

# FCC IC RF Test Report Report No.: FCC\_IC\_RF\_SL21011803-MED-004\_Rev2.0 Models: 97800 FCC ID: LF597800 IC: 3408D-97800 Received Date: 06/24/2021 Test Date: 06/25/2021 Issued Date: 9/8/2022 Applicant name: Medtronic, Inc. Address: 710 Medtronic Parkway N.E., Minneapolis, MN 55432 Manufacturer: Medtronic, Inc. Address: 710 Medtronic Parkway N.E., Minneapolis, MN 55432 Issued By: Bureau Veritas Consumer Products Services, Inc. Lab Address: 775 Montague Expressway, Milpitas, CA 95035 FCC Registration / 540430 **Designation Number:** ISED# / CAB identifier: 4842D



This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any government agencies.



## **Table of Contents**

| R | elease                                                                                                                                                                          | Control Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | С                                                                                                                                                                               | ertificate of Conformity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2 | S                                                                                                                                                                               | ummary of Test Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 2.1<br>2.2                                                                                                                                                                      | Measurement Uncertainty<br>Modification Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3 | G                                                                                                                                                                               | eneral Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 3.1<br>3.2<br>3.2.1<br>3.2.2<br>3.3<br>3.3.1<br>3.4                                                                                                                             | Description of Support Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7<br>7<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4 | Т                                                                                                                                                                               | est Types and Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | $\begin{array}{r} 4.1.2\\ 4.1.3\\ 4.1.4\\ 4.1.5\\ 4.1.6\\ 4.1.7\\ 4.2\\ 4.2.1\\ 4.2.2\\ 4.2.3\\ 4.2.4\\ 4.2.5\\ 4.3\\ 4.3.1\\ 4.3.2\\ 4.3.3\\ 4.3.4\\ 4.3.5\\ 4.3.6\end{array}$ | Radiated Emission Measurement         Limits of Radiated Emission Measurement         Test Instruments         Test Procedures         Deviation from Test Standard         Test Setup         EUT Operating Conditions         Test Results         Occupied Bandwidth         Test Setup         Test Instruments         Test Results         Occupied Bandwidth         Test Instruments         Test Procedures         Test Procedures         Test Results         Ocnucted Emission Measurement         Limits of Conducted Emission Measurement         Eust Instruments         Test Instruments         Test Procedures         Deviation from Test Standard         Test Setup         EUT Operating Conditions         Test Setup         EUT Operating Conditions         Test Setup         EUT Operating Conditions         Test Results | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \end{array} $ |
| 5 | Р                                                                                                                                                                               | ictures of Test Arrangements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Α | ppend                                                                                                                                                                           | ix – Information on the Testing Laboratories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



## **Release Control Record**

| Issue No.                           | Description                                            | Date Issued |
|-------------------------------------|--------------------------------------------------------|-------------|
| FCC_IC_RF_SL21011803-MED-004        | Initial Release                                        | 06/30/2021  |
| FCC_IC_RF_SL21011803-MED-004_Rev1.0 | Updated section 4.1.7                                  | 8/17/2022   |
| FCC_IC_RF_SL21011803-MED-004_Rev2.0 | Updated remark 5 on pg 13 and added remark 5 to pg 15. | 9/8/2022    |



# Sample Status: Engineering sample Applicant: Medtronic, Inc. Test Date: 06/25/2021 Standards: 47 CFR FCC Part 15, Subpart C (Section 15.207/15.209) ANSI C63.10:2013 RSS Gen Issue 5, March 2019 RSS-210 Issue 10 December 2019 The above equipment has been tested by Bureau Veritas Consumer Products Services, Inc., Milpitas Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report. Dem **Date:** 06/30/2021 Prepared by : Deon Dai / Test Engineer Gary Chou **Date:** 06/30/2021 Approved by : Gary Chou / Engineer Reviewer Page No. 4 / 21 Report No.: FCC\_IC\_RF\_SL21011803-MED-004\_Rev2.0 Report Format Version: 6.1.1

**Certificate of Conformity** 

**Test Model: 97800** 

Brand: Medtronic

Product: Ultra Low Power Active Medical Implant (ULP-AMI)

