

TEST Engineering Laboratory, In

6660-B Dobbin Road • Columbia, MD 21045 • U.S.A. TEL (410) 290-6652 • FAX (410) 290-6654 http://www.pctestlab.com

> CERTIFICATE OF COMPLIANCE FCC Part 95 Class II Permissive Change

Medtronic, Inc. Da 7000 Central Ave. Te Minneapolis, MN 55432-3576 Te U.S.A. Attention: Mr. Len Twetan, Senior Product Development Manager

Dates of Tests:September 2,2005 TestReportS/N: LF5 Test Site: PCTEST Lab, MD

FCC ID

LF5MICSIMPLANT

APPLICANT

Medtronic, Inc.

Classification:
FCC Rule Part(s):
EUT Type:
Trade Name(s):
Tx/Rx Frequency Range:
Max. RF Output Power:
Frequency Tolerance:
Emission Designator:
Channel Capacity:

Licensed Non-Broadcast Transmitter Placed in the Body §§§ 95: Canada Rule Part:RSS-243 Medical Implant Device Medtronic 402.15 - 404.85 MHz 5.8 e-8 watts 100 ppm 240K0F1D 10

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Randy Ortanez President

L F 5

© 2005 PCTEST Engineering Lab., Inc.

TABLE OF CONTENTS

COVER LETTER(S)	
ATTESTATION STATEMENT(S)	
TEST REPORT	
SCOPE	1
INTRODUCTION	2
INSERTS	3
DESCRIPTION OF TESTS	4-6
RADIATED MEASUREMENTS	7
FREQUENCY STABILITY	8-9
PLOTS OF EMISSIONS	10
LIST OF TEST EQUIPMENT	11
SAMPLE CALCULATIONS	12
CONCLUSION	13
TEST PLOTS	
FCC ID LABEL & LOCATION	
TEST SETUP PHOTOGRAPHS	
EUT PHOTOGRAPHS	
BLOCK DIAGRAM(S)	
SCHEMATIC DIAGRAM(S)	
USER'S MANUAL	

MEASUREMENT REPORT

<u>1.1 Scope</u>

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

General Information

Applicant Name: Address:	Medtronic, Inc. 7000 Central Ave. Minneapolis, MN 55432-3576
Attention:	Mr. Len Twetan, Sr. Product Development Manager

• FCC ID:		LF5MICSIMPLANT
• Quantity:		Quantity production is planned
• Tx/Rx Freq. Range:		402.15 - 404.85 MHz
 Equipment Class: in the Body 		Licensed Non-Broadcast Transmitter Placed
• Equipment Type:		Medical Implant Device
• Emission Designator:	240K0	F1D
• Modulation:	FSK	
• Frequency Tolerance:	100 p	pm
• Max. Power:	5.8	x e-8
• FCC Rule Part(s):		§§§§ 95
• Dates of Tests:	Sept	ember 2, 2005
• Place of Tests:		PCTEST Lab, Columbia, MD U.S.A.
• Test Report S/N:	LF5	

© 2005 PCTEST Lab

2.1 INTRODUCTION

Figure 1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area.

These measurement tests were conducted at PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or ΤV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on October 19, 1992.

Measurement Procedure

The radiated and spurious measurements were made outdoors at a 3-meter test range (see Figure2). The equipment under testing was placed on a wooden turntable, 3-meters from the receive antenna. The receive antenna height and turntable rotations was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This level was recorded.

For readings above 1 GHZ, the above procedure would be repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

Figure 2. 3-meter outdoor test site

3.1 INSERTS

Block Diagram(s) & Circuit Diagram(s)

The block diagram is submitted as attachment "Block Diagram".

Operating Instructions

The instruction manual is submitted as "User Manual".

4.1 DESCRIPTION OF TESTS

4.2 Transmitter Audio Frequency Response

N/A

4.3 Modulation Limiting

N/A

4.1 DESCRIPTION OF TESTS (CONTINUED)

4.4 20dB Bandwidth

N/A

4.5 Spurious and Harmonic Emissions at Antenna Terminal

N/A

4.6 Radiated Fundamental, Spurious and Harmonic Emissions

Radiation and harmonic emissions are measured at out 3-meter outdoor The implant was placed on the turntable in the specified torso site. simulator with the correct tissue substitute material in a vertical and plane operated at the frequency selected by the programmer/controller. With the prevailing ambient at the PCTest, the frequency of operation selected by the programmer was 402.15MHz. Care was taken to identify the respective emissions from the implant and the programmer/controller. A receiving antenna located 3 meters from the turntable receives any signal radiated from the transmitter and its operating accessories. The antenna was varied from 1 to 4 meters and the polarization is varied (horizontal and vertical) to determine the worst-case emission level. This process was repeated with the implant in a horizontal position in the torso simulator. To obtain actual radiated power, a signal generator is adjusted in output until a reading identical to that obtained with the actual transmitter is obtained at the receiver. Signal strength is read directly from the generator and recorded in the attached table.

The table contains worst case emissions for the various orientations and antenna polarizations. Vertical orientation of the implant and measuring antenna produced worst case emissions.

