						Wo	rst Case				v	v	v
	13						Wo	rst Case				v	v	v
Remark	 The mark "v " means that this configuration is chosen for testing The mark "-" means that this bandwidth is not supported. The device is investigated from 30MHz to 10 times of fundamental signal for radiated spurious emission test under different RB size/offset and modulations in exploratory test. Subsequently, only the worst case emissions are reported. 													

2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration and system

lte	m	Equipment	Trade Name	Model No.	FCC ID	Data Cable	Power Cord
1.		System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Example :

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

2.5	Frequency	List of L	_ow/Middle/High	Channels
-----	-----------	-----------	-----------------	----------

	LTE Band 2 Channel and Frequency List										
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest							
20	Channel	18700	18900	19100							
20	Frequency	1860	1880	1900							
15	Channel	18675	18900	19125							
15	Frequency	1857.5	1880	1902.5							
40	Channel	18650	18900	19150							
10	Frequency	1855	1880	1905							
5	Channel	18625	18900	19175							
5	Frequency	1852.5	1880	1907.5							
3	Channel	18615	18900	19185							
3	Frequency	1851.5	1880	1908.5							
1.4	Channel	18607	18900	19193							
1.4	Frequency	1850.7	1880	1909.3							

LTE Band 4 Channel and Frequency List						
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest		
20	Channel	20050	20175	20300		
20	Frequency	1720	1732.5	1745		
15	Channel	20025	20175	20325		
15	Frequency	1717.5	1732.5	1747.5		
10	Channel	20000	20175	20350		
10	Frequency	1715	1732.5	1750		
5	Channel	19975	20175	20375		
5	Frequency	1712.5	1732.5	1752.5		
3	Channel	19965	20175	20385		
3	Frequency	1711.5	1732.5	1753.5		
1.4	Channel	19957	20175	20393		
1.4	Frequency	1710.7	1732.5	1754.3		

LTE Band 5 Channel and Frequency List							
BW [MHz]	Channel/Frequency(MHz)	Highest					
10	Channel	20450	20525	20600			
10	Frequency	829	836.5	844			
5	Channel	20425	20525	20625			
5	Frequency	826.5	836.5	846.5			
2	Channel	20415	20525	20635			
3	Frequency	825.5	836.5	847.5			
	Channel	20407	20525	20643			
1.4	Frequency	824.7	836.5	848.3			

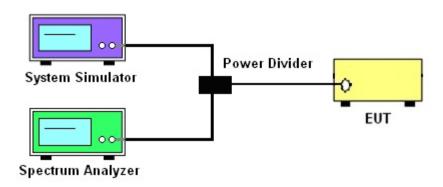
LTE Band 7 Channel and Frequency List							
BW [MHz]	Channel/Frequency(MHz)	Highest					
20	Channel	20850	21100	21350			
20	Frequency	2510	2535	2560			
15	Channel	20825	21100	21375			
15	Frequency	2507.5	2535	2562.5			
10	Channel	20800	21100	21400			
10	Frequency	2505	2535	2565			
	Channel	20775	21100	21425			
5	Frequency	2502.5	2535	2567.5			

LTE Band 12 Channel and Frequency List							
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest			
10	Channel	23060	23095	23130			
10	Frequency	704	707.5	711			
5	Channel	23035	23095	23155			
5	Frequency	701.5	707.5	713.5			
3	Channel	23025	23095	23165			
3	Frequency	700.5	707.5	714.5			
4.4	Channel	23017	23095	23173			
1.4	Frequency	699.7	707.5	715.3			

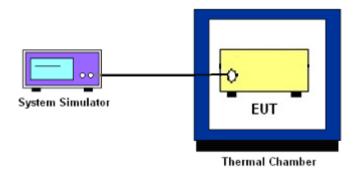
LTE Band 13 Channel and Frequency List								
BW [MHz]	Channel/Frequency(MHz) Lowest Middle Highest							
10	Channel	-	23230	-				
	Frequency	-	782	-				
5	Channel	23205	23230	23255				
	Frequency	779.5	782	784.5				

3 Conducted Test Items

3.1 Measuring Instruments


See list of measuring instruments of this test report.

3.1.1 Test Setup


3.1.2 Conducted Output Power

3.1.3 Peak-to-Average Ratio, Occupied Bandwidth ,Conducted Band-Edge and Conducted Spurious Emission

3.1.4 Frequency Stability

3.1.5 Test Result of Conducted Test

Please refer to Appendix A.

3.2 Conducted Output Power and ERP/EIRP

3.2.1 Description of the Conducted Output Power Measurement and ERP/EIRP Measurement

A system simulator was used to establish communication with the EUT. Its parameters were set to force the EUT transmitting at maximum output power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

The ERP of mobile transmitters must not exceed 7 Watts for LTE Band 5.

The ERP of mobile transmitters must not exceed 3 Watts for LTE Band 12 and Band 13.

The EIRP of mobile transmitters must not exceed 2 Watts for LTE Band 2 and Band 7.

The EIRP of mobile transmitters must not exceed 1 Watts for LTE Band 4.

According to KDB 412172 D01 Power Approach,

 $EIRP = P_T + G_T - L_C$, ERP = EIRP - 2.15, where

 P_T = transmitter output power in dBm

 G_T = gain of the transmitting antenna in dBi

 L_{C} = signal attenuation in the connecting cable between the transmitter and antenna in dB

3.2.2 Test Procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set EUT at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

3.3 Peak-to-Average Ratio

3.3.1 Description of the PAR Measurement

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

3.3.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.2.6

- 1. The EUT was connected to spectrum and system simulator via a power divider.
- 2. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- 3. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
- 4. Record the deviation as Peak to Average Ratio.

3.4 Occupied Bandwidth

3.4.1 Description of Occupied Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

3.4.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.4.3 (26dB) and Section 5.4.4 (99OB)

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.
- 3. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- 4. Set the detection mode to peak, and the trace mode to max hold.
- Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace. (this is the reference value)
- 6. Determine the "-26 dB down amplitude" as equal to (Reference Value X).
- 7. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "-X dB down amplitude" determined in step 6. If a marker is below this "-X dB down amplitude" value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.
- 8. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

3.5 Conducted Band Edge

3.5.1 Description of Conducted Band Edge Measurement

22.917(a)

For operations in the 824 – 849 MHz band, the FCC limit is 43 + 10log₁₀(P[Watts]) dB below the transmitter power P(Watts) in a 100kHz bandwidth. However, in the 1MHz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

24.238 (a)

For operations in the 1850-1910 and 1930-1990 MHz band, the FCC limit is 43 + 10log₁₀(P[Watts]) dB below the transmitter power P(Watts) in a 1MHz bandwidth. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

27.53 (c)

For operations in the 776-788 MHz band, the FCC limit is $43 + 10\log_{10}(P[Watts])$ dB below the transmitter power P(Watts) in a 100 kHz bandwidth. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed. In addition, the power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power, P (dBW), by at least 65 + 10 log10 p(watts), dB, for mobile and portable equipment.

27.53 (g)

For operations in the 600MHz band and 698 -746 MHz band, the FCC limit is 43 + 10log10(P[Watts]) dB below the transmitter power P(Watts) in a 100 kHz bandwidth. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

27.53 (h)

For operations in the 1710 - 1755 MHz band, the FCC limit is $43 + 10log_{10}(P[Watts])$ dB below the transmitter power P(Watts) in a 1 MHz bandwidth. However, in the 1MHz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

27.53(m)(4)

For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

3.5.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.7.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured.
- 3. Set RBW >= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- 4. Beyond the 1 MHz band from the band edge, RBW=1MHz was used.
- 5. Set spectrum analyzer with RMS detector.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 7. Checked that all the results comply with the emission limit line.The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)
- 8. For LTE Band 7, the other 40 dB, and 55 dB have additionally applied same calculation above.

