

Radio Test Report

(Radiated Spurious Emissions Only)

For

WiFi module: WP-WIFI6-A, WP-WIFI6-B

Supports

2.4 GHz / 5 GHz 802.11 a/ac/ax/b/g/n Wi-Fi radio

In

Host systems: IR1821-K9, IR1831-K9, IR1833-K9, IR1835-K9

FCC ID: LDKWPWIFI6 IC: 2461N-WPWIFI6

2400-2483.5 MHz

Against the following Specifications:

47 CFR 15.247

47 CFR 15.205

47 CFR 15.209

RSS-247 issue 2

RSS-Gen issue 5

Cisco Systems

170 West Tasman Drive San Jose, CA 95134

Page No: 1 of 44

Author:	Laft
Tested By: Title: Test Engineers	Vincent Chiu
	Farida Rahmanzai
	Danh Le
	Dailli Le
Approved By:	N 1 L
Title: Compliance Manager	Hard h
	Howard Ji
Version:	1.0

This report replaces any previously entered test report under EDCS –21673982. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. Test Report Template EDCS# 703456.

SECTION 1: OVERVIEW4
Page No: 2 of 44

1.1 Test Summary	4
SECTION 2: ASSESSMENT INFORMATION	5
2.1 General	5
2.2 Units of Measurement	5
2.3 Date of testing (initial sample receipt date to last date of testing)	7
2.4 Report Issue Date	7
2.5 TESTING FACILITIES	
2.6 EQUIPMENT ASSESSED (EUT)	
2.7 EUT DESCRIPTION	8
SECTION 3: RESULT SUMMARY	11
3.1 Results Summary Table	11
SECTION 4: SAMPLE DETAILS	12
4.1 Sample Details	12
APPENDIX A: RADIATED SPURIOUS EMISSION	13
A.1: SETUP DIAGRAM	13
A.2: RADIATED SPURIOUS EMISSIONS TEST REQUIREMENTS & LIMITS	
A.2.1: Limit Conversion (power to field strength)	
A.2.2: Test Procedure	
A.2.3: TX Radiated Spurious Emissions Graphical Data Results	
A.3: RECEIVER SPURIOUS EMISSIONS	
A.3.1: Rx Radiated Spurious Emissions Graphical Data Results	
A.4 AC CONDUCTED EMISSIONS	
A.4.1: AC Line conducted emissions results	
APPENDIX B: LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST	37
APPENDIX C: PHOTOGRAPHS OF TEST SETUPS	39
APPENDIX D: ABBREVIATION KEY AND DEFINITIONS	40
APPENDIX E: SOFTWARE USED TO PERFORM TESTING	41
APPENDIX F: TEST PROCEDURES	42
APPENDIX G: SCOPE OF ACCREDITATION (A2LA CERTIFICATE NUMBER 1178-01)	43
APPENDIX H: TEST ASSESSMENT PLAN	44
ADDENDIY I. WODST CASE HISTIFICATION	44

Section 1: Overview

1.1 Test Summary

The samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

Specifications	
47 CFR 15.247	
47 CFR 15.205	
47 CFR 15.209	
RSS-247 Issue 2	
RSS-Gen Issue 5	

Radio Test Report No: EDCS - 21673982

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Radio Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature 15°C to 35°C (59°F to 95°F)

Atmospheric Pressure 860mbar to 1060mbar (25.4" to 31.3")

Humidity 10% to 75*%

1.All DC testing was performed at one or more of the following supply voltages:

12VDC (The supply voltage range supports 12V-36VDC)

2.2 Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

 $Emission \ level \ [dBuV] = Indicated \ voltage \ level \ [dBuV] + Cable \ Loss \ [dB] + Other \ correction \ factors \ [dB]$

The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss...

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Measurement Uncertainty Values

voltage and power measurements	± 2 dB
conducted EIRP measurements	± 1.4 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7
temperature measurements	± 0.54°.
humidity measurements	± 2.3%
DC and low frequency measurements	± 2.5%.

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

2.3 Date of testing (initial sample receipt date to last date of testing)

30-March-2021 to 09-April-2021

2.4 Report Issue Date

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled

2.5 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc. 425 West Tasman Drive (Building 7) San Jose, CA 95134 USA

Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134 USA

Registration Numbers for ISED (Innovation, Science and Economic Development Canada)

Registration Numbers for ISED (D (Innovation, Science and Economic Development Canada)		
Cisco System Site	Address	Site Identifier	
Building P, 10m Chamber	125 West Tasman Dr	Company #: 2461N-2	
	San Jose, CA 95134		
	United States		
Building P, 5m Chamber	125 West Tasman Dr	Company #: 2461N-1	
	San Jose, CA 95134		
	United States		
Building 7, 5m Chamber	425 E. Tasman Drive	Company #: 2461N-3	
	San Jose, California 95134		
	United States		

Test Engineers

Farida Rahmanzai, Vincent Chiu, Danh Le

Radio Test Report No: EDCS - 21673982

2.6 Equipment Assessed (EUT)

Radio Module: WP-WIFI6-B Host System: IR1835-K9

2.7 EUT Description

WP-WIFI6 is Wifi 802.11ax Wi-Fi 6 access point module for industrial IoT routing and gateway platforms which is a field replaceable Wifi interface module designed for IR1800 series platform. It includes a 2x2 MIMO 802.11ax 2.4 GHz radio and a 2x2 MIMO 802.11ax 5 GHz radio

IR1835-K9 is the next generation of IR829, based on IOS XE, with advanced features such as modular WiFi, modular Cellular/WAN, CAN Bus, Dead Reckoning etc.

The product has the following interfaces:

4 GE LAN Ports

1 GE WAN / 1 Fiber Port (Alternate to GE Copper port)

1 RS-232 Serial

1 RS232/RS485

1 Type-A USB for Storage

1 GPS Slot1.6 EUT Description

1 WIFI Slot

1 mSATA Slot

2 Cellular PIM Slots [Main Aux and GPS (Only on Sierra Wireless Modules)]

Alarm Port

Micro-USB

DC Power input (DC Min/Max 9-32)

WiFi module Model/PID Differences

The WP-WIFI6 Access Point module is designed for use in many countries with varying regulatory requirements. The WP-WIFI6-A and WP-WIFI6-B, both have the same identical components, electronics circuitries, PCB layout and enclosure. The WP-WIFI6-A module is configured with the Canada country code and the WP-WIFI6-B module is configured with US country code. The US and Canada country codes are configured according to the test results demonstrated compliance in the RF conducted emissions FCC/RSS test reports. The difference between the 2 PIDs (WP-WIFI6-A and WP-WIFI6-B) is the UNII-1 (5150MHz – 5250MHz) band is not supported in the WP-WIFI6-A PID.

