Medtro	nic	NEUROMODULATION CONFIDENTIAL DOCU			CUMENT/RECORD	
This document/record is electronically controlled, printed copies are considered uncontrolled.						
Identifier	Vers	ion		Author	•	
NDHF1405-128215	2.0	.0 Scott Straka				
Title: PTM3 Model 97745 RF D	VT Report	port			Pages: (including this page)	
		AP	PROVALS			
Signed By			Responsibility		Date/Time (GMT)	
Joshua Francis	De	evelopmer	nt Approver	7	7/23/2012 9:16:24 PM	
Dawit Belete	Re	eliability/S	QE Engineering Approver	7	7/23/2012 9:17:37 PM	
Farshad Esnaashari	Pr	oject Man	agement Approver	7	7/24/2012 2:57:26 PM	
Thomas Johnsen	Re	gulatory A	Affairs Approver	7	7/24/2012 9:37:00 PM	
Scott Straka	De	Development Approver			7/25/2012 1:51:50 PM	
William Phillips	De	Development Approver			7/25/2012 6:02:40 PM	
Holli Pheil	De	Development Approver			7/26/2012 12:39:31 PM	

Form MEDN-0500 version 3.0

Hedtronic

Project Name: PTM3

Authored By: Scott Straka

Version History				
Version	Description of Change	Change Author		
1.0	Initial Version	Scott Straka		
2.0 Route for Approval		Scott Straka		

Document location: NPD > NDHF-Design History Files > NDHF1405 XTM Instruments Platform >XTM Hardware > HW PTM

This report utilizes MEDN-0066 Version 7.0. The protocol was written in version 7.0, and version 8.0 did not add any additional content that is not covered in this report.

TABLE OF CONTENTS

1	EXECUTIVE SUMMARY	5
2	SCOPE	7
3	PURPOSE / OBJECTIVES	7
4	BACKGROUND 4.1 Product	
5	APPLICABLE DOCUMENTS	8
6	ACCEPTANCE STRATEGY	9
7	SAMPLE SIZE JUSTIFICATION	9
8	ACRONYMS	9
9	TEST PROCEDURE 9.1 SAMPLE CONFIGURATION 9.2 TEST EQUIPMENT 9.3 REQUIREMENTS, ACCEPTANCE STRATEGY & RESULTS (REPORT ONLY) 9.4.1 RF-1: Receiver Sensitivity 9.4.2 RF-2: Receiver Intermodulation Rejection 9.4.3 RF-3: Receiver Adjacent Channel Rejection 9.4.4 RF-4: Receiver Adjacent Channel Rejection 9.4.5 RF-5: Receiver Ad Channel Rejection 9.4.6 RF-6 External Spurious Response Rejection (Single Tone, Unmodulated) 9.4.7 RF-7: Receiver RSSI Linearity and Differentiation 9.4.8 RF-8 Transmit Power, Adjacent Channel Power Ratio, and Alternate Channel Power Ratio 9.4.9 RF-9 Transmitter Error Vector Magnitude & Transmitter Frequency Stability 9.4.10 RF-10: Active Tel-M Antenna Gain 9.4.11 RF-11: Tel-M Antenna Return Loss 9.4.12 RF-12: Active Bluetooth Antenna Efficiency 9.4.13 RF-13: Bluetooth Antenna Return Loss 9.4.14 RF-14: Bluetooth Rx Sensitivity (GFSK) 9.4.15 RF-15: Bluetooth Standard Qualification 9.4.16 RF-16: Tel M I/O.	10 11 12 13 13 18 19 21 23 24 34 34 34 42 44 47 50 52 54 56
10	SAMPLE BUILD TRACEABILITY	58
11	CONCLUSION	61
12	RECOMMENDATIONS	61
13	DATA ANALYSIS	62
14	APPENDIX	
	Form MEDN-0066 Ver	sion 7.0

Confidential

2.0

NDHF1405-128215

3 of 75

Title: PTM3 Model 97745 RF DVT Report

14.1 Appendix A: Measurement of RF path loss through cables	63
14.1.1 Narrowband cable loss measurements	
14.1.2 Broad Band Cable Loss Measurements	
14.2 Appendix B: REQUIREMENTS TRACE	

LIST OF TABLES

Table 1: Summary of Results	5
Table 2: Table of Applicable Documents	8
Table 3: Table of Acronym Definitions	9
Table 4: List of Tests for PTM3 RF Design Verification Testing	12
Table 5: Table of Receiver Tests	16
Table 6: Table of Receiver Spurious Response Rejection Tests	34
Table 7: Table of Transmitter Tests	40
Table 8 List of test cases for MICS active antenna testing	47
Table 9 List of test cases for Bluetooth active antenna testing	52
Table 10 Frequency spans and number of data points to create the broadband path loss table for test RF-6	. 64
Table 11 Requirements Trace from EDVT Protocol to EE Requirements	65
Table 12 Requirements Trace from EE Requirements to RF DVT Protocol	66

LIST OF FIGURES

Figure 1 - PTM3, model 97745, System Illustration	8
Figure 2. Test setup for receiver testing	
Figure 3 Capability Analysis of Receiver Sensitivity	15
Figure 4 Capability Analysis of Mode 1 Upper Dynamic Range Level	16
Figure 5 Capability Analysis of Intermodulation Rejection	19
Figure 6 Capability Analysis of Adjacent Channel Rejection	21
Figure 7 - Capability Analysis of Alternate Channel Rejection	22
Figure 8 Capability Analysis of AM Channel Rejection	24
Figure 9. Diagram of interference strategy for single tone spurious harmonics test.	25
Figure 10 Test setup for Rx spurious response rejection testing	
Figure 11 Capability Analysis of Rx Alt+1 Rejection	27
Figure 12 Capability Analysis of Rx Alt+2 Rejection	
Figure 13 Capability Analysis of Rx Alt+3 Rejection	
Figure 14 Capability Analysis of Rx Alt+4 Rejection	29
Figure 15 Capability Analysis of Rx Alt+5 Rejection	29
Figure 16 Capability Analysis of Rx Alt+6 Rejection	
Figure 17 Capability Analysis of Rx Alt+7 Rejection	
Figure 18 Capability Analysis of Rx Alt+8 Rejection	
Figure 19 Capability Analysis of Rx Alt+9 Rejection	
Figure 20 Capability Analysis of Rx Alt+10 Rejection	
Figure 21 Capability Analysis of Rx Alt+11 Rejection	
Figure 22 Capability Analysis of RSSI Lower Level Range	
Figure 23 Capability Analysis of RSSI Upper Level Range	
Figure 24. Mode 3 Transmit Channel Illustration	37
Figure 25 Test setup for Tx testing	
Figure 26 Capability Analysis of Transmit Power	
Figure 27 Capability Analysis of Adjacent Channel Power Ratio	
Figure 28 Capability Analysis of Alternate Channel Power Ratio	40

NDHF1405-128215

4 of 75

2.0

Figure 29	Capability Analysis of Error Vector Magnitude	
Figure 30	Capability Analysis of Frequency Stability	
Figure 31	Zoom in picture of PTM in Star Gate with laser placement	
Figure 32	Capability Analysis of MICS Antenna Gain	
Figure 33	Tolerance Interval for MICS Antenna Gain	
Figure 34	Return Loss Test Setup	
Figure 35	Capability Analysis of Return Loss	
Figure 36	Tolerance Interval for Return Loss	
Figure 37	Capability Analysis of Radiation Efficiency of Bluetooth Antenna	
Figure 38	Capability Analysis of Return Loss of Bluetooth Antenna	
Figure 39	Test setup for Bluetooth receiver testing	
Figure 40	Capability Analysis of Bluetooth Rx Sensitivity	

Medtronic Neuromodulation ConfidentialDocument Number NDHF1405-128215Version 2.0Page 5 of 75

1 EXECUTIVE SUMMARY

Purpose:

To verify the Model 97745 Patient Therapy Manager (PTM3) meets the RF electrical design verification requirements specified in the Design Verification Test Protocol (NDHF1405-112546) and the PTM3 Product Specification NDHF 1405-111160.

Products Tested:

All testing was performed on production representative products.

Results and Conclusions:

All products tested met the requirements specified in Design Verification protocol NDHF1405-112546 as specified in NDHF1405-111160, PTM3 Product Specification. Test results are summarized below in Table 1: Summary of Results.

Test #	Test Name	Requirement	Acceptance Criteria	Data Sample Size	Pass/Fail
RF-1 (mode 1)	Tel M Receiver Sensitivity	EE296 EE305	Max PER of 1% when: -89 dBm ≤ signal level ≤ -22 dBm	222 240	PASS
RF-2 (mode 1)	Tel M Receiver Intermodulation Rejection	EE298	Max PER of 1% when IMR interferer levels ≤ 47 dB	43	PASS
RF-3 (mode 1)	Tel M Rx Adjacent Channel Rejection	EE299	Max PER of 1% when adj. ch. interferer level (100 kHz offset) ≤ 35 dB	217	PASS
RF-4 (mode 1)	Tel M Rx Alternate Channel Rejection	EE300	Max PER of 1% when alt. ch. interferer level (200 kHz offset) ≤ 44 dB	216	PASS
RF-5 (mode 1)	Tel M Rx AM Rejection	EE304	Max PER of 1% AM interferer level (1.5 MHz offset) ≤ -58 dBm	41	PASS
RF-6 (mode 1)	Tel M Rx External Spurious Response Rejection	EE303	Max PER of 1% at specified power with specified external spurious interferers	211	PASS
RF-7 (mode 1)	Tel M RSSI Linearity and	EE306 EE307	RSSI range of -109 dBm min and -55	240	PASS

Table 1: Summary of Results

Medtronic Neuromodulation

Confidential

Document Number	Version
NDHF1405-128215	2.0

Page

Title: PTM3 Model 97745 RF DVT Report

					1
	Differentiation		dBm max and differentiate -109 dBm and -106 dBm across all MICS channels	240	
RF-8 (mode 1)	Tel M Tx output Power	EE286	-16.75 ≤ Tx Power ≤ -11.25 dBm	200	PASS
RF-8 (mode 1)	Tel M Tx Adjacent Channel Power Ratio	EE291	ACPR ≤ -34 dBc	200	PASS
RF-8 (mode 1)	Tel M Tx Alternate Channel Power Ratio	EE293	AltCPR ≤ -40 dBc	200	PASS
RF-9 (mode 1)	Tel M Transmitter Error Vector Magnitude	EE388	EVM ≤ 8.4%	200	PASS
RF-9 (mode 1)	Tel M Transmitter Frequency Stability	EE284 EE285	Freq Stability ≤ +/- 12 ppm synthesizer shall tune in increments of 300 kHz from 402.15 MHz to 404.85 MHz	200 200	PASS
RF-10	Active Tel M Antenna Gain	EE308	Antenna gain ≥ -8.0 dBi	35	PASS
RF-11	Tel M Antenna Return Loss	EE309 EE310	Nominal 50 Ohm impedance Return loss ≤ -6 dB	35 35	PASS
RF-12	Active Bluetooth Antenna Efficiency	EE386	Radiation efficiency ≥ -10 dB	35	PASS
RF-13	Bluetooth Antenna Return Loss	EE316	Return loss ≤ -6 dB	35	PASS
				r	
RF-14	Bluetooth Rx Sensitivity (GFSK)	EE387	Rx Sensitivity ≤ -80 dBm	100	PASS
RF-15	Bluetooth Standard Qualification	EE241	Obtain Bluetooth 2.0 certification	1	PASS
RF-16	Tel M I/O	EE270 EE271 EE272 EE273 EE274 EE275 EE276 EE277 EE278 EE279 EE280	Meet the EE requirements listed	None	PASS

Confidential

2.0

NDHF1405-128215

7 of 75

Title: PTM3 Model 97745 RF DVT Report

	EE281		
	EE282		
	EE283		

2 SCOPE

This document describes the Electrical Design Verification Test Report for the radio frequency (RF) aspects of the PTM3, Model 97745. All testing performed was to verify the radio performance requirements for the long distance telemetry scheme used by the PTM3, Model 97745. The Bluetooth radio, operating in the ISM band, is used to communicate between the PTM3, Model 97745 and the Intellis ENS (External Neurostimulator). In the scope of telemetry, the PTM3, Model 97745, acts as the patient therapy manager for the Intellis ENS.

3 PURPOSE / OBJECTIVES

The purpose of this document is to provide test results for applicable electrical design requirements (long distance telemetry) for the Patient Therapy Manager (PTM3), Model 97745. The PTM3, Model 97745, electronics were evaluated against these requirements using the test plan described in this document.

4 BACKGROUND

4.1 PRODUCT

The Patient Therapy Manager (PTM) is described in NDHF1405-110160 PTM Product Specification. A summary of the description is provided here for reference.

PTM3 is a handheld, battery operated, microprocessor-based programmer designed for use by clinicians and patients to provide additional control of medical therapy. Control of the therapy includes the ability to administer a predetermined quantity of boluses, permit management of stimulation, or view and acknowledge medical alarms / alerts. PTM3 Model 97745 will be used in the Intellis Test Screener.

PTM3 Model 97745 components include: a Bluetooth Module, a 2.8" display and capacitive touch panel, two AA alkaline or a Li-ion rechargeable battery pack, LED indicator lights, a system connector port, and three mechanical buttons as well as Application Specific Software.

PTM3 will use Bluetooth to communicate with the Intellis ENS.

A representative diagram of PTM3, model 97745, communication with medical devices and rechargers is represented in Figure 1.

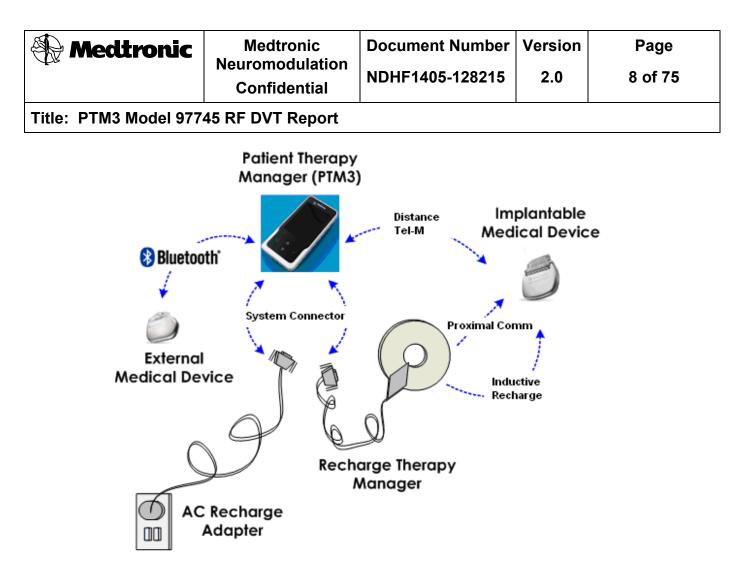


Figure 1 - PTM3, model 97745, System Illustration

5 APPLICABLE DOCUMENTS

Table 2: Table of Applicable Documents

Document Number	Version	Description
NDHF1405-112546	3.0	PTM3 Model 3537 and 97745 RF DVT Plan
NDHF1405-110160	8.0	PTM3 Product Specification
NDHF1405-112073	5.0	PTM3 Electrical Specification
M951878A001	В	Electrical Assembly, Intellis
A17245	L	Telemetry M RF Module Requirements Specification
NDHF1405-118064	4.0	PTM3 Electrical DFMEA
NDHF1405-121834	2.0	xTM Telemetry M Test Environment Verification Report
QMS1795	11.0	Neuromodulation Global Glossary
QMS1850	4.0	TLP Statistics, Monitoring, and Analysis
NDHF1205-120175	3.0	NGCP CTM2, PTM3, and RTM Supplier Manufacturing Quality Plan

A Medtronic

Document Number	Version	
NDHF1405-128215	2.0	

Document Number	Version	Description
PCP1874	8.0	Design Verification Procedure
NDHF1405-122707	2.0	xTM Telemetry M Test Sample Justification
PCPWI1907 8.0 Electrical Design and Design Verification		
NDHF1405-128216	3.0	Supporting Data for PTM3 Model 97745 RF DVT Report (NDHF1405-128215)

6 ACCEPTANCE STRATEGY

The purpose of this document and the design verification test (DVT) evaluation is to ensure the RF performance meets the requirements outlined in the electrical specifications. Acceptance criteria will be meeting the electrical requirements with 90% confidence/90% reliability. Any deviations or exceptions from the requirements or test plan procedures will be published in the DVT report with supporting rationale. Test vectors (environmental variables) will be across operating temperature range, across operating voltage range, and also across frequency channels.

7 SAMPLE SIZE JUSTIFICATION

An appropriate DUT sample size to obtain \ge 30 variables data points will be used to demonstrate specification compliance with a 90/90 confidence/reliability. The samples to be analyzed will be the actual parametric performance measurements per each requirement (i.e. power at which Rx sensitivity is achieved, output Tx power, etc.). Part to part variation is minimized by virtue of 100% trim and calibration at manufacturing. Observed Cpk values will be analyzed in the DVT report to demonstrate 90/90 confidence reliability. Historical data and analysis contained in NDHF1405-122707 supports the sample size based off measured performance across environmental conditions rather than device to device variation.