3.6 Conducted Spurious Emission

3.6.1 Description of Conducted Spurious Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

For Band 7:

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 55 + 10 log (P) dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

3.6.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.7.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. The middle channel for the highest RF power within the transmitting frequency was measured.
- 4. The conducted spurious emission for the whole frequency range was taken.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz.
- 6. Set spectrum analyzer with RMS detector.
- 7. Taking the record of maximum spurious emission.
- 8. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 9. The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)
- 10. For Band 7

The limit line is derived from 55 + 10log(P)dB below the transmitter power P(Watts)

3.7 Frequency Stability

3.7.1 Description of Frequency Stability Measurement

22.355

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

24.235 & 27.54

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

3.7.2 Test Procedures for Temperature Variation

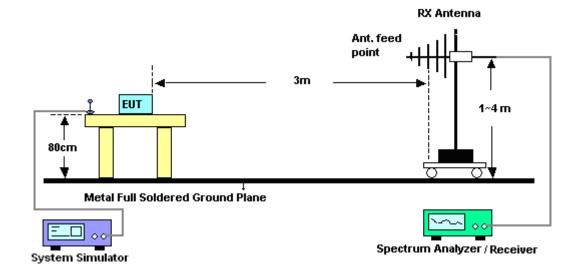
The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

- 1. The EUT was set up in the thermal chamber and connected with the system simulator.
- With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

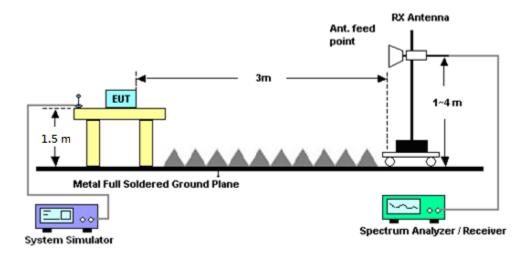
3.7.3 Test Procedures for Voltage Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

- 1. The EUT was placed in a temperature chamber at 20±5° C and connected with the system simulator.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.


4 Radiated Test Items

4.1 Measuring Instruments


See list of measuring instruments of this test report.

4.1.1 Test Setup

For radiated test from 30MHz to 1GHz

For radiated test above 1GHz

4.1.2 Test Result of Radiated Test

Please refer to Appendix B.

4.2 Radiated Spurious Emission Measurement

4.2.1 Description of Radiated Spurious Emission Measurement

The radiated spurious emission was measured by substitution method according to ANSI / TIA-603-E. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

For Band 7

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 55 + 10 log (P) dB.

For LTE Band 13

For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth.

The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.2.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 5.8 and ANSI / TIA-603-E Section 2.2.12.

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- 6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 8. Taking the record of output power at antenna port.
- 9. Repeat step 7 to step 8 for another polarization.
- 10. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

11. For Band 7:

The limit line is derived from 55 + 10log(P)dB below the transmitter power P(Watts) EIRP (dBm) = S.G. Power – Tx Cable Loss + Tx Antenna Gain ERP (dBm) = EIRP - 2.15

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
LTE Base Station	Anritsu	MT8820C	6201432821	GSM/GPRS /WCDMA/LTE	Oct. 14, 2018	May 18, 2019~ May 24, 2019	Oct. 13, 2019	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSV40	101397	10Hz~40GHz	Nov. 13, 2018	May 18, 2019~ May 24, 2019	Nov. 12, 2019	Conducted (TH05-HY)
Temperature Chamber	ESPEC	SH-641	92013720	-40° C ~90° C	Aug. 29, 2018	May 18, 2019~ May 24, 2019	Aug. 28, 2019	Conducted (TH05-HY)
Programmable Power Supply	GW Instek	PSS-2005	EL890094	1V~20V 0.5A~5A	Oct. 02, 2018	May 18, 2019~ May 24, 2019	Oct. 01, 2019	Conducted (TH05-HY)
Coupler	Warison	1-18GHz 20dB 25WSMA Directional Coupler	#B	1G~18GHz	Jan. 14, 2019	May 18, 2019~ May 24, 2019	Jan. 13, 2020	Conducted (TH05-HY)
Amplifier	Sonoma-Instru ment	310 N	187282	9KHz~1GHz	Dec. 18, 2018	May 12, 2019~ May 14, 2019	Dec. 17, 2019	Radiation (03CH13-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800N 1D01N-06	40103&07	30MHz to 1GHz	Apr. 30, 2019	May 12, 2019~ May 14, 2019	Apr. 29, 2020	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1241	1GHz ~ 18GHz	Jun. 29, 2018	May 12, 2019~ May 14, 2019	Jun. 28, 2019	Radiation (03CH13-HY)
Preamplifier	MITEQ	AMF-7D-00101 800-30-10P	1590074	1GHz~18GHz	May 21, 2018	May 12, 2019~ May 14, 2019	May 20, 2019	Radiation (03CH13-HY)
Preamplifier	Keysight	83017A	MY53270147	1GHz~26.5GHz	Mar. 15, 2019	May 12, 2019~ May 14, 2019	Mar. 14, 2020	Radiation (03CH13-HY)
Signal Generator	Rohde & Schwarz	SMB 100A	105048	9kHz~1.1GHz	May 22, 2018	May 12, 2019~ May 14, 2019	May 21, 2019	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010A	MY55370526	10Hz~44GHz	Mar. 19, 2019	May 12, 2019~ May 14, 2019	Mar. 18, 2020	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	May 12, 2019~ May 14, 2019	N/A	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	May 12, 2019~ May 14, 2019	N/A	Radiation (03CH13-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz ~ 40GHz	Dec. 06, 2018	May 12, 2019~ May 14, 2019	Dec. 05, 2019	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SF102/2*11SK2 52	MY4278/2	9kHz~40GHz	May 17, 2018	May 12, 2019~ May 14, 2019	May 16, 2019	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24961/4	30M-18G	Feb. 13, 2019	May 12, 2019~ May 14, 2019	Feb. 12, 2020	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30M~40GHz	Mar. 13, 2019	May 12, 2019~ May 14, 2019	Mar. 12, 2020	Radiation (03CH13-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA91705 84	18GHz- 40GHz	Dec. 05, 2018	May 12, 2019~ May 14, 2019	Dec. 04, 2019	Radiation (03CH13-HY)

6 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	3.07
Confidence of 95% (U = 2Uc(y))	3.07

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of	3.48
Confidence of 95% (U = 2Uc(y))	5.40

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of	2.02
Confidence of 95% (U = 2Uc(y))	3.92

Appendix A. Test Results of Conducted Test

Conducted Output Power(Average power)

LTE Band 2 Maximum Average Power [dBm]							
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	
20	1	0		22.24	22.24	22.35	
20	1	49		22.12	22.51	22.86	
20	1	99		22.48	22.43	22.17	
20	50	0	QPSK	21.28	21.54	21.66	
20	50	24		21.31	21.55	21.76	
20	50	50		21.37	21.56	21.63	
20	100	0		21.38	21.54	21.72	
15	1	0		22.02	22.34	22.43	
15	1	37		22.42	22.72	22.69	
15	1	74		22.43	22.59	22.45	
15	36	0	QPSK	21.33	21.58	21.80	
15	36	20		21.22	21.51	21.76	
15	36	39		21.33	21.63	21.70	
15	75	0		21.37	21.57	21.79	
10	1	0		22.08	22.11	22.56	
10	1	25		22.43	22.57	22.83	
10	1	49		22.08	22.35	22.63	
10	25	0	QPSK	21.33	21.54	21.78	
10	25	12		21.27	21.55	21.78	
10	25	25		21.10	21.57	21.68	
10	50	0		21.33	21.56	21.73	
5	1	0		22.20	22.18	22.43	
5	1	12		22.22	22.41	22.59	
5	1	24		22.25	22.41	22.66	
5	12	0	QPSK	21.20	21.41	21.65	
5	12	7		21.24	21.45	21.64	
5	12	13		21.17	21.45	21.61	
5	25	0		21.18	21.43	21.63	

	LTE Band 2 Maximum Average Power [dBm]							
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest		
3	1	0		22.06	22.47	22.59		
3	1	8		22.07	22.49	22.61		
3	1	14		22.00	22.42	22.52		
3	8	0	QPSK	21.05	21.48	21.65		
3	8	4		21.11	21.42	21.63		
3	8	7		21.17	21.41	21.58		
3	15	0		21.15	21.40	21.53		
1.4	1	0		22.13	22.40	22.48		
1.4	1	3		22.11	22.44	22.53		
1.4	1	5		22.02	22.35	22.50		
1.4	3	0	QPSK	22.10	22.42	22.76		
1.4	3	1		22.21	22.52	22.57		
1.4	3	3		22.14	22.57	22.63		
1.4	6	0		21.10	21.41	21.51		