Host system Model/PID differences

IR1821-K9

IR1831-K9

IR1833-K9

IR1835-K9 ----- System Tested

The following host models are in the same IR18xx family. IR1835-K9 is the highly populated host model out of all 4 models and selected model for testing. The radio WP-WiFi6-E module in these host has the same identical components, electronics circuitries and PCB layout. Below table summarizes the differences between all four host models.

Antenna Specification

The following antennas are supported by this product series. The data included in this report represent the worst-case data for all antennas.

Frequency	Part Number	Antenna Type	Peak Antenna Gain	>30 degree 5 GHz Antenna Gain (dBi)
0.4/5	W-ANTM2050D-RPSMA=	Omnidirectional swivel stick dipole	2/4	0
2.4/5	W-ANTM2-O-2-RPSMA	Omnidirectional	4/4	0
GHz	ANT-7-5G4WL2G1-O=	7-in-1 vehicle mount omnidirectional	8/8	3
OTIZ	5G-ANTM-O-4-B=	9-in-1 vehicle mount omnidirectional	8/8	3

Section 3: Result Summary

3.1 Results Summary Table

Radiated Emissions (General requirements)

Basic Standard	Technical Requirements / Details	Result
FCC 15.209	TX Spurious Emissions: Except as provided elsewhere in this subpart, the	
FCC 15.205	emissions from an intentional radiator shall not exceed the field strength	Pass
FCC 15.247	levels specified in the filed strength limits table in this section.	
(d)	Unwanted emissions falling within the restricted bands, as defined in FCC	
	15.205 (a) and RSS-Gen 8.10 must also comply with the radiated emission	
RSS-Gen	limits specified in FCC 15.209 (a) and RSS-Gen 8.9	

Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing. Please also refer to the "Justification for worst Case test Configuration" section of this report for further details on the selection of EUT samples.

4.1 Sample Details

Sample Number	Equipment Details	Serial Number	CISCO Part Number
S01	WP-WiFi6-B Single Band Radio in IR1835 Host system with 2.4Ghz Wi-Fi radio actives	Module: FOC24490FG7 Host: FCW2443P0DH	Module: 68-103267-01 13
S02	External Patch antenna (8 dBi Gain)		5G-ANTM-O-4-B=

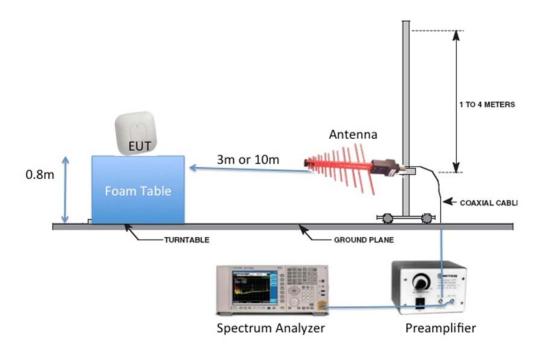
Note: The host system is powered by 12VDC. The host supply voltage range supports 12V-36VDC.

4.2 System Details

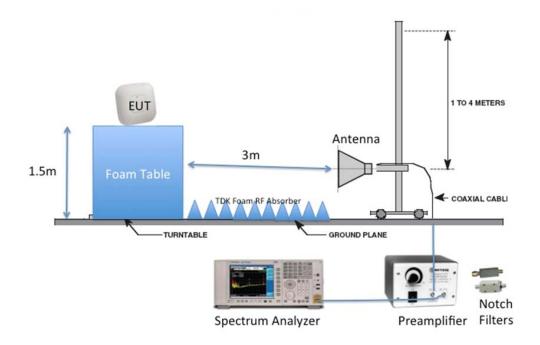
System # Description		Samples
1	WP-WiFi6-B Dual Band Radio in IR1835 Host system with 2.4GHz Wi-Fi radio actives + ext. PS + ext. 8 dBi patch ant.	S01, S02

4.3 Mode of Operation Details

Mode (Radio band support, # of active antenna)	Wi-Fi Mode	Modulation	Data Rate
Transmit (dual antenna)	802.11HE20 (2.4GHz)	MIMO-OFDMA	M0h1
Receiver (dual antenna)	802.11HE20 (2.4GHz)	MIMO-OFDMA	M0h1


Note: All testing was performed at 19dBm per antenna port which is maximum supported power level. The testing at maximum supported power will cover all other power levels and other supported modes

Appendix A: Radiated Spurious Emission


A.1: Setup Diagram

Radiated Emission Setup Diagram-Below 1G (Preamp used is optional)

Radiated Emission Setup Diagram-Above 1G

A.2: Radiated Spurious Emissions Test Requirements & Limits

Emissions on frequency or frequencies which are outside the necessary bandwidth and level of which may be reduced without effecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands Limits

15.247 (d) In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

15.205 (b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

	FCC Restricted Bands Table									
MHz	MHz	MHz	GHz							
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15							
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46							
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75							
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5							
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2							
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5							
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7							
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4							
6.31175-6.31225	123-138	2200-2300	14.47-14.5							
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2							
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4							
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12							
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0							
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8							
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5							
12.57675-12.57725	322-335.4	3600-4400	Above 38.6							
13.36-13.41			_							

RSS-Gen 8.10

- (**b**) Unwanted emissions that fall into restricted bands of Table 7 shall comply with the limits specified in table 5 (general field strength limits at frequencies above 30 MHz) and table 6 (general field strength limits at frequencies below 30 MHz).
- (c) Unwanted emissions that do not fall within the restricted frequency bands of Table 7 comply either with the limits specified in the applicable RSS or with those specified in table 5 and table 6.

Table 7 Restricted Bands

Table / Restricted Bands										
MHz	MHz	GHz								
0.090-0.110	74.8-75.2	9.0-9.2								
2.1735-2.1905	108-138	9.3-9.5								
3.020-3.026	156.52475-156.52525	10.6-12.7								
4.125-4.128	156.7-156.9	13.25-13.4								
4.17725-4.17775	240-285	14.47-14.5								
4.20725-4.20775	322-335.4	15.35-16.2								
5.677-5.683	399.9-410	17.7-21.4								
6.215-6.218	608-614	22.01-23.12								
6.26775-6.26825	960-1427	23.6-24.0								
6.31175-6.31225	1435-1626.5	31.2-31.8								
8.291-8.294	1645.5-1646.5	36.43-36.5								
8.362-8.366	1660-1710	Above 38.6								
8.37625-8.38675	1718.8-1722.2	*								
8.41425-8.41475	2200-2300									
12.29-12.293	2310-2390									
12.51975-12.52025	2655-2900									
12.57675-12.57725	3260-3267									
13.36-13.41	3332-3339									
16.42-16.423	3345.8-3358									
16.69475-16.69525	3500-4400									
16.80425-16.80475	4500-5150									
25.5-25.67	5350-5460									
37.5-38.25	7250-7750									
73-74.6	8025-8500	_								

FCC 15.209

The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the table specified in the table in FCC§15.209(a).