For RF-15 Bluetooth Standard Qualification, a minimum sample size of 1 DUT is the requirement per Bluetooth SIG qualification procedures. Capability analysis does not apply to this requirement and test as this qualification effort is controlled and judged solely by the Bluetooth SIG.

8 ACRONYMS

All acronyms used within this document are defined here.

Table 3: Table of Acronym Definitions

Acronym	Description	Definition
ACPR		Adjacent Channel Power ratio
ADC		Analog to Digital Converter
AltCP		Alternate Channel Power
AltCPR		Alternate Channel Power ratio
AM		Amplitude Modulation
BPSK	Type of digital modulation scheme	Binary Phase Shift Key
CL		Confidence Level
CTM		Clinician Telemetry Module
CW	Unmodulated RF signal	Continuous Wave
DL		downlink
DUT		Device Under Test
DVT		Design Verification Test

Medtronic Neuromodulation

Confidential

Document Number	Version
NDHF1405-128215	2.0

Page

10 of 75

Title: PTM3 Model 97745 RF DVT Report

ENS	External Neurostimulator	External Neurostimulator
EIRP	Antenna parameter	Effective Isotropic Radiated Power
EVM	Metric of the transmitter	Error Vector Magnitude
F2R1	Version of Tel M module	Fracture 2 ROM 1
F2R1	Version of Tel M module used in DVT build	Fracture 2 ROM 2
FM		Frequency Modulation
GPIB	Common interface between Labview software and test equipment	General Purpose Interface Bus
IMR		Intermodulation Rejection
LSB		Least Significant Bit
ISS	InterStim Test Screener	Interstim Test Screener
MICS	402-405 MHz frequency band	Medical Implant Communication
		Services (402-405 MHz)
NGCP		Next Generation Clinician Programmer
OAB	Over-Active Bladder therapy	Over-Active Bladder therapy
PCB		Printed Circuit Board
PER	Metric used to assess receiver performance	Packet Error Rate
P _{inc}		Power incident at DUT
PTM3		Patient Therapy Manager
RF		Radio Frequency
RFM	Telemetry M module that resides on PCB	RF Module
RMS	Power measurement	Root Mean Square
RSSI		Received Signal Strength Indication
Rx		Receive
Rx _{sens}		Receiver sensitivity
TRP	Antenna parameter	Total Radiated Power
Тх	· · · · ·	Transmit
UL		uplink
USB	Common interface between	Universal Serial Bus
	computer and test equipment	
WU _{sens}		Wakeup sensitivity

9 TEST PROCEDURE

9.1 SAMPLE CONFIGURATION

The devices to be tested will be built per controlled process, including having RF trims performed after being populated on the PTM3 printed circuit board (PCB). The units will be tested at the PCB level for most tests. This is implemented so that test points can be accessed for testing. Testing at the PCB level for conducted testing is acceptable since parametric shifts will not be experienced, due to the tests being conducted rather than radiated. The exception to this configuration is that all antenna testing will be performed in the final assembly form. This is due to the antenna tests being sensitive to the parasitic loading of the entire assembly.

Document Number	Version	
NDHF1405-128215	2.0	

Page

11 of 75

Title: PTM3 Model 97745 RF DVT Report

9.2 TEST EQUIPMENT

Manufacturer	Model	Asset #	Calibration Due	Test Station
Agilent	E4438C	157633	15Oct2012	Rx/Tx 1
Agilent	E4438C	152061	13Oct2012	Rx/Tx 1
Agilent	E4400B	ES036522	17Oct2012	Rx/Tx 1
Agilent	E3631A	ES048744	17Sep2012	Rx/Tx 1
Sigma Systems	Temp Chamber	157548	04Apr2013	Rx/Tx 1
Agilent	N9020A MXA	157553	015Nov2012	Rx/Tx 1
Agilent	E4438C	157632	13Oct2012	Rx/Tx 2
Agilent	E4438C	152060	13Oct2012	Rx/Tx 2
Agilent	E8663D	157631	23Apr2013	Rx/Tx 2
Keithley	2400	157556	20Feb2013	Rx/Tx 2
Sigma Systems	Temp Chamber	157637	02May2013	Rx/Tx 2
Agilent	N9020A MXA	157553	15Nov2012	Rx/Tx 2
Agilent	E4438C	157750	12Oct2012	SPUR1
Agilent	E8664A	152057	10Oct2012	SPUR1
Agilent	E3631A	124550	07Mar2013	SPUR1
JFW	50SA-203	ES049089	N/A	SPUR1
Agilent	E4438C	155953	24Oct2012	SPUR2
Agilent	E8663D	157541	10Dec2012	SPUR2
Agilent	E3631A	ES048745	11Sep2012	SPUR2
JFW	50SA-203	ES043742	N/A	SPUR2

9.3 REQUIREMENTS

All Rx tests are independent and therefore are not required to be run in a specific order, however, for optimal time efficiency, Rx tests will be run in a specific order. With the exception of Rx spurious response, Rx sensitivity will be

run, then subsequent interference tests with the same input parameters (i.e. channel, temp, voltage, etc.) will be run afterwards. For Rx tests, Rx attenuation will be 17 dB. All Tx tests are independent and therefore do not need to be run in a specific order and there is no time efficiency to be gained from special sequencing.

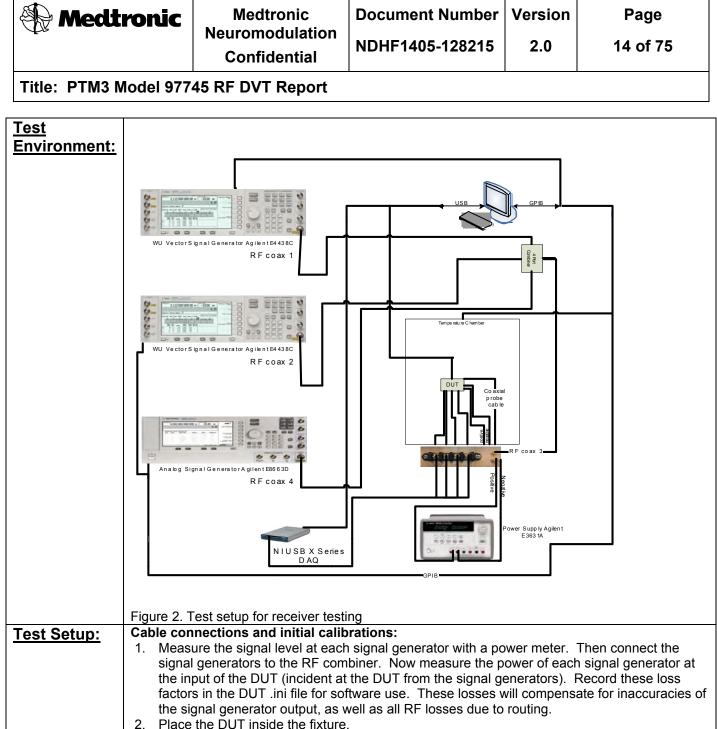
Table 4: List of Tests for PTM3 RF Design Verification Testing

Test Number	PTM Instrument Testing	Minimum Test Samples
	Tel-M Receiver Testing	
RF-1.	Receiver Sensitivity	3 DUTs
RF-2.	Receiver Intermodulation Rejection	3 DUTs
RF-3.	Receiver Adjacent Channel	3 DUTs
RF-4.	Receiver Alternate Channel Rejection	3 DUTs
RF-5.	Receiver AM Rejection	3 DUTs
RF-6.	External Spurious Response Rejection (Single Tone, Unmodulated)	3 DUTs
RF-7.	Rx RSSI Linearity and differentiation	3 DUTs
	Tel-M Transmitter Testing	
RF-8.	Transmitter Output Power, Transmitter Adjacent Channel Power Ratio, Transmitter Alternate Channel Power Ratio	3 DUTs
RF-9.	Transmitter Error Vector Magnitude & Transmitter Frequency Stability	3 DUTs
	Antenna Testing	
RF-10.	Active Tel-M Antenna Gain	7 DUTs
RF-11.	Tel-M Antenna Return Loss	7 DUTs
RF-12.	Active Bluetooth Antenna Efficiency	7 DUTs
RF-13.	Bluetooth Antenna Return Loss	7 DUTs
	Bluetooth Testing	
RF-14.	Bluetooth Rx Sensitivity (GFSK)	3 DUTs
RF-15.	Bluetooth Standard Qualification	1 DUTs
	Tel M I/O	
RF-16.	Tel M I/O	None, Datasheet inspection

9.4 REQUIREMENTS, ACCEPTANCE STRATEGY & RESULTS (REPORT ONLY)

Testing was performed on the dates listed in the table below. There were no deviations to the test protocol.

Tester	Date(s) Tested
Rx1	02Jul2012, 25Jun2012
Rx2	06Jul2012, 02Jul2012, 25Jun2012, 20Jun2012
Tx1	15Jun2012, 13Jun2012, 12Jun2012, 11Jun2012
Tx2	12Jun2012
Spur1	08Jun2012, 14Jun2012, 15Jun2012
Spur2	08Jun2012, 11Jun2012, 14Jun2012, 15Jun2012


Ę	Medtronic	Medtronic Neuromodulation Confidential	Document Number NDHF1405-128215	Version 2.0	Page 13 of 75
ר	Title: PTM3 Model 97745 RF DVT Report				

Prior to beginning DVT testing:

- Determine the cable loss of all RF coax cables that will be used in the test setup. (Appendix A: Measurement of RF path loss through cables)
- 2. Build DVT Vector files for Rx test suite, Rx spurious test suite, and Tx test suite.

9.4.1 RF-1: RECEIVER SENSITIVITY

<u>Requirement</u>	EETD41 Tel-M Receiver Sensitivity_ Verifies: EE296 The Tel M Receiver shall have a minimum Mode 1 sensitivity of -89 dBm EE305 The Tel-M Receiver shall have effective over the air maximum Rx power >= -22dBm with Rx attenuation setting.
Test Description	This test is automated in DVT. Rx attenuation = 17 dB. The antenna loss makes up the remainder of the needed loss.
	The receiver sensitivity test measures how low in power a Tel M signal can be received by the DUT receiver and achieve a packet error rate (PER) \leq 1%. The test is conducted in a shielded temp chamber that provides an isolated environment from external interfering signals (e.g., WiFi, Cell phone, etc.). The DUT is powered via an external power supply such that the temperature and power supply can be variable parameters in the test.
	A vector signal generator is used to play back arbitrary waveforms consisting of valid framed Tel M data. After a specified number of packets, the number of received packets and packets with Reed Solomon errors are counted. From this, the PER is calculated. The calculation is:
	PER(%) = [(packets sent – packets received) + packet errors] / (packets sent) * 100 In this test, the interfering signal generators are not used.
Sample size:	6 DUTs
Acceptance Criteria	An acceptance criterion is based on successful completion of tests within specified range of error or meeting the requirements set forth.
<u>Test</u> Objective:	Verify device meets specified requirements.

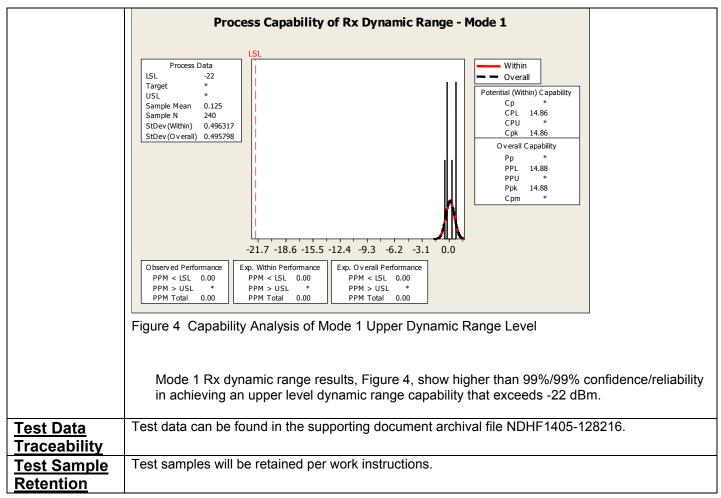
- Place the DUT inside the fixture.
 Place the fixture inside temperature chamber
- 4. Connect the measured cable between the DUT and RF Combiner (RF coax 3).
- 5. Connect the power supply to the DUT fixture.
- 6. Connect up DAQ to Tel M test bus.
 - 7. Connect GPIB and USB connections to interface with testing software
- I. Initial Setup

Test

- A. Setup equipment as shown in Figure 2
 - A. Open and run "DVT Main Menu.vi" file
 - B. Login with User Name and Password

Medtronic Neuromodulation

Confidential


Document Number	Version	
NDHF1405-128215	2.0	

	C. Select "Run DVT" button				
	D. When prompted, select "PTM DVT Rx Suite.dvt" script.				
	E. Select "Start" button				
	F. When prompted, fill in "UUT Serial Number" field and "Bench Name" field				
	appropriately.				
	G. Select "OK" button.				
	H. Confirm that the tests have started as expected.				
<u>Test Results:</u>	All data samples PASS receiver sensitivity requirements.				
<u>Capability</u>	Process Capability of RX Sensitivity Channel Level - Mode 1				
Analysis:					
	USL				
	Process Data Within				
	LSL * Target *				
	USL -89 I				
	Sample Mean -98.9104 Cp * Sample N 222 CPL *				
	SDev(Wthin) 0.531954				
	StD ev (0 verall) 0.531353				
	Overall Capability				
	PPL *				
	PPU 6.22				
	Ppk 6.22 Cpm *				
	-99.0 -97.5 -96.0 -94.5 -93.0 -91.5 -90.0				
	Observed Performance Exp. Within Performance Exp. Overall Performance				
	PPM < LSL *				
	PPM > USL 0.00 PPM > USL 0.00 PPM > USL 0.00 PPM Total 0.00 PPM Total 0.00 PPM Total 0.00				
	Figure 3 Capability Analysis of Receiver Sensitivity				
	Receiver sensitivity results in Figure 3 show higher than 99%/99% confidence/reliability in the				
	ability of the Tel-M receiver to have a minimum Mode 1 sensitivity of -89 dBm.				

Document Number	Version
NDHF1405-128215	2.0

Title: PTM3 Model 97745 RF DVT Report

	N	Mode 1		
DUT channel	Temperature (C)	Battery voltage (V)		
1 (402.15 MHz)	9	2.3		
	9	5.25		
	43	2.3		
	43	5.25		
2 (402.45 MHz)	9.	2.3		
	9	5.25		
	43	2.3		
	43	5.25		
3 (402.75 MHz)	9	2.3		

Medtronic			
Neuromodulation			
Confidential			

Document Number	Version	
NDHF1405-128215	2.0	

Page

17 of 75

		1
	9	5.25
	43	2.3
	43	5.25
4 (403.05 MHz)	9	2.3
	9	5.25
	43	2.3
	43	5.25
5 (403.35 MHz)	9	2.3
	9	5.25
	43	2.3
	43	5.25
6 (403.65 MHz)	9	2.3
	9	5.25
	43	2.3
	43	5.25
7 (403.95 MHz)	9	2.3
	9	5.25
	43	2.3
	43	5.25
8 (404.25 MHz)	9	2.3
	9	5.25
	43	2.3
	43	5.25
9 (404.55 MHz)	9	2.3
	9	5.25
	43	2.3
	43	5.25
10 (404.85 MHz)	9	2.3
	9	5.25
	43	2.3
	43	5.25