	LTE Band 4 Maximum Average Power [dBm]							
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest		
20	1	0	-	22.22	22.42	22.90		
20	1	49		22.79	23.22	23.19		
20	1	99		22.58	22.58	22.99		
20	50	0	QPSK	21.63	21.85	22.21		
20	50	24		21.67	21.85	21.92		
20	50	50		21.80	21.87	21.92		
20	100	0		21.66	21.86	22.12		
15	1	0		22.49	22.64	23.01		
15	1	37		22.81	23.06	23.20		
15	1	74		22.56	22.99	23.12		
15	36	0	QPSK	21.65	21.78	22.10		
15	36	20		21.60	21.76	21.95		
15	36	39		21.62	21.92	21.93		
15	75	0		21.60	21.87	21.98		
10	1	0		22.25	22.56	22.61		
10	1	25		22.65	22.80	23.04		
10	1	49		22.34	22.65	22.63		
10	25	0	QPSK	21.69	21.78	21.98		
10	25	12		21.62	21.75	21.98		
10	25	25		21.56	21.83	21.97		
10	50	0		21.67	21.90	22.07		
5	1	0		22.43	22.30	22.42		
5	1	12		22.59	22.45	22.68		
5	1	24	QPSK	22.66	22.24	22.80		
5	12	0		21.65	21.58	21.81		
5	12	7		21.64	21.52	21.74		
5	12	13		21.61	21.55	21.77		
5	25	0		21.63	21.57	21.79		

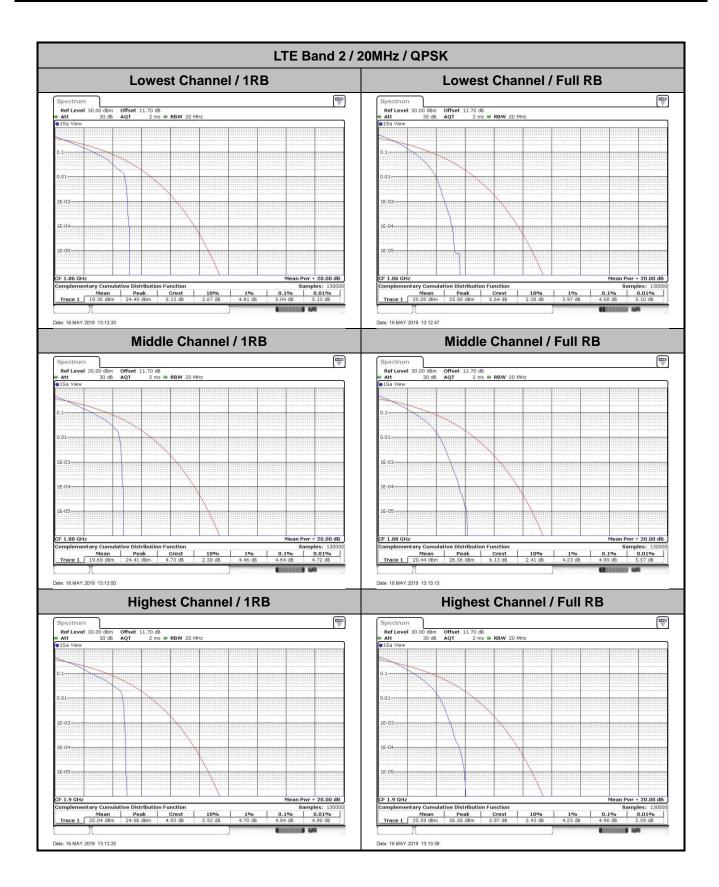
	LTE Band 4 Maximum Average Power [dBm]										
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest					
3	1	0		22.51	22.59	22.54					
3	1	8		22.59	22.55	22.34					
3	1	14		22.57	22.78	22.40					
3	8	0	QPSK	21.57	21.80	21.71					
3	8	4		21.49	21.79	21.75					
3	8	7		21.55	21.71	21.73					
3	15	0		21.57	21.76	21.73					
1.4	1	0		22.56	22.45	22.64					
1.4	1	3		22.56	22.43	22.91					
1.4	1	5		22.37	22.60	22.89					
1.4	3	0	QPSK	22.58	22.67	22.88					
1.4	3	1		22.62	22.73	22.98					
1.4	3	3		22.58	22.78	22.92					
1.4	6	0		21.50	21.69	21.89					

	LTE Band 5 Maximum Average Power [dBm]										
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest					
10	1	0		22.99	22.49	22.29					
10	1	25		23.26	22.68	22.66					
10	1	49		22.48	22.26	22.48					
10	25	0	QPSK	22.05	21.66	21.66					
10	25	12		22.07	21.70	21.63					
10	25	25		22.00	21.62	21.78					
10	50	0		22.09	21.70	21.77					
5	1	0		23.19	22.52	22.30					
5	1	12		22.94	22.75	22.76					
5	1	24	QPSK	22.71	22.40	22.90					
5	12	0		22.13	21.67	21.68					
5	12	7		21.97	21.68	21.90					
5	12	13		21.91	21.62	21.92					
5	25	0		22.10	21.61	21.73					
3	1	0	-	23.07	22.77	22.43					
3	1	8		22.81	22.57	22.64					
3	1	14		22.56	22.51	22.67					
3	8	0	QPSK	22.18	21.59	21.88					
3	8	4		22.11	21.62	21.82					
3	8	7		22.09	21.63	21.93					
3	15	0		22.11	21.66	21.83					
1.4	1	0		23.24	22.54	22.72					
1.4	1	3		23.22	22.60	22.87					
1.4	1	5		23.03	22.53	22.82					
1.4	3	0	QPSK	23.06	22.72	22.91					
1.4	3	1		23.06	22.79	23.05					
1.4	3	3		23.16	22.62	22.89					
1.4	6	0		22.20	21.60	21.78					

LTE Band 7 Maximum Average Power [dBm]									
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest			
20	1	0		22.09	22.00	22.30			
20	1	49		22.78	22.56	22.55			
20	1	99		22.53	22.20	22.31			
20	50	0	QPSK	21.48	21.41	21.61			
20	50	24		21.46	21.52	21.54			
20	50	50		21.62	21.39	21.45			
20	100	0		21.42	21.56	21.65			
15	1	0		22.28	22.01	22.43			
15	1	37	QPSK	22.73	22.45	22.57			
15	1	74		22.60	22.14	22.61			
15	36	0		21.51	21.48	21.46			
15	36	20		21.46	21.48	21.48			
15	36	39		21.47	21.42	21.60			
15	75	0		21.55	21.52	21.55			
10	1	0		22.09	22.06	22.18			
10	1	25		22.49	22.55	22.66			
10	1	49		22.36	22.12	22.33			
10	25	0	QPSK	21.44	21.47	21.46			
10	25	12		21.38	21.50	21.61			
10	25	25		21.49	21.39	21.53			
10	50	0		21.48	21.50	21.43			
5	1	0		22.22	22.18	22.37			
5	1	12		22.57	22.30	22.42			
5	1	24		22.28	22.16	22.08			
5	12	0	QPSK	21.37	21.48	21.47			
5	12	7		21.42	21.53	21.43			
5	12	13		21.40	21.38	21.42			
5	25	0		21.44	21.48	21.46			

LTE Band 12 Maximum Average Power [dBm]									
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest			
10	1	0		22.38	22.68	23.01			
10	1	25		23.25	23.56	23.64			
10	1	49		23.04	23.25	22.99			
10	25	0	QPSK	21.76	22.36	22.46			
10	25	12		22.19	22.41	22.42			
10	25	25		22.36	22.46	22.49			
10	50	0		22.14	22.47	22.49			
5	1	0		22.63	23.19	23.13			
5	1	12		22.92	23.53	23.56			
5	1	24	QPSK	22.82	23.39	23.00			
5	12	0		21.76	22.42	22.40			
5	12	7		21.95	22.51	22.38			
5	12	13		22.02	22.39	22.36			
5	25	0		21.97	22.41	22.50			
3	1	0		22.65	23.37	23.26			
3	1	8		22.69	23.30	23.19			
3	1	14		22.80	23.29	23.01			
3	8	0	QPSK	21.77	22.37	22.56			
3	8	4		21.90	22.48	22.54			
3	8	7		21.99	22.48	22.44			
3	15	0		21.84	22.48	22.48			
1.4	1	0		22.64	23.24	23.29			
1.4	1	3		22.69	23.47	23.26			
1.4	1	5		22.78	23.38	23.32			
1.4	3	0	QPSK	22.82	23.32	23.54			
1.4	3	1		22.90	23.55	23.61			
1.4	3	3		22.94	23.45	23.40			
1.4	6	0		21.87	22.44	22.47			

