

Radio Test Report

(Radiated Spurious Emissions Only)

For

WiFi module: WP-WIFI6-A, WP-WIFI6-B

Supports 2.4 GHz / 5 GHz 802.11 a/ac/ax/b/g/n Wi-Fi radio

In

Host systems: IR1821-K9, IR1831-K9, IR1833-K9, IR1835-K9

FCC ID: LDKWPWIFI6 IC: 2461N-WPWIFI6

5470-5725 MHz

Against the following Specifications: 47 CFR 15.205 47 CFR 15.209 47 CFR 15.407 RSS-247 issue 2 RSS-Gen issue 5

Cisco Systems 170 West Tasman Drive San Jose, CA 95134

Page No: 1 of 44

Author:	
	par &
Tested By:	7/ 1
Title: Test Engineers	1 mit L
	Vincent Chiu
	fala P.
	Farida Rahmanzai
	Pale .
	Danh Le
Approved By:	И о І-
Title: Compliance Manager	Hand h
	Howard Ji
Version:	1.0

This report replaces any previously entered test report under EDCS - 21673979. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. Test Report Template EDCS# 1526150. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.
Page No: 2 of 44

cisco

SECTION 1: OVERVIEW	4
1.1 Test Summary	4
SECTION 2: ASSESSMENT INFORMATION	5
 2.1 GENERAL 2.2 UNITS OF MEASUREMENT 2.3 DATE OF TESTING (INITIAL SAMPLE RECEIPT DATE TO LAST DATE OF TESTING) 2.4 REPORT ISSUE DATE 	5 7 7
2.5 TESTING FACILITIES 2.6 EQUIPMENT ASSESSED (EUT) 2.7 EUT DESCRIPTION	7
SECTION 3: RESULT SUMMARY	11
3.1 Results Summary Table	11
SECTION 4: SAMPLE DETAILS	12
APPENDIX A: RADIATED SPURIOUS EMISSION	13
A.1: SETUP DIAGRAM A.2: RADIATED SPURIOUS EMISSIONS TEST REQUIREMENTS & LIMITS A.2.1: Limit Conversion (power to field strength) A.2.2: Test Procedure A.2.3: Tx Radiated Spurious Emissions Graphical Data Results	
 A.3: RECEIVER SPURIOUS EMISSIONS A.3.1: Rx Radiated Spurious Emissions Graphical Data Results A.4 AC CONDUCTED EMISSIONS A.4.1: AC Line conducted emissions results 	<i>31</i> 34
APPENDIX B: LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST	37
APPENDIX C: PHOTOGRAPHS OF TEST SETUPS	
APPENDIX D: ABBREVIATION KEY AND DEFINITIONS	40
APPENDIX E: SOFTWARE USED TO PERFORM TESTING	41
APPENDIX F: TEST PROCEDURES	42
APPENDIX G: SCOPE OF ACCREDITATION (A2LA CERTIFICATE NUMBER 1178-01)	43
APPENDIX H: TEST ASSESSMENT PLAN	44
APPENDIX I: WORST CASE JUSTIFICATION	44

Section 1: Overview

1.1 Test Summary

The samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

specifications
47 CFR 15.205
47 CFR 15.209
47 CFR 15.407
RSS-247 Issue 2 RSS-Gen Issue 5

Page No: 4 of 44

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Radio Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature	15°C to 35°C (59°F to 95°F)
Atmospheric Pressure	860mbar to 1060mbar (25.4" to 31.3")
Humidity	10% to 75*%

e) All DC testing was performed at one or more of the following supply voltages:
 12VDC (The supply voltage range supports 12V-36VDC)

2.2 Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB]

The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss.

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Page No: 5 of 44

Measurement Uncertainty Values

voltage and power measurements	±2dB
conducted EIRP measurements	± 1.4 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7
temperature measurements	± 0.54°.
humidity measurements	± 2.3%
DC and low frequency measurements	± 2.5%.