5.1 TEST DATA

5.2 Radiated Measurements

Field Strength of SPURIOUS Radiation –Low

Frequency (MHz)	Level (dBm)	AFCL (dB)	POL (H/V)	F/S (dBµV/m)	F/S (µV/m)	Power (W)	Margin (dB)
403.35	-70.0	23.72	V	60.72	1086.4	6E-08	chan 05
806.7	-107.0	31.45	V	31.55	37.8	1E-10	27.67
1210.1	-118.5	32.10	V	20.60	10.7	9E-12	38.22
1613.40	-132.0	34.50	V	9.5	2.9	8E-13	48.82
2016.80	-135.0	36.00	V	8.00	2.51	5E-13	50.92

8.1 TEST EQUIPMENT

<u>8.2 Type</u>	Mod	el	Cal. [<u>Due D</u>	ate	S/N	
Microwave Spectrum Analy Microwave Spectrum Analy Spectrum Analyzer/Tracki	vzer vzer .ng Gen	HP 8566B HP 8566B . HP	(100Hz-22 (100Hz-22 8591A (10	GHz) GHz))0Hz-1	08/15/ 04/17/ .8GHz)	04 04	3638A08713 2542A11898 08/10/04
Signal Generator [*] Signal Generator [*] Signal Generator [*] Ailtech/Eaton Receiver	HP 864 HP 864 Rohde	40B (500Hz 40B (500Hz & Schwarz NM 37/57A	z-1GHz) z-1GHz) (0.1-1000 -SL (30-1	/Hz) 000MHz	06/03/ 06/03/ 09/11/	04 04 02 04/12/	2232A19558 1851A09816 894215/012 04
0/92-032/1 Ailtech/Eaton Receiver Ailtech/Eaton Receiver 0608-03241		NM 37/57A NM 17/27A	(30-100 (0.1-32	OMHz) MHz)	03/11/	′04 09/17/	0805-03334 02
Quasi-Peak Adapter Ailtech/Eaton Adapter 0194-04082		HP 85650A CCA-7 CIS	PR/ANSI QP	Adapt	08/15/ er	′04 03/11/	2043A00301 04
RG58 Coax Test Cable Harmonic/Flicker Test Sy 3531a00115	rstem	No. 167 HP 6841A	(IEC 555-2	/3)			n/a
Broadband Amplifier (2)		HP 8447D					1145A00470,
Broadband Amplifier Transient Limiter Horn Antenna	HP 119	HP 8447F 947A (9kHz- EMCO Mode	-200MHz) 1 3115 (1-	18GHz)		2820A0	2443A03784 00300
9704-5182 Horn Antenna		EMCO Mode	1 3115 (1-	18GHz)			
Horn Antenna		EMCO Mode	l 3116 (18	-40GHz	:)		
Biconical Antenna (4)		Eaton 9	4455/Eaton	944	55-1/Si	nger	94455-1/Complianc
Log-Spiral Antenna (3)		Ailtech/E	aton 93490	-1			0608,
Roberts Dipoles Ailtech Dipoles		Complianc DM-105A (e Design (1 set)	l set)			
EMCO LISN EMCO LISN	3816/2 3816/2	2					1079 1077 2000
Microwave Preamplifier 4	10dB Ga	in HP	83017A (0	5-26.	5GHz)		2009
Microwave Cables Ailtech/Eaton Receiver 0792-03271	Micro	Coax (1.0-2 NM37/57A-	26.5GHz) SL				
Spectrum Analyzer	HP 859	94A				3051A0	00187
Spectrum Analyzer (2) 3108A02053		HP 8591A					3034A01395,
Modulation Analyzer NTSC Pattern Generator 0377433		HP 8901A Leader 40	8				2432A03467
Noise Figure Meter Noise Figure Meter TF31700		HP 8970B Ailtech 7	510				3106A02189
Noise Generator Microwave Survey Meter		Ailtech 7 Holaday M	010 odel 1501	(2.450	GHz)		1473 80931
© 2005 PCTEST Lab	ledtron	FCC ID: LE nics Medic	75MICSIMPI al Implan	ANT t Devi	lce		12

Test Report S/N: LF5 Dates of Tests: September 2, 2005

Digital Thermometer	Extech Instruments 421305	426966
Attenuator HP 849	95A (0-70dB) DC-4GHz	
Bi-Directional Coax Coupler	Narda 3020A (50-1000MHz)	
Shielded Screen Room	RF Lindgren Model 26-2/2-0	6710
(PCT270)		
Shielded Semi-Anechoic Chamber	Ray Proof Model S81	R2437
(PCT278)		
Enviromental Chamber	Associated Systems Model 1025	(Temperature/Humidity)
PCT285		

 * Calibration traceable to the National Institute of Standards and Technology (NIST).

9.1 SAMPLE CALCULATIONS

SAMPLE ONLY To Show Technique

The EIRP for channel 01 (402.15 MHz) was measured at a 3 meter distance on our OATS. The turn table and antenna mast were adjusted to obtain the highest reading on a receiver spectrum analyzer with RBW and VBW set at 3MHz each. A dipole antenna driven by a signal generator was substituted in place of the EUT and adjusted to match the -50.1 dBm receiver spectrum analyzer reading. (The dipole antenna used during the substitution has a gain of 2.14 dBi at 403.35 MHz.) The power at the antenna terminals of the substituted dipole was -18.87 dBm. This value was corrected by adding the 2.14 dBi gain of the substituted dipole to yield - 16.73 dBm for EIRP.

10.1 CONCLUSION

The data collected shows that the Medtronic Medical Implant Device FCC ID: LF5MICSIMPLANT as changed per the cover letter complies with all the requirements of Parts 2 and 95 of the FCC rules. Further, the modified unit complies with Industry Canada RSS 243.