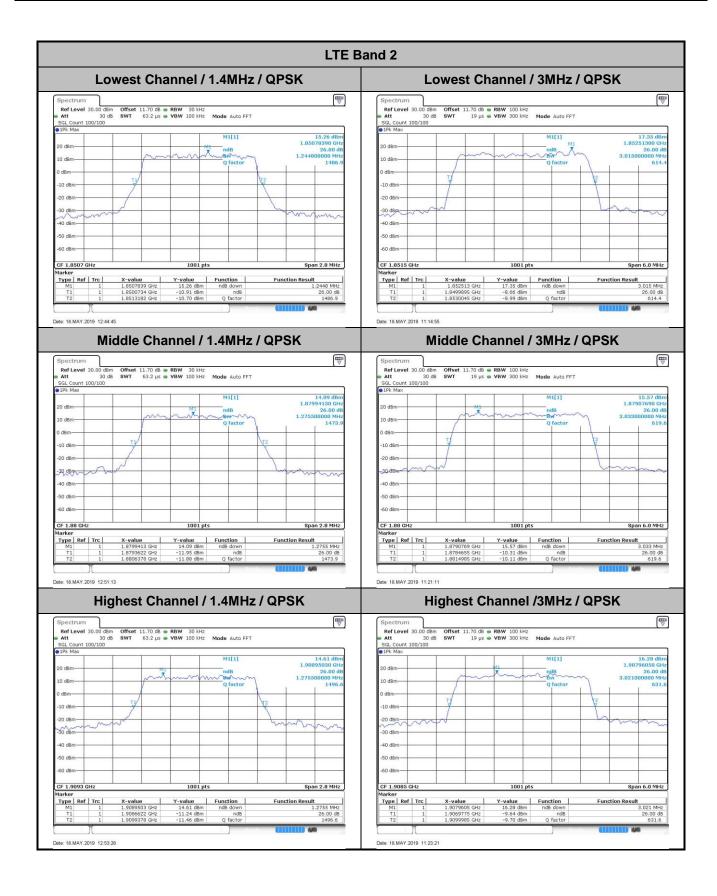
	LTE Band 13 Maximum Average Power [dBm]									
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest				
10	1	0			23.03					
10	1	25			23.40					
10	1	49			22.71					
10	25	0	QPSK	-	22.34	-				
10	25	12			22.17					
10	25	25			22.11					
10	50	0			22.21					
5	1	0		23.00	22.68	22.66				
5	1	12		23.35	22.65	22.64				
5	1	24		23.05	22.50	22.60				
5	12	0	QPSK	22.11	21.92	21.86				
5	12	7		22.01	21.83	21.81				
5	12	13		21.98	21.87	21.80				
5	25	0		22.02	21.86	21.83				

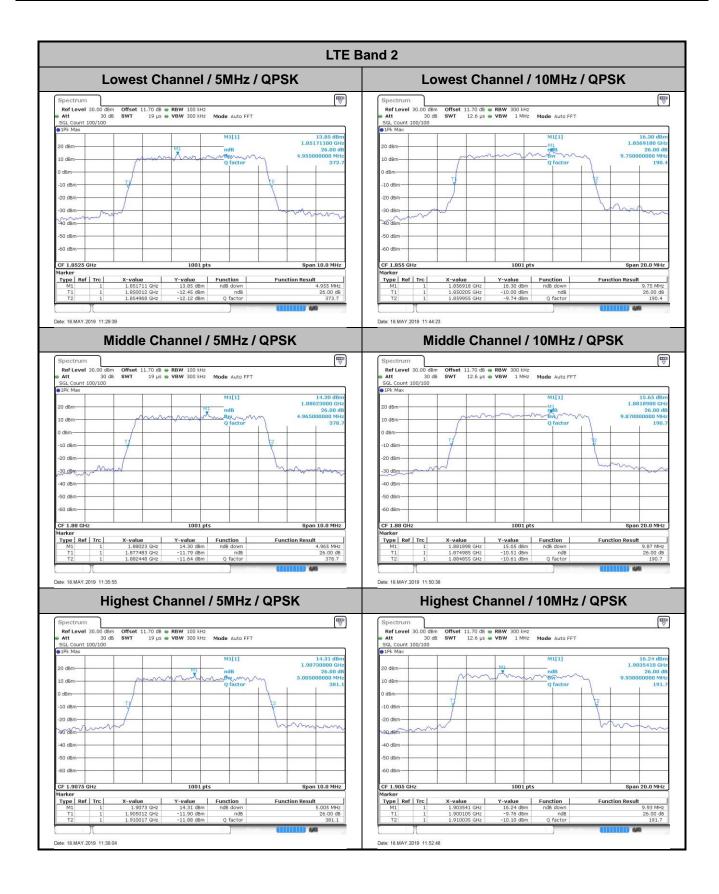


LTE Band 2

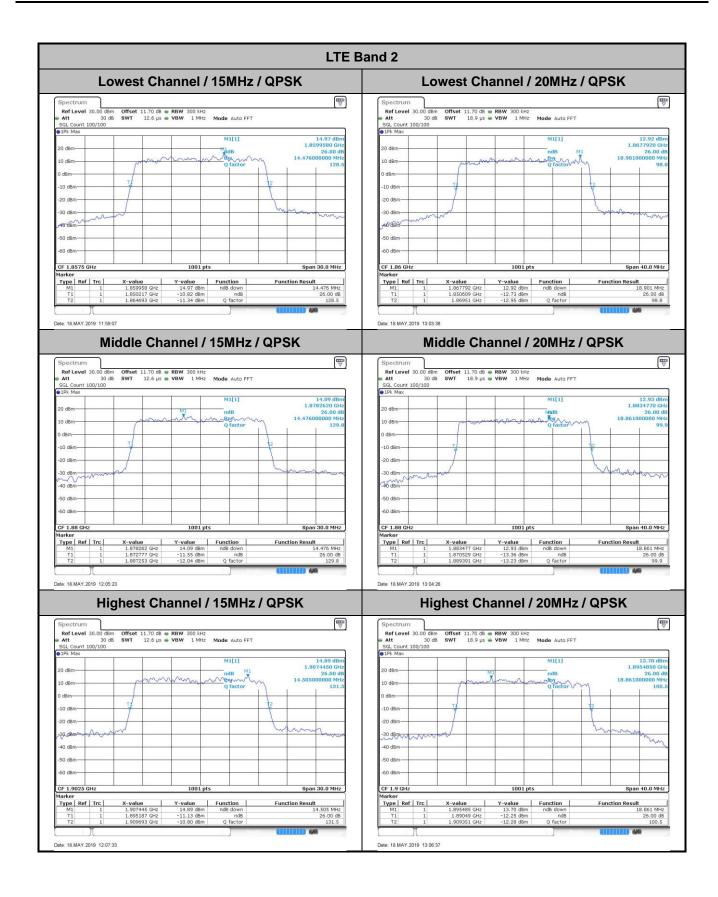
Peak-to-Average Ratio

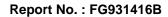
Mode						
Mod.	QP	SK	160	Limit: 13dB		
RB Size	1RB	Full RB	1RB	Full RB	Result	
Lowest CH	5.04	4.58	-	-		
Middle CH	4.64	4.99	-	-	PASS	
Highest CH	4.84	4.96	-	-		