1



## 2 Summary of Test Results

| 47 CFR FCC Part 15, Subpart C ( 15.207/15.209) |                               |            |                                                                                |  |  |  |
|------------------------------------------------|-------------------------------|------------|--------------------------------------------------------------------------------|--|--|--|
|                                                | , RSS G                       | en Issue 5 |                                                                                |  |  |  |
| FCC IC<br>Clause                               | Test Item                     | Result     | Remarks                                                                        |  |  |  |
| 15.207<br>RSS Gen 8.8                          | AC Power Conducted Emission   | N/A        | Work with battery                                                              |  |  |  |
| RSS Gen                                        | Occupied Bandwidth            | Pass       | Referency Only                                                                 |  |  |  |
| 15.209<br>RSS Gen                              | Transmitter Radiated Emission | Pass       | Meet the requirement of limit.                                                 |  |  |  |
| 15.203<br>RSS Gen                              | Antenna Requirement           | Pass       | The EUT uses an Integral internal Antenna to permanently attach to the device. |  |  |  |

## 2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| Measurement                        | Frequency      | Expanded Uncertainty<br>(k=2) (±) |
|------------------------------------|----------------|-----------------------------------|
| Conducted Emissions at mains ports | 150kHz ~ 30MHz | 3.51dB                            |
| Radiated Emissions up to 1 GHz     | 30MHz ~ 1GHz   | 3.73dB                            |

## 2.2 Modification Record

There were no modifications required for compliance.



## 3 General Information

## 3.1 General Description of EUT

| Product             | Ultra Low Power Active Medical Implant (ULP-AMI) |
|---------------------|--------------------------------------------------|
| Brand               | Medtronic                                        |
| Test Model          | 97800                                            |
| Series Model        | N/A                                              |
| Model Difference    | N/A                                              |
| Status of EUT       | Engineering sample                               |
| Power Supply Rating | Battery                                          |
| Modulation Type     | OOK burst, less then 1% duty cycle.              |
| Operating Frequency | 175kHz                                           |
| Number of Channel   | 1                                                |
| Antenna Type        | Integral internal antenna                        |
| Antenna Gain        | None                                             |

Note:

1. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.



#### 3.2 Description of Test Modes

| 3.2.1 | 1 channel is provided to this EUT      |              |  |
|-------|----------------------------------------|--------------|--|
|       | Channel                                | Freq. (MHz)  |  |
|       | 1                                      | 0.175        |  |
| 3.2.2 | Test Mode Applicability and Tested Cha | annel Detail |  |
| EUT   | APPLICABLE TO                          |              |  |

|                                        | CONFIGURE                                     |                |                   |                           |    | DESCRIPTION  |                    |  |
|----------------------------------------|-----------------------------------------------|----------------|-------------------|---------------------------|----|--------------|--------------------|--|
|                                        | MODE                                          |                |                   | PLC                       | FS | EB           | DESCRIPTION        |  |
|                                        | А                                             |                | $\checkmark$      | -                         | -  | $\checkmark$ | Power from battery |  |
|                                        | В                                             |                | -                 | Power from USB via laptop |    |              |                    |  |
| ۷                                      | Where RE: Radiated Emission PLC: Power Line ( |                | onducted Emission |                           |    |              |                    |  |
| FS: Frequency Stability EB: 20dB Bandy |                                               | : 20dB Bandwid | th measurement    |                           |    |              |                    |  |

**NOTE:** The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Y-plane**. **NOTE:** "-" means no effect.

#### **Radiated Emission Test:**

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

| EUT Configure Mode | Available Channel | Tested Channel | Modulation Type |
|--------------------|-------------------|----------------|-----------------|
| А                  | 1                 | 1              | OOK             |

#### Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

| EUT Configure Mode | Available Channel | Tested Channel | Modulation Type |
|--------------------|-------------------|----------------|-----------------|
| A                  | 1                 | 1              | OOK             |

#### Frequency Stability:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

| EUT Configure Mode | Available Channel | Tested Channel | Modulation Type |
|--------------------|-------------------|----------------|-----------------|
| А                  | 1                 | 1              | ООК             |