9.4.2 RF-2: RECEIVER INTERMODULATION REJECTION

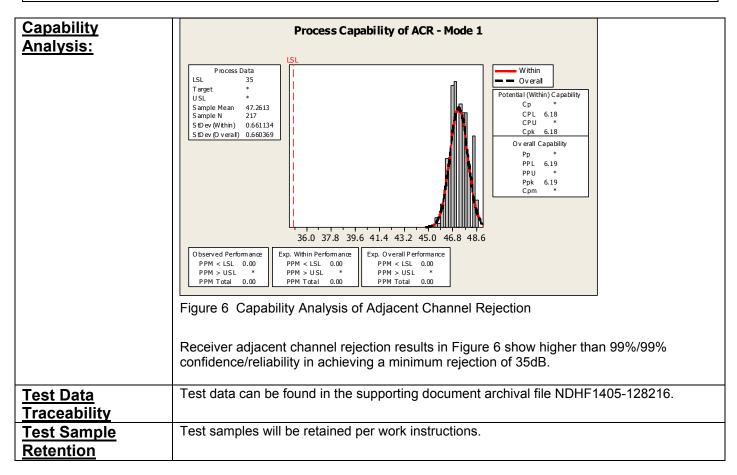
T T
EETD42 Tel-M Receiver Intermodulation Rejection
Verifies:
EE298 The Tel-M Receiver shall have minimum IM rejection of 47dB with interferers at 1.5 MHz and 3.0 MHz offset from desired signal.
This test is automated in DVT.
Rx attenuation = 17 dB.
The intermodulation rejection test measures the ability of the receiver to prevent two specific interfering signal inputs from causing degradation of reception of the desired signal. The test method is loosely based on Industry standard: TIA/EIA 603-B with deviations as required for differences due to operation in the MICS band.
The test setup is the same as shown in Figure 2. The desired signal is provided by a vector signal generator playing back an appropriate arbitrary waveform consisting of properly formatted Tel M frames of data modulated appropriately. The first interferer, programmed on one signal generator, is five channel spacings away (1.5 MHz) from the desired signal and is an unmodulated CW mode signal. The second interfering signal, programmed on a vector signal generator, is ten channel spacings away (3.0 MHz) from the desired signal and will have BPSK modulation (58 kbps for mode 1, 185 kbps for mode 3; alpha = 0.35, and PN23 sequence as data source).
The performance measurement will be based on measuring PER degradation as the power of the interferers is increased. After a specified number of packets, the number of received packets and packets with Reed Solomon errors are counted. From this, the PER is calculated.
The calculation for PER is:
PER(%) = [(packets sent – packets received) + packet errors] / (packets sent) * 100 6 DUTs
An acceptance criterion is based on successful completion of tests within specified range of error or meeting the requirements set forth.
Verify device meets specified requirements.
This test is part of the receiver suite of tests. See test environment in section 9.4.1.
This test is part of the receiver suite of tests. See test setup in 9.4.1.
 Initial setup: Setup equipment as shown in Figure 2 II. Labview: A. Open and run "DVT Main Menu.vi" file B. Login with User Name and Password

Title: PTM3 M		Medtronic Neuromodulation Confidential 45 RF DVT Report	Document Number NDHF1405-128215	Version 2.0	Page 19 of 75
<u>Test Results:</u> Capability Analysis:	All data si Proces LSL Target USL Sample Mear Satbev (Wthin StDev (O vera Observed Pe PPM < LSL PPM < LSL PPM > US PPM Total Figure 5 Receiver	. Select "Start" button . When prompted, fill in "to ppropriately. . Select "OK" button. . Confirm that the tests have amples PASS intermodulat Process Capabilit (s Data 47 * * * * * * * * * * * * *	"PTM_DVT_Rx_Suite.dvt" JUT Serial Number" field a ave started as expected. tion rejection requirements ty of IMRej - Mode 1	ithin /eral (Within)Capability p * PL 3.95 PU * pk 3.95 rall Capability p * PL 4.03 PU * pk 4.03 pm *	
<u>Test Data</u> <u>Traceability</u> <u>Test Sample</u> <u>Retention</u>		can be found in the suppo ples will be retained per wo	rting document archival file ork instructions.	e NDHF1405-	128216.

9.4.3 RF-3: RECEIVER ADJACENT CHANNEL REJECTION

Requirements	EETD43 Tel-M Receiver Adjacent Channel Rejection
	EE299 The Tel-M Receiver shall have minimum adjacent channel rejection of 35dB at 100 kHz offset.

Form MEDN-0066 Version 7.0


Hedtronic

	This test is automated in DV/T			
Test Description	This test is automated in DVT.			
	Rx attenuation = 17 dB.			
	The adjacent channel interference rejection is a measure of the ability of a receiver to			
	reject an interfering signal in the channel adjacent to the desired signal.			
	The test setup is the same as shown in Figure 2. The desired signal is provided by a			
	vector signal generator playing back an appropriate arbitrary waveform consisting of properly formatted Tel M frames of data modulated appropriately. The interferer,			
	programmed on the vector signal generator, is offset 300 kHz from the desired signal for			
	mode 3 and offset 100 kHz from the desired signal for mode 1 (i.e., in the adjacent			
	channel) and will have BPSK modulation (58 kbps for mode 1, 185 kbps for mode 3; alpha			
	= 0.35, and PN23 sequence as data source). Note that the other signal generator is not			
	used in this test.			
	The performance measurement will be based on measuring PER degradation as the power			
	of the interferers is increased. After a specified number of packets, the number of received			
	packets and packets with Reed Solomon errors are counted. From this, the PER is			
	calculated.			
	The calculation for PER is:			
	PER(%) = [(packets sent – packets received) + packet errors] / (packets sent) * 100			
Sample size:	6 DUTs			
Acceptance	An acceptance criterion is based on successful completion of tests within specified range			
Criteria	of error or meeting the requirements set forth.			
Test Objective:	Verify device meets specified requirements.			
Test Environment:	This test is part of the receiver suite of tests. See test environment in section 9.4.1.			
Test Setup:	This test is part of the receiver suite of tests. See test setup in section 9.4.1.			
Test Procedure:	I. Initial setup: Setup equipment as shown in Figure 2			
	II. Labview:			
	A. Open and run "DVT Main Menu.vi" file			
	B. Login with User Name and Password C. Select "Run DVT" button			
	D. When prompted, select "PTM_DVT_Rx_Suite.dvt" script.			
	E. Select "Start" button			
	F. When prompted, fill in "UUT Serial Number" field and "Bench Name" field			
	appropriately.			
	G. Select "OK" button.			
	H. Confirm that the tests have started as expected.			
Test Results:	All data samples PASS adjacent channel rejection requirements.			

Document Number	Version	
NDHF1405-128215	2.0	

Title: PTM3 Model 97745 RF DVT Report

9.4.4 RF-4: RECEIVER ALTERNATE CHANNEL REJECTION

Requirements	EETD44 Tel-M Receiver Alternate Channel Rejection_ Verifies: EE300 The Tel-M Receiver shall have minimum alternate channel rejection of 44dB at 200 kHz offset.
Test Description	This test is automated in DVT.
	Rx attenuation = 17 dB.
	The alternate channel interference rejection is a measure of the ability of a receiver to reject an interfering signal 2 channels away from the desired signal.
	The test setup is the same as shown in Figure 2. The desired signal is provided by a vector signal generator playing back an appropriate arbitrary waveform consisting of properly formatted Tel M frames of data modulated appropriately. The interferer, programmed on the vector signal generator, is 600 kHz for mode 3 and 200 kHz for mode

Confidential

2.0

NDHF1405-128215

22 of 75

Title: PTM3 Model 97745 RF DVT Report

	1 (i.e., in the alternate channel) from the desired signal and will have BPSK modulation (58		
	kbps for mode 1, 185 kbps for mode 3; alpha = 0.35, and PN23 sequence as data source). Note that the other signal generator is not used in this test.		
	The performance measurement will be based on measuring PER degradation as the power of the interferers is increased. After a specified number of packets, the number of received packets and packets with Reed Solomon errors are counted. From this, the PER is calculated.		
	The calculation for PER is:		
	PER(%) = [(packets sent – packets received) + packet errors] / (packets sent) * 100		
Sample size:	6 DUTs		
<u>Acceptance</u> Criteria	An acceptance criterion is based on successful completion of tests within specified range of error or meeting the requirements set forth.		
Test Objective:	Verify device meets specified requirements.		
Test Environment:	This test is part of the receiver suite of tests. See test environment in section 9.4.1.		
Test Setup:	This test is part of the receiver suite of tests. See test setup in section 9.4.1.		
Test Procedure:	 Initial setup: Setup equipment as shown in Figure 2 II. Labview: 		
	A. Open and run "DVT Main Menu.vi" file		
	B. Login with User Name and Password C. Select "Run DVT" button		
	D. When prompted, select "PTM_DVT_Rx_Suite.dvt" script.		
	E. Select "Start" button		
	F. When prompted, fill in "UUT Serial Number" field and "Bench Name" field		
	appropriately. G. Select "OK" button.		
	H. Confirm that the tests have started as expected.		
<u>Test Results:</u>	All data samples PASS alternate channel rejection requirements.		
<u>Capability</u>	Process Capability of AltCR - Mode 1		
<u>Analysis:</u>	ISL		
	Process Data LSL 44 Within		
	Target * USL * Small Man 54 ED56		
	Sample N 216 Subject View CPL 5.32 CPU *		
	StDev (O veral) 0.657526 Overall Overall Capability		
	Pp * PPL 5.33 PPL 5.34		
	PPU * Ppk 5.33 Cpm *		
	44.55 46.20 47.85 49.50 51.15 52.80 54.45 56.10 Observed Performance Exp. Within Performance Exp. Overall Performance Exp. Overall Performance		
	PPM < LSL		
	Figure 7 - Capability Analysis of Alternate Channel Rejection		
	Form MEDN-0066 Version 7.0		

Medtronic	Medtronic	Document Number	Version	Page
40	Neuromodulation	NDHF1405-128215	2.0	00 of 75
	Confidential	NDHF1400-120215	2.0	23 of 75

	Receiver alternate channel rejection results in Figure 7 show higher than 99%/99% confidence/reliability in achieving a minimum rejection of 44 dB.
<u>Test Data</u> Traceability	Test data can be found in the supporting document archival file NDHF1405-128216.
Test Sample Retention	Test samples will be retained per work instructions.

9.4.5 RF-5: RECEIVER AM CHANNEL REJECTION

Requirements	
	EETD56 Tel_M Receiver AM Channel Rejection_
	Verifies:
	EE304 The Tel-M Receiver shall have AM rejection better >= -58dBm for 1.5MHz offset.
Test Description	This test is automated in DVT.
	Rx attenuation = 17 dB.
	The AM rejection is a measure of the ability of a receiver to reject an amplitude modulated interfering signal 1.5 MHz away from the desired signal.
	The test setup is the same as shown in Figure 2. The desired signal is provided by a vector signal generator playing back an appropriate arbitrary waveform consisting of properly formatted Tel M frames of data modulated appropriately. The interferer, programmed on a signal generator, is 1.5 MHz from the desired signal and will have 100% AM modulation at an 8 kHz rate (using sinusoidal modulation). Note that the other signal generator is not used in this test.
	The performance measurement will be based on measuring PER degradation as the power of the interferers is increased. After a specified number of packets, the number of received packets and packets with Reed Solomon errors are counted. From this, the PER is calculated.
	The calculation for PER is:
	PER(%) = [(packets sent – packets received) + packet errors] / (packets sent) * 100
Sample size:	6 DUTs
Acceptance	An acceptance criterion is based on successful completion of tests within specified range
<u>Criteria</u>	of error or meeting the requirements set forth.
Test Objective:	Verify device meets specified requirements.
Test Environment:	This test is part of the receiver suite of tests. See test environment in 9.4.1.
Test Setup:	This test is part of the receiver suite of tests. See test setup in section 9.4.1.
Test Procedure:	I. Initial setup: Setup equipment as shown in Figure 2

Hedtronic

Medtronic Neuromodulation

Confidential

2.0

NDHF1405-128215

Title: PTM3 Model 97745 RF DVT Report

	 II. Labview: A. Open and run "DVT Main Menu.vi" file B. Login with User Name and Password C. Select "Run DVT" button D. When prompted, select "PTM_DVT_Rx_Suite.dvt" script. E. Select "Start" button F. When prompted, fill in "UUT Serial Number" field and "Bench Name" field appropriately. G. Select "OK" button. 		
Test Desults	H. Confirm that the tests have started as expected.		
<u>Test Results:</u> Capability	All data samples PASS AM channel rejection requirements. Process Capability of AM Rej - Mode 1		
<u>Analysis:</u>	Process Data USL Target * 		
<u>Test Data</u> Traceability	Test data can be found in the supporting document archival file NDHF1405-128216.		
Test Sample Retention	Test samples will be retained per work instructions.		

9.4.6 RF-6 : EXTERNAL SPURIOUS RESPONSE REJECTION (SINGLE TONE, UNMODULATED)

Requirements EETD45 Tel-M External Spurious Response Rejection (Single Tone, Unmodulated)
--	---

Medtronic Neuromodulation

Confidential

2.0

NDHF1405-128215

25 of 75

	Verifies:
	vennes.
	EE303 The Tel-M Receiver shall have outband single tone spurious response >= - 42dBm for CW interferers ranging from 500kHz to 3GHz with the following exceptions:
	For Mode 1: External spurious response rejection shall be >= -52 dBm for 250 kHz to 350 kHz offset, >= -50.0 dBm for 350 kHz to 450 kHz offset, >= -49.5 dBm for 450 kHz to 550 kHz offset, >= -48 dBm for 550 kHz to 650 kHz offset, >= -46.5 dBm for 650 kHz to 750 kHz offset, -45.5 dBm for 750 kHz to 850 kHz offset, >= -45 dBm for 850 kHz to 950 kHz offset, >= -44 dBm for 950 kHz to 1050 kHz offset, >= -43.5 dBm for 1050 to 1150 kHz offset, >= -43 dBm for 1150 kHz to 1250 kHz offset, >= -42.5 dBm for 1250 to 1350 kHz offset.
Test Description	This test is automated in DVT.
	Rx attenuation = 17 dB.
	The external spurious response rejection (single tone, unmodulated) verifies the ability of the receiver to prevent unwanted signals over a broad range of frequencies (500 kHz to 3 GHz) from causing degradation to the reception of the desired signal.
	Coarse interferer: 300 kHz bandwidth FM signal
	500 kHz 3 GHz
	Fine interferer: 25 kHz spaced single tones
	Figure 9. Diagram of interference strategy for single tone spurious harmonics test.
	The desired signal is provided by a vector signal generator playing back an appropriate arbitrary waveform consisting of properly formatted Tel M frames of data modulated appropriately. An initial interferer, a 300 kHz bandwidth FM signal, is used to perform a coarse search of the broad frequency range (Figure 9). Each region that does not meet the more stringent coarse search specification must be investigated more thoroughly to fully understand the issue. To do this, a single tone interferer is swept every 30 kHz within the frequency band identified as problematic in the coarse search. Since this test is not expected to perform differently over different modes, the coarse search will be performed with the mode 3 to take advantage of the faster data rate. The faster data rate will enable the test to be run 3 times faster than in mode 1. The fine search will be performed in mode 1 and mode 3.
	The performance measurement will be based on measuring PER degradation as the power of the interferers is increased. After a specified number of packets, the number of received packets and packets with Reed Solomon errors are counted. From this, the PER is calculated.

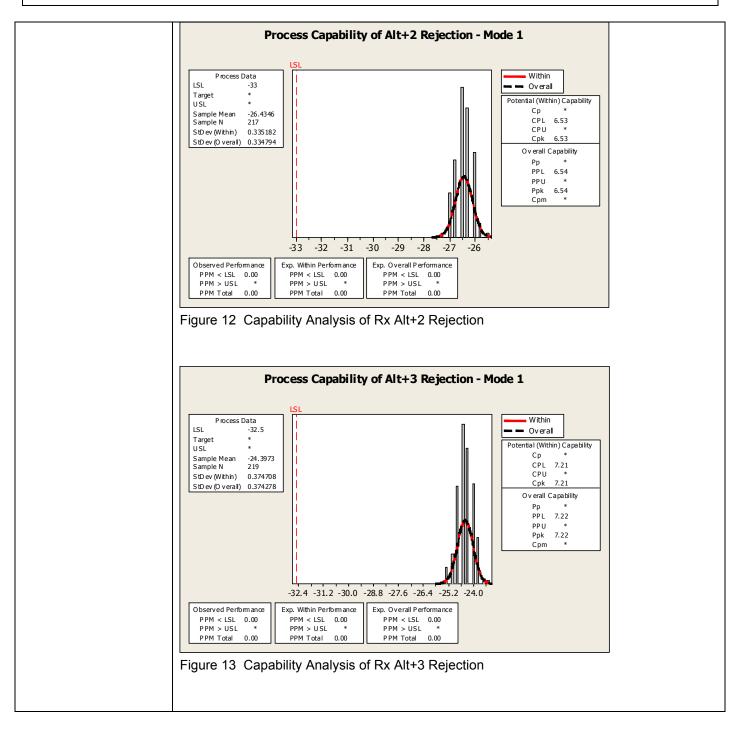
	ment Number Version 1405-128215 2.0	Page 26 of 75
--	--	------------------

	The calculation for PER is:
	PER(%) = [(packets sent – packets received) + packet errors] / (packets sent) * 100
Sample size:	4 DUTs
Acceptance	An acceptance criterion is based on successful completion of tests within specified range
Criteria	of error or meeting the requirements set forth.
Test Objective:	Verify device meets specified requirements.
Test Environment:	
	WU Vector Signal Generator Agilent E44 38C RF coa x 1
	Coaxial probe cable
	RFcoax 3
	Analog Signal Generator Agilent #8663D
	Power Supply Agilent E 3631A
	NI USB X Series
	Figure 10 Test setup for Rx spurious response rejection testing
Test Setup:	See test setup in section 9.4.1.
Test Procedure:	Sweeping with a Coarse Interferer
	I. Initial setup: Setup equipment as shown in Figure 2
	II. Labview: A. Open and run "DVT Main Menu.vi" file
	B. Login with User Name and Password
	C. Select "Run DVT" button
	D. When prompted, select "PTM_DVT_Rx_Spurious_Coarse_Suite.dvt" script.
	 E. Select "Start" button F. When prompted, fill in "UUT Serial Number" field and "Bench Name" field
	F. When prompted, in in OOT Senai Number field and Bench Name field Form MEDN-0066 Version 7.0

