

TABLE OF CONTENTS

		Page
1.	Client Information	3
2.	Identification of the Equipment under Test	3
3.	Identification of Test Laboratory	3
4.	Conclusions	4
5.	Conducted emission measurements	5 – 7
6.	Radiated emission measurements	8 – 12
7.	Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25 GHz	13 - 15
8.	Additional graphs of EUT measurement (conducted)	16 - 17
9.	Photos of sample	18 – 19

1. Client information:

2. Identification of the equipment under test (EUT):

Equipment:	5,8 GHz Transceiver
Model:	SRIF-2002
Brand name:	-/-
Serial no.:	-/-
Manufacturer:	IK Elektronik GmbH, Hammerbrücke, Friedrichsgrüner Str. 11-13, 08262 Muldenhammer
Country of origin:	Germany
Rating:	5 V DC
Frequency range:	5,726.0866 MHz - 5,873.9134 MHz
Operational frequencies:	Channel 01: 5,726.0866 MHz Channel 64: 5,800.0000 MHz Channel 127: 5,873.9134 MHz
Type of modulation:	FSK
TX-cycle-time:	≥157 ms for long data telegram 14 ms for fast poll telegram
TX-on-time:	≤ 24.6 ms for long data telegram 3.9 ms for fast poll telegram
Class of emission:	1M40F1DXN
Antenna:	Rod antenna (PSTN3-5725), 6.5 cm
Receipt of EUT:	06 April 2016
Date of test:	06 April 2016 – 07 April 2016
3. Identification of Test Laboratory	
Company name:	PKM electronic GmbH
Address:	Ohmstrasse 1 84160 Frontenhausen, Germany
Laboratory Accreditation:	DAkkS D-PL-17379-01-00
FCC Test Site registration number	90870
Name for contact purposes:	Mr. Gerhard Raithel

4. CONCLUSIONS

From the measurement data obtained, the tested sample was considered to have **COMPLIED** with the requirements for the relevant clauses of Federal Communications Commission Rules for intentional radiators 47 CFR part 15 subpart C

- § 15.207 Conducted limits.
- § 15.209 Radiated emission limits; general requirements.
- § 15.249 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25 GHz.

The EUT is already certified under FCC ID LDS-SRIF2002. With the measurements performed it is to show that with the modifications the requirments are still fulfilled.

		electronic GmbH
25.04.2016 Erstellt am/prepared on	G. Raithel DiplIng. (FH), Head of Laboratory (Name/name / Stellung/position)	(Unterschrift/signature)
25.04.2016 Freigabe am/released on	K. Simon, Deputy Head of Laboratory (Name/name / Stellung/position)	Karl Sein an (Unterschrift/signature)

5. Conducted emission measurements

Test site

Measurements of conducted emission from EUT was made in the shielded chamber (Siemens DC-1 GHz).

Detector function selection and bandwidth

In conducted emissions measurement CISPR quasi-peak- and average-detector were used. The bandwidth of the detector of instrument is CISPR 9 kHz over the frequency range of 150 kHz to 30 MHz.

Frequency range to be scanned

For conducted emission measurements, the spectrum in the range of 150 kHz to 30 MHz was investigated.

Test conditions and configuration of EUT

The EUT was mounted on an evaluation board powered by an AC adaptor which was connected to the LISN. The serial port of the evaluation board was connected to a Laptop to control the EUT. With a second evaluation bord a RF connection was established with the EUT and a pingpong signal was sent, so that the transmitting and receiving function was active . With the second evaluation board connected to the Laptop the transmitted and recept data could be monitored to ensure correct function of the EUT so as to find the maximum conducted emission generated from EUT. During test the EUT was operated with rated Power (120 V \sim , 60 Hz). The EUT was placed on a 80 cm high non metallic table. Measurements on neutral (N)- and live (L1)-wire had been performed.