RSS-Gen 8.9:

Except where otherwise indicated in the applicable RSS, radiated emissions shall comply with the field strength limits shown in table below. Additionally, the level of any transmitter unwanted emission shall not exceed the level of the transmitter's fundamental emission.

General Field Strength Limits Table									
Frequency (MHz)	Field strength (uV/meter)	Field strength (dBuV/meter)	Measurement distance (meters)						
30-88	100**	40 Qp	3						
88-216	150**	43.5 Qp	3						
216-960	200**	46 Qp	3						
Above 960	500	54 Av / 74 Pk	3						

The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

A.2.1: Limit Conversion (power to field strength)

The field strength limit in $dB\mu V$ can be converted from power (logarithmic) by using the field strength (linear) approach formula as follows:

$$V/m = \frac{\sqrt{30 \times Pt \times gt}}{d}$$

where: **pt** = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unit less),

E = electric field strength in V/m,

d = measurement distance in meters (m).

From the equation above, unit conversion from log => linear with a known power limit of -27 dBm.

(1) Conversion from dBm to Watt

$$dBm to Watts W = 10((dBm - 30)/10)$$

$$P(W) = 10^{(-27 - 120)/20}$$
= 10 -5.7
= 1.995 x 10 -6

(2) Convert from Watt to field strength

a. Convert from Watt to V/m @ 3m distance

V/m =
$$\frac{\sqrt{30 \times Pt \times gt}}{3}$$

= $\frac{\sqrt{30 \times 0.0000001995 \times 1}}{3}$
= 0.00257

b. Convert field strength to power density (V/m to dBµV/m)

$$dB\mu V/m = 20 \log (V/m) + 120$$

= 68.2

A.2.2: Test Procedure

Ref. ANSI C63.10-2013 section 6.5 & 6.6, Cispr16-1-1

ANSI C63.10: 2013 section 4.1.4 / section 12.7.5 (Quasi-Peak), section 12.7.6 (peak), section 12.7.7.3 (average)

Test parameters

- (i) Span = Entire frequency range or segment if necessary.
- (ii) Reference Level = 80 dBuV
- (iii) RBW = 100 kHz (less than or equal to 1 GHz); 1 MHz (above 1 GHz)
- (iv) VBW \geq 3 x RBW
- (v) Detector = Peak & Quasi-Peak (frequency range 30 MHz to 1 GHz);

Peak & Average (frequency range above 1 GHz); Change VBW to 10 Hz for average measurement

(vi) Sweep Time = Couple

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

30MHz - 18GHz,

Save plots: Peak plot (Vertical and Horizontal) @3m

Above 18 GHz,

Save plots: Peak plot (Vertical and Horizontal) @1m

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

Note: The data displayed on the plots detailed in the graphical test results section were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements.

A.2.3: TX Radiated Spurious Emissions Graphical Data Results

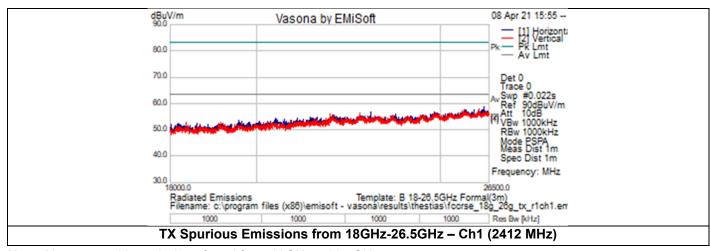
Subtest Date:	12-April-2021							
Engineer	Vincent Chiu Farida Rahman Danh Le	zai						
Lab Information	Building 7, 5m Anechoic							
Subtest Title	Transmitter Spu	ırious Em	issions					
Frequency Range	30MHz - 1GHz							
Comments on the above Test Results	802.11HE20, T	x Channe	l 1 (2412	2 MHz)			
dBuV/m 70.0					12 Apr 21	10:51		
60.0					— [2] — [2] - [2]	Horizonti Vertical k Lmt bug		
50.0					Det PO	S IAXH).185s		
30.0	M. C. Williams	. CONTRACTOR CONTRACTOR	and the last last last last last last last last	and the same		dBuV/m B 0kHz		
10.0	ACT CONTRACT				Mode P Meas D Spec D	S ist 3m ist 3m		
0.0 30.00	100.00				Frequency 1000.00	y: MHZ		
Filename: d:\backup	-test-data\danh\thestia	s\foc\formal\t		_2g1r1a	nt8dbi_rxch Res Bw (kH			
Title: TX Spurio	ıs Emissions fr	om 30MF	lz-1GHz	– Ch		•		
Frequency (dBuV) Cab Loss (dB) AF Le (dB)	vel uV) Detector	Polarity	Height (cm)		Limit (dBuV)	Margin	Results Pass / Fail	Comments
38.9985 8.9 0.63 14.6 24	13 Quasi-Pk	V	270	22	40	-15.87	Pass	
951.7645 4.95 3.12 22.88 30	94 Quasi-Pk	Н	149	248	46	-15.06	Pass	

_	
	31-Mar-2021

Engineer	Vincent Chiu Farida Rahmar	ızai									
	Danh Le										
Lab Information Building 7, 5m Anechoic											
Subtest Title Transmitter Spurious Emissions											
Frequency Range 30MHz - 1GHz											
Comments on the above Test Results 802.11HE20, Tx Channel 6 (2437 MHz)											
dBuV/m 70.0											
60.0					$=$ $\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$	Horizonta Vertical k Lmt					
50.0					+ Del	mal mal					
40.0						AXH .1s					
30.0			AND DESCRIPTION OF		[2] Ref 70 Att 0di VBw 30						
20.0	amount of the second	And the Party of t			RBw 10 Mode P Meas D	0kHz					
10.0				+++	Spec Di	st 3m					
0.0					Frequency	y: MHz					
30.00 Radiated Emissio Filename: d:\back	100.00 ns up-test-data\danh\thestia	Template: F	RSE 15.209 forse30_1g2		1000.00 Hz t8dbitxch6f.	emi					
		10	•		Res Bw (kH:	•					
Litle: TX Spuri	ous Emissions f	om 30MF	IZ-1GHZ	- Che	6 (2437	VIHZ)					
	evel BuV) Detector	Polarity	Height (cm)		Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments			
42.79 14.63 0.66 11.77 2	7.06 Quasi-Pk	V	100	322	40	-12.94	Pass				
934.22325 5.47 3.08 22.8 3	1.35 Quasi-Pk	Н	191	365	46	-14.65	Pass				