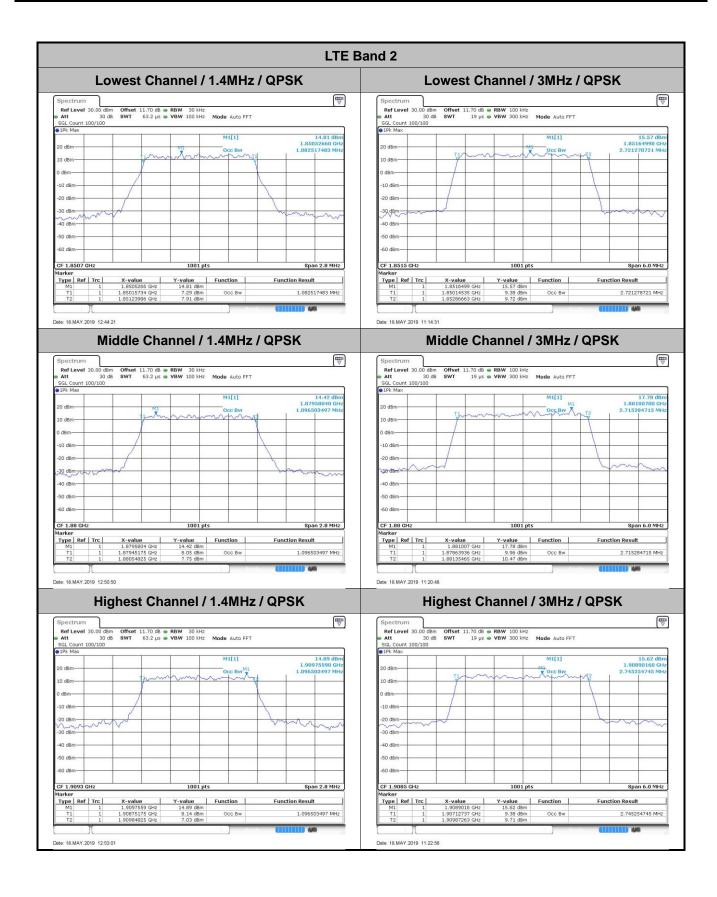



26dB Bandwidth

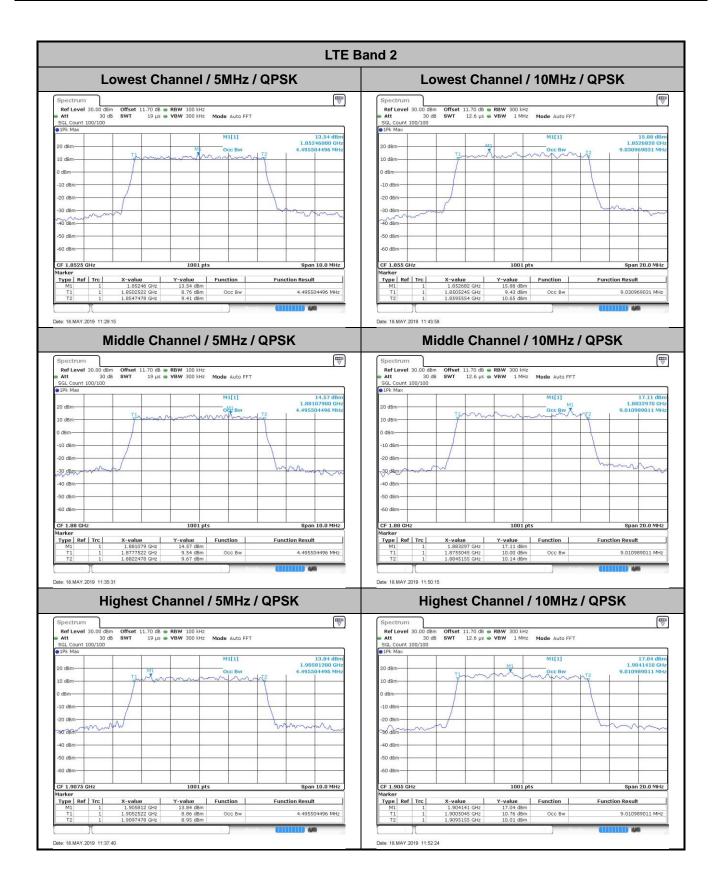
Mode	LTE Band 2 : 26dB BW(MHz)											
BW	1.4MHz		3MHz		5MHz		10MHz		15MHz		20MHz	
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Lowest CH	1.25	-	3.02	-	4.96	-	9.75	-	14.48	-	18.90	-
Middle CH	1.28	-	3.03	-	4.97	-	9.87	-	14.48	-	18.86	-
Highest CH	1.28	-	3.02	-	5.01	-	9.93	-	14.51	-	18.86	-