Medtronic Neuromodulation

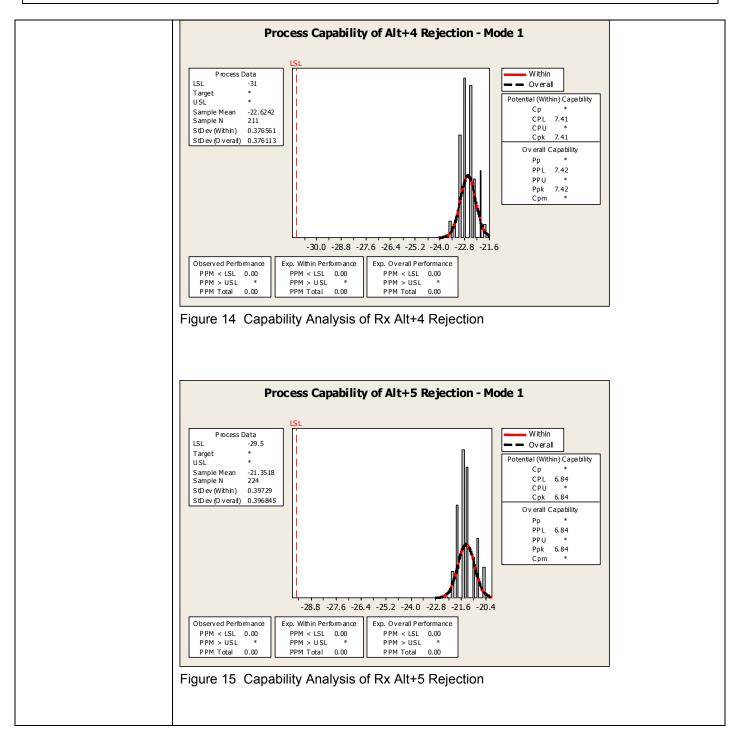
2.0

NDHF1405-128215

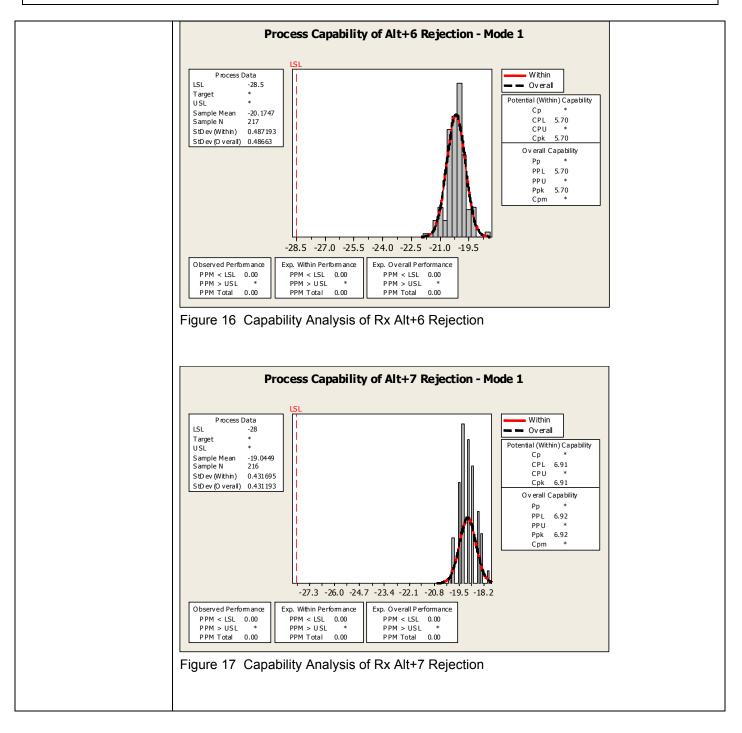

27 of 75

Confidential
Title: PTM3 Model 97745 RF DVT Report

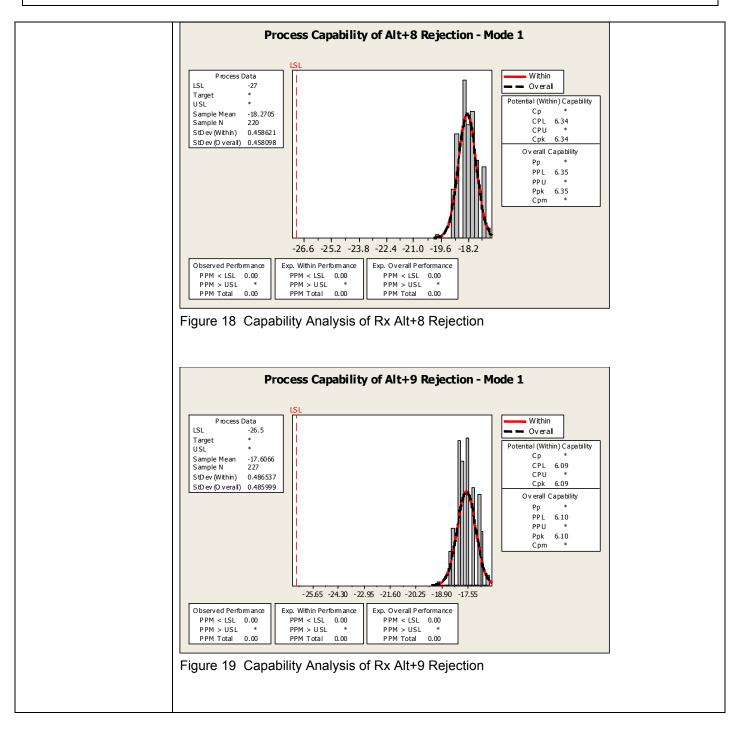
appropriately. G. Select "OK" button. H. Confirm that the tests have started as expected.
Sweeping with a Fine interferer: I. Initial setup: Setup equipment as shown in Figure 2 II. Labview: A. Open and run "DVT Main Menu.vi" file B. Login with User Name and Password C. Select "Run DVT" button D. When prompted, select "PTM_DVT_Rx_Spurious_Fine_Suite.dvt" script. E. Select "Start" button F. When prompted, fill in "UUT Serial Number" field and "Bench Name" field appropriately.
G. Select "OK" button.
Confirm that the tests have started as expected.
All data samples PASS all Rx Spurious rejection requirements.
Process Capability of Alt+1 Rejection - Mode 1Image: 1 arget 1 capability of alt+1 Rejection - Mode 1Image: 1 arget 1 capability of alt+1 Rejection - Mode 1Image: 1 arget 1 capability of alt+1 Rejection - Mode 1Image: 1 arget 1 capability of alt+1 Rejection - Mode 1Image: 1 arget 1 capability of alt+1 Rejection - Mode 1Image: 1 arget 1 capability Analysis of Rx Alt+1 Rejection
_



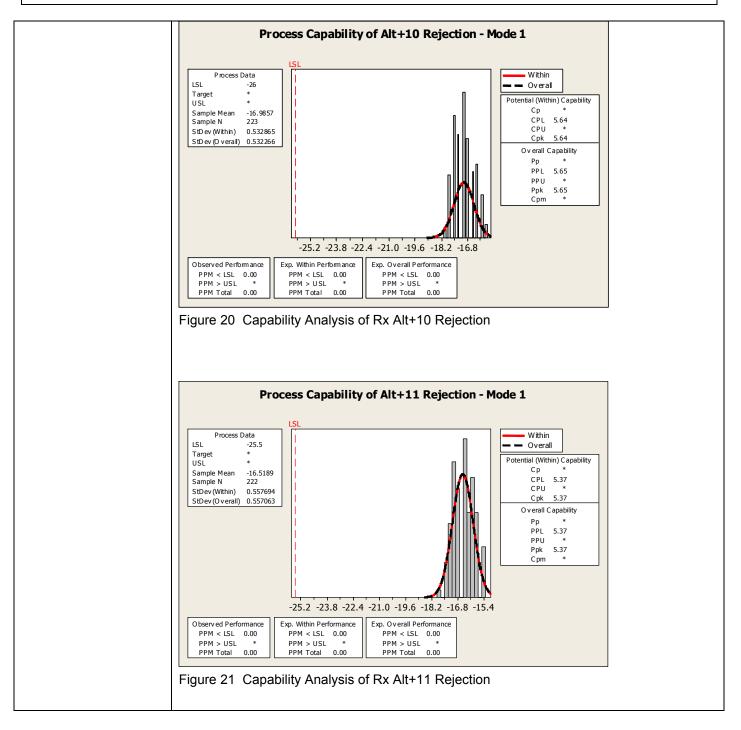
Document Number	Version
NDHF1405-128215	2.0

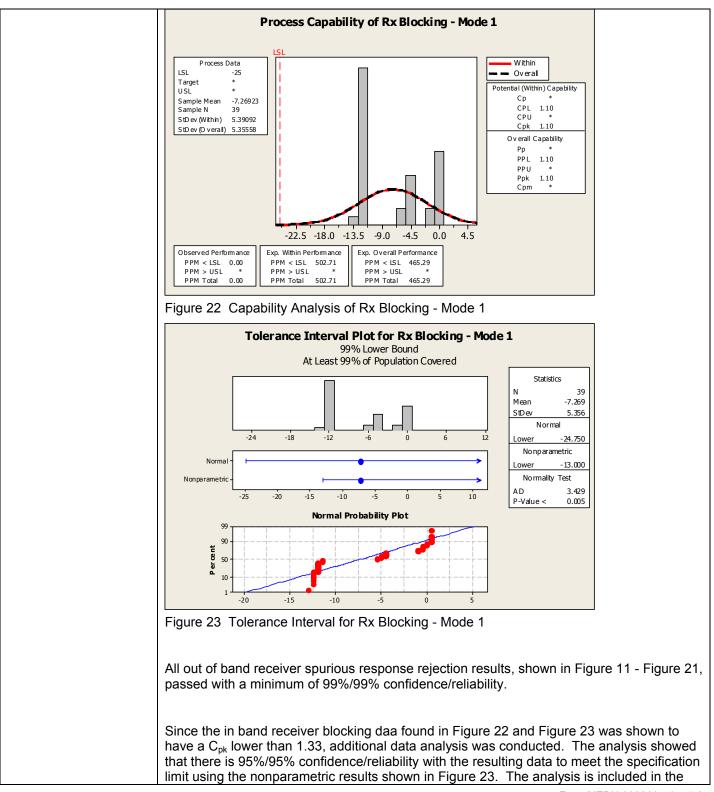


Document Number	Version
NDHF1405-128215	2.0


Document Number	Version
NDHF1405-128215	2.0

Document Number	Version
NDHF1405-128215	2.0


31 of 75


Document Number	Version
NDHF1405-128215	2.0

32 of 75

Document Number	Version
NDHF1405-128215	2.0

Medtronic

34 of 75

Title: PTM3 Model 97745 RF DVT Report

	supporting data.
<u>Test Data</u> Traceability	Test data can be found in the supporting document archival file NDHF1405-128216.
Test Sample Retention	Test samples will be retained per work instructions.

Table 6: Table of Receiver Spurious Response Rejection Tests

	Mode 3, Spurious Coarse		Mode 1, Spurious Fine	
DUT channel	Temperature (C)	Battery voltage (V)	Temperature (C)	Battery voltage (V)
1 (402.15 MHz)	Ambient	3.2	Ambient	3.2
2 (402.45 MHz)	Ambient	3.2	Ambient	3.2
3 (402.75 MHz)	Ambient	3.2	Ambient	3.2
4 (403.05 MHz)	Ambient	3.2	Ambient	3.2
5 (403.35 MHz)	Ambient	3.2	Ambient	3.2
6 (403.65 MHz)	Ambient	3.2	Ambient	3.2
7 (403.95 MHz)	Ambient	3.2	Ambient	3.2
8 (404.25 MHz)	Ambient	3.2	Ambient	3.2
9 (404.55 MHz)	Ambient	3.2	Ambient	3.2
10 (404.85 MHz)	Ambient	3.2	Ambient	3.2

9.4.7 RF-7: RECEIVER RSSI LINEARITY AND DIFFERENTIATION

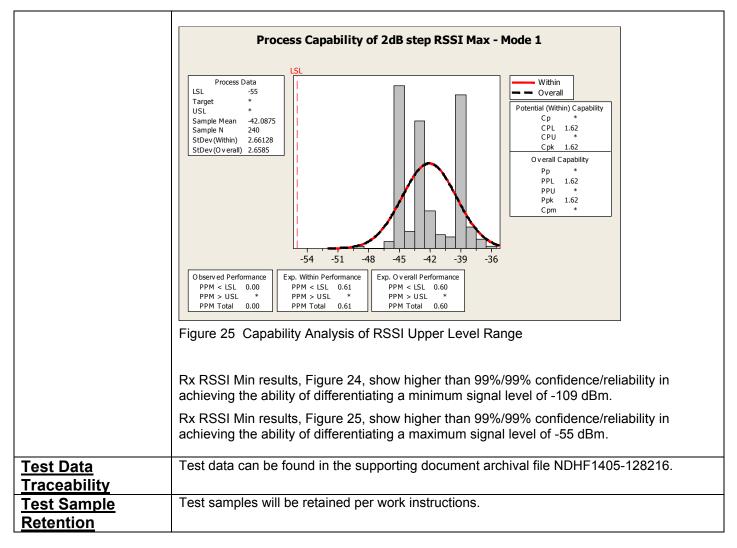
<u>Requirements</u>	EETD46 TeI-M Rx RSSI Linearity and Differentiation_ Verifies: EE306 The TeI-M Receiver shall have a minimum monotonic RSSI range of -109dBm to -55 dBm for Clear Channel Assessment (CCA) (i.e. no Rx attenuation present). EE307 The TeI-M Receiver shall be able to differentiate -109dBm and -106 dBm across all MICS channels for Clear Channel Assessment (CCA) (i.e. no Rx attenuation present).
Test Description	This test is automated in DVT. The RSSI linearity is the ability of the RSSI ADC to report back values in a monotonic fashion from -106 dBm to -55 dBm. The RSSI differentiation is the ability of the RSSI circuitry to distinguish between a signal at -109 dBm on any channel vs. a signal on any of the other ten channels whose power level is -106 dBm. The LSB of the ADC value should be greater than zero in all cases.