Applied standards

47 CFR part 15 subpart C, § 15.207 Conducted limits.

Measurements

Tested on N (RX and TX mode)

Frequency (MHz)	MaxPeak (dBµV)	QuasiPeak (dBµV)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Margin - AVG (dB)	Limit - AVG (dBµV)	Margin - QPK (dB)	Limit - QPK (dBµV)
0.298000	48.2	38.7	6.6	1000.0	9.000	43.7	50.3	21.6	60.3
0.302000	48.7	39.6	7.1	1000.0	9.000	43.1	50.2	20.6	60.2
0.326000	48.8	40.5	7.0	1000.0	9.000	42.5	49.6	19.0	59.6
0.334000	49.0	40.3	6.7	1000.0	9.000	42.6	49.4	19.1	59.4
0.346000	48.2	39.7	6.3	1000.0	9.000	42.8	49.1	19.4	59.1
0.350000	48.2	39.6	6.2	1000.0	9.000	42.8	49.0	19.4	59.0

Tested on L1 (RX and TX mode)

Frequency (MHz)	MaxPeak (dBµV)	QuasiPeak (dBµV)	Average (dBµV)	Meas. Time	Bandwidth (kHz)	Margin - AVG	Limit - AVG	Margin - QPK	Limit - QPK
				(ms)		(ab)	(αθμν)	(aB)	(αθμν)
0.162000	50.7	41.1	9.4	1000.0	9.000	45.9	55.4	24.2	65.4
0.166000	50.6	41.0	9.3	1000.0	9.000	45.9	55.2	24.1	65.2
0.194000	50.3	40.7	8.8	1000.0	9.000	45.1	53.9	23.2	63.9
0.210000	49.7	40.4	8.3	1000.0	9.000	44.9	53.2	22.8	63.2
0.226000	49.0	39.9	7.9	1000.0	9.000	44.7	52.6	22.7	62.6
0.242000	47.6	39.1	7.1	1000.0	9.000	45.0	52.0	22.9	62.0

Results

From the measurement data obtained, the tested sample was considered to have **COMPLIED** with the requirements for the conducted emission measurements according to 47 CFR part 15 subpart C, § 15.207.

Test equipment used:

Bezeichnung/	Hersteller/	Тур/	PKM-Ident-Nr./	Calibrated till
Kind of equipment	Manufacturer	Туре	PKM-ident no.	
EMI-Test-Receiver	Rohde & Schwarz	ESR7	11505	March 2017
Line impedance stabilisation network	Rohde&Schwarz	ESH2-Z5	10139	August 2017
Shielded room	Siemens	(3,7 x 3,4 x 2,1) m (I x w x h) DC – 1 GHz	10111	-/- (verified)

All measurements were made with measuring instruments, including any accessories that may affect test results, calibrated according to the requests of ISO/IEC 17025 according to which the test site is accredited from DAkkS. Measurement of conducted emissions was made with instruments conforming to American National Standard Specification, ANSI C63.4-2009.

Block diagram Conducted emissions

Measurement uncertainty

Parameter	PKM measurement uncertainty
Emissions conducted	±3.2 dB
Temperature	±0.72 °C
Humidity	±2.54 %
DC and low frequency voltages	±0.76 % (DC up to 40 V)
	±1.74 % (AC 50 Hz/60 Hz up to 400 V)

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT in the above mentioned way.

The measurements uncertainty was calculated in accordance with CISPR 16-4-2, NAMAS NIS 81: "The treatment of uncertainty in EMC measurement" and "Guide to the Expression of Uncertainty in Measurement (GUM)".

The measurement uncertainty was given with a confidence of 95 % (k = 2).

Photo(s) of test setup

6. Radiated spurious emission measurement.

Test site

Measurement of radiated emissions from EUT was made in the semi-anechoic chamber that has been found in compliance with Federal Communications Commissions (FCC) requirements of 47CFR 2.948 according to ANSI C63.4-2009 on March 11, 2015.

Detector function selection and bandwidth

In radiated emissions measurement, a field strength meter that have CISPR quasi-peak was used. The bandwidth of the detector of instrument is CISPR 9 kHz over the frequency range of 150 kHz to 30 MHz and CISPR 120 kHz over the frequency range of 30 to 1000 MHz, emissions to be measured are detected in CISPR quasi peak mode. In the frequency range above 1 GHz the used bandwidth was 1000 kHz and emissions to be measured are detected in peak and average mode using a spectrum analyser.

Antennas

Measurements were made using a calibrated loop antenna in the frequency range of 150 kHz to 30 MHz, a calibrated bilog antenna in the range of 30 to 1000 MHz to determine the emission characteristics of the EUT. Measurements were also made for both horizontal and vertical polarization.