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

30 MHz – 40GHz	+/- 0.38 dB
----------------	-------------

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

2.3 Date of testing (initial sample receipt date to last date of testing)

30-March-2021 to 09-April-2021

2.4 Report Issue Date

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled

2.5 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc. 425 West Tasman Drive (Building 7) San Jose, CA 95134 USA

Headquarters

Cisco Systems, Inc., 170 West Tasman Drive San Jose, CA 95134, USA

Registration Numbers for Industry Canada

Cisco System Site	Address	Site Identifier
Building P, 10m Chamber	125 West Tasman Dr	Company #: 2461N-2
	San Jose, CA 95134	
Building P, 5m Chamber	125 West Tasman Dr Company #: 246	
	San Jose, CA 95134	
Building 7, 5m Chamber	425 E. Tasman Drive	Company #: 2461N-3
	San Jose, California 95134	

Test Engineers

Farida Rahmanzai, Vincent Chiu, Danh Le

2.6 Equipment Assessed (EUT)

Radio Module: WP-WIFI6-B Host System: IR1835-K9

Page No: 7 of 44

2.7 EUT Description

WP-WIFI6 is Wifi 802.11ax Wi-Fi 6 access point module for industrial IoT routing and gateway platforms which is a field replaceable Wifi interface module designed for IR1800 series platform. It includes a 2x2 MIMO 802.11ax 2.4 GHz radio and a 2x2 MIMO 802.11ax 5 GHz radio

IR1835-K9 is the next generation of IR829, based on IOS XE, with advanced features such as modular WiFi, modular Cellular/WAN, CAN Bus, Dead Reckoning etc.

The product has the following interfaces: 4 GE LAN Ports 1 GE WAN / 1 Fiber Port (Alternate to GE Copper port) 1 RS-232 Serial 1 RS232/RS485 1 Type-A USB for Storage 1 GPS Slot1.6 EUT Description 1 WIFI Slot 1 mSATA Slot 2 Cellular PIM Slots [Main Aux and GPS (Only on Sierra Wireless Modules)] Alarm Port Micro-USB DC Power input (DC Min/Max 9-32)

WiFi module Model/PID Differences

The WP-WIFI6 Access Point module is designed for use in many countries with varying regulatory requirements. The WP-WIFI6-A and WP-WIFI6-B, both have the same identical components, electronics circuitries, PCB layout and enclosure. The WP-WIFI6-A module is configured with the Canada country code and the WP-WIFI6-B module is configured with US country code. The US and Canada country codes are configured according to the test results demonstrated compliance in the RF conducted emissions FCC/RSS

Page No: 8 of 44

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

test reports. The difference between the 2 PIDs (WP-WIFI6-A and WP-WIFI6-B) is the UNII-1 (5150MHz – 5250MHz) band is not supported in the WP-WIFI6-A PID.

Host system Model/PID differences

IR1821-K9 IR1831-K9 IR1833-K9 IR1835-K9 ------ System Tested

The following host models are in the same IR18xx family. IR1835-K9 is the highly populated host model out of all 4 models and selected model for testing. The radio WP-WiFi6-E module in these host has the same identical components, electronics circuitries and PCB layout. Below table summarizes the differences between all four host models.

	IR1821-K9	No PoE IR1831-K9	With PoE IR1833-K9	IR1835-K9
	IR1821-K9	IR1831-K9	IR1833-K9	IR1835-K9
Processor	600MHz	600MHz	600MHz	1200MHz
Memory	4GB	4GB	4G8	8G8
Single LTE Slots	<i>s</i>	×	×	×
Dual LTE Slot	×	V	1	4
WIFI (FRU)	✓	×	4	×
PoE	×	×	1	4
mSATA (FRU)	×	×	1	1
	×	×	4	4
Dedicated GPS (FRU)				
Dedicated GPS (FRU)	×	×	×	4

Page No: 9 of 44

Antenna Specification

The following antennas are supported by this product series. The data included in this report represent the worst-case data for all antennas.

Frequency	Part Number	Antenna Type	Peak Antenna Gain (dBi)	>30 degree 5 GHz Antenna Gain (dBi)
0.4/5	W-ANTM2050D-RPSMA=	Omnidirectional swivel stick dipole	2 / 4	0
2.4/5	W-ANTM2-O-2-RPSMA	Omnidirectional	4 / 4	0
GHz	ANT-7-5G4WL2G1-O=	7-in-1 vehicle mount omnidirectional	8 / 8	3
	5G-ANTM-O-4-B=	9-in-1 vehicle mount omnidirectional	8 / 8	3

Page No: 10 of 44

Section 3: Result Summary

3.1 Results Summary Table

Basic Standard	Technical Requirements / Details	Result
FCC 15.209 FCC 15.205 FCC 15.407	TX Spurious Emissions: Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the	Pass
(b) (6)	field strength limits table in this section.	