Confidential

2.0

NDHF1405-128215

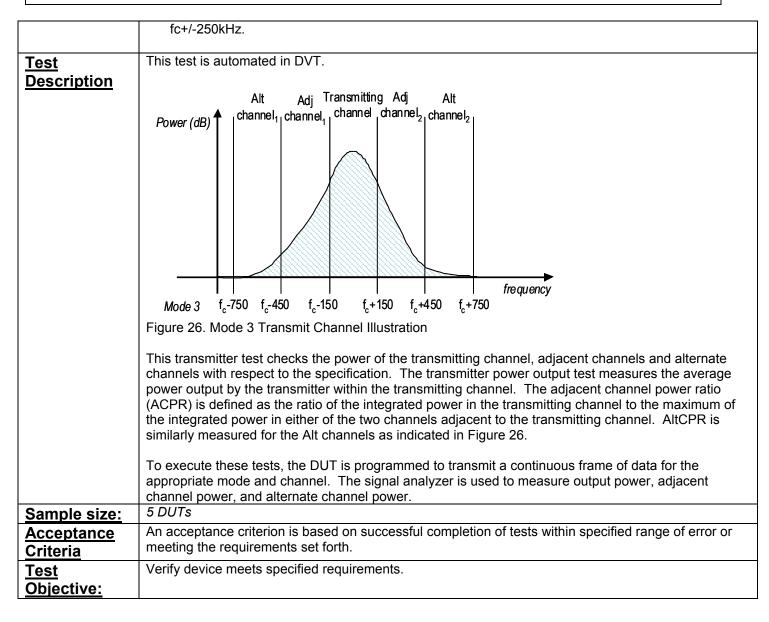
35 of 75


Title: PTM3 Model 97745 RF DVT Report

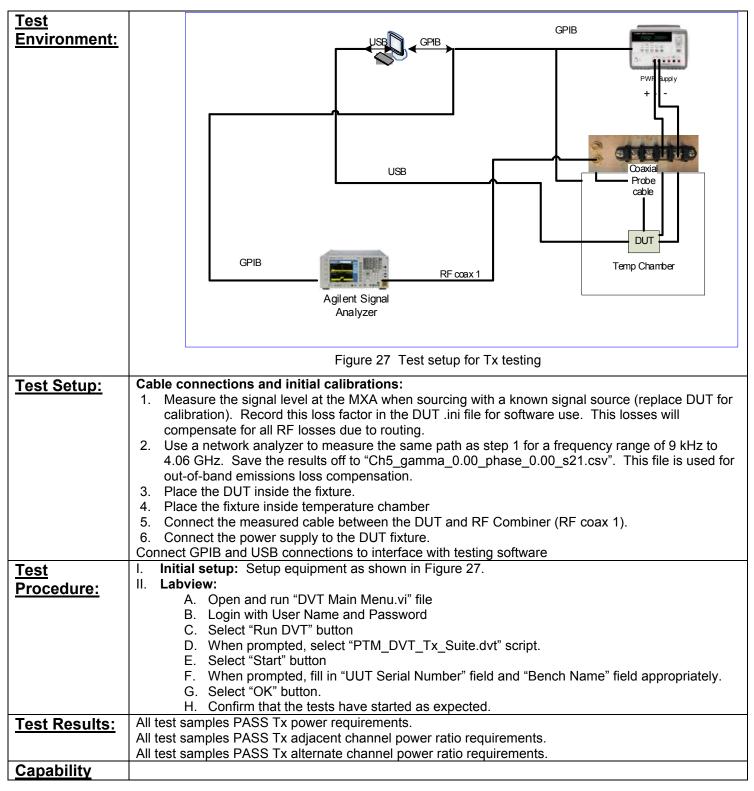
	The test setup is the same as shown in Figure 2. The desired signal is provided by a			
	vector signal generator supplying a CW tone 20 kHz offset from the desired channel			
	frequency (e.g. 402.15 MHz + 20 kHz for channel 1).			
	The performance measurement will be based on the post processing of ADC values at the			
	varying input power levels across channels.			
Sample size:	6 DUTs			
Acceptance	An acceptance criterion is based on successful completion of tests within specified range			
<u>Criteria</u>	of error or meeting the requirements set forth.			
Test Objective:	Verify device meets specified requirements.			
Test Environment:	This test is part of the receiver suite of tests. See test environment in section 9.4.1.			
Test Setup:	This test is part of the receiver suite of tests. See test setup in section 9.4.1.			
Test Procedure:	I. Initial setup: Setup equipment as shown in Figure 27.			
	II. Labview: A. Open and run "DVT Main Menu.vi" file			
	B. Login with User Name and Password			
	C. Select "Run DVT" button			
	D. When prompted, select "PTM_DVT_Tx_Suite.dvt" script.			
	E. Select "Start" button			
	F. When prompted, fill in "UUT Serial Number" field and "Bench Name" field			
	appropriately.			
	G. Select "OK" button.			
Test Results:	I. Confirm that the tests have started as expected. All test samples PASS RSSI range requirements as well as ability to differentiate between			
<u>rest Results.</u>	3 dB steps of incident signal power.			
Capability				
Analysis:	Process Capability of 2dB step RSSI Min - Mode 1			
	USL Process Data			
	LSL * Target *			
	USL -109 Potential (Within) Capability			
	Sample N 240 CPL *			
	StDev (Within) 0.277253 StDev (Overall) 0.276963			
	Overall Capability Pp *			
	PPL *			
	PPU 7.12 Ppk 7.12			
	Cpm *			
	-115 -114 -113 -112 -111 -110 -109			
	Observed Performance Exp. Within Performance Exp. O verall Performance			
	PPM < LSL * PPM < LSL * PPM < LSL *			
	PPM > USL 0.00 PPM > USL 0.00 PPM Total 0.00 PPM Total 0.00			
	Figure 24 Capability Analysis of RSSI Lower Level Range			
L	Form MEDN-0066 Version 7.0			

Document Number	Version
NDHF1405-128215	2.0

Title: PTM3 Model 97745 RF DVT Report

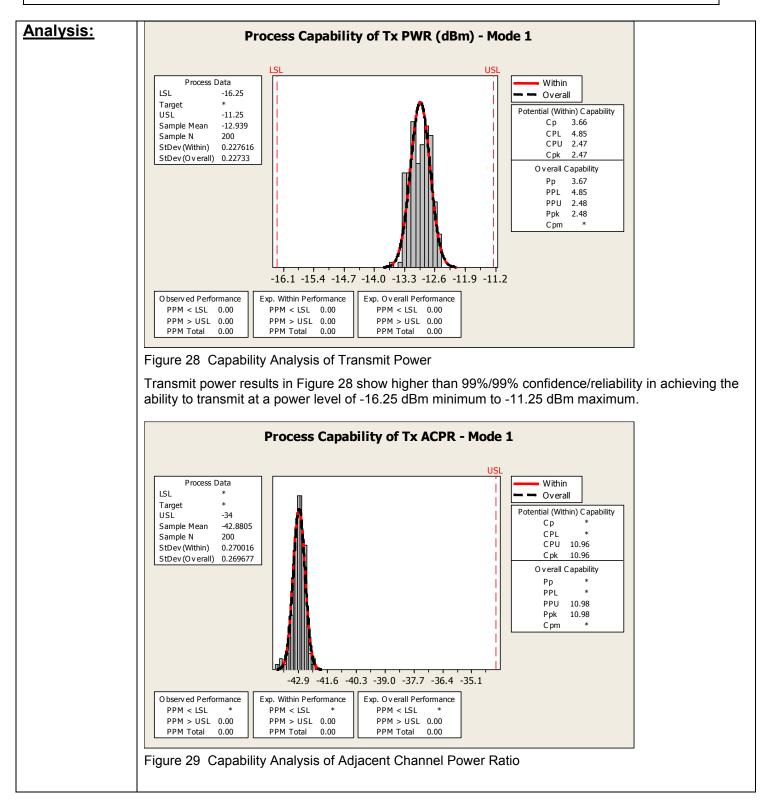

9.4.8 RF-8 TRANSMIT POWER, ADJACENT CHANNEL POWER RATIO, AND ALTERNATE CHANNEL POWER RATIO

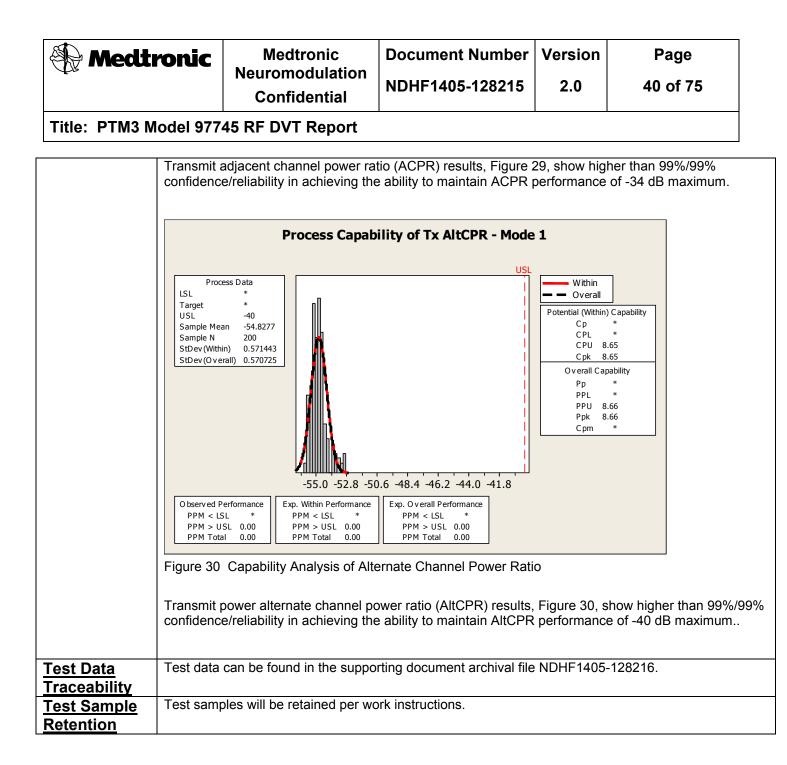
<u>Requirements</u>	EETD47 Tel-M Transmitter Output Power, Adjacent Channel Power Ratio, and Alternate Channel Power Ratio
	Verifies:
	EE286 The Tel-M Transmitter shall have a minimum conducted output power into a 50 ohm load of -16.25dBm and a maximum of -11.25dBm.
	EE291 The Tel-M Transmitter shall have minimum ACPR -34dBc. Measured at fc+/-50kHz to fc+/- 150kHz.
	EE293 The Tel-M Transmitter shall have minimum AltCPR -40 dBc. Measured at fc+/-150kHz to


Hedtronic

Medtronic

37 of 75




Medtronic	Medtronic Neuromodulation Confidential	Document Number NDHF1405-128215	Version 2.0	Page 38 of 75
-----------	--	------------------------------------	----------------	------------------

Document Number	Version
NDHF1405-128215	2.0

	N	Mode 1	
DUT channel	Temperature (C)	Battery voltage (V)	
1 (402.15 MHz)	9	2.3	
	9	5.25	
	43	2.3	
	43	5.25	

Document Number	Version
NDHF1405-128215	2.0

Page

Title: PTM3 Model 97745 RF DVT Report

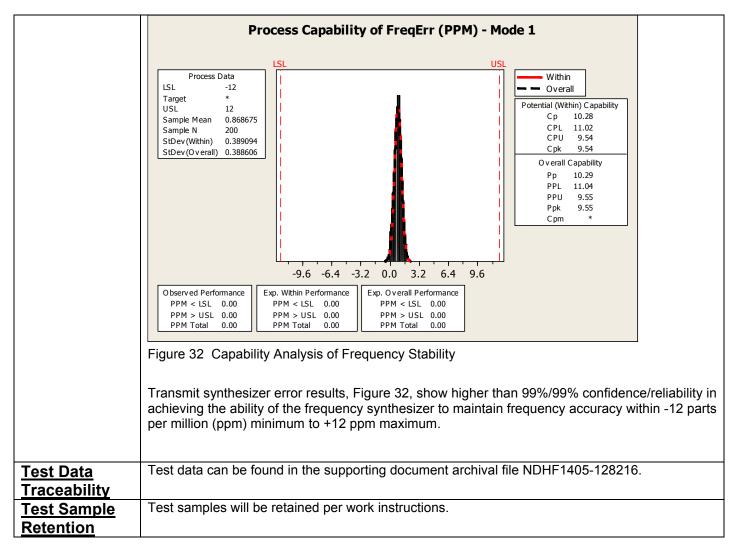
2 (402.45 MHz)	9	2.3
	9	5.25
	43	2.3
	43	5.25
3 (402.75 MHz)	9	2.3
	9	5.25
	43	2.3
	43	5.25
4 (403.05 MHz)	9	2.3
	9	5.25
	43	2.3
	43	5.25
5 (403.35 MHz)	9	2.3
	9	5.25
	43	2.3
	43	5.25
6 (403.65 MHz)	9	2.3
	9	5.25
	43	2.3
	43	5.25
7 (403.95 MHz)	9	2.3
	9	5.25
	43	2.3
	43	5.25
8 (404.25 MHz)	9	2.3
	9	5.25
	43	2.3
	43	5.25
9 (404.55 MHz)	9	2.3
	9	5.25
	43	2.3
	43	5.25

10 (404.85 MHz)	9	2.3
	9	5.25
	43	2.3
	43	5.25

9.4.9 RF-9 TRANSMITTER ERROR VECTOR MAGNITUDE & TRANSMITTER FREQUENCY STABILITY

Requirements	EETD48 Tel-M Transmitter Error Vector Magnitude & Transmitter Frequency Stability
	Verifies:
	EE284 The Tel-M RF synthesizer shall tune in increments of 300 kHz from 402.15 MHz to 404.85 MHz
	EE388 The Tel-M Transmitter in mode 1 shall have EVM <=8.4%.
	EE285 The Tel-M RF synthesizer shall have a minimum frequency stability of 12ppm.
Test	This test is automated in DVT.
Description	This transmitter test checks the error vector magnitude (EVM) of the transmitting signal by demodulating the DUT RF output and comparing the result to an ideal signal. From the demodulation, the frequency error can be measured. This frequency error can then be verified to meet the frequency requirements outlined in EE157.
	To execute these tests, the DUT is programmed to transmit a continuous frame of data for the appropriate mode and channel. The signal analyzer is used to demodulate the transmissions from the DUT and also perform the frequency accuracy measurements.
Sample size:	5 DUTs
Acceptance Criteria	An acceptance criterion is based on successful completion of tests within specified range of error or meeting the requirements set forth.
Test Objective:	Verify device meets specified requirements.
<u>Test</u> Environment:	This test is part of the transmitter suite of tests. See test environment in section 9.4.8.
Test Setup:	This test is part of the transmitter suite of tests. See test setup in section 9.4.8.
<u>Test</u> Procedure:	 Initial setup: Setup equipment as shown in Figure 27. Labview: A. Open and run "DVT Main Menu.vi" file
	 A. Open and run DVT Main Menu.vi file B. Login with User Name and Password C. Select "Run DVT" button D. When prompted, select "PTM_DVT_Tx_Suite.dvt" script. E. Select "Start" button F. When prompted, fill in "UUT Serial Number" field and "Bench Name" field appropriately.

Medtronic
Neuromodulation
Confidential


Document Number	Version	
NDHF1405-128215	2.0	

	G. Select "OK" button.	
	H. Confirm that the tests have started as expected.	
Teet Deeulter		
<u>Test Results:</u>	All data samples PASS minimum EVM requirements.	
	All data samples PASS synthesizer frequency requirements.	
	All data samples PASS the synthesizer tuning resolution requirement, which was demonstrated	
	in the synthesizer frequency stability testing.	
<u>Capability</u>		
Analysis:	Process Capability of EvmRms - Mode 1	
<u></u>	rocess capability of Eviliants Flode I	
	USL	
	Process Data LSL * Within Overall	
	Target *	
	USL 8.4 Potential (Within) Capability Sample Mean 2.14755 Cp *	
	Sample N 200 CPL *	
	StDev (Within) 0.432158	
	StDev (Overall) 0.431616	
	P Overall Capability Pp *	
	PPL *	
	PPU 4.83	
	Ppk 4.83	
	1 2 3 4 5 6 7 8	
	Observed Performance Exp. Within Performance Exp. Overall Performance	
	PPM < LSL * PPM < LSL * PPM < LSL *	
	PPM > USL 0.00 PPM > USL 0.00 PPM > USL 0.00	
	PPM Total 0.00 PPM Total 0.00 PPM Total 0.00	
	Einen 24. One skillte Ansterin of Energy/anter Manualtude	
	Figure 31 Capability Analysis of Error Vector Magnitude	
	Transmit error vector magnitude (EVM) results, Figure 31, show higher than 99%/99%	
	confidence/reliability in achieving the ability to transmit with an EVM of 8.4 % maximum.	

Document Number	Version
NDHF1405-128215	2.0

Title: PTM3 Model 97745 RF DVT Report

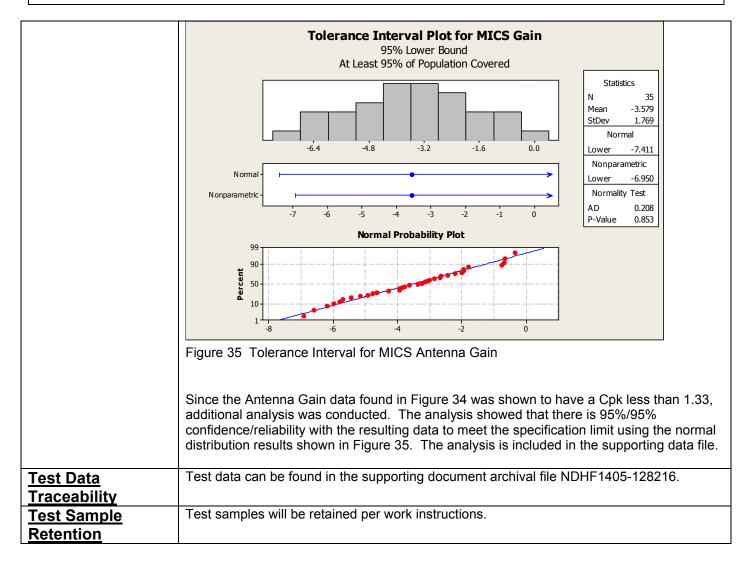
9.4.10 RF-10: ACTIVE TEL-M ANTENNA GAIN

Requirements	EETD50 Active Tel-M Antenna Gain_		
	Verifies:		
	EE308 The PTM3 Tel-M antenna shall have minimum gain of -8.0 dBi in free space.		
Test Description	cription This test is done at Satimo in Atlanta, GA.		
	For this test, a fully functional, form, fit DUT is used to check the antenna performance. The test interface is used to put the devices into a CW transmit mode. The transmitting device is placed inside the calibrated anechoic chamber at Satimo at a specified location. The test antennas are configured to receive the DUT signal. The received signals are collected through Satimo's data collection system that automates the antenna switching and accounts for calibration losses.		

	The resulting measurement provides the EIRP and TRP. The gain and efficiency can be calculated from EIRP and TRP, respectively.		
Sample size:	7 DUTs		
<u>Acceptance</u> <u>Criteria</u>	An acceptance criterion is based on successful completion of tests within specified range of error or meeting the requirements set forth.		
Test Objective:	Verify device meets specified requirements.		
Test Environment:	Figure 33 Zoom in picture of PTM in Star Gate with laser placement		
<u>Test Setup:</u>	Test setup is included in the procedure		
Test Procedure:	I. Calibration		
	A. Set the laser to a location centered within the Satimo antenna Stargate		
	 B. Place the calibration antenna at the laser location C. Shut the chamber door and collect the calibration data 		
	C. Shut the chamber door and collect the calibration data		
	II. Put device in Continuous Transmit mode		
	A. Power up PTM		
	B. Discover device using ActiveX OsirisGUI.		