#### Test Condition:

| APPLICABLE TO ENVIRONMENTAL CONDITIONS |                 | INPUT POWER | TESTED BY |  |
|----------------------------------------|-----------------|-------------|-----------|--|
| RE                                     | 25deg. C, 65%RH | 5Vdc        | Deon Dai  |  |
| EB                                     | 25deg. C, 65%RH | 5Vdc        | Deon Dai  |  |



# 3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| ID | Product      | Brand     | Model No. | Serial No. | FCC ID  | Remarks              |
|----|--------------|-----------|-----------|------------|---------|----------------------|
| Α. | Communicator | Medtronic | TM90      | NPA11462N  | LF5TM90 | Provided by Customer |
| В. | Mobile Phone | Sunsang   | Galaxy J3 | -          | -       | Provided by Customer |

| ID | Descriptions | Qty. | Length (m) | Shielding<br>(Yes/No) | Cores (Qty.) | Remarks |
|----|--------------|------|------------|-----------------------|--------------|---------|
| 1. | -            | -    | -          | -                     | -            | -       |

## 3.3.1 Configuration of System under Test



## 3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

47 CFR FCC Part 15, Subpart C (Section 15.207) 47 CFR FCC Part 15, Subpart C (Section 15.209) ANSI C63.10:2013 RSS Gen Issue 5, March 2019 RSS-210 Issue 10 December 2019

All test items have been performed and recorded as per the above standards.



## 4 Test Types and Results

## 4.1 Radiated Emission Measurement

## 4.1.1 Limits of Radiated Emission Measurement

| Frequencies<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance<br>(meters) |
|----------------------|--------------------------------------|----------------------------------|
| 0.009 ~ 0.490        | 2400/F(kHz)                          | 300                              |
| 0.490 ~ 1.705        | 24000/F(kHz)                         | 30                               |
| 1.705 ~ 30.0         | 30                                   | 30                               |
| 30 ~ 88              | 100                                  | 3                                |
| 88 ~ 216             | 150                                  | 3                                |
| 216 ~ 960            | 200                                  | 3                                |
| Above 960            | 500                                  | 3                                |

## NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Distance extrapolation factor = 40 log (specific distance / test distance)

Limit Line (dBuV/m) = 20 log Emission level (uV/m) + Distance extrapolation factor

- 3. The emission limits shown in the above table are based on measurements employing a CISPR quasipeak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- 4. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.



## 4.1.2 Test Instruments

| DESCRIPTION &<br>MANUFACTURER      | MODEL NO. | SERIAL NO.               | DATE OF<br>CALIBRATION | DUE DATE OF<br>CALIBRATION |
|------------------------------------|-----------|--------------------------|------------------------|----------------------------|
| EMI Test Receiver<br>Keysight      | ESW 44    | 1328.4100K-<br>101662-MH | 08/30/2020             | 08/30/2021                 |
| Passive Loop Antenna<br>(9k-30MHz) | 6512      | 49120                    | 11/25/2019             | 11/25/2021                 |
| Preamplifier<br>RF Bay, Inc.       | LNA-150   | 12170607                 | 06/18/2021             | 06/18/2022                 |