Radiated Emissions (General requirements)

Radiated Emissions	(General requirements)

Basic Standard	Technical Requirements / Details	Result
RSS-Gen	TX Spurious Emissions: Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the filed strength limits table in this section. Unwanted emissions falling within the restricted bands, as defined in RSS-Gen 8.10 must also comply with the radiated emission limits specified in RSS-Gen 8.9	Pass
RSS-Gen	RX Spurious Emissions: Spurious emissions from the receivers shall not exceed the radiated limits of receiver spurious emissions shown in RSS-Gen section 8.9 & 8.10	Pass
15.207 RSS-Gen	AC conducted Emissions: U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207 & RSS-Gen	Pass

Page No: 11 of 44

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing. Please also refer to the "Justification for worst Case test Configuration" section of this report for further details on the selection of EUT samples.

4.1 Sample Details

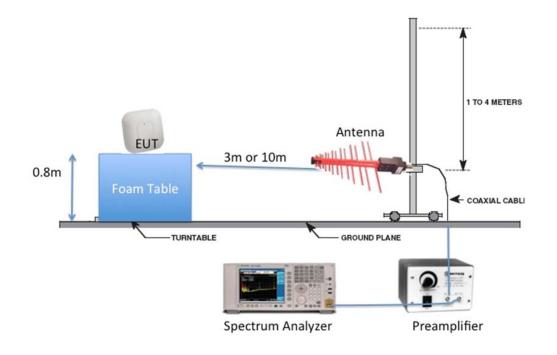
Sample Number	Equipment Details	Serial Number	CISCO Part Number
S01	WP-WiFi6-B Dual Band Radio in IR1835 Host system with 5GHz Wi-Fi radio actives	Module: FOC24490FG7 Host: FCW2443P0DH	Module: 68-103267-01 13
S02	External Patch antenna (8 dBi Gain)		5G-ANTM-O-4-B=

Note: The host system is powered by 12VDC. The host supply voltage range supports 12V-36VDC.

4.2 System Details

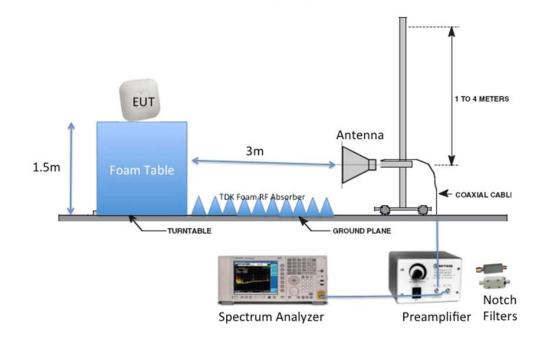
ſ	System #	Description	Samples
	1	WP-WiFi6-B Dual Band Radio in IR1835 Host system with 5GHz Wi-Fi radio actives + ext. PS + ext. 8 dBi patch ant.	S01, S02

4.3 Mode of Operation / Modulation / Data Rate Details


Mode (Radio band support, # of active antenna)	Wi-Fi Mode	Modulation	Data Rate
Transmit (dual antenna)	802.11HE20(5GHz)	MIMO-OFDM	M0h1
Receive (dual antenna)	802.11HE20(5GHz)	MIMO-OFDM	M0h1
Note: All testing was performed testing at maximum supported p			

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

Appendix A: Radiated Spurious Emission


A.1: Setup Diagram

Radiated Emission Setup Diagram-Below 1G (Preamp used is optional)

Page No: 13 of 44

Radiated Emission Setup Diagram-Above 1G

Page No: 14 of 44

A.2: Radiated Spurious Emissions Test Requirements & Limits

Emissions on frequency or frequencies which are outside the necessary bandwidth and level of which may be reduced without effecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Page No: 15 of 44

Restricted bands Limits

15.407 (b) (7) The provisions of 15.205 apply to intentional radiators operating under this section

15.205 (b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

	Restricted Bands for F	CC		
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	Above 38.6	
13.36-13.41				

Page No: 16 of 44

RSS-Gen 8.10

(b) Unwanted emissions that fall into restricted bands of Table 7 shall comply with the limits specified in table 5 (general field strength limits at frequencies above 30 MHz) and table 6 (general field strength limits at frequencies below 30 MHz).

(c) Unwanted emissions that do not fall within the restricted frequency bands of Table 7 comply either with the limits specified in the applicable RSS or with those specified in table 5 and table 6.