The horizontal distance between the receiving antenna and the EUT was 3 meters.

In the range above 1 GHz measurements were made using a calibrated horn antennas to determine the emission characteristics of the EUT. Measurements were also made for both horizontal and vertical polarization. The horizontal distance between the receiving antenna and the EUT was 3 meters.

Frequency range to be scanned

For radiated emissions measurements, the spectrum in the range of 9 kHz to 29.4 GHz (5th harmonic) was investigated as the highest frequency generated is 5.8739134 GHz.

Test conditions and configuration of EUT

The EUT was mounted on an evaluation board powered by an AC adaptor. The serial port of the evaluation board was connected to a Laptop to control the EUT. With a second evaluation bord a RF connection was established with the EUT and a pingpong signal was sent, so that the transmitting and receiving function was active. With the second evaluation board connected to the Laptop the transmitted and recept data could be monitored to ensure correct function of the EUT so as to find the maximum conducted emission generated from EUT.

During test the EUT was operated with rated Power (120 V \sim , 60 Hz). The EUT was placed on a 80 cm high non metallic table. The EUT was placed on a 80 cm high non metallic 1 m diameter turntable. The EUT was rotated and the antenna height was varied between 1 m to 4 m to find the maximum RF energy generated from EUT. All measurments had been performed in all three axis of the EUT.

Applied standards

47 CFR part 15 subpart C, § 15.209 Radiated emission limits; general requirements.

Measurements

Frequency (MHz)	MaxPeak at 3 m (dBµV/m)	MaxPeak corrected (dBµV/m)	AVG (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Margin - AVG (dB)	Limit - AVG (dBµV/m)	Distance (m)
0.009-0.490	<80	<0		1000.0	9.000		67.6 – 20 x log(f [kHz])	300
0.490-1.705	<50	<10		1000.0	9.000		87.6 – 20 x log(f [kHz])	30
1.705-30	<50	<10		1000.0	9.000		29.5	30

Horizontal

Radiated 30 MHz – 1000 MHz (RX and TX mode)

Frequency (MHz)	MaxPeak (dBµV/m)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Pol	Distance (m)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
30-88	<34		1000.0	120.000	Н	3		40.0
176.96	39.1	38.1	1000.0	120.000	Н	3	5.4	43.5
216-960	<40		1000.0	120.000	Н	3		46.0
960-1000	<40		1000.0	120.000	Н	3		54.0

No significant emission found above the noise threshold, all peak emissions at least or more than 6 dB below the Quasipeak limit.

Frequency (MHz)	Peak (dBµV/m)	Average (dBµV/m)	Bandwidth (kHz)	Pol	Distance (m)	Margin - AVG (dB)	Limit - AVG (dBµV/m)
>1000	<45.0		1000	V	3	-	54.0

No significant emission found above the noise threshold, all peak emissions at least or more than 6 dB below the average limit.

Vertical Radiated 30 MHz – 1000 MHz (RX and TX mode)

[—] PK4_MAXH _____ Limit Line_20VHz-1000VHz_15.109

Frequency (MHz)	MaxPeak (dBµV/m)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Pol	Distance (m)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
30-88	<34		1000.0	120.000	V	3		40.0
176.96	32.7	30.9	1000.0	120.000	V	3	12.6	43.5
216-960	<40		1000.0	120.000	V	3		46.0
960-1000	<40		1000.0	120.000	V	3		54.0

No significant emission found above the noise threshold, all peak emissions at least or more than 6 dB below the Quasipeak limit.

Frequency (MHz)	Peak (dBµV/m)	Average (dBµV/m)	Bandwidth (kHz)	Pol	Distance (m)	Margin - AVG (dB)	Limit - AVG (dBµV/m)
>1000	<45.0		1000	V	3		54.0

No significant emission found above the noise threshold, all peak emissions at least or more than 6 dB below the average limit.