#### 4.1.3 Test Procedures

## For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

#### NOTE:

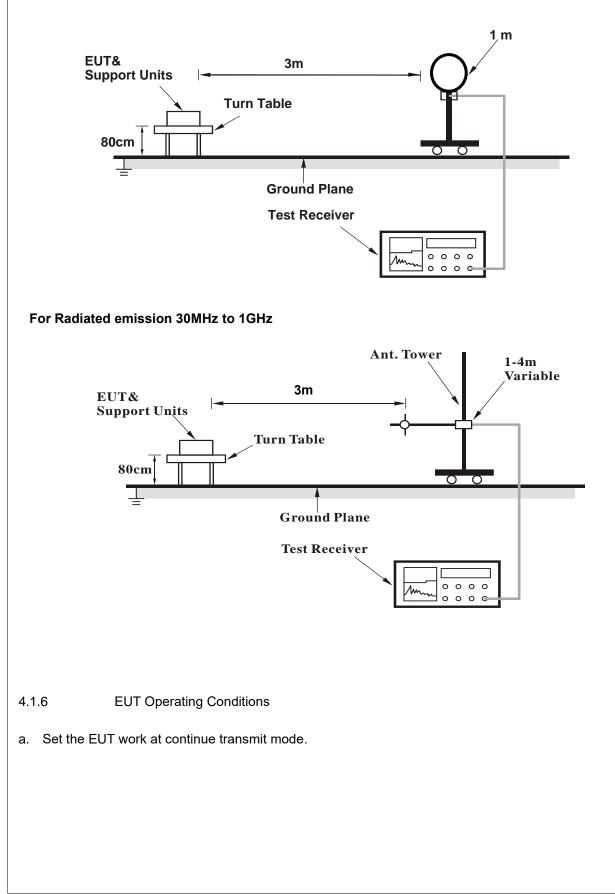
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30MHz.

#### For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

#### Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


#### 4.1.4 Deviation from Test Standard

No deviation.



## 4.1.5 Test Setup

## For Radiated emission below 30MHz





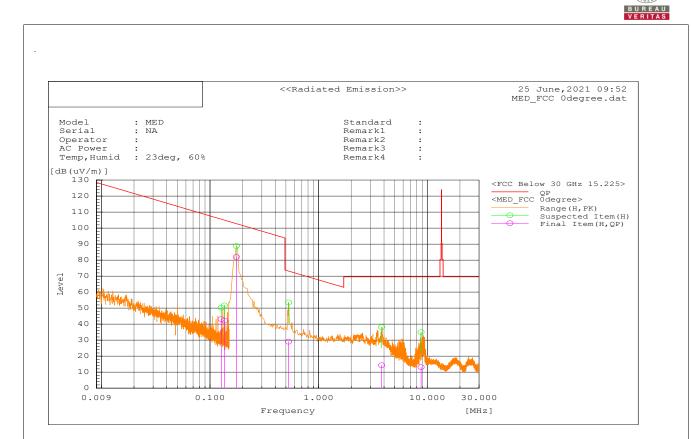
# 4.1.7 Test Results

# Radiated Emissions (9 kHz~30 MHz)

| EUT Test Condition |         | Measurement Detail |                      |  |
|--------------------|---------|--------------------|----------------------|--|
| Frequency          | 175KHz  | Frequency Range    | 9 kHz~30 MHz         |  |
| Input Power        | Battery | Detector Function  | Quasi-Peak (Average) |  |

|     | Antenna Polarity & Test Distance: Loop Antenna 0 degree At 3m |                        |                               |                     |                               |                              |                          |             |                |               |
|-----|---------------------------------------------------------------|------------------------|-------------------------------|---------------------|-------------------------------|------------------------------|--------------------------|-------------|----------------|---------------|
| No. | Frequency<br>(MHz)                                            | Polarization<br>(0/90) | Reading<br>QP(AV)<br>[dB(uV)] | Factor<br>[dB(1/m)] | Level<br>QP(AV)<br>[dB(uV/m)] | Limit<br>QP (AV)<br>dB(uV/m) | Margin<br>QP(AV)<br>[dB] | Height (cm) | Angle<br>(Deg) | Pass/<br>Fail |
| 1   | 0.127                                                         | 0                      | 13.8                          | 29.3                | 43.1                          | 105.5                        | -62.4                    | 100         | 0.1            | Pass          |
| 2   | 0.136                                                         | 0                      | 13.4                          | 28.8                | 42.2                          | 105                          | -62.8                    | 100         | 0              | Pass          |
| 3   | 0.175                                                         | 0                      | 54.8                          | 27.1                | 81.9                          | 102.7                        | -20.8                    | 100         | 321            | Pass          |
| 4   | 0.528                                                         | 0                      | 11.1                          | 18                  | 29.1                          | 73.1                         | -44                      | 100         | 357            | Pass          |
| 5   | 3.807                                                         | 0                      | 10.8                          | 3.5                 | 14.3                          | 69.5                         | -55.2                    | 100         | 261            | Pass          |
| 6   | 8.772                                                         | 0                      | 10.7                          | 2.4                 | 13.1                          | 69.5                         | -56.4                    | 100         | 351            | Pass          |