Table / Restricted	Danus	
MHz	MHz	GHz
0.090-0.110	74.8-75.2	9.0-9.2
2.1735-2.1905	108-138	9.3-9.5
3.020-3.026	156.52475-156.52525	10.6-12.7
4.125-4.128	156.7-156.9	13.25-13.4
4.17725-4.17775	240-285	14.47-14.5
4.20725-4.20775	322-335.4	15.35-16.2
5.677-5.683	399.9-410	17.7-21.4
6.215-6.218	608-614	22.01-23.12
6.26775-6.26825	960-1427	23.6-24.0
6.31175-6.31225	1435-1626.5	31.2-31.8
8.291-8.294	1645.5-1646.5	36.43-36.5
8.362-8.366	1660-1710	Above 38.6
8.37625-8.38675	1718.8-1722.2	*
8.41425-8.41475	2200-2300	
12.29-12.293	2310-2390	
12.51975-12.52025	2655-2900	
12.57675-12.57725	3260-3267	
13.36-13.41	3332-3339	
16.42-16.423	3345.8-3358	
16.69475-16.69525	3500-4400	
16.80425-16.80475	4500-5150	
25.5-25.67	5350-5460	
37.5-38.25	7250-7750	
73-74.6	8025-8500	

Table 7 Restricted Bands

Page No: 17 of 44

Non-Restricted Bands Limits

Below 1 GHz

FCC 15.209

The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the table specified in the table in FCC§15.209(a).

FCC15.407

(b) (6) Unwanted emissions below 1GHz must comply with general field strength limits set forth in §15.209.

RSS-Gen 8.9: Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

General Field Strength Limits Table							
Frequency (MHz)	Field strength (uV/meter)	Field strength (dBuV/meter)	Measurement distance (meters)				
30-88	100**	40 Qp	3				
88-216	150**	43.5 Qp	3				
216-960	200**	46 Qp	3				
Above 960	500	54 Av / 74 Pk	3				

Above 1 GHz

15.407 (b) *Undesirable emission limits.* Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

RSS-247 6.2.2.2

a) All emissions outside the band 5250-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

A.2.1: Limit Conversion (power to field strength)

The field strength limit in $dB\mu V$ can be converted from power (logarithmic) by using the field strength (linear) approach formula as follows:

$$V/m = \frac{\sqrt{30 \times Pt \times gt}}{d}$$

where: **pt** = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unit less),

 \mathbf{E} = electric field strength in V/m,

d = measurement distance in meters (m).

From the equation above, unit conversion from log => linear with a known power limit of -27 dBm.

(1) Conversion from dBm to Watt

dBm to Watts W = 10((dBm - 30)/10)

 $P(W) = 10^{(-27 - 120)/20}$ = 10^{-5.7} = 1.995 x 10^{-6}

(2) Convert from Watt to field strength

a. Convert from Watt to V/m @ 3m distance

$$V/m = \frac{\sqrt{30 \times Pt \times gt}}{3}$$
$$= \frac{\sqrt{30 \times 0.000001995 \times 1}}{3}$$

= 0.00257

b. Convert field strength to power density (V/m to dBµV/m)

dBµV/m = 20 log (V/m) + 120

= 68.2

Page No: 19 of 44

A.2.2: Test Procedure

Ref. ANSI C63.10-2013 section 6.5 & 6.6, Cispr16-1-1

ANSI C63.10: 2013 section 4.1.4 / section 12.7.5 (Quasi-Peak), section 12.7.6 (peak), section 12.7.7.3 (average)

Test parameters

(i) Span = Entire frequency range or segment if necessary.

(ii) Reference Level = 80 dBuV

(iii) RBW = 100 kHz (less than or equal to 1 GHz); 1 MHz (above 1 GHz)

(iv) VBW ≥ 3 x RBW

(v) Detector = Peak & Quasi-Peak (frequency range 30 MHz to 1 GHz);

Peak & Average (frequency range above 1 GHz); Change VBW to 10 Hz for average measurement (vi) Sweep Time = Couple

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

30MHz - 18GHz,

Save plots: Peak plot (Vertical and Horizontal) @3m

Above 18 GHz,

Save plots: Peak plot (Vertical and Horizontal) @1m

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

Note: The data displayed on the plots detailed in the graphical test results section were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements.