Radiated 1GHz – 29.4 GHz Horizontal/vertical channel 01 (RX and TX mode)

Frequency	Detector	Pol	Reading	correction	Duty Cycle	Test	Field-	Limit	Margin
(MHZ)			(dBhA)	(dB/m)	correction (dB)	Distance (m)	dBµV/m)	(dBµV/m)	(dB)
5400.24	peak	н	19.0	33.7	-	3	52.7	74	21.3
5400.24	average	н	19.0	33.7	-11.1	3	41.6	54	12.4
10800.50	peak	Н	0.9	38.2	-	3	39.1	74	34.9
10800.50	average	Н	0.9	38.2	-11.1	3	28.0	54	26.0
16200.74	peak	н	<2.0	38.2	-	3	<40.2	74	>34.0
16200.74	average	н	<2.0	38.2	-11.1	3	<29.1	54	>25.1

channel 64 (RX and TX mode)

Frequency (MHz)	Detector	Pol	Reading (dBµV)	correction factor (dB/m)	Duty Cycle correction (dB)	Test Distance (m)	Field- strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5474.28	peak	Н	18.1	33.8	-	3	51.9	74	22.1
5474.28	average	Н	18.1	33.8	-11.1	3	40.8	54	13.2
10948,56	peak	Н	0.5	38.4	-	3	38.9	74	36.1
10948,56	average	Н	0.5	38.4	-11.1	3	27.8	54	26.2
16422,84	peak	Н	<2.0	38.7	-	3	<40.7	74	>33.3
16422,84	average	Н	<2.0	38.7	-11.1	3	<29.6	54	>24.4

channel 127 (RX and TX mode)

Frequency (MHz)	Detector	Pol	Reading (dBµV)	correction factor (dB/m)	Duty Cycle correction (dB)	Test Distance (m)	Field- strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5548.07	peak	Н	18.7	33.9	-	3	52.6	74	21.6
5548.07	average	Н	18.7	33.9	-11.1	3	41.5	54	12.5
1109.614	peak	Н	-0.4	38.5	-	3	38.1	74	35.9
1109.614	average	Н	-0.4	38.5	-11.1	3	27.0	54	27.0
16644.21	peak	Н	<2.0	39.5	-	3	<41.5	74	>32.5
16644.21	average	Н	<2.0	39.5	-11.1	3	<30.4	54	>23.6

The duty cycle is declared by client with < 28 % (-11.1 dB)

Results

From the measurement data obtained, the tested sample was considered to have **COMPLIED** with the requirements for the radiated emission measurements.

Test equipment used:

Bezeichnung/	Hersteller/	Тур/	PKM-Ident-Nr./	Calibrated till
Kind of equipment	Manufacturer	Туре	PKM-ident no.	
EMI-Test-Receiver	Rohde & Schwarz	ESR7	11505	March 2017
Signal Spectrum Analyzer 2Hz -	Rohde & Schwarz	FSW 26	11571	August 2016
26,5 GHz				
Harmonic Mixer 26.5 GHz – 40	Rohde & Schwarz	FS-Z30	10779	March 2017
GHz				
Antenna	EMCO	6502	10546	October 2016
Antenna	Schaffner	CBL6111C	10977	June 2016
Antenna	Electro Metric	RGA50/60	10273	October 2016
Breitband Hornantenne 15 - 40	Schaffner	BBHA 9170	11580	December 2016
GHz				

All measurements were made with measuring instruments, including any accessories that may affect test results, calibrated according to the requests of ISO/IEC 17025 according to which the test site is accredited from DAkkS. Measurement of radiated emissions was made with instruments conforming to American National Standard Specification, ANSI C63.4-2009.

Block diagram Radiated emissions

Measurement uncertainty

Parameter	PKM measurement uncertainty
Emissions radiated	±4.2 dB
Temperature	±0.72 °C
Humidity	±2.54 %
DC and low frequency voltages	±0.76 % (DC up to 40 V)
	±1.74 % (AC 50 Hz/60 Hz up to 400 V)

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT in the above mentioned way.

The measurements uncertainty was calculated in accordance with CISPR 16-4-2, NAMAS NIS 81: "The treatment of uncertainty in EMC measurement" and "Guide to the Expression of Uncertainty in Measurement (GUM)".

The measurement uncertainty was given with a confidence of 95 % (k = 2).

Photo(s) of test setup

tested frequency range 30 MHz - 1000 MHz

tested frequency range >1 GHz

7. Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25 GHz.

Test site

Measurement of radiated emissions from EUT was made in the semi-anechoic chamber that has been found in compliance with Federal Communications Commissions (FCC) requirements of 47CFR 2.948 according to ANSI C63.4-2009 on March 11, 2015.