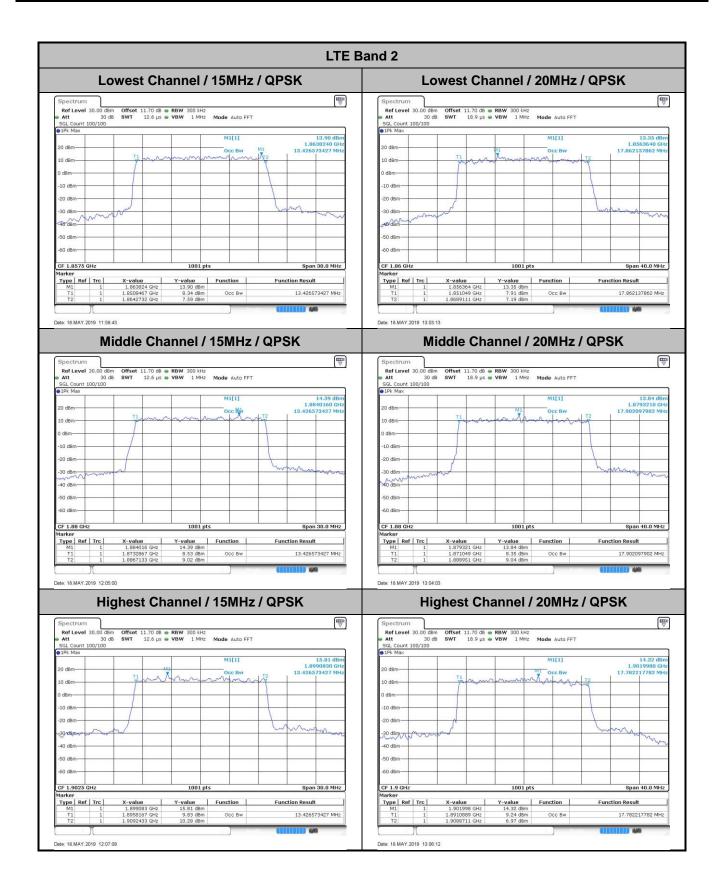


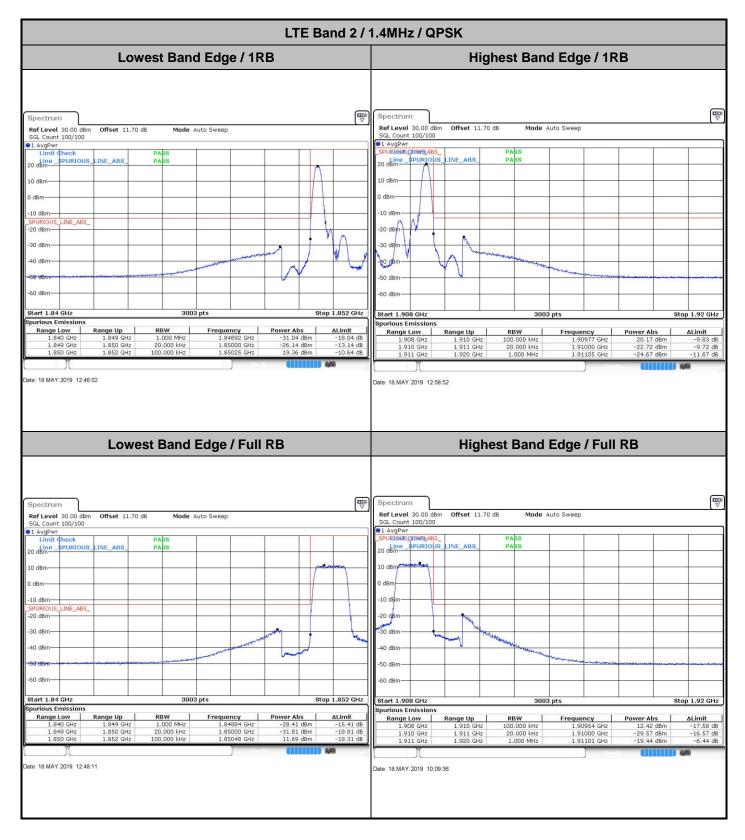


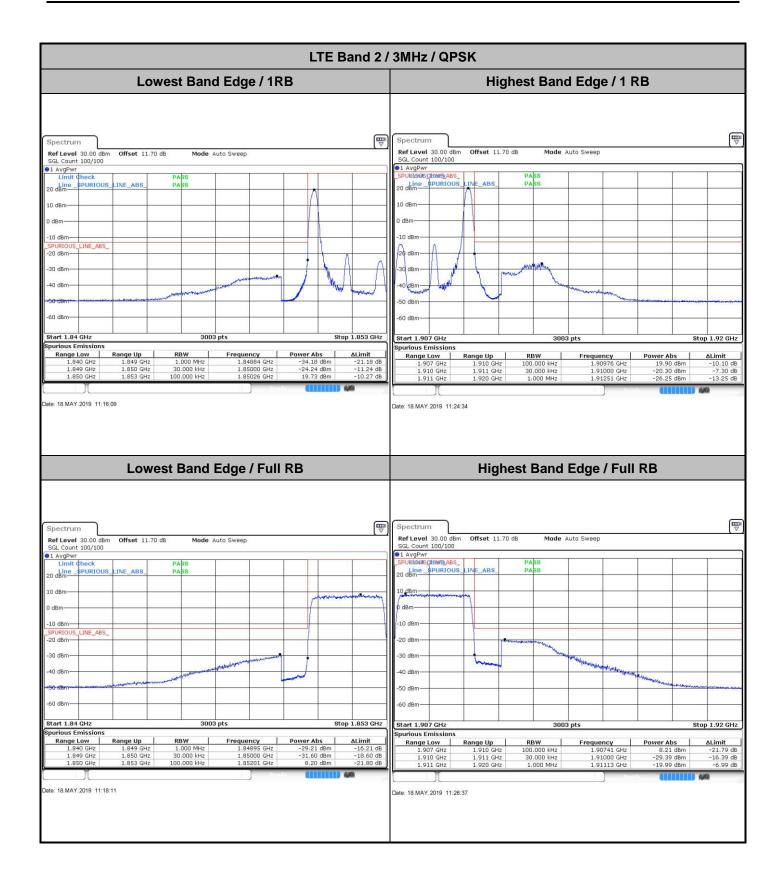


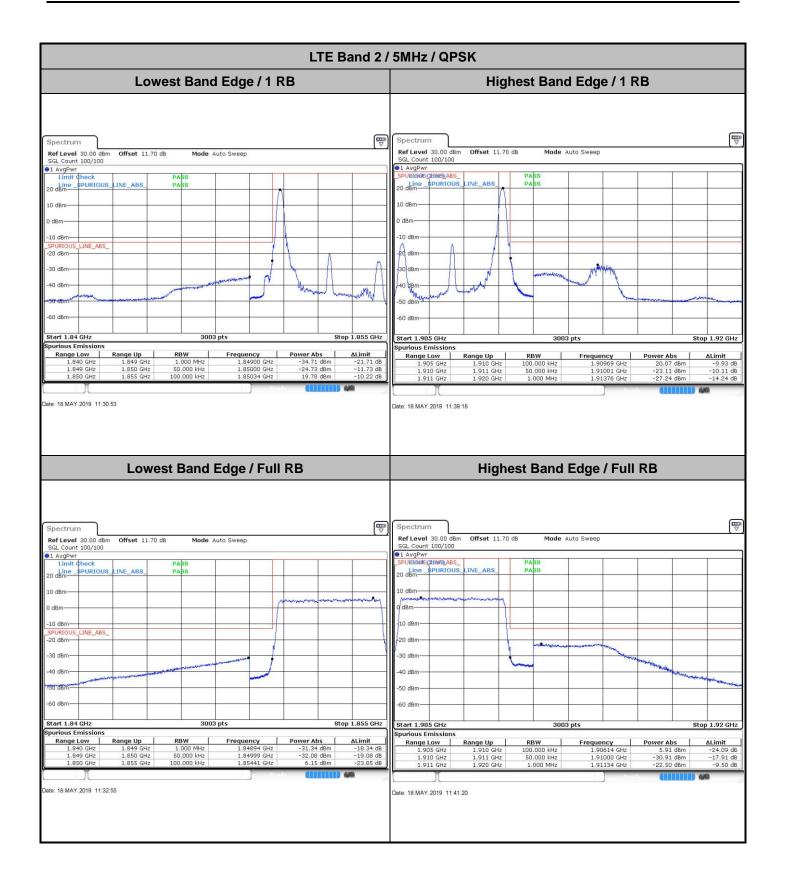
Occupied Bandwidth

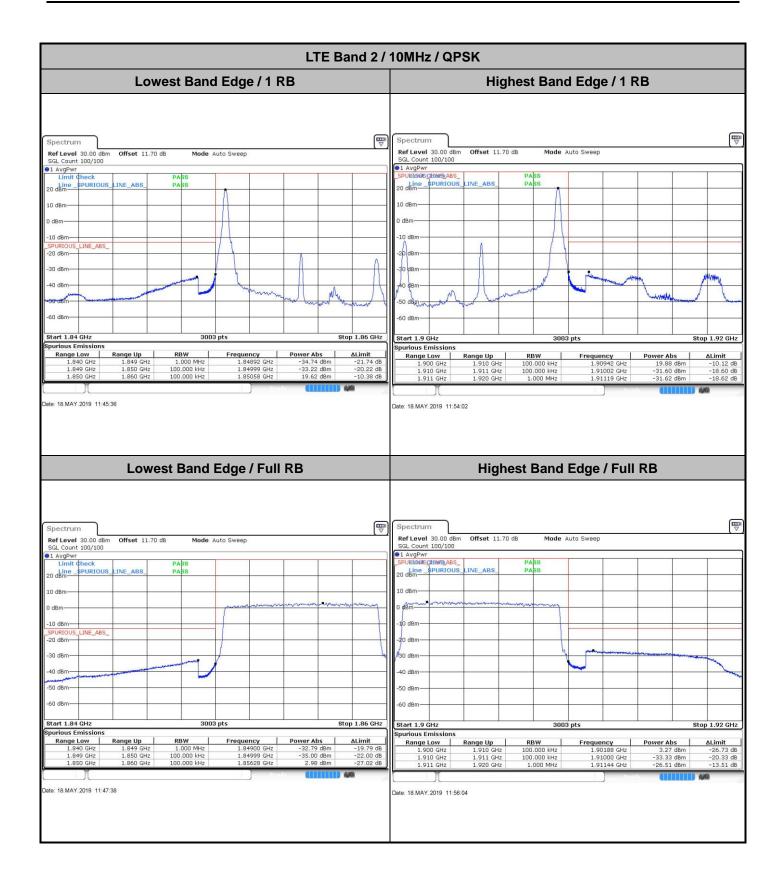

Mode	LTE Band 2 : 99%OBW(MHz)												
BW	1.4MHz		3N	3MHz 5I		5MHz		10MHz		15MHz		20MHz	
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
Lowest CH	1.08	-	2.72	-	4.5	-	9.03	-	13.43	-	17.86	-	
Middle CH	1.1	-	2.72	-	4.5	-	9.01	-	13.43	-	17.9	-	
Highest CH	1.1	-	2.75	-	4.5	-	9.01	-	13.43	-	17.78	-	