#### **REMARKS**:


1. Level (dBuV) = Reading (dBuV) + Factor (dB(1/m)).

2. Factor (dB(1/m)) = Antenna Factor(AF) (dB(1/m)) + Cable Loss (dB)

3. Margin value = Emission level – Limit value.

4. Here the frequency bands 9-90 kHz and 110-490 kHz are use average detector.

5. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of  $377\Omega$ . For example, the measurement frequency 11 KHz resulted in a level of 62.6 dBuV/m, which is equivalent to 62.6 -51.5 = 11.1 dBuA/m, which has the same margin, 64.2 dB, to the corresponding RSS-GEN Table 6 limit as it has to the 15.209(a) limit.

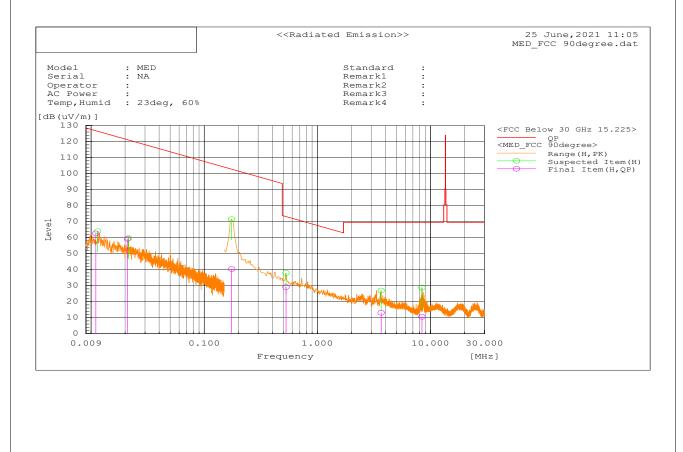




| EUT Test Condition |         | Measurement Detail |                      |  |
|--------------------|---------|--------------------|----------------------|--|
| Frequency          | 175KHz  | Frequency Range    | 9 kHz~30 MHz         |  |
| Input Power        | Battery | Detector Function  | Quasi-Peak (Average) |  |

|     | Antenna Polarity & Test Distance: Loop Antenna 0 degree At 3m |                        |                               |                     |                               |                              |                          |             |                |               |
|-----|---------------------------------------------------------------|------------------------|-------------------------------|---------------------|-------------------------------|------------------------------|--------------------------|-------------|----------------|---------------|
| No. | Frequency<br>(MHz)                                            | Polarization<br>(0/90) | Reading<br>QP(AV)<br>[dB(uV)] | Factor<br>[dB(1/m)] | Level<br>QP(AV)<br>[dB(uV/m)] | Limit<br>QP (AV)<br>dB(uV/m) | Margin<br>QP(AV)<br>[dB] | Height (cm) | Angle<br>(Deg) | Pass/<br>Fail |
| 1   | 0.011                                                         | 90                     | 11.2                          | 51.4                | 62.6                          | 126.8                        | -64.2                    | 100         | 4.2            | Pass          |
| 2   | 0.021                                                         | 90                     | 12.5                          | 46.7                | 59.2                          | 121.2                        | -62                      | 100         | 0              | Pass          |
| 3   | 0.528                                                         | 90                     | 11.1                          | 18                  | 29.1                          | 73.1                         | -44                      | 100         | 189            | Pass          |
| 4   | 3.667                                                         | 90                     | 9.4                           | 3.7                 | 13.1                          | 69.5                         | -56.4                    | 100         | 189            | Pass          |
| 5   | 8.413                                                         | 90                     | 8.1                           | 2.5                 | 10.6                          | 69.5                         | -58.9                    | 100         | 3.2            | Pass          |
| 6   | 0.175                                                         | 90                     | 13.3                          | 27.1                | 40.4                          | 102.7                        | -62.3                    | 100         | 0              | Pass          |