Subtest Date: 31-Mar-2021

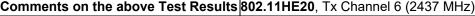
Engineer	Vincent Chiu								
	Farida Rahmanzai								
	Danh Le								
Lab Information	Building 7, 5m Anechoic	Building 7, 5m Anechoic							
Subtest Title	Transmitter Spurious Emis	Transmitter Spurious Emissions							
Frequency Range	30MHz - 1GHz	30MHz - 1GHz							
Comments on the above Test Results 802.11HE20, Tx Channel 11 (2462 MHz)									
dBuV/m 70.0	Vasona by EMiSoft		31 Mar 21	20:08					
60.0			$=\frac{11}{2}$	Horizonta Vertical k Lmt					
50.0			+ De Op+ For	bug rmal					
40.0			Det PO	S IAXH).1s					
30.0		NAME OF TAXABLE PARTY.		dBuV/m					
- Charles	The state of the s		VBw 30 RBw 10	0kHz					
20.0	O hay be		Mode B Meas D	S ist 3m					
10.0			Spec Di Frequence						
0.0	100.00		1000.00	y. mi i2					
Radiated Emissis Filename: d:\bac	ons Template: R ckup-test-data\danh\thestias\foo\formal\t	SE 15.209 30m-1G	Hz t8dbitxch11	f.emi					
	10		Res Bw [kH						
Title: TX Spuri	ious Emissions from 30MH	z-1GHz – Ch1	1 (2462	MHz)					
220 1111	Level dBuV) Detector Polarity	Height Azt (cm) (Deg)	Limit (dBuV)	Margin	Results Pass / Fail	Comments			
		—	1						
42.564 14.14 0.66 11.95 2	26.75 Quasi-Pk V	106 325	40	-13.25	Pass				

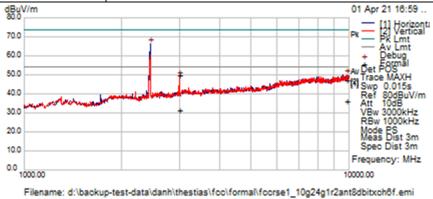


Subtest Da	te:			01-	April-2021 to	08-April	-2021					
Engineer					cent Chiu							
					ida Rahman	zai						
l ala luc t a	-4!				h Le	A l : .						
Lab Inform					ding 7, 5m /		• • • • • • • •					
Subtest Tit				-	nsmitter Spu		issions					
Frequency					Hz – 26.5GH							
Comments	on the a			ults 802	.11HE20, T	x Channe	11 (2412	2 MHz	01 Apr 21	18.17		
		dBuV/m							— [1]			
		70.0							PX = 2	Horizonti Vertical Lmt		
		60.0			Ť			+++		Lmt bug mal		
		50.0				Ť		-	Trace N	IAXH		
		40.0	· March	a landon de de la constante	AND DESCRIPTION OF THE PARTY OF	- Control State of Street			Ref 80	015s dBuV/m dB		
		30.0		A Comment		-		+++	VBw 30 RBw 10	00kHz 00kHz		
		20.0						+++	Mode B Meas B	S ist 3m		
		10.0						+++	Spec D Frequence			
		0.0	00						10000.00			
		File	name: d:\	backup-test-d	data\danh\thestia		foorse1_10	g24g1r2a				
		T	Y Snuri	ous Emi	ssions fron	1000 n 1GHz-1	ngHz =	Ch1 (Res Bw (KH			
	1 1	Cab	Opun	Ous Ellin		10112		J (2			Results	
Frequency	1	Loss	AF	Level	Detector	Polarity	Height		Limit	Margin		Comments
(MHz)	(dBuV)	(dB)	(dB)	(dBuV)	20100101	· Clairty	(cm)	(Deg)	(dBuV)	(dB)	Fail	
					- ·		400					Eundamenta
2400.625	63.71	5.56	-7.43	61.84	Peak	Н	100	306			Ignored	runuamenta
2400.625 3801.25	63.71 33.4	5.56 7.21	-7.43 -6.38	61.84 34.23	Peak Average	V	173	306	54	-19.77	Ignored	runuamenta
	1										Ignored	rundamenta
3801.25	33.4	7.21	-6.38	34.23	Average	V	173	0	54	-19.77	Ignored	runuamenta
3801.25 3801.25	33.4 43.27	7.21 7.21	-6.38 -6.38	34.23 44.09	Average Peak	V	173 173	0	54 74	-19.77 -29.91	Ignored	rundamenta
3801.25 3801.25 9955	33.4 43.27 26.37	7.21 7.21 12.48 12.48	-6.38 -6.38 -2.1 -2.1	34.23 44.09 36.74	Average Peak Average	V V V	173 173 267	0 0 43	54 74 54 74	-19.77 -29.91 -17.26 -26.05	Ignored	rundamenta
3801.25 3801.25 9955	33.4 43.27 26.37	7.21 7.21 12.48 12.48	-6.38 -6.38 -2.1 -2.1	34.23 44.09 36.74	Average Peak Average	V V V	173 173 267	0 0 43	54 74 54 74	-19.77 -29.91 -17.26 -26.05	Ignored	rundamenta
3801.25 3801.25 9955	33.4 43.27 26.37	7.21 7.21 12.48 12.48	-6.38 -6.38 -2.1 -2.1	34.23 44.09 36.74	Average Peak Average	V V V	173 173 267	0 0 43	54 74 54 74 01 Apr 21	-19.77 -29.91 -17.26 -26.05	Ignored	rundamenta
3801.25 3801.25 9955	33.4 43.27 26.37	7.21 7.21 12.48 12.48	-6.38 -6.38 -2.1 -2.1	34.23 44.09 36.74	Average Peak Average	V V V	173 173 267	0 0 43	54 74 54 74 01 Apr 21 Px Px Px 1 Apr 20 1 Apr 21	-19.77 -29.91 -17.26 -26.05 -26.05	Ignored	rundamenta
3801.25 3801.25 9955	33.4 43.27 26.37	7.21 7.21 12.48 12.48	-6.38 -6.38 -2.1 -2.1	34.23 44.09 36.74	Average Peak Average	V V V	173 173 267	0 0 43	54 74 54 74 01 Apr 21 Pk Pk Pk Pk	-19.77 -29.91 -17.26 -26.05 -26.05	Ignored	rundamenta
3801.25 3801.25 9955	33.4 43.27 26.37	7.21 7.21 12.48 12.48	-6.38 -6.38 -2.1 -2.1	34.23 44.09 36.74	Average Peak Average	V V V	173 173 267	0 0 43	54 74 54 74 01 Apr 21 Pk	-19.77 -29.91 -17.26 -26.05 15:37 Horizonta Lmt Lmt bug gmal AXH 0165 dBuV/m dB 00kHz	Ignored	rundamenta
3801.25 3801.25 9955	33.4 43.27 26.37	7.21 7.21 12.48 12.48 12.48	-6.38 -6.38 -2.1 -2.1	34.23 44.09 36.74	Average Peak Average	V V V	173 173 267	0 0 43	54 74 54 74 01 Apr 21 Pk Fk 4 Det F8 Av Det F8	-19.77 -29.91 -17.26 -26.05 15:37 Horizonti Vertical Lmt bug small AXH 016s dBuV/m dB 00kHz 00kHz 00kHz	Ignored	rundamenta
3801.25 3801.25 9955	33.4 43.27 26.37	7.21 7.21 12.48 12.48	-6.38 -6.38 -2.1 -2.1	34.23 44.09 36.74	Average Peak Average	V V V	173 173 267	0 0 43	74 74 74 74 01 Apr 21 Px	-19.77 -29.91 -17.26 -26.05 15:37 Horizonta Lmt Lmt bug gnal AXH 0105 dBuV/m dB 00kHz 00kHz S sist 3 m ist 3 m	Ignored	rundamenta
3801.25 3801.25 9955	33.4 43.27 26.37	7.21 7.21 12.48 12.48 12.48	-6.38 -6.38 -2.1 -2.1	34.23 44.09 36.74	Average Peak Average	V V V	173 173 267	0 0 43 43	54 74 54 74 01 Apr 21 Pk	-19.77 -29.91 -17.26 -26.05 15:37 Horizonta Lmt Lmt bug gnal AXH 0105 dBuV/m dB 00kHz 00kHz S sist 3 m ist 3 m	Ignored	rundamenta
3801.25 3801.25 9955	33.4 43.27 26.37	7.21 7.21 12.48 12.48 12.48	-6.38 -6.38 -2.1 -2.1	34.23 44.09 36.74 47.95	Average Peak Average	V V V	173 173 267 267	0 0 43 43	74 74 54 74 01 Apr 21 Pk	-19.77 -29.91 -17.26 -26.05 15:37 Horizont: Vertical Lmt Lmt bug gmal AXH 016s dBuV/m dB 00kHz 00kHz 00kHz sist 3m yr MHz	Ignored	rundament