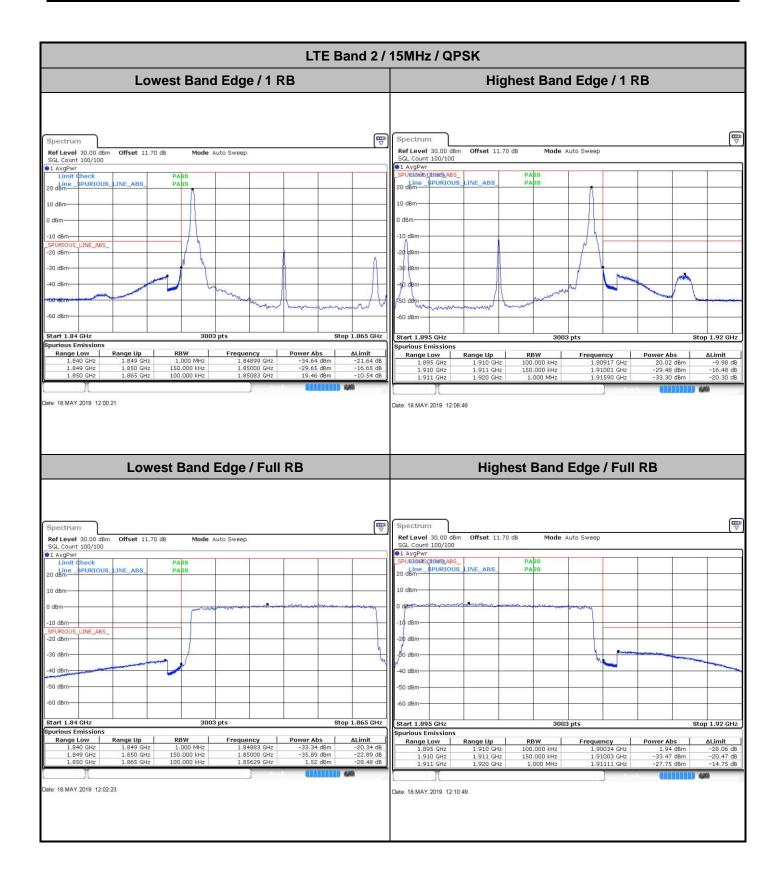


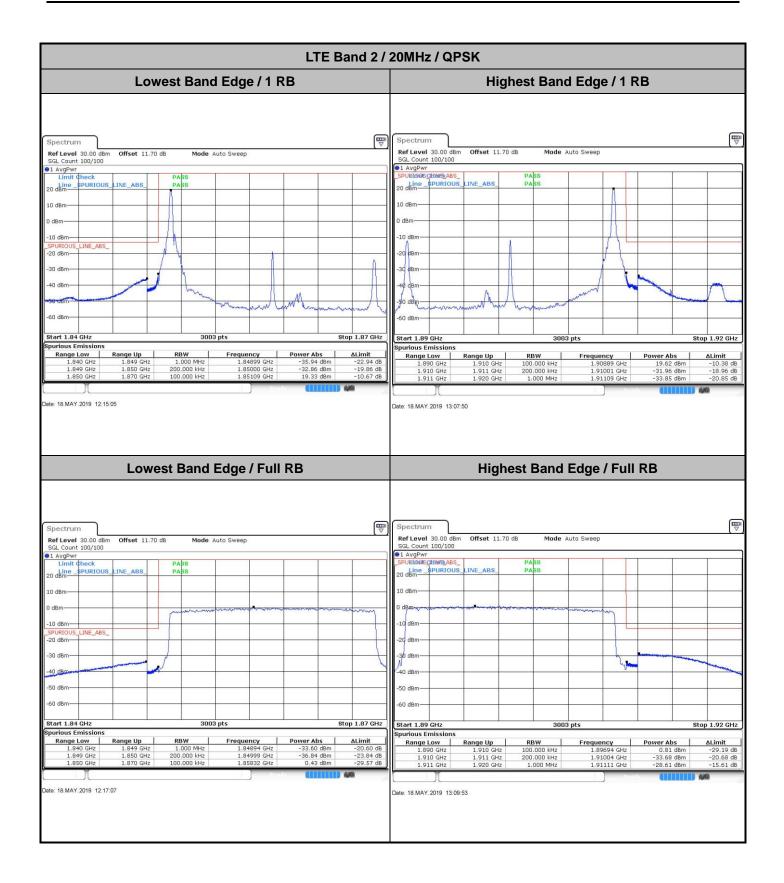





Conducted Band Edge







Conducted Spurious Emission

		Ľ	TE Band	2 / 1.4MHz	:					
Lov	west Channel /	QPSK		Highest Channel / QPSK						
Spectrum Ref Level 0.00 dBm Offset 11.70 SGL Count 100/100 INE ABS 10 dBm Spuerous 20 dBm	dB Mode Auto Sweep PABS PABS			Spectrum Ref Level 0.00 dBm SGL Count 100/100 I AvgPwr Limit Check -10 dBm -20 dBm -40 dBm -60 dBm -70 dBm -70 dBm	LINE_ABS	PASS PASS	to Sweep			
-80 dBm				-80 dBm						
Start 30.0 MHz Spurious Emissions	40006 pts		Stop 19.5 GHz	Start 30.0 MHz Spurious Emissions		40006	i pts		top 19.5 GHz	
Range Low Range Up 30.000 MHz 1.000 GHz 1.000 GHz 1.940 GHz 1.920 GHz 3.000 GHz 3.000 GHz 9.000 GHz 9.000 GHz 10.000 GHz 13.000 GHz 19.500 GHz 13.000 GHz 19.500 GHz Date: 18.MAY.2019 12.49.57	1.000 MHz 2.943 1.000 MHz 7.533 1.000 MHz 12.423		-35.38 dB -33.71 dB -29.45 dB -27.69 dB	Range Low 30.000 MHz 1.000 GHz 3.900 GHz 9.000 GHz 9.000 GHz 13.000 GHz Date: 18.MAY.2019 12.5	Ronge Up 1.000 GHz 1.940 GHz 3.000 GHz 9.000 GHz 13.000 GHz 19.500 GHz 9.500 GHz 9.52	RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	Frequency 097, 8185 MHz 2, 96553 GHz 7, 54337 GHz 12, 4342 GHz 19, 47175 GHz	Power Abs -47.58 dbm -48.12 dbm -47.06 dbm -42.40 dbm -40.49 dbm -38.26 dbm	△Limit -34.58 dB -35.12 dB -34.06 dB -29.40 dB -29.40 dB -27.49 dB -25.26 dB	
Mie	ddle Channel /	QPSK								
Spectrum Ref Level 0.00 dBm Offset 11.70 SGL Court 100/100 1 AvgPwr Limit Ghock 10 dBm Agent 20 dBm -30 dBm -40 dBm -90 dBm -90 dBm -90 dBm -90 dBm -10 dBm	PABS PABS PABS PABS PABS PABS PABS PABS	CY Power Abs - 47.62 dBm - 47.62 dBm - 48.48 dBm - 48.48 dBm - 42.65 dBm - 42.26 dBm - 42.65 dBm - 42.65 dBm - 42.65 dBm - 42.63 dBm - 40.59 dBm - 40.50 dBm - 40	-35.48 dB -33.93 dB -29.26 dB -27.59 dB							