Detector function selection and bandwidth

In the frequency range above 1 GHz the used bandwidth was 100 kHz and emissions to be measured are detected in peak and average mode using a spectrum analyser.

Antennas

In the range above 1 GHz measurements were made using a calibrated horn antennas to determine the emission characteristics of the EUT. Measurements were also made for both horizontal and vertical polarization. The horizontal distance between the receiving antenna and the EUT was 3 meters.

Frequency range to be scanned

For radiated emissions measurements, the spectrum in the range of 1 GHz to 29.4 GHz (5th harmonic) was investigated as the highest frequency generated is 5.8739134 GHz.

Test conditions and configuration of EUT

The EUT was mounted on an evaluation board powered by an AC adaptor. The serial port of the evaluation board was connected to a Laptop to control the EUT. With a second evaluation bord a RF connection was established with the EUT and a pingpong signal was sent, so that the transmitting and receiving function was active. With the second evaluation board connected to the Laptop the transmitted and recept data could be monitored to ensure correct function of the EUT so as to find the maximum radiated emission generated from EUT.

During test the EUT was operated with rated Power (120 V \sim , 60 Hz). The EUT was placed on a 80 cm high non metallic 1 m diameter turntable. The EUT was rotated and the antenna height was varied between 1 m to 4 m to find the maximum RF energy generated from EUT.

Applied standards

47 CFR part 15 subpart C, § 15.249 Radiated emission limits; general requirements.

Measurements

Radiated 1 GHz – 29.4 GHz Horizontal/vertical

TX mode channel 01

Frequency (MHz)	Detector	Pol	Reading (dBµV)	correction factor (dB/m)	Duty Cycle correction (dB)	Test Distance (m)	Field- strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5726.087	peak	V	69.3	33.8	-	3	103.1	114	10.9
5726.087	average	V	69.3	33.8	-11.1	3	92.0	94	2.0
11452.173	peak	Н	9.8	38.6	-	3	48.4	74	25.6
11452.173	average	Н	9.8	38.6	-11.1	3	37.3	54	16.7
17178.259	peak	Н	4.7	42.4	-	3	47.1	74	26.9
17178.259	average	Н	4.7	42.4	-11.1	3	36.0	54	18.0

TX mode channel 64

Frequency (MHz)	Detector	Pol	Reading (dBµV)	correction factor (dB/m)	Duty Cycle correction (dB)	Test Distance (m)	Field- strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5800.000	peak	V	68.8	33.9	-	3	102.7	114	11.3
5800.000	average	V	68.8	33.9	-11.1	3	91.6	94	2.4
11600.000	peak	Н	9.1	38.7	-	3	47.8	74	26.2
11600.000	average	Н	9.1	38.7	-11.1	3	36.7	54	17.3
17400.000	peak	Н	3.2	43.9	-	3	47.1	74	26.9
17400.000	average	н	3.2	43.9	-11.1	3	36.0	54	18.0

TX mode channel 127

Frequency (MHz)	Detector	Pol	Reading (dBµV)	correction factor (dB/m)	Duty Cycle correction (dB)	Test Distance (m)	Field- strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5873.913	peak	V	70.4	33.9	-	3	104.3	114	9.7
5873.913	average	V	70.4	33.9	-11.1	3	93.2	94	0.8
11747.826	peak	Н	13.4	38.9	-	3	52.3	74	21.7
11747.826	average	Н	13.4	38.9	-11.1	3	41.2	54	12.8
17621.739	peak	Н	2.1	45.8	-	3	47.9	74	24.1
17621.739	average	Н	2.1	45.8	-11.1	3	36.8	54	17.2

The duty cycle is declared by client with \leq 28 % (-11.1 dB)

Results

From the measurement data obtained, the tested sample was considered to have **COMPLIED** with the requirements for the radiated emission measurements.

Test equipment used:

Bezeichnung/	Hersteller/	Тур/	PKM-Ident-Nr./	Calibrated till
Kind of equipment	Manufacturer	Туре	PKM-ident no.	
EMI-Test-Receiver	Rohde & Schwarz	ESR7	11505	March 2017
Signal Spectrum Analyzer 2Hz - 26,5 GHz	Rohde & Schwarz	FSW 26	11571	August 2016
Harmonic Mixer 26.5 GHz – 40 GHz	Rohde & Schwarz	FS-Z30	10779	March 2017
Antenna	Electro Metric	RGA50/60	10273	October 2016
Breitband Hornantenne 15 - 40 GHz	Schaffner	BBHA 9170	11580	December 2016

All measurements were made with measuring instruments, including any accessories that may affect test results, calibrated according to the requests of ISO/IEC 17025 according to which the test site is accredited from DAkkS. Measurement of radiated emissions was made with instruments conforming to American National Standard Specification, ANSI C63.10-2009.