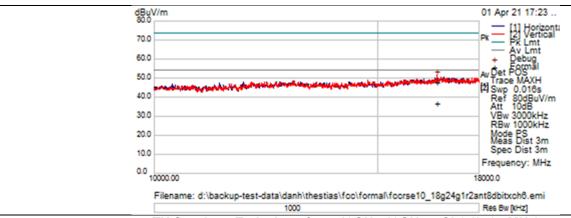
TX Spurious Emissions from 10GHz-18GHz – Ch1 (2412 MHz)

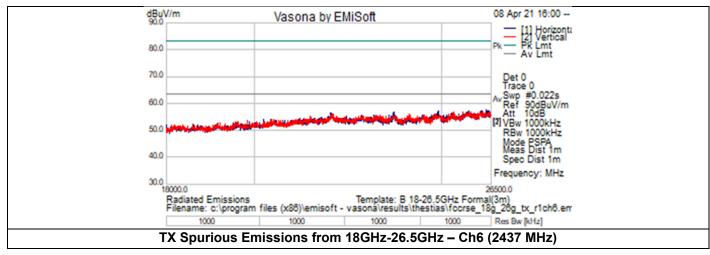
1000





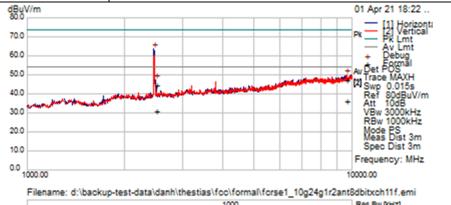
Note: No measurable emissions found from 10GHz - 26.5GHz.


Subtest Date:	01-April-2021 to 08-April-2021						
Engineer	Vincent Chiu						
	Farida Rahmanzai						
	Danh Le						
Lab Information	Building 7, 5m Anechoic						
Subtest Title	Transmitter Spurious Emissions						
Frequency Range	1GHz – 26.5GHz						
Comments on the above Test Results 802.11HE20, Tx Channel 6 (2437 MHz)							

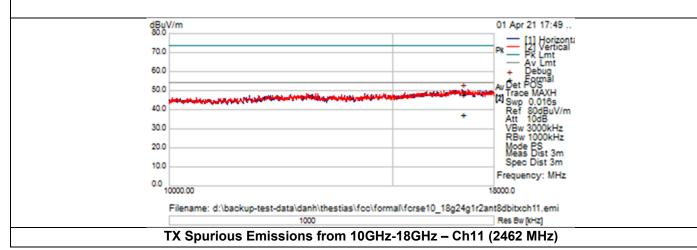

TX Spurious Emissions from 1GHz-10GHz - Ch6 (2437 MHz)

		_		_			_			. *		_
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)		Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
2445.6249	68.31	5.63	-7.4	66.54	Peak	Н	150	259			Ignored	Fundamental
9859.375001	26.42	12.43	-2.42	36.43	Average	V	185	76	54	-17.57	Pass	
9859.375001	37.26	12.43	-2.42	47.27	Peak	V	185	76	74	-26.73	Pass	
2999.81	32.07	6.31	-7.17	31.21	Average	V	123	347	54	-22.79	Pass	
2999.81	50.95	6.31	-7.17	50.09	Peak	V	123	347	74	-23.91	Pass	

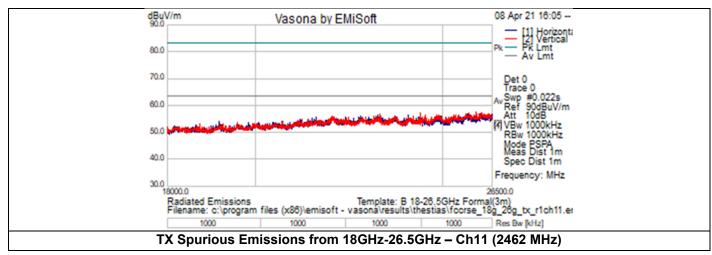
TX Spurious Emissions from 10GHz-18GHz - Ch6 (2437 MHz)



Note: No measurable emissions found from 10GHz - 26.5GHz.