	C. Run appropriate script for desired transmit channel. III. Device Setup A. Center the device on the laser beam. IV. Measurement A. Close the chamber door B. Measure the EIRP and TRP using Satimo's data collection system		
	 V. Iterations A. Repeat measurements for 403.5 MHz and 404.85 MHz VI. Analysis 		
<u>Test Results:</u> Capability Analysis:	All data samples PASS minimum antenna gain requirements. Process Capability of MICS Gain		
	IstTarget*Sample Mean-3.57914Starey (Within)1.78158Stbev (Overall)1.76853Dev (Overall)1.76853Dev (Overall)1.76853Dev (Overall)1.76853Dev (Overall)Exp. Within Performance PPM < LSL PPM TotalDeserved Performance PPM < LSL PPM TotalExp. Within Performance PPM < LSL 6542.30Process 24Capability Analysis of MICS Antenna Gain		

Document Number Version


2.0

NDHF1405-128215

Page

47 of 75

Title: PTM3 Model 97745 RF DVT Report

Table 8 List of test cases for MICS ac	ctive antenna testing
--	-----------------------

Channel	Mode	Modulation
1	Test	CW
3	Test	CW
5	Test	CW
7	Test	CW
10	Test	CW

9.4.11 RF-11: TEL-M ANTENNA RETURN LOSS

2.0

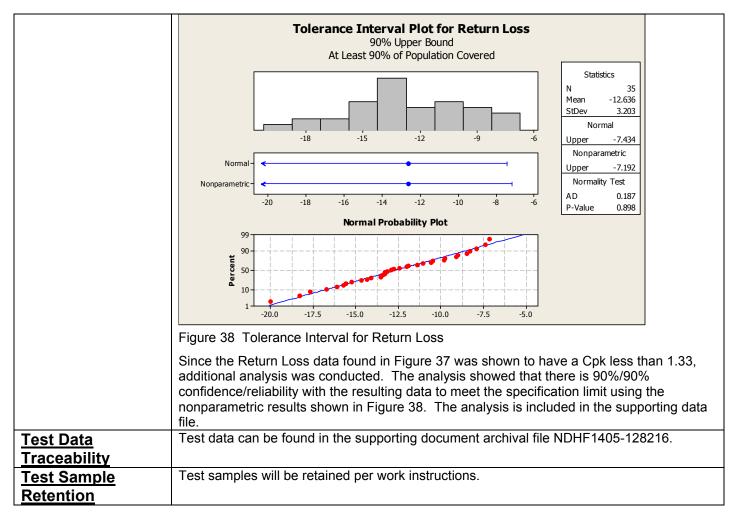
NDHF1405-128215

48 of 75

Requirements	EETD51 Tel-M Antenna Return Loss		
	Verifies:		
	EE309 The Tel-M antenna shall have a nominal impedance of 50 Ohms, including off module matching.		
	EE310 The Tel-M antenna shall have return loss less than -6 dB in MICS band.		
Test Description	For this test, a fully functional, form, fit DUT is used to check the antenna performance. The antenna probe connector is reversed from the normal placement so that the network analyzer will be looking into the antenna. The network analyzer frequency span is setup for a center frequency of 403.5 MHz (center of MICS band) and the span is set to 20 MHz. The number of points should be a minimum of 201 (this will provide a minimum of 100 kHz resolution). The network analyzer is then calibrated. Then the network analyzer is connected to the DUT (which is fully assembled), and return loss is measured directly. The resulting sweep is saved off to a .csv file.		
	The resulting measurement is a direct measurement of return loss. 7 DUTs		
Sample size:			
<u>Acceptance</u> <u>Criteria</u>	An acceptance criterion is based on successful completion of tests within specified range of error or meeting the requirements set forth.		
Test Objective:	Verify device meets specified requirements.		
<u>Test Environment:</u>	Agilent E5071C ENA Series Probe cable DUT DUT DUT Figure 36 Return Loss Test Setup		
Test Setup:	Test setup is included in the procedure		
Test Procedure:	 I. Calibration A. Set center frequency to 403.5 MHz. B. Set span to 20 MHz. C. Set number of points to 201. 		
	II. Measurement		
L			

Medtronic	Medtronic	Document Number	Version	Page
**	Neuromodulation		2.0	40 of 75
	Confidential	NDHF1405-128215	2.0	49 of 75

<u>Test Results:</u> <u>Capability</u>	 A. Connect network analyzer to MICS antenna 1 port of DUT B. Measure return loss of MICS antenna C. Save off return loss sweep to appropriately named .csv file (DUT serial # and antenna port should be included). All data samples PASS maximum antenna return loss requirements. 	
<u>Analysis:</u>	Process Capability of MICS Return Loss	


Document Number Version

NDHF1405-128215

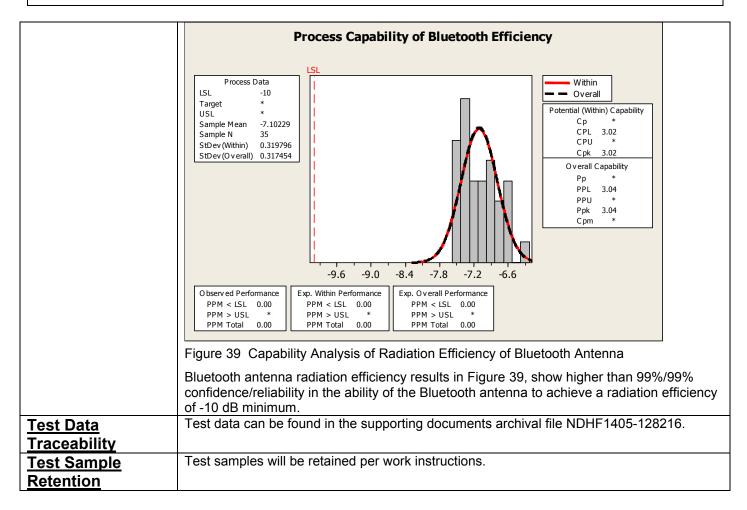
2.0

50 of 75

Title: PTM3 Model 97745 RF DVT Report

9.4.12 RF-12: ACTIVE BLUETOOTH ANTENNA EFFICIENCY

Requirements	EETD52 Active Bluetooth Antenna Efficiency_ Verifies:	
	EE386 The PTM Bluetooth antenna shall have minimum radiation efficiency of -10 dB	
Test Description	This test is done at Satimo in Atlanta, GA.	
	For this test, a fully functional, form, fit DUT is used to check the antenna performance. The test interface is used to put the devices into a CW transmit mode. The transmitting device is placed inside the calibrated anechoic chamber at Satimo at a specified location. The test antennas are configured to receive the DUT signal. The received signals are collected through Satimo's data collection system that automates the antenna switching and accounts for calibration losses. The resulting measurement provides the EIRP and TRP. The gain and efficiency can be	



	calculated from EIRP and TRP, respectively.			
Sample size:	7 DUTs			
Acceptance	An acceptance criterion is based on successful completion of tests within specified range			
<u>Criteria</u>	of error or meeting the requirements set forth.			
Test Objective:	Verify device meets specified requirements.			
Test Environment:	This test is part of the radiated antenna suite of tests. See test environment in section 9.4.10.			
Test Setup:	Test setup is included in the procedure			
Test Procedure:	I. Calibration			
	A. Set the laser to a location centered within the Satimo antenna Stargate			
	B. Place the calibration antenna at the laser locationC. Shut the chamber door and collect the calibration data			
	C. Shut the chamber door and collect the calibration data			
	II. Put device in Continuous Transmit mode			
	A. Power up PTM			
	B. Discover device using ActiveX OsirisGUI.			
	C. Run appropriate script for desired transmit channel.			
	III. Device Setup			
	A. Center the device on the laser beam.			
	IV. Measurement			
	A. Close the chamber door			
	B. Measure the EIRP and TRP using Satimo's data collection system			
	V. Iterations			
	A. Repeat measurements for 2441.165 MHz and 2480.165 MHz			
	VI. Analysis			
	A. Calculate Gain: Gain=EIRP - transmit power			
	B. Calculate efficiency: efficiency=TRP- transmit power			
Test Results:	All data samples PASS minimum radiation efficiency requirements.			
Capability				
<u>Analysis:</u>				

Document Number	Version
NDHF1405-128215	2.0

Title: PTM3 Model 97745 RF DVT Report

Table 9 List of test cases for Bluetooth active antenna testing

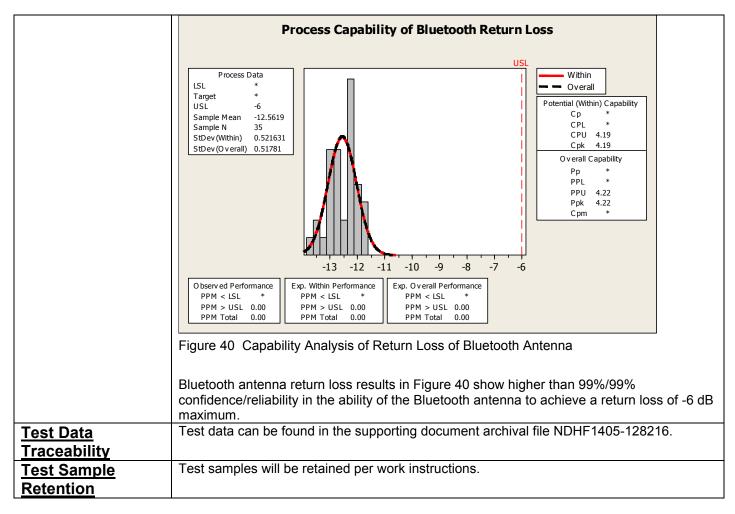
Channel	Frequency (MHz)	Mode	Modulation
0	2402.165	Test	CW
20	2422.165	Test	CW
39	2441.165	Test	CW
59	2461.165	Test	CW
78	2480.165	Test	CW

9.4.13 RF-13: BLUETOOTH ANTENNA RETURN LOSS

Requirements	EETD53 Bluetooth Antenna Return Loss
	Verifies:

2.0

NDHF1405-128215


53 of 75

	EE316 The PTM Bluetooth transceiver antenna shall have a maximum return loss of -6 dB for frequency range between 2.4 GHz and 2.4835 GHz.		
<u>Test Description</u>	For this test, a fully functional, form, fit DUT is used to check the antenna performance. The antenna probe connector is reversed from the normal placement so that the network analyzer will be looking into the antenna. The network analyzer frequency span is setup for a center frequency of 2441 MHz and the span is set to 200 MHz. The number of points should be a minimum of 1601. The network analyzer is then calibrated. Then the network analyzer is connected to the DUT (which is fully assembled), and return loss is measured directly. The resulting sweep is saved off to a .csv file.		
	The resulting measurement is a direct measurement of return loss.		
Sample size:	7 DUTs		
<u>Acceptance</u> <u>Criteria</u>	An acceptance criterion is based on successful completion of tests within specified range of error or meeting the requirements set forth.		
Test Objective:	Verify device meets specified requirements.		
Test Environment:	This test is part of the radiated antenna suite of tests. See test environment in section 9.4.11.		
Test Setup:	Test setup is included in the procedure		
Test Procedure:	I. Calibration		
	A. Set center frequency to 2441 MHz.		
	B. Set span to 200 MHz.		
	C. Set number of points to 1601.		
	II. Measurement		
	A. Connect network analyzer to Bluetooth antenna port of DUT		
	B. Measure return loss of Bluetooth antenna		
	C. Save off return loss sweep to appropriately named .csv file (DUT serial # and antenna port should be included).		
Test Results:	All data samples PASS maximum antenna return loss requirements.		
<u>Capability</u> Analysis:			
Allalysis.			

Document Number	Version
NDHF1405-128215	2.0

Title: PTM3 Model 97745 RF DVT Report

9.4.14 RF-14: BLUETOOTH RX SENSITIVITY (GFSK)

Requirements	EETD54 Bluetooth Rx Sensitivity (GFSK)
	Verifies:
	EE387 The PTM Bluetooth transceiver shall have min Rx sensitivity equal or less than -80 dBm (GFSK modulation)
Test Description	The receiver sensitivity test measures how low in power a Bluetooth signal can be received by the DUT receiver and achieve a raw bit error rate (BER) $\leq 0.1\%$. The test is conducted in a shielded temp chamber that provides an isolated environment from external interfering signals (e.g., WiFi, Cell phone, etc.). The DUT is powered via an external power supply such that the temperature and power supply can be variable parameters in the test.
	A dedicated Wireless Connectivity Test Set (Agilent N40101A) is used to perform this test. After a specified number of packets, the number of received bits and bits with errors are counted.

A Medtronic

Medtronic
Neuromodulation
Confidential

Document Number	Version
NDHF1405-128215	2.0

Sample size:	5 DUTs
<u>Acceptance</u> <u>Criteria</u>	An acceptance criterion is based on successful completion of tests within specified range of error or meeting the requirements set forth.
Test Objective:	Verify device meets specified requirements.
Test Environment:	RF coax 1
	Figure 41 Test setup for Bluetooth receiver testing
Test Setup:	 Cable connections and initial calibrations: 1. Measure the loss of coax1. Record this loss factor and program it into the N40101A. 2. Place the DUT inside temperature chamber 3. Connect the measured coaxial cable. 4. Connect the power supply to the DUT.
<u>Test Procedure:</u>	 I. Calibration A. Set channels to non frequency hopping. B. Set channels to test channel 0, 39, and 78.
	C. Set number of bits to send to 16e6.D. Ensure data whitening is enabled.

A Medtronic	Medtronic Neuromodulation Confidential	Document Number NDHF1405-128215	Version 2.0	Page 56 of 75
Title: PTM3 Model 97	7745 RF DVT Report			
Capability Analysis: F B ir	G. Set Rx power to -4 Measurement A. Run Rx test suite. B. Record Rx results C. Repeat steps A & achieved. Il data samples PASS minim Process Capal Process Data ISL * Target * USL *0 Sample Mean *84.35 Sample Mean	custom "Bluetooth Test Mo 35 dBm. B after incrementing Rx po um Bluetooth Rx sensitivity bility of Bluetooth Rx Sens um bility of Bluetooth Rx Sens um bility of Bluetooth Rx Sensitivity bility of Bluetooth Rx Sensitivity of Bluetooth Rx Sensitivity s, Figure 42, show higher thivity of -80 dBm.	bwer by 1 dB f. sitivity SL Potential (Within) CPL CPL CPL CPL CPL CPL CPL CPL	until Rx sensitivity i
<u>Test Data</u> <u>Traceability</u>	est data can be found in the	supporting accuments arch	nvai tilė NDHI	- 1405-128216.
	est samples will be retained	per work instructions.		

9.4.15 RF-15: BLUETOOTH STANDARD QUALIFICATION

Requirements	EETD55 Bluetooth Standard Qualification
	Verifies:

2.0

NDHF1405-128215

57 of 75

Confidential NL Title: PTM3 Model 97745 RF DVT Report

r				
	EE241 The PTM3 electrical design shall provide a Bluetooth transceiver compliant with the Bluetooth 2.1 RF specifications as a class 1 device with a maximum output power less than +10dBm.			
Test Description	This test is done at 7 Layers, Inc. located in Irvine, CA.			
	For this test, a fully functional, form, fit DUT is provided to 7 Layers, Inc. for Bluetooth certification. 7 Layers is accredited and has Bluetooth Qualification Test Facility (BQTF) status, thus formally recognized as competent to perform "Category A" Bluetooth qualification conformance tests.			
Sample size:	1 DUT			
<u>Acceptance</u> <u>Criteria</u>	An acceptance criterion is based on successful completion of tests and attaining Bluetooth EDR 2.1 certification.			
Test Objective:	Verify device meets specified requirements.			
Test Environment:	ment: This requirement will be tested at 7 Layers, Inc. located in Irvine, CA.			
Test Setup:	Test setup is included in the procedure			
Test Procedure: I. Calibration				
	A. Record the loss of the RF coaxial cable provided to 7 Layers and provide that information to them.			
	II. Firmware			
	A. Load a custom F/W version on the DUT(s) to be tested. This firmware puts the Bluetooth radio in Bluetooth test mode, rather than normal power up conditions.			
Test Results:	The PTM3, Model 97745, successfully passed all Bluetooth qualification testing.			
<u>Test Data</u> <u>Traceability</u>	This testing evidence can be found in the supporting documents archival file NDHF1405- 128216.			
Test Sample Retention	Test samples will be retained per work instructions.			