#### **REMARKS**:


1. Level (dBuV) = Reading (dBuV) + Factor (dB(1/m)).

2. Factor (dB(1/m)) = Antenna Factor(AF) (dB(1/m)) + Cable Loss (dB)

3. Margin value = Emission level – Limit value.

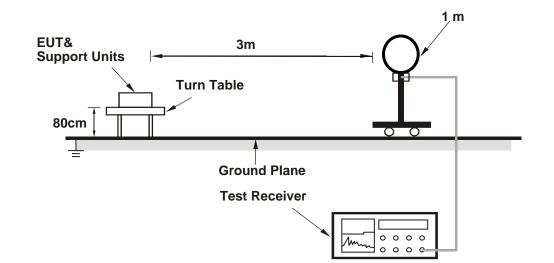
4. Here the frequency bands 9-90 kHz and 110-490 kHz are use average detector.

5. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of  $377\Omega$ . For example, the measurement frequency 11 KHz resulted in a level of 62.6 dBuV/m, which is equivalent to 62.6 -51.5 = 11.1 dBuA/m, which has the same margin, 64.2 dB, to the corresponding RSS-GEN Table 6 limit as it has to the 15.209(a) limit.





## 4.2 Occupied Bandwidth


## 4.2.1 Test Instruments

| DESCRIPTION &<br>MANUFACTURER      | MODEL NO. | SERIAL NO. | DATE OF<br>CALIBRATION | DUE DATE OF<br>CALIBRATION |
|------------------------------------|-----------|------------|------------------------|----------------------------|
| Spectrum Analyzer<br>Keysight      | N9010A    | MY51440112 | 10/23/2020             | 10/23/2021                 |
| Passive Loop Antenna<br>(9k-30MHz) | 6512      | 49120      | 11/25/2019             | 11/25/2021                 |

4.2.2 Test Procedures

- a. Set resolution bandwidth (RBW) = 9 kHz
- b. Set the video bandwidth  $(VBW) \ge 3 \times RBW$ , Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the 20dB bandwidth (IC: 99% emission bandwidth)

4.2.3 Test Setup



# 4.2.4 EUT Operating Conditions

a. Set the EUT work at continue transmit mode.



# 4.2.5 Test Results

| Frequency (KHz) | 20 dB Bandwidth<br>(KHz) | 99% Bandwidth<br>(KHz) |  |
|-----------------|--------------------------|------------------------|--|
| 175             | 47.46                    | 58.185                 |  |

Test Plots:

| Input: RF<br>Coupling: DC<br>Align: Auto | Input Z: 50 Ω Atten: 10 dB<br>Corrections: Off<br>Freq Ref: Int (S) | Gate: Off      | Center Freq: 175.000 kHz<br>Avg Hold:>10/10<br>Radio Std: None | Trace Type<br>Clear / Write | Trace<br>Control |
|------------------------------------------|---------------------------------------------------------------------|----------------|----------------------------------------------------------------|-----------------------------|------------------|
| raph v                                   |                                                                     |                |                                                                | Trace Average               |                  |
| ale/Div 10.0 dB<br>g                     | Ref Value 10.0                                                      | 00 dBm         |                                                                | Max Hold                    |                  |
| 0                                        |                                                                     |                |                                                                | Min Hold                    |                  |
| 0                                        |                                                                     |                |                                                                | Restart Max Hold            |                  |
| .0                                       |                                                                     |                |                                                                |                             |                  |
| .0<br>nter 175 kHz<br>es BW 9.1000 kHz   | #Video BW 30.                                                       | 000 kHz        | Span 100 kHz<br>Sweep Time 1.20 ms (1001 pts                   |                             |                  |
| letrics V                                |                                                                     |                |                                                                |                             |                  |
| Occupied Bandwidth<br>58.185             | 5 kHz                                                               | Total Power    | -3.37 dBm                                                      |                             |                  |
| Transmit Freg Error                      | 3.319 kHz                                                           | % of OBW Power |                                                                |                             |                  |
| Tranonii trog Enor                       | 47.46 kHz                                                           | x dB           | -20.00 dB                                                      |                             |                  |

Note: This measurement was taken using the Radiated method. No attenuators and filters were used for the measurement.