Subtest Date:	01-April-2021 to 08-April-2021
Engineer	Vincent Chiu
	Farida Rahmanzai Danh Le
Lab Information	Building 7, 5m Anechoic
Subtest Title	Transmitter Spurious Emissions
Frequency Range	1GHz – 26.5GHz

Comments on the above Test Results 802.11HE20, Tx Channel 11 (2462 MHz)


TX Spurious Emissions from 1GHz-10GHz - Ch11 (2462 MHz)

Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)		Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
2456.875	65.63	5.65	-7.32	63.96	Peak	Н	200	54			Ignored	Fundamental
2490.625	32.46	5.7	-7.24	30.92	Average	Н	357	236	54	-23.08	Pass	
2490.625	45.97	5.7	-7.24	44.43	Peak	Н	357	236	74	-29.57	Pass	
9656.875	26.4	12.29	-2.71	35.99	Average	Н	278	344	54	-18.01	Pass	
9656.875	37.49	12.29	-2.71	47.08	Peak	V	106	365	74	-26.92	Pass	

Page No: 28 of 44

Note: No measurable emissions found from 10GHz – 26.5GHz.

A.3: Receiver Spurious Emissions

RSS-Gen

Receivers are required to comply with the limits of spurious emissions as set out in this section. Receiver emission measurements are to be performed as per the normative test method referenced in Section 3.

For emissions at frequencies below 1 GHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. At frequencies above 1 GHz, measurements shall be performed using a linear average detector with a minimum resolution bandwidth of 1 MHz

Ref. RSS-Gen sec 8.9 & 8.10

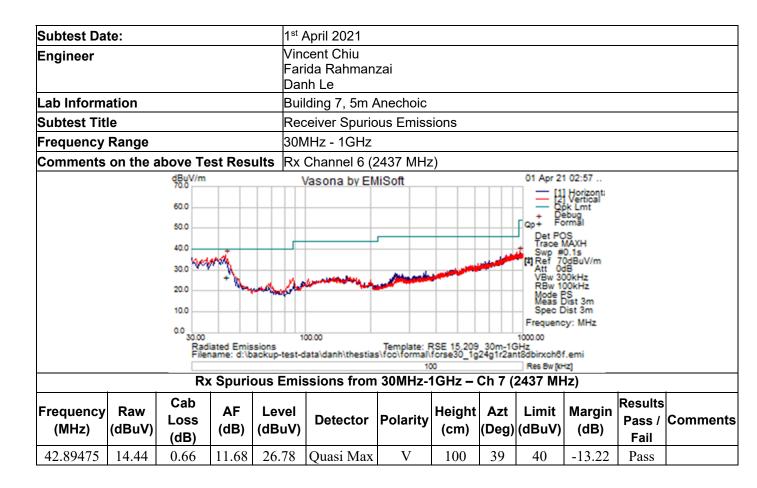
Ref. ANSI C63.10: 2013 Section 12.7.6 (Peak), Section 12.7.7.2 (Method AD), and Section 6.6

Radiated Spurious Emissions Test parameters	
Peak	Average
Span = 1-18GHz /18GHz-26.5GHz/26.5GHz-	Span = 1-18GHz /18GHz-26.5GHz/26.5GHz-40GHz
40GHz	RBW = 1 MHz
RBW = 1 MHz	VBW≥3 MHz
VBW ≥ 3 MHz	Sweep = Auto couple
Sweep = Auto couple	Detector = RMS
Detector = Peak	Power Averaging
Trace = Max Hold.	

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

Save 2 plots: 1

- 1) Average Plot (Vertical and Horizontal), Limit= 54dBuV/m @3m
- 2) Peak plot (Vertical and Horizontal), Limit = 74dBuV/m @3m


Radiated emission measurements shall be performed with the receiver antenna connected to the receiver antenna terminals. Terminate the access Point RF ports with 50-ohm loads.

This report represents the worst-case data for all supported operating modes and antennas.

Page No: 30 of 44

A.3.1: Rx Radiated Spurious Emissions Graphical Data Results

35.91

46.33

Average Max

Peak Max

-2.82

-2.82

(dB)

12.19

12.19

9544.37500 26.54

9544.37500 36.96

Fail

Pass

Pass

-18.09

-27.67

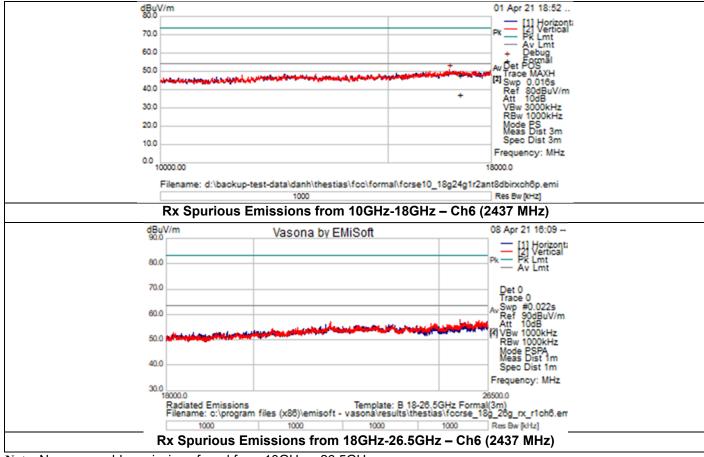
Subtest Da	te:			1 st A	1 st April 2021 – 8 th April 2021							
F					Vincent Chiu Farida Rahmanzai Danh Le							
Lab Informa	ation			Build	Building 7, 5m Anechoic							
Subtest Tit	le			Rece	eiver Spurious E	missions	;					
Frequency	Range			1GH	z – 26.5GHz							
Comments	on the	above T	est Res	ults Rx C	Channel 6 (2437	MHz)						
		40.0 50.0 40.0 20.0 10.0	m	Mary and American	aranga aranga da da aranga da a			+ A	Apr 21 18 11 Ho Av Ln Debug Trace MAX Swp 0.015 Ref 80dB Att 10dB VBw 30000 Mode PS Meas Dist Spec Dist Frequency: 1	orizonti rtical t t t t t t t t t t t t t t t t t t t		
	Filename: d:\backup-test-data\danh\thestias\foo\formal\forse1_10g24g1r2ant8dbirxch8f.emi											
			Rx Spu	rious Em	nissions from 1	GHz-10G	Hz – Cl		Res Bw (KHZ) 37 MHz)			
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)	Azt (Deg)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments

336

215

Η

V


189

252

54

74

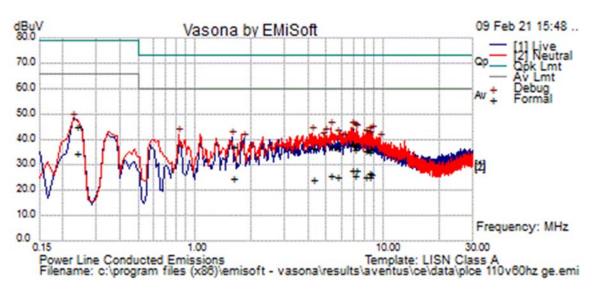
Note: No measurable emissions found from 10GHz - 26.5GHz

Radio Test Report No: EDCS - 21673982

A.4 AC Conducted Emissions

FCC 15.207 (a) & RSS-Gen 8.8 Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.

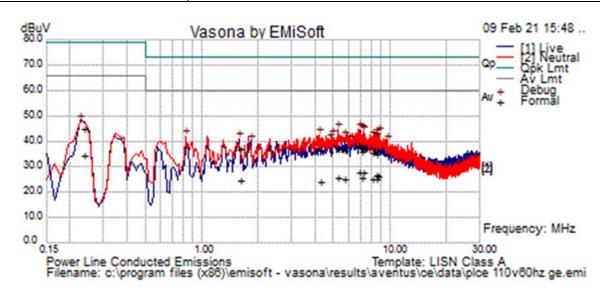
Measurement Procedure Accordance with ANSI C63.10:2013 section 6.2


Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span: 150 KHz – 30 MHz Attenuation: 10 dB Sweep Time: Coupled Resolution Bandwidth: 9 KHz Video Bandwidth: 30 KHz Detector: Quasi-Peak / Average

A.4.1: AC Line conducted emissions results

Subtest Date:	09 Feb 21
Engineer	Chakravarthy Sulva
Lab Information	Building P, formal immunity room
Subtest Title	Conducted Emissions
Frequency Range	150 kHz - 30 MHz
Comments on the above Test	2.4GHz/5GHz
Results	


AC Conducted Emissions Test Result Tables for 2.4GHz/5GHz

Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	Factors (dB)	Level (dBuV)	Detector	Lines (Live/Neutral)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
0.236	14.1	20.6	0	34.7	Average	Live	52.35	-17.65		2.4GHz/5GHz
6.83	7.5	20.1	0	27.6	Average	Neutral	50	-22.4	Pass	2.4GHz/5GHz
7.236	7.4	20.1	0	27.5	Average	Neutral	50	-22.5	Pass	2.4GHz/5GHz
8.449	6.5	20.1	0.1	26.8	Average	Neutral	50	-23.2	Pass	2.4GHz/5GHz
8.676	6.1	20.2	0.1	26.4	Average	Neutral	50	-23.6	Pass	2.4GHz/5GHz
0.236	24.3	20.6	0	45	Quasi Peak	Live	62.35	-17.35	Pass	2.4GHz/5GHz
5.285	5.6	20.1	0.1	25.7	Average	Neutral	50	-24.3	Pass	2.4GHz/5GHz
6.83	18.4	20.1	0	38.6	Quasi Peak	Neutral	60	-21.4	Pass	2.4GHz/5GHz
7.04	5.3	20.1	0.1	25.5	Average	Live	50	-24.5	Pass	2.4GHz/5GHz
8.425	5	20.1	0.1	25.2	Average	Live	50	-24.8	Pass	2.4GHz/5GHz
5.755	4.9	20.1	0	25	Average	Live	50	-25	Pass	2.4GHz/5GHz
7.236	17.8	20.1	0	37.9	Quasi Peak	Neutral	60	-22.1	Pass	2.4GHz/5GHz
8.091	4.6	20.1	0.1	24.9	Average	Live	50	-25.1	Pass	2.4GHz/5GHz
1.586	4.3	20	0	24.3	Average	Live	46	-21.7	Pass	2.4GHz/5GHz
4.235	4.2	20	0	24.3	Average	Neutral	46	-21.7	Pass	2.4GHz/5GHz

Page No: 35 of 44

Subtest Date:	09 Feb 21
Engineer	Chakravarthy Sulva
Lab Information	Building P, formal immunity room
Subtest Title	Conducted Emissions
Frequency Range	150 kHz - 30 MHz
Comments on the above Test	2.4GHz/5GHz
Results	

AC Conducted Emissions Test Result Tables for 2.4GHz/5GHz

Frequency	Raw	Cab Loss		Level	Detector	Lines	Limit	Margin	Results	Comments
(MHz)	(dBuV)	(dB)	(dB)	(dBuV)		(Live/Neutral)	(dBuV)	(dB)	Pass / Fail	
5.285	16.9	20.1	0.1	37	Quasi Peak	Neutral	60	-23	Pass	2.4GHz/5GHz
1.586	17	20	0	37	Quasi Peak	Live	56	-19	Pass	2.4GHz/5GHz
4.235	16.7	20	0	36.8	Quasi Peak	Neutral	56	-19.2	Pass	2.4GHz/5GHz
5.755	16.4	20.1	0	36.5	Quasi Peak	Live	60	-23.5	Pass	2.4GHz/5GHz
7.04	16.1	20.1	0.1	36.3	Quasi Peak	Live	60	-23.7	Pass	2.4GHz/5GHz
8.449	16.1	20.1	0.1	36.3	Quasi Peak	Neutral	60	-23.7	Pass	2.4GHz/5GHz
8.676	15.7	20.2	0.1	35.9	Quasi Peak	Neutral	60	-24.1	Pass	2.4GHz/5GHz
8.091	15.4	20.1	0.1	35.6	Quasi Peak	Live	60	-24.4	Pass	2.4GHz/5GHz
8.425	15	20.1	0.1	35.2	Quasi Peak	Live	60	-24.8	Pass	2.4GHz/5GHz