9.4.16 RF-16: TEL M I/O

Requirement	<u>EETD98 Tel M I/O_</u> Verifies: EE270 The Tel-M module digital inputs shall support a maximum 10%-90% rise time of 40 ns
	EE271 The Tel-M module digital inputs shall support a maximum 90%-10% fall time of 40 ns EE272 The Tel-M module digital inputs shall support a minimum logic high level voltage of DVDD-0.1V
	EE273 The Tel-M module digital inputs shall support a maximum logic high level voltage of DVDD

Medtronic Neuromodulation

2.0

Confidential NDHF1405-128215

Title: PTM3 Model 97745 RF DVT Report

	EE274 The Tel-M module digital inputs shall support a maximum logic low level voltage of 0.3V
	EE275 The Tel-M SPI interface shall use nominal clock frequency 4 MHz
	EE276 The Tel-M SPI interface shall have a SCK duty cycle of 50% +/-10%
	EE277 The Tel-M SPI interface shall have SDI setup time (before SCK rising edge) >= 62ns
	EE278 The Tel-M SPI interface shall have SDI hold time (after SCK rising edge) >= 125ns and <= 187ns
	EE279 The Tel-M SPI interface shall have SDO setup time (before SCK rising edge) >= 30ns and <= 125ns
	EE280 The Tel-M SPI interface shall have SDO hold time (after SCK rising edge) >= 125ns and <= 187ns
	EE281 The Tel-M SPI interface shall have SCS duration for logic high >= 50 ns
	EE282 The Tel-M SPI interface shall have a delay after the last SCK falling edge and before SCS is inactive >= 125ns
	EE283 The Tel-M SPI interface shall have a delay after SCS is inactive and SDO going high impedance <= 62ns
Test	This will be verified via inspection of the Tel M module requirement (A17245).
Description	
Sample size:	N/A
Acceptance	An acceptance criterion is based on the Tel M module supporting the I/O requirements as stated
<u>Criteria</u>	above.
<u>Test</u>	Verify device meets specified requirements.
Objective:	
Test	N/A
Environment:	
Test Setup:	N/A
Test	N/A
Procedure:	
Test Results:	Inspection of the Telemetry M RF Module Requirements Specification (A17245) shows that the module meets the requirements set forth.
Test Data	N/A
Traceability	
Test Sample	N/A
Retention	

10 SAMPLE BUILD TRACEABILITY

S/N	Configuration/Assembly	Test	Traceability	Alterations
	Number	Used	Documentation	

A Medtronic	
40	

Medtronic
Neuromodulation
Confidential

Document Number	Version	
NDHF1405-128215	2.0	

59 of 75

		On	
NLD001682N	PCBA/ M951956A001	RF-6	
NLD001607N	PCBA/ M951956A001	RF-6	
NLD001633N	PCBA/ M951956A001	RF-1 – RF-7	
NLD001759N	PCBA & HLA/ M951956A001	RF-1 – RF -9, RF-14	
NLD001726N	PCBA & HLA/ M951956A001	RF-1 – RF -9, RF-14	
NLD001725N	PCBA & HLA/ M951956A001	RF-1 – RF -9, RF-14	
NLD001776N	PCBA & HLA/ M951956A001	RF-1 – RF -9, RF-14	
NLD001754N	PCBA & HLA/ M951956A001	RF-1 – RF -9, RF-14	
NLD001630N	HLA/ M951956A001	RF-10 – RF- 13	RF switches (J1-J3) reversed for RF-12 & RF-14
NLD001595N	HLA/ M951956A001	RF-10 – RF- 13	RF switches (J1-J3) reversed for RF-12 &

Medtronic	Medtronic	Document Number	Version	Page
	Neuromouulation	NDHF1405-128215	2.0	60 of 75

			RF-14
NLD001667N	HLA/ M951956A001	RF-10 – RF- 13	RF switches (J1-J3) reversed for RF-12 & RF-14
NLD001631N	HLA/ M951956A001	RF-10 – RF- 13	RF switches (J1-J3) reversed for RF-12 & RF-14
NLD001760N	HLA/ M951956A001	RF-10 – RF- 13	RF switches (J1-J3) reversed for RF-12 & RF-14
NLD001758N	HLA/ M951956A001	RF-10 – RF- 13	RF switches (J1-J3) reversed for RF-12 & RF-14
NLD001747N	HLA/ M951956A001	RF-10 – RF- 13	RF switches (J1-J3) reversed for RF-12 & RF-14
NLD001756N	HLA/ M951956A001	RF-15	
NLD001627N	HLA/ M951956A001	RF-15	

61 of 75

2.0

Title: PTM3 Model 97745 RF DVT Report

Confidential

11 CONCLUSION

Instruments from the PTM3 Model 97745 electrical DVT build, which are production representative, were used to execute the testing in the PTM3 Model 97745 RF DVT Test Protocol. All tests passed with no modifications to the test protocol. All testing passed as described in this report and the PTM3 Model 97745 RF design is considered verified.

12 RECOMMENDATIONS

Based on the results within this report, the PTM3 Model 97745 instrument meets all RF specifications reflected in this report. The recommendation is to move forward to production release pending successful completion of all other verification testing.

Medtronic	Medtronic Neuromodulation Confidential	Document Number NDHF1405-128215	Version 2.0	Page 62 of 75	
Title: PTM3 Model 97745 RF DVT Report					

13 DATA ANALYSIS

N/A

Hedtronic	Medtronic
	Neuromodulat

63 of 75

2.0

Title: PTM3 Model 97745 RF DVT Report

14 APPENDIX

14.1 APPENDIX A: MEASUREMENT OF RF PATH LOSS THROUGH CABLES

Confidential

14.1.1 NARROWBAND CABLE LOSS MEASUREMENTS

All losses due to cable connections must be accounted. Each cable must be measured using the following procedure and then the losses can be input into the Labview code to be accounted properly in the calculations.

- 1. Connect the suitable extension cables to network analyzer ports 1 and 2
- 2. Preset the Network Analyzer to get to a common and known state
- 3. Select a span from 200 MHz to 600 MHz
- 4. Perform appropriate calibration on the network analyzer using the E Cal module
- 5. Connect the cable(s) to the network analyzer.
- 6. Select Log magnitude display mode
- 7. Select measurement type "S21"
- 8. Turn on averaging and/or smoothing ON (optional)
- 9. Place the marker at 403 MHz
- 10. Read the transmission loss (in dB)
- 11. Enter this value into the Labview application

14.1.2 BROAD BAND CABLE LOSS MEASUREMENTS

The spurious harmonics test is over a broad range of frequency. To account for the change in RF losses over frequency, all path losses (e.g., cables, connectors, and SAM3 path) must be measured across the broadband. During the test, the large frequency band (500 kHz to 3 GHz) is measured in 300 kHz increments. Table 10 breaks up the measurement to capture data at the center point of each of these 300 kHz increments. The data will be input into a table for import by the Labview application and accounting during measurements.

- 1. Connect the suitable extension cables to network analyzer ports 1 (and 2)
- 2. Preset the Network Analyzer to get to a common and known state
- 3. Select a span from 650 kHz to 224.75 MHz and 748 data points
- 4. Perform (two port) calibration on the network analyzer using the E Cal module
- 5. Move SW1 and SW2 in the SAM3 to position 2
- 6. Connect RF coax 2 between port 1 of the network analyzer and Sig Gen C on the SAM3.
- (Remove any circulators/isolators for this measurement since they are band limited.)
- 7. Connect RF coax 3 between port 2 of the network analyzer and DUT on the SAM3.
- 8. Select Log magnitude display mode
- 9. Select measurement type "S21"
- 10. Turn on averaging and/or smoothing ON (optional)
- 11. Save the data to a .csv file
- 12. Move SW1 and SW2 in the SAM3 to position 1.
- 13. Repeat steps 3-11 each of the spans and data points listed in Table 10.
- 14. Concatenate all of the .csv files into a single file with two columns: Frequency (Hz), Path loss in dB
- 15. Use the Labview application to input this file for the spurious harmonics test

Medtronic Medtronic Neuromodulation Confidential	Document Number	Version	Page
	NDHF1405-128215	2.0	64 of 75

Table 10 Frequency spans and number of data points to create the broadband path loss table for test RF-6

start frequency (Hz)	number of data points	stop frequency (Hz)	start frequency (Hz)
100000	1601	1125000000	100000
1125000000	1601	2250000000	1125000000
225000000	1601	3375000000	225000000
3375000000	1601	450000000	3375000000

14.2 APPENDIX B: REQUIREMENTS TRACE

Table 11 Requirements Trace from EDVT Protocol to EE Requirements

EETD		Requirement	
Tag	Requirement text	Status	Traced-to
			EE193, EE296, EE305,
EETD41	Tel-M Receiver Sensitivity	Approved	EE311
EETD42	Tel-M Receiver Intermodulation Rejection	Approved	EE193, EE298, EE311
EETD43	Tel-M Receiver Adjacent Channel Rejection	Approved	EE193, EE299, EE311
EETD44	Tel-M Receiver Alternate Channel Rejection	Approved	EE193, EE300, EE311
EETD45	Tel-M External Spurious Response Rejection (Single Tone, Unmodulated)	Approved	EE303
EETD46	Tel-M Rx RSSI Linearity and Differentiation	Approved	EE193, EE306, EE307, EE311
EETD47	Tel-M Transmitter Output Power, Adjacent Channel Power Ratio, and Alternate Channel Power Ratio	Approved	EE193, EE286, EE291, EE293, EE311
EETD48	Tel-M Transmitter Error Vector Magnitude & Transmitter Frequency Stability	Approved	EE193, EE284, EE285, EE311, EE388(s)
EETD49	Tel-M Transmitter Spectral Emissions	Deleted	
EETD50	Active Tel-M Antenna Gain	Approved	EE308
EETD51	Tel-M Antenna Return Loss	Approved	EE309, EE310
EETD52	Active Bluetooth Antenna Efficiency	Approved	EE386
EETD53	Bluetooth Antenna Return Loss	Approved	EE316
EETD54	Bluetooth Rx Sensitivity (GFSK)	Approved	EE193, EE311, EE387
EETD55	Bluetooth Standard Qualification	Approved	EE193, EE311, PR34
EETD56	Tel_M Receiver AM Channel Rejection	Approved	EE193, EE304, EE311
EETD98	Tel M I/O	Approved	EE270, EE271, EE272, EE273, EE274, EE275, EE276, EE277, EE278, EE279, EE280, EE281, EE282, EE283
EETD166	AA Alkaline Batteries Current Drain	Approved	EE193, EE206, EE207, EE311, EE560, EE562
EETD167	Li-ion Battery Current Drain	Approved	EE193, EE311, EE558, EE559, EE561, EE563
	Power Supplies - 2.8V Supply	Approved	EE208, EE210, EE265, EE266
EETD169	Power Supplies - 3.3V Supply	Approved	EE211, EE213
EETD170	Battery Charger	Approved	EE194, EE197, EE200, EE311
EETD171	Reverse Polarity Protection	Approved	EE201, EE311, EE564
EETD172	Battery Voltage Measurement	Approved	EE202, EE311

Document Number	Version

2.0

NDHF1405-128215

Page

66 of 75

Title: PTM3 Model 97745 RF DVT Report

		1	
EETD173	Real Time Clock (RTC) Backup Power	Approved	EE205, EE311
EETD174	Internal Memory	Approved	EE217, EE218
EETD175	External Memory	Approved	EE224, EE225
EETD176	LCD Display	Approved	EE226
EETD177	LCD Backlight Power and Control	Approved	EE204, EE215, EE311
EETD178	Capacitive Touch Panel Power	Approved	EE557
EETD179	Capacitive Touch Panel	Approved	EE227, EE311
EETD180	Audio Transducer	Approved	EE230, EE311
EETD181	Vibration Motor Operating Voltage	Approved	EE231
EETD182	Vibration Motor	Approved	EE232, EE311
EETD183	Simultaneous Vibration Motor and Audio Speaker	Approved	EE233, EE311
EETD184	Pushbuttons and Switches	Approved	EE234, EE311
EETD185	LED Indicators	Approved	EE237, EE311
			EE257, EE258, EE260, EE262, EE263, EE264, EE311, EE317, EE318,
EETD186	System Connector	Approved	EE565
EETD187	USB Alive	Approved	EE193, EE260, EE311

Table 12 Requirements Trace from EE Requirements to RF DVT Protocol

		Requirement		
EE Tag	Requirement text	Status	Traced-from	Traced-to
EE193	The PTM3 electrical design shall be operational from two AA alkaline batteries or a rechargeable Li-Ion battery pack and an external 5V power supply at the system connector over a voltage range of 2.3V(-0/+50mV) to 5.0V(+/-250mV).	Approved	EETD41, EETD42, EETD43, EETD44, EETD46, EETD47, EETD48, EETD54, EETD55, EETD56, EETD166, EETD167, EETD187	PR35, PR36, PR324
EE 193	The PTM3 electrical design	Approved	EEIDIOI	FR324
	shall provide an integrated			
	battery charger that will operate from an input voltage			
	of 5V +/- 250mV provided by			
	an external power supply			PR36,
EE194	input at the system connector.	Approved	EETD170	PR324
	The PTM3 battery charger when powered and enabled shall charge the Li-Ion			
	rechargeable battery pack at			PR36,
	850mA +/- 50mA when the			PR324,
EE197	battery pack is at 3.5V	Approved	EETD170	PR325
	The PTM3 electrical design			PR36,
EE200	shall provide a method of	Approved	EETD170	PR37

Document Number	Version
NDHF1405-128215	2.0

Page

67 of 75

Title: PTM3 Model 97745 RF DVT Report

	communicating with the Li-Ion *rechargeable battery pack.			
	The PTM3 electrical design shall provide reverse polarity protection at the battery input with a maximum reverse leakage current of 10 uA			
EE201	when AA alkaline batteries are installed in reverse.	Approved	EETD171	PR37, PR326
	The PTM3 electrical design shall provide a method to measure battery voltage over a voltage range of 2.3 to			
EE202	4.2V+/-150mV.	Approved	EETD172	PR85
EE204	The PTM3 electrical design shall provide an LCD power switch that will be controlled by the microcontroller.	Approved	EETD177	PR39, PR40, PR89
	The PTM3 electrical design shall provide an RTC backup power source that shall maintain the microcontroller RTC for a minimum duration of 4 hours with the main			
EE205	battery removed.	Approved	EETD173	PR44
EE206	The PTM3 electrical design shall have an average battery current drain <= 4mA in STANDBY mode for a AA battery voltage range of 2.3V to 3.2V.	Approved	EETD166	PR40
EE207	The PTM3 electrical design shall have an average battery current drain <= 250mA in ACTIVE mode for a AA battery voltage range of 2.3V to 3.2V.	Approved	EETD166	PR40
	The PTM3 electrical design shall provide a system power supply with an average output voltage of 2.8V for an input			PR35,
EE208	voltage range of 2.3V to 5.0V.	Approved	EETD168	PR36
EE210	The PTM3 system power supply shall always be enabled for a battery voltage >= 2.3V.	Approved	EETD168	PR35, PR384
	The PTM3 electrical design shall provide a power supply with an average output			PR35,
EE211	voltage of 3.3V+/-200mV for	Approved	EETD169	PR36

Document Number	Version	
NDHF1405-128215	2.0	

Page

68 of 75

Title: PTM3 Model 97745 RF DVT Report

	an input voltage range of 2.3			
	to 5.0V.			
EE213	The PTM3 3.3V supply shall be enabled and disabled by the microcontroller.	Approved	EETD169	PR35, PR36, PR39, PR40, PR327
EE215	The PTM3 LCD backlight power supply shall be able to control backlight from off to maximum brightness based on a PWM input with a duty cycle in 20% increments.	Approved	EETD177	PR35, PR36, PR89
EE217	The PTM3 microcontroller shall provide flash with a minimum capacity of 1 MBytes.	Approved	EETD174	PR42
EE218	The PTM3 microcontroller shall provide SRAM with a minimum capacity of 96 Kbytes.	Approved	EETD174	PR335
	The PTM3 electrical design shall provide serial flash with a minimum capacity of 2		EETD175	PR42
EE224	MBytes. The PTM3 electrical design shall provide external SRAM with a minimum capacity of 2	Approved		
EE225 EE226	MBytes. The PTM3 electrical design shall provide a transflective 2.8" QVGA TFT LCD with an LED backlight.	Approved Approved	EETD175 EETD176	PR335 PR16, PR89
EE227	The PTM3 electrical design shall provide a projected capacitance touch panel that supports single touch events.	Approved	EETD179	PR89
EE230	The PTM3 audio transducer shall have a minimum sound pressure level of 60dBA measured at 10 cm at 400Hz and 600Hz.	Approved	EETD180	PR86, PR87
EE231	The PTM3 electrical design shall provide a vibration motor.	Approved	EETD181	PR86
EE232	The PTM3 electrical design shall provide a power switch that will enable and disable the vibration motor.	Approved	EETD182	PR86
22202		7.0010400		m MEDN-0066 Vers