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

936.222	5.49	3.09	22.8	31.38	Quasi-Pk	V	237	362	46	-14.62	Pass	
43.07125	12.61	0.66	11.56	24.83	Quasi-Pk	V	347	279	40	-15.17	Pass	
Frequency (MHz)	(dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)		Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
		ТХ	Spurio	us Emis	s Emissions from 30MHz-1GHz – Ch100 (5500 MHz)							
		File	name: d:\t	backup-test-d	lata\danh\thestias	s\fcc\formal\ 12		j5g2r2an	t8dbitxc100 Res Bw [kH			
		30.00			00.00				1000.00			
		0.0							Frequency	y: MHz		
		10.0							Meas D Spec D	S ist 3m ist 3m		
		20.0	www.	Dry W	Halomate Star	-				0kHz		
		30.0 💘	m						Att 0d	dBuV/m B		
		40.0							Det PO Trace M	S IAXH 1.165s		
		50.0							Cap+ For	mal		
		60.0							_ <u> </u>	Vertical k Lmt		
		dBuV/m 70.0							09 Apr 21	20:02		
Comments	on the a	above Te	st Res	ults 802	.11HE20, T>	Channe	l 100 (55	500 MI	Hz)			
Frequency	Range			30N	1Hz - 1GHz							
Subtest Tit	le			Trai	nsmitter Spu	rious Em	issions					
Lab Inform	ation			Buil	ding 7, 5m A	Anechoic						
					da Rahman: ih Le	Zai						
Engineer					cent Chiu	:						
Subtest Da	te:			09-/	09-April-2021							

միսի

A.2.3: Tx Radiated Spurious Emissions Graphical Data Results

Page No: 21 of 44

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

43.25275

904.746

13.27

5.24

0.67

3.05

11.45

22.4

25.38

30.68

Quasi-Pk

Quasi-Pk

V

V

378

401

305

0

40

46

-14.62

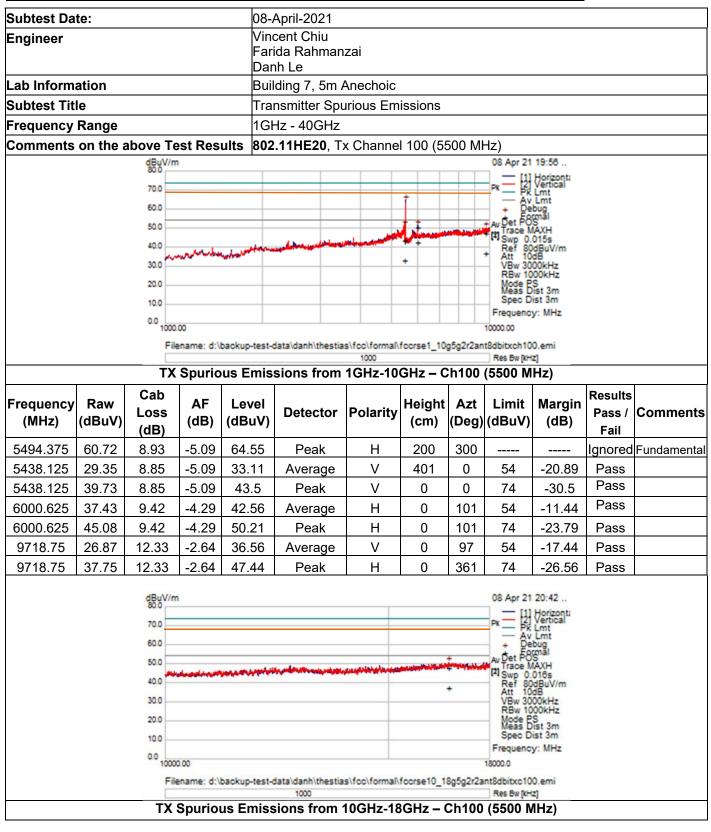
-15.32

Pass

Pass

Subtest Date:			09-A	pril-2021							
Engineer			Faric	incent Chiu arida Rahmanzai anh Le							
Lab Information			Build	ling 7, 5m Ai	nechoic						
Subtest Title			Tran	smitter Spur	ious Emi	ssions					
Frequency Range			30MI	30MHz - 1GHz							
Comments on the	above Te	est Res	ults 802. [,]	11HE20 , Tx	Channel	132 (566	60 MH	z)			
	dBuV/m 60.0 50.0 40.0 20.0 10.0 0.0 30.00 File	-M.		00.00 Jata\danh\thestia				+ De Qp+ Fo Det PO Trace M Swp #([2] Ref 70 Att 0d VBw 30 RBw 12 Mode P Meas D Spec D Frequenc 100.00	Horizont: Vertical k Lmt bbug rmal S IAXH 0.165s JdBuV/m B 0kHz 0kHz 20kHz S S S S S S MB WHZ 2 MHz		
	ТХ	Spurio	us Emis	sions from	30MHz-1	GHz – C	h132	(5660 M	lHz)		
Frequency Raw (MHz) (dBuV	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)		Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments

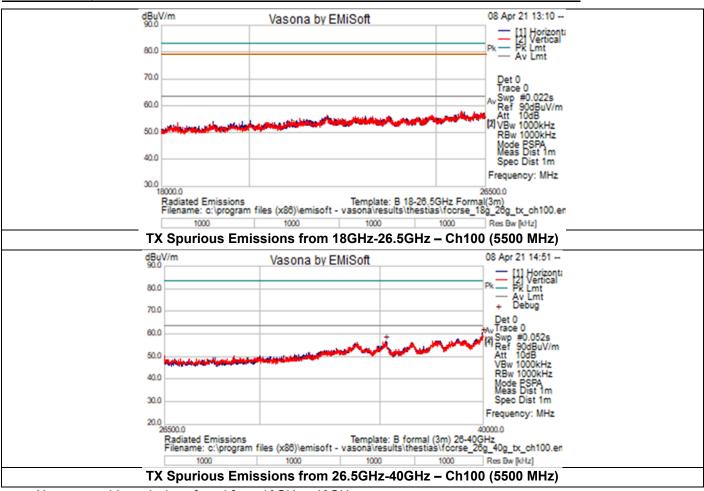
ոլուր


This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

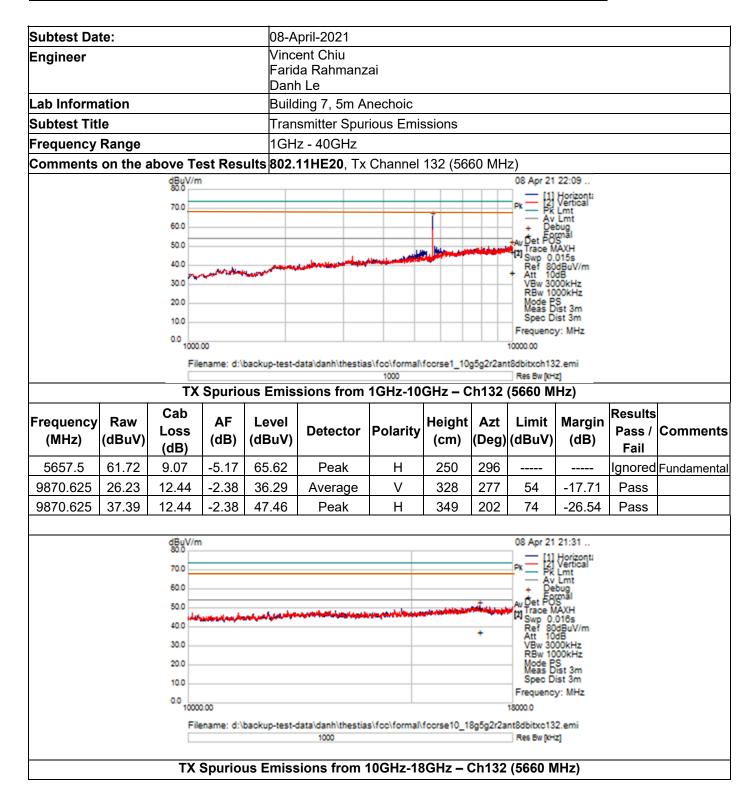
I											
Subtest Date:			31-N	lar-2021							
Engineer			Vinc	/incent Chiu							
-			Fario	da Rahmanz	ai						
			Danl	h Le							
Lab Information			Build	ding 7, 5m Ai	nechoic						
Subtest Title			Tran	smitter Spur	ious Emis	ssions					
Frequency Range			30M	Hz - 1GHz							
Comments on the a	above Te	st Res	ults 802.	11HE20, Tx	Channel	140 (570	00 MH	z)			
	dBuV/m 70.0			Vasona by EN	liSoft			31 Mar 21	11:19		
	60.0 50.0								Horizont: Vertical k Lmt bug mal		
	40.0	utro,		Det POS Trace MAXH Trace MAXH I Ref. 70dBuV/m							
	30.0 × 20.0 10.0	- sold		, chunkithan	-			Att 0d VBw 30 RBw 10 Mode P Meas D Spec D	0kHz 0kHz S ist3m		
	0.0 30.00 File	liated Emi name: d:\		100.00 data\danh\thestias					.emi		
	 	Sourio	ue Emie	sions from "	10 30M니구_1	-	h140	Res Bw [kH:			
	17	Spurio		sions from :		GHZ – C	11140		Π Ζ)		
	Cab									Results	