Appendix B: List of Test Equipment Used to perform the test

Equip#	Manufacturer	Model	Model Description		Next Due
	Test Equipme	nt used for Radiated Er	nissions 30MHz to 1GHz		
CIS44908	ROHDE & SCHWARZ	ESCI EMI Test Receiver		12-Dec-2020	12-Dec-2021
CIS30654	SUNOL SCIENCES	JB1 Combination Antenna, 30MHz-2GHz 1		14-Jul-2020	14-Jul-2021
CIS47311	HUBER + SUHNER	Sucoflex 106PA	RF Type N Antenna Cable 18 GHz 8.5m	30-Sep-2019	30-June-2021
CIS25640	MICRO-COAX	UFB311A-0-2720-520 520	Coaxial Cable, 272.0 in. to 18GHz	30-Sep-2019	30-June-2021
CIS25660	MICRO-COAX	UFB311A-1-0840-504 504	Coaxial Cable, 84.0 in. to 18GHz	30-Sep-2019	30-June-2021
CIS08113	CISCO	NSA CAL	NSA Chamber	27-Mar-2021	27-Mar-2022
	Test Equipme	nt used for Radiated Er	missions 1GHz to 18GHz	_	
CIS24905	Keysight (Agilent/HP)	E4440A	Spectrum Analyzer 3Hz-26.5GHz	21-Oct-2020	21-Oct-2021
CIS34741	ETS Lindgren	3117	Double Ridged Guide Horn Antenna	01-Oct-2020	01-Oct-2021
CIS39124	CISCO	TH0118	Mast Mount Preamplifier Array, 1-18GHz	21-Jan-2020	21-Jul-2021
CIS47311	HUBER + SUHNER	Sucoflex 106PA	RF Type N Antenna Cable 18 GHz 8.5m	30-Sep-2019	30-June-2021
CIS25640	MICRO-COAX	UFB311A-0-2720-520 520	Coaxial Cable, 272.0 in. to 18GHz	30-Sep-2019	30-June-2021
CIS25660	MICRO-COAX	UFB311A-1-0840-504 504	Coaxial Cable, 84.0 in. to 18GHz	30-Sep-2019	30-June-2021
CIS54402	HUBER + SUHNER	Sucoflex 102	K Type 40 GHz Cable	10-Feb-2021	10-Feb-2022
CIS8113	CISCO	NSA CAL	NSA Chamber	27-Mar-2021	27-Mar-2022
CIS43024	CISCO	Above 1GHz Site Ca	1GHz Cispr Site Verification	03-Oct-2020	03-Oct-2021
CIS56055	Wainwright Instruments	WRCGV8-2360-2400 -2483.5-40SS	SMA Band Reject Filter 2.36GHz to 2.5235 GHz	30-Apr-2020	30-Apr-2021
	Test Equipme	nissions 18GHz to 26GHz			
CIS08113	CISCO	NSA CAL	NSA Chamber	27-Mar-2021	27-Mar-2022
CIS36710	Cisco	1840	18-40GHz EMI Test Head/Verification Fixture	17-Sep-2020	17-Sep-2021
CIS19630	Rohde & Schwarz	ESI 40(ESIB 40)	EMI RECEIVER TEST 20Hz-40GHz	28-Jan-2021	28-Jan-2022

Page No: 37 of 44

Equip#	Manufacturer	Model	Description	Last Cal	Next Due
	Test Equipment used	for AC line conducted em	issions 150kHz-30MHz		
008496	Fischer Custom Communications	FCC-450B-2.4-N	Instrumentation Limiter	12/15/2020	12/15/2021
007704	Fischer Custom Communications	FCC-LISN-50/250-50-2-01	LISN	12/7/2020	12/7/2021
018963	York	CNE V	Comparison Noise Emitter,30-1GHz	NA	NA
019207	TTE	H785-150K-50-21378	High Pass Filter 150kHz	1/25/2021	1/25/2022
020913	Fischer Custom Communications	FCC-LISN-PA-NEMA-5-15	AC Adapter	12/7/2020	12/7/2021
037229	Coleman	RG-223	25ft BNC cable	2/26/2020	2/26/2021
044021	Fischer Custom Communications	FCC-801-M2-32A	Power Line Coupling Decoupling Network	3/9/2020	3/9/2021
046718	Bird	5-T-MB	5W 50 Ohm BNC Termination 4GHz	3/15/2019	3/15/2021
049479	Coleman	RG223	BNC 2ft Cable	3/4/2020	3/4/2021
004729	Fluke	77 III	Digital Multimeter	5/19/2020	5/19/2021
058245	COMET	T7611-4	Humidity Temperature Probe	12/26/2020	12/26/2021
058276	ROHDE & SCHWARZ	ESR3	EMI Receiver	6/25/2020	6/25/2021

Appendix C: Photographs of Test Setups

See FCC/RSS RSE Test Setup document – EDCS-21686217

Appendix D: Abbreviation Key and Definitions

The following table defines abbreviations used within this test report.

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	°C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
TAP	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control System	Qp	Quasi Peak
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak
Cal	Calibration	kHz	Kilohertz (1x10³)
EN	European Norm	MHz	MegaHertz (1x10 ⁶)
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)
CISPR	International Special Committee on Radio Interference	Н	Horizontal
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization Network	dB	decibel
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³)
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)
L2	Line2	Α	Amp
L3	Line 3	μΑ	Micro Amp (1x10 ⁻⁶)
DC	Direct Current	mS	Milli Second (1x10 ⁻³)
RAW	Uncorrected measurement value, as indicated by the measuring device	μS	Micro Second (1x10 ⁻⁶)
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)
SLCE	Signal Line Conducted Emissions	m	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
N	Neutral Line	R	Return
S	Supply	AC	Alternating Current

Page No: 40 of 44

Radio Test Report No: EDCS - 21673982

Appendix E: Software Used to Perform Testing

EMIsoft Vasona, version 6.024

Appendix F: Test Procedures

Measurements were made in accordance with

- KDB 558074 D01 DTS Meas Guidance v05
- KDB 662911 MIMO
- ANSI C63.4 2014 Unintentional Radiators
- ANSI C63.10 2013 Intentional Radiators

Test procedures are summarized below

FCC 2.4GHz Test Procedures	EDCS # 1445042
FCC 2.4GHz RSE Test Procedures	EDCS # 1480386

Appendix G: Scope of Accreditation (A2LA certificate number 1178-01)

The scope of accreditation of Cisco Systems, Inc. can be found on the A2LA web page at:

http://www.a2la.org/scopepdf/1178-01.pdf

Appendix H: Test Assessment Plan

Compliance Test Plan (Excel) EDCS#21669684 Target Power Tables EDCS#19467753

Appendix I: Worst Case Justification

All 3 orientations (Z, Y, Z) of the EUT were assessed by performing pre-scan. The X orientation was determined to be the worst-case orientation.