Medtronic
Neuromodulation
Confidential

Document Number	Version
NDHF1405-128215	2.0

69 of 75

Title: PTM3 Model 97745 RF DVT Report

I	The PTM3 shall support the]	
	production of audible tones			
	and vibrations			
EE233	simultaneously.	Approved	EETD183	PR86
	The PTM3 electrical design			
	shall provide 3 tactile			
	pushbuttons for therapy on/off			
	up and down functions that			
	can generate hardware			
	interrupts when pressed or			
EE234	released.	Approved	EETD184	PR95
	The PTM3 shall have two			
	LEDs, one green and one			
EE237	yellow.	Approved	EETD185	PR333
	The PTM3 system connector			
	shall provide a switched			
	battery power output that is			
	controlled by the			
EE257	microcontroller.	Approved	EETD186	PR33
	The PTM3 system connector			
	shall provide a switched 3.3V			
	power output that is controlled			
EE258	by the microcontroller.	Approved	EETD186	PR33
	The PTM3 USB device			
	interface shall support			
	software boot loading of the			PR5, PR33,
EE260	microcontroller.	Approved	EETD186, EETD187	PR51
	The PTM3 system connector			PR5, PR6,
	shall provide 2 UARTs with a			PR33,
	minimum data rate of 115.2			PR251,
EE262	kbps.	Approved	EETD186	PR382
	The PTM3 system connector			DDOO
	The Fille System connector			PR33,
	shall provide an interrupt			PR33, PR324,
EE263	shall provide an interrupt signal input.	Approved	EETD186	PR324, PR325
EE263	shall provide an interrupt signal input. The PTM3 system connector	Approved	EETD186	PR324,
	shall provide an interrupt signal input. The PTM3 system connector shall provide a dock detect	Approved	EETD186	PR324, PR325 PR33, PR324,
EE263 EE264	shall provide an interrupt signal input. The PTM3 system connector shall provide a dock detect interrupt signal input.	Approved Approved	EETD186 EETD186	PR324, PR325 PR33,
	shall provide an interrupt signal input. The PTM3 system connector shall provide a dock detect			PR324, PR325 PR33, PR324,
	shall provide an interrupt signal input. The PTM3 system connector shall provide a dock detect interrupt signal input.			PR324, PR325 PR33, PR324,
	shall provide an interrupt signal input. The PTM3 system connector shall provide a dock detect interrupt signal input. The TeI-M module BPFLT supply voltage shall be >= 1.85V and <=3.5V.			PR324, PR325 PR33, PR324,
EE264	shall provide an interrupt signal input. The PTM3 system connector shall provide a dock detect interrupt signal input. The Tel-M module BPFLT supply voltage shall be >= 1.85V and <=3.5V. The Tel-M module DVDD	Approved	EETD186	PR324, PR325 PR33, PR324, PR325
EE264	shall provide an interrupt signal input. The PTM3 system connector shall provide a dock detect interrupt signal input. The TeI-M module BPFLT supply voltage shall be >= 1.85V and <=3.5V. The TeI-M module DVDD power supply shall be >=	Approved	EETD186	PR324, PR325 PR33, PR324, PR325
EE264	shall provide an interrupt signal input. The PTM3 system connector shall provide a dock detect interrupt signal input. The Tel-M module BPFLT supply voltage shall be >= 1.85V and <=3.5V. The Tel-M module DVDD	Approved	EETD186	PR324, PR325 PR33, PR324, PR325 PR45
EE264	shall provide an interrupt signal input. The PTM3 system connector shall provide a dock detect interrupt signal input. The Tel-M module BPFLT supply voltage shall be >= 1.85V and <=3.5V. The Tel-M module DVDD power supply shall be >= 1.3V and <= BPFLT supply voltage.	Approved	EETD186	PR324, PR325 PR33, PR324, PR325
EE264 EE265	shall provide an interrupt signal input. The PTM3 system connector shall provide a dock detect interrupt signal input. The Tel-M module BPFLT supply voltage shall be >= 1.85V and <=3.5V. The Tel-M module DVDD power supply shall be >= 1.3V and <= BPFLT supply voltage. The Tel-M module digital	Approved Approved	EETD186 EETD168	PR324, PR325 PR33, PR324, PR325 PR45
EE264 EE265	shall provide an interrupt signal input. The PTM3 system connector shall provide a dock detect interrupt signal input. The Tel-M module BPFLT supply voltage shall be >= 1.85V and <=3.5V. The Tel-M module DVDD power supply shall be >= 1.3V and <= BPFLT supply voltage. The Tel-M module digital inputs shall support a	Approved Approved	EETD186 EETD168	PR324, PR325 PR33, PR324, PR325 PR45
EE264 EE265 EE266	shall provide an interrupt signal input. The PTM3 system connector shall provide a dock detect interrupt signal input. The Tel-M module BPFLT supply voltage shall be >= 1.85V and <=3.5V. The Tel-M module DVDD power supply shall be >= 1.3V and <= BPFLT supply voltage. The Tel-M module digital inputs shall support a maximum 10%-90% rise time	Approved Approved Approved	EETD186 EETD168 EETD168	PR324, PR325 PR33, PR324, PR325 PR45 PR45
EE264 EE265	shall provide an interrupt signal input. The PTM3 system connector shall provide a dock detect interrupt signal input. The Tel-M module BPFLT supply voltage shall be >= 1.85V and <=3.5V. The Tel-M module DVDD power supply shall be >= 1.3V and <= BPFLT supply voltage. The Tel-M module digital inputs shall support a	Approved Approved	EETD186 EETD168	PR324, PR325 PR33, PR324, PR325 PR45
EE264 EE265 EE266	shall provide an interrupt signal input. The PTM3 system connector shall provide a dock detect interrupt signal input. The Tel-M module BPFLT supply voltage shall be >= 1.85V and <=3.5V. The Tel-M module DVDD power supply shall be >= 1.3V and <= BPFLT supply voltage. The Tel-M module digital inputs shall support a maximum 10%-90% rise time	Approved Approved Approved	EETD186 EETD168 EETD168	PR324, PR325 PR33, PR324, PR325 PR45 PR45
EE264 EE265 EE266	shall provide an interrupt signal input. The PTM3 system connector shall provide a dock detect interrupt signal input. The Tel-M module BPFLT supply voltage shall be >= 1.85V and <=3.5V. The Tel-M module DVDD power supply shall be >= 1.3V and <= BPFLT supply voltage. The Tel-M module digital inputs shall support a maximum 10%-90% rise time of 40 ns.	Approved Approved Approved	EETD186 EETD168 EETD168	PR324, PR325 PR33, PR324, PR325 PR45 PR45

Medtronic
Neuromodulation
Confidential

Document Number	Version
NDHF1405-128215	2.0

70 of 75

Title: PTM3 Model 97745 RF DVT Report

I	maximum 90%-10% fall time	l	1	
	of 40 ns.			
	The Tel-M module digital			
	inputs shall support a			
	minimum logic high level			
EE272	voltage of DVDD - 0.1V.	Approved	EETD98	PR45
	The Tel-M module digital	••		
	inputs shall support a			
	maximum logic high level			
EE273	voltage of DVDD.	Approved	EETD98	PR45
	The Tel-M module digital			
	inputs shall support a			
	maximum logic low level			
EE274	voltage of 0.3V.	Approved	EETD98	PR45
	The Tel-M SPI interface shall			
	use a nominal clock	· ·		
EE275	frequency 4MHz.	Approved	EETD98	PR45
	The Tel-M SPI interface shall			
	have a SCK duty cycle of			
EE276	50% +/-10%.	Approved	EETD98	PR45
	The Tel-M SPI interface shall			
FF077	have SDI setup time (before	A		DD 45
EE277	SCK rising edge) >= 62ns.	Approved	EETD98	PR45
	The Tel-M SPI interface shall			
	have SDI hold time (after SCK			
EE278	rising edge) >= 125ns and <= 187ns.	Approved		PR45
EE270	The Tel-M SPI interface shall	Approved	EETD98	FR40
	have SDO setup time (before			
	SCK rising edge) => 30ns			
EE279	and \leq = 125ns.	Approved	EETD98	PR45
	The Tel-M SPI interface shall	Appioved		11110
	have SDO hold time (after			
	SCK rising edge) \geq 125ns			
EE280	and <= 187ns.	Approved	EETD98	PR45
	The Tel-M SPI interface shall			
	have SCS duration for logic			
EE281	high \geq 50 ns.	Approved	EETD98	PR45
	The Tel-M SPI interface shall			
	have a delay after the last			
	SCK falling edge and before			
EE282	SCS is inactive >= 125ns.	Approved	EETD98	PR45
	The Tel-M SPI interface shall			
	have a delay after SCS is			
	inactive and SDO going high			
EE283	impedance <= 62ns.	Approved	EETD98	PR45
	The Tel-M RF synthesizer			
	shall tune in increments of			
FF004	300 kHz from 402.15 MHz to			DD 45
EE284	404.85 MHz.	Approved	EETD48	PR45

Hedtronic

Medtronic
Neuromodulation
Confidential

Document Number	Version	
NDHF1405-128215	2.0	•

71 of 75

Title: PTM3 Model 97745 RF DVT Report

	The Tel-M RF synthesizer			
FF205	shall have a minimum	Amman		
EE285	frequency stability of 12ppm. The Tel-M Transmitter shall	Approved	EETD48	PR45
	have a minimum conducted			
	output power into a 50 ohm			
	load of -16.25dBm and a			
EE286	maximum of -11.25dBm.	Approved	EETD47	PR45
	The Tel-M Transmitter shall	Арріочец		11145
	have minimum ACPR -34dBc.			
	Measured at fc+/-50kHz to			
EE291	fc+/-150kHz	Approved	EETD47	PR45
	The Tel-M Transmitter shall			
	have minimum AltCPR -40			
	dBc. Measured at fc+/-			
EE293	150kHz to fc+/-250kHz.	Approved	EETD47	PR45
	The Tel-M Receiver shall			
	have a minimum Mode1			
EE296	sensitivity of -89dBm.	Approved	EETD41	PR45
	The Tel-M Receiver shall			
	have minimum IM rejection of			
	47dB with interferers at 1.5			
	MHz and 3.0 MHz offset from			
EE298	desired signal.	Approved	EETD42	PR45
	The Tel-M Receiver shall			
	have minimum adjacent			
55000	channel rejection of 35dB at	A management		
EE299	100 kHz offset. The Tel-M Receiver shall	Approved	EETD43	PR45
	have minimum alternate			
	channel rejection of 44dB at			
EE300	200 kHz offset.	Approved	EETD44	PR45
	The Tel-M Receiver shall	Appioved		11145
	have outband single tone			
	spurious response >= -			
	42dBm for CW interferers			
	ranging from 500kHz to 3GHz			
	with the following exceptions:			
	For Mode 1: External			
	spurious response rejection			
	shall be >= -52 dBm for 250			
	kHz to 350 kHz offset, >= -			
	50.0 dBm for 350 kHz to 450			
	kHz offset, >= -49.5 dBm for			
	450 kHz to 550 kHz offset, >=			
	-48 dBm for 550 kHz to 650			
	kHz offset, \geq -46.5 dBm for			
	650 kHz to 750 kHz offset, -			
EE202	45.5 dBm for 750 kHz to 850	Approved		DD45
EE303	kHz offset, >= -45 dBm for	Approved	EETD45	PR45

Arectronic	C Medtronic Neuromodulation Confidential	Document I NDHF1405-		Version 2.0	Page 72 of 75
Title: PTM3 Model 97745 RF DVT Report					
-4 kF 10 43 kF	50 kHz to 950 kHz offset, >= 4 dBm for 950 kHz to 1050 Hz offset, >= -43.5 dBm for 050 to 1150 kHz offset, >= - 3 dBm for 1150 kHz to 1250 Hz offset, >= -42.5 dBm for 250 to 1350 kHz offset				
EE304 ha	ne Tel-M Receiver shall ave AM rejection better >= - 3dBm for 1.5MHz offset.	Approved	EETD56		PR45
ha m 22	ne Tel-M Receiver shall ave effective over the air aximum Rx power >= - 2dBm with Rx attenuation etting.	Approved	EETD41		PR45
Th ha R: 55 As	The Tel-M Receiver shall ave a minimum monotonic SSI range of -109dBm to - 5 dBm for Clear Channel ssessment (CCA) (i.e. no Rx tenuation present).	Approved	EETD46		PR45
Th at ar M Cl (i.	Tel-M Receiver shall be ble to differentiate -109dBm nd -106 dBm across all ICS channels for Clear hannel Assessment (CCA) e. no Rx attenuation				
	esent). ne PTM3 Tel-M antenna	Approved	EETD46		PR45
sh EE308 8. Th a	nall have minimum gain of - <u>0 dBi in free space.</u> The Tel-M antenna shall have nominal impedance of 50 Thms, including off module	Approved	EETD50		PR45
EE309 m	atching.	Approved	EETD51		PR45
re	ne Tel-M antenna shall have turn loss less than -6 dB in ICS band.	Approved	EETD51		PR45

A Medtron	IC Medtronic Neuromodulation Confidential	Document N NDHF1405-		Version 2.0	Page 73 of 75
Title: PTM3 Model 97745 RF DVT Report					
	•				
			EETD41	, EETD42,	
			EETD43	, EETD44,	
				, EETD47, , EETD54,	
				, EETD54, , EETD56,	
				6, EETD167,	
				0, EETD171, 2, EETD173,	
	The PTM3 electrical design		EETD17	7, EETD179,	
	shall be fully functional within			0, EETD182,	
	the temperature range of 9+/- 2 degrees Celsius to 43+/-2			3, EETD184, 5, EETD186,	
EE311	degrees Celsius.	Approved	EETD18		PR73
	The PTM Bluetooth transceiver antenna shall				
	have a maximum return loss				
	of -6 dB for frequency range				
EE316	between 2.4GHz and 2.4835GHz.	Approved	EETD53		PR34
	The PTM3 system connector		LEIDOO		
	switched battery power shall				
	be able to provide 4.5W of power to an external				
	peripheral while in ACTIVE				
EE317	mode.	Approved	EETD18	6	PR33
	The PTM3 system connector switch 3.3V power shall be				
	able to provide 110mA of				
	current to an external peripheral while in ACTIVE				
EE318	mode.	Approved	EETD18	6	PR33
	The PTM Bluetooth antenna				
EE386	shall have minimum radiation efficiency of -10 dB	Approved	EETD52		
	The PTM Bluetooth				
	transceiver shall have min Rx				
EE387	sensitivity equal or less than - 80 dBm (GFSK modulation)	Approved	EETD54		
	The Tel-M Transmitter in	Αμριονέα			
	mode 1 shall have EVM				
EE388	<=8.4%.	Approved	EETD48	(S)	

A Medtronic

Document Number	Version	
NDHF1405-128215	2.0	

Page

74 of 75

Title: PTM3 Model 97745 RF DVT Report

	I	i	1	i i
	The PTM3 electrical design			
	shall provide a capacitive			
	touch panel power switch that			
	will be controlled by the			
EE557	microcontroller.	Approved	EETD178	
	The PTM3 electrical design			
	shall have an average battery			
	current drain <= 2.8mA in			
	STANDBY mode for a Li-Ion			
	battery voltage range of 3.0V			PR39,
EE558	to 4.2V.	Approved	EETD167	PR327
LL330	The PTM3 electrical design	Арріочец		11(327
	shall have an average battery current drain <= 180mA in			
	ACTIVE mode for a Li-lon			0000
	battery voltage range of 3.0V			PR39,
EE559	to 4.2V.	Approved	EETD167	PR327
	The PTM3 electrical design			
	shall have an average battery			
	current drain <= 125mA in			
	DIM mode for a AA battery			
EE560	voltage range of 2.3V to 3.2V.	Approved	EETD166	
	The PTM3 electrical design			
	shall have an average battery			
	current drain <= 110mA in			
	DIM mode for a Li-Ion battery			PR39,
EE561	voltage range of 3.0V to 4.2V.	Approved	EETD167	PR327
	The PTM3 electrical design			
	shall have an average battery			
	current drain <= 100mA in			
	DARK mode for a AA battery			
EE562	voltage range of 2.3V to 3.2V.	Approved	EETD166	
LLJOZ	The PTM3 electrical design	Аррготеа	LEIDIOO	
	shall have an average battery			
	current drain <= 100mA in			
	DARK mode for a Li-lon			
	battery voltage range of 3.0V			PR39,
EE563	to 4.2V.	Approved	EETD167	PR327
	When powered by the			
	external, mains-powered			
	supply, the PTM3 shall not			
	cause any harm to properly			
EE564	inserted AA batteries	Approved	EETD171	
	The PTM3 electrical design			
	shall have a max current			
	drain <=2.0A in ACTIVE RTM			
	MODE for a Li-ion battery			
	voltage of 3.3V while			
	maintaining a minimum 3.0V			
EE565	on the VBAT terminals on the	Approved	EETD186	PR327

A Medtron	C Medtronic Neuromodulation Confidential	Document Number NDHF1405-128215	Version 2.0	Page 75 of 75				
Title: PTM3 Model 97745 RF DVT Report								
	system connector.							