			LT	E Band	2 / 3M	Hz				
L	owest Cha	nnel / QPS	К		Highest Channel / QPSK					
						_				
Spectrum Ref Level 0.00 dBm Offset 11.	70 dB Mode Au	uto Sweep		∎⊽	Spectrum Ref Level 0.		70 dB Mode A	uto Sweep		₽
SGL Count 100/100 SGL Count 100/100			-		SGL Count 11 91 AvgPwr	12 12	- the		<u></u>	
Limit Check -10 dent SPURIOUS LINE_ABS_	PASS PASS				Limit Ch -10 den SP	URIOUS LINE ABS	PASS PASS			
_SPURIOUS_LINE_ABS_ -20 dBm					_SPURIOUS_LI -20 dBm	NE_ABS_				
-30 dBm					-30 dBm					
-40 dBm	······				-40 dBm	mennin				
-60 dBm-					-60 dBm					
-70 dBm					-70 dBm					
-80 dBm-					-80 dBm					-
-90 dBm					-90 dBm					
Start 30.0 MHz Spurious Emissions	40006	6 pts	S	top 19.5 GHz	Start 30.0 M Spurious Emi		. 400	06 pts	S	top 19.5 GHz
Range Low Range Up 30.000 MHz 1.000 GH	RBW Iz 1.000 MHz	Frequency 996.84908 MHz	-47.59 dBm	-34.59 dB	Range Lo 30.000	w Range Up	RBW z 1.000 MHz	Frequency 985.69965 MHz	-47.53 dBm	△Limit -34.53 dB
1.000 GHz 1.840 GH 1.920 GHz 3.000 GH	iz 1.000 MHz	1.79109 GHz 2.99010 GHz	-48.32 dBm -46.74 dBm	-35.32 dB -33.74 dB	1.000	GHz 3.000 GH:	z 1.000 MHz	1.79319 GHz 2.98866 GHz	-48.55 dBm -46.70 dBm	-35.55 dB -33.70 dB
3.000 GHz 9.000 GH 9.000 GHz 13.000 GH 13.000 GHz 19.500 GH	iz 1.000 MHz	7.54487 GHz 12.43432 GHz 19.47775 GHz	-42.31 dBm -40.57 dBm -38.31 dBm	-29.31 dB -27.57 dB -25.31 dB	3.000 9.000 13.000	GHz 13.000 GH:	z 1.000 MHz	7.54537 GHz 12.42482 GHz 17.83438 GHz	-42.20 dBm -40.63 dBm -37.97 dBm	-29.20 dB -27.63 dB -24.97 dB
13.000 GH2 19.300 GH	2 1.000 MH2	19.47775 GH2	-38.31 060	-25.31 08	13.000	GH2 19.300 GH.	2 1.000 MH2	17.03430 GH2	-37.97 060	-24.97 08
N	liddle Char	nnel / QPS	к							
		ito Sween								
Spectrum Ref Level 0.00 dBm Offset 11.	70 dB Mode Au	ato encep		1						
Ref Level 0.00 dBm Offset 11. SGL Count 100/100 1 AvgPwr Limit dheck	70 dB Mode Au									
Ref Level 0.00 dBm Offset 11. SGL Count 100/100 1 AvgPwr Limit Check -10 ddRP SPURIOUS INE ABS										
Ref Level 0.00 dBm Offset 11. SGL Count 100/100 1 AvgPwr Limit dhock -10 dBmBPURIOUS_LINE_ABS_ -20 dBm	PABS									
Ref Level 0.00 dBm Offset 11. SGL Count 100/100 1 AvgBwr Limit Check -10 dBHP_SPURIOUS_LINE_ABS_ SPURIOUS_LINE_ABS_	PABS									
Ref Level 0.00 dBm Offset 11. SGL Count 100/100 Imit dhock Imit d	PABS									
Ref Level 0.00 dBm Offset 11. SGL Count 100/100 SGL Count 100/100 SGL Count 100/100 SGL Count 100/100 GH xepPwr Limit dheck Limit dheck SGL Count 100/100 SGL Count 100/100 SGL count 100/100 SGL Count 100/100 SGL Count 100/100 SGL Count 100/100 SGL Count 100/100 SGL count 100/100 SGL Count 100/100 SGL Count 100/100 SGL Count 100/100 SGL Count 100/100 SGL count 100/100 SGL Count 100/100	PABS									
Ref Level 0.00 dBm Offset 11. SGL Count 100/100 Imit dhack Imit d	PABS									
Ref Level 0.00 dBm Offset 11. SGL Count 100/100 Imit (hock Imit (PABS									
Ref Level 0.00 dBm Offset 11. SGL Count 100/100 INP INP <td>PABS PASS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	PABS PASS									
Ref Level 0.00 dBm Offset 1. Sci. Count 100/100 0	PABS PASS	6 pts		top 19.5 GHz						
Ref Level 0.00 dBm Offset 1. SGL Count 100/100 0	PABS PASS PASS 40000 RBW 12 1.000 MHz	6 pts	Power Abs -47.26 dBm	ΔLimit -34.26 dB						
Ref Level 0.00 dBm Offset 1. SGL Count 100/100 0	PABS PABS PASS PASS PASS PASS PASS PASS	6 pts	Power Abs -47.26 dBm -48.52 dBm -46.99 dBm	ΔLimit -34.26 dB -35.52 dB -33.99 dB						
Ref Level 0.00 dBm Offset 11. SL Count 100/100 0	PABS PABS PABS PABS PABS PABS PABS PABS	6 pts	Power Abs -47.26 dBm -48.52 dBm	∆Limit -34.26 dB -35.52 dB						
Ref Level 0.00 dBm Offset 1. SGL Count 100/100 0	PABS PABS PABS PABS PABS PABS PABS PABS	6 pts	Power Abs -47.26 dBm -48.52 dBm -46.99 dBm -42.31 dBm -40.56 dBm	ΔLimit -34.26 dB -35.52 dB -33.99 dB -29.31 dB -27.56 dB						
Ref Level 0.00 dBm Offset 1. SGL Count 100/100 0	PABS PABS PABS PABS PABS PABS PABS PABS	6 pts	Power Abs -47.26 dBm -48.52 dBm -46.99 dBm -42.31 dBm -40.56 dBm	ΔLimit -34.26 dB -35.52 dB -33.99 dB -29.31 dB -27.56 dB						
Ref Level 0.00 dBm Offset 1. SGL Count 100/100 0	PABS PABS PABS PABS PABS PABS PABS PABS	6 pts	Power Abs -47.26 dBm -48.52 dBm -46.99 dBm -42.31 dBm -40.56 dBm	ΔLimit -34.26 dB -35.52 dB -33.99 dB -29.31 dB -27.56 dB						
Ref Level 0.00 dBm Offset 1. Sci. Count 100/100 0 0 1.0 O L AvgPwr Limit Ghock INE Abs. 1.00 1.00 1.00 1.000 <t< td=""><td>PABS PABS PABS PABS PABS PABS PABS PABS</td><td>6 pts</td><td>Power Abs -47.26 dBm -48.52 dBm -46.99 dBm -42.31 dBm -40.56 dBm</td><td>ΔLimit -34.26 dB -35.52 dB -33.99 dB -29.31 dB -27.56 dB</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	PABS PABS PABS PABS PABS PABS PABS PABS	6 pts	Power Abs -47.26 dBm -48.52 dBm -46.99 dBm -42.31 dBm -40.56 dBm	ΔLimit -34.26 dB -35.52 dB -33.99 dB -29.31 dB -27.56 dB						

LTE E	Band 2 / 5MHz
Lowest Channel / QPSK	Highest Channel / QPSK
Spectrum Mode Auto Sweep ScL Count 100/100 I/A region I ArgPwr Limit Check -10 dbH _ SPURIOUS INE_ABS PASS -20 dBm	Image: Spectrum Image: Spe
1.000 GHz 1.840 GHz 1.000 MHz 1.80621 GHz -48.27 dBm -35 1.920 GHz 3.000 GHz 1.000 MHz 2.97427 GHz -46.57 dBm -33 3.000 GHz 9.000 GHz 1.000 MHz 7.55437 GHz -42.31 dBm -32 9.000 GHz 13.000 GHz 1.000 MHz 7.55437 GHz -40.59 dBm -22	mit Range Low Range Up RBW Frequency Power Abs Allmit 68 dB 30.000 Htz 1.000 Htz 1.000 Mtz 971.1599 Mtt -47.57 dB -34.57 dB 5.27 dB 1.000 GHz 1.000 Mtz 1.000 MHz 1.791.1599 Mtt -47.57 dB -35.37 dB 3.97 dB 1.920 GHz 3.000 GHz 1.000 MHz 2.99115 GHz -46.85 dBm -33.87 dB 3.91 dB 3.000 GHz 3.000 MHz 2.9911 GHz -46.85 dBm -29.40 dBm -29.40 dBm -29.40 dBm -29.73 dB 9.000 GHz 13.000 GHz 10.000 MHz 12.4132 GHz -40.37 dBm -27.37 dB 4.96 dB 13.000 GHz 10.000 MHz 19.46225 GHz -38.32 dBm -25.32 dB 13.000 GHz 19.500 GHz 1.000 MHz 19.46225 GHz -38.32 dBm -25.32 dB 14.80 AV 2019 11.43.03 11.43.03 -44.12 GHZ -44.12 GHZ -44.12 GHZ -44.12 GHZ -44.12 GHZ
Middle Channel / QPSK	
Spectrum Ref Lavel 0.00 dbm Offset 11.70 db Mode Auto Sweep SGL Count 100/100	
1.000 GHz 1.840 GHz 1.000 MHz 1.80831 GHz -48.42 dBm -39 1.920 GHz 3.000 GHz 1.000 MHz 2.84399 GHz -47.12 dBm -39 3.000 GHz 9.000 GHz 1.000 MHz 7.54837 GHz -47.12 dBm -39 9.000 GHz 13.000 GHz 1.000 MHz 7.54837 GHz -42.14 dBm -29	