Block diagram Radiated emissions

Measurement uncertainty

Parameter	PKM measurement uncertainty
Emissions radiated	±4.2 dB
Temperature	±0.72 °C
Humidity	±2.54 %
DC and low frequency voltages	±0.76 % (DC up to 40 V)
	±1.74 % (AC 50 Hz/60 Hz up to 400 V)

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT in the above mentioned way.

The measurements uncertainty was calculated in accordance with CISPR 16-4-2, NAMAS NIS 81: "The treatment of uncertainty in EMC measurement" and "Guide to the Expression of Uncertainty in Measurement (GUM)".

The measurement uncertainty was given with a confidence of 95 % (k = 2).

Photo(s) of test setup

8. Additional graphs of EUT measurement (conducted)

Channel 1 modulated/unmodulated

Date: 7.APR.2016 09:39:53

Channel 1 modulated - bandwidth

Date: 6.APR.2016 14:51:38

Channel 64 modulated/unmodulated

MultiView	Spectrum	▽
Ref Level 20.	0 dBm	
1 Frequency S	Prevent Sector (Sector Sector Se	lax = 2Pk View
	M1[1] 5	8.51 dBm 5.80000000 GHz
10 dBm-	<u>m</u>	
	M	
0 dBm		
-10 dBm		
-20 dBm-		
20 dbm		
-50 0811		
-40 dBm		
-50 dBm		
	man man	
-60 dBm		ton
~~~		
-70 dBm		-
CE 5.8 GHz	1001 pts 500.0 kHz/	Span 5.0 MHz
Gric	A compared of the compared of	07.04.2016
	measuring	09:33:25

Date: 7.APR.2016 09:33:25



## Channel 64 modulated - bandwidth



Date: 6 APR 2016 14:54:02

#### Channel 127 modulated/unmodulated



Date: 7.APR.2016 09:42:58

## Channel 127 modulated - bandwidth

MultiView	Spectr	um								
Ref Level 2 Att	0.00 dBm 01 18 dB SV	ffset 12.00 NT 140 us (~7.0	ns) = RBW	30 kHz 100 kHz Mode Auto	FFT					
1 Occupied E	Bandwidth								1Rm Max	
				~ ^				M1[1]	-53.25 dBm	
				1W	La				5.87215356 GH	
10 d8m-	-		-	$\wedge$					-	
				T	45					
0 dBm				Y						
o dom					1					
				m		M				
-10 dBm-	-		-							
-20 dBm			/							
			01			5				
			Im			V				
-30 dBm			1			1			-	
			1				M			
-+0 dBm		m An	1				1 to and		-	
	200	1~ ~					~ ~ ~	10		
Λ	NV	mun						1 m	T A	
50 dBm			-						ma Jund	
-60 dBm-	-		_						_	
-70 dBm-									S2 *	
+S1									12351	
CF 5.8739134 GHz 100			01 pts	35	351.97 kHz/		Span 3.51969 MHz			
2 Marker Ta	ble									
Type   R	Ref Trc X-Value			Y-Value	Function			Function Result		
M1	1	1 5.87215355 GHz		-53.25 dBm						
T1	1 5.87364617 GHz		GHz	2.44 dBm	Occ Bw	Occ Bw 5			548.523116883 kHz	
T2	1	5.87419469	GHz	3.33 dBm						
	T T						Measuring	NAME OF TAXABLE IN CONTRACTOR OF TAXABLE INTENTING TAXABLE INTENTING OF TAXABLE INTENTE OF TAXABLE INTENTE INTENTE INTENTE OF TAXABLE INTENTE INTENTE OF TAXABLE INTENTE INTENTE OF TAXABLE INTENTE OF TAXABLE INTENTE INTENT	06.04.2016	
									14.37:00	

Date: 6.APR.2016 14:57:00



## 7. Photos of sample









# End of test report