## 4.3 Conducted Emission Measurement

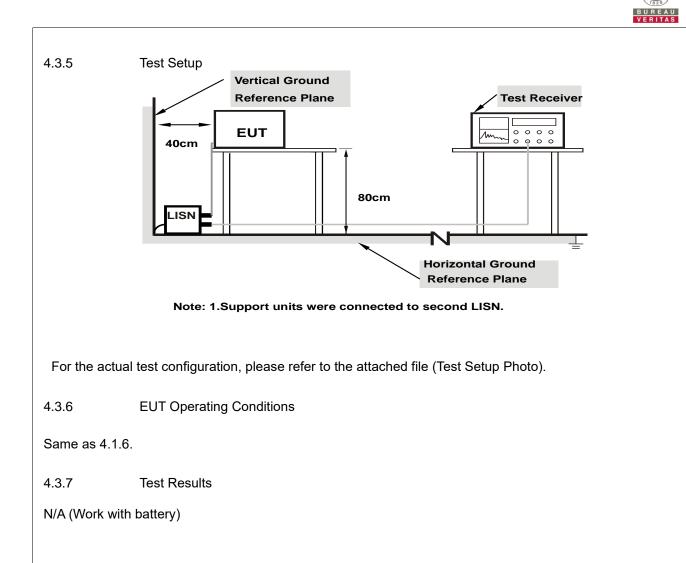
#### 4.3.1 Limits of Conducted Emission Measurement

| Frequency (MHz)  | Conducted Limit (dBuV) |         |  |  |  |
|------------------|------------------------|---------|--|--|--|
| Frequency (MI12) | Quasi-peak             | Average |  |  |  |
| 0.15 - 0.5       | 66 - 56                | 56 - 46 |  |  |  |
| 0.50 - 5.0       | 56                     | 46      |  |  |  |
| 5.0 - 30.0       | 60                     | 50      |  |  |  |

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

#### 4.3.2 Test Instruments


| Description &<br>Manufacturer        | Model No. | Serial No. | Date Of<br>Calibration | Due Date Of Calibration |
|--------------------------------------|-----------|------------|------------------------|-------------------------|
| EMI Test Receiver<br>ROHDE & SCHWARZ | ESIB 40   | 100179     | 01/29/2021             | 01/29/2022              |
| Transient Limiter<br>ELECTRO-METRICS | EM-7600-5 | 106        | 01/29/2021             | 01/29/2022              |
| LISN<br>EMCO                         | 3816/2NM  | 214372     | 01/29/2021             | 01/29/2022              |

#### 4.3.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

#### 4.3.4 Deviation from Test Standard

No deviation.





# 5 Pictures of Test Arrangements

Please see setup photo file.



## Appendix – Information on the Testing Laboratories

Bureau Veritas is a global leader in testing, inspection and certification (TIC) services. We help businesses improve safety, sustainability and productivity; and our clients include the majority of leading brands in retail, manufacturing and other industries. With a presence in every major country around the world, our quality assurance and compliance solutions are vital in helping our customers enhance product quality and concept-to-consumer journeys. We also assist with increasing speed to market, profitability and brand equity throughout the supply chain. Bureau Veritas is a leading wireless/IoT testing, inspection, audit and certification provider, with a global network of test laboratories to support the IoT industry in areas of connectivity, security, interoperability as well as quality, health & safety, and environmental/chemical requirements.

If you have any comments, please feel free to contact us at the following:

#### Milpitas EMC/RF/Safety/Telecom Lab

775 Montague Expressway, Milpitas, CA 95035 Tel: +1 408 526 1188

## Sunnyvale OTA/Bluetooth Lab

1293 Anvilwood Avenue, Sunnyvale, CA 94089 Tel: +1 669 600 5293

#### Littleton EMC/RF/Safety/Environmental Lab

1 Distribution Center Cir #1, Littleton, MA 01460 Tel: +1 978 486 8880

Email: <u>sales.eaw@us.bureauveritas.com</u> Web Site: <u>www.cpsusa-bureauveritas.com</u>

The address and road map of all our labs can be found in our web site also.

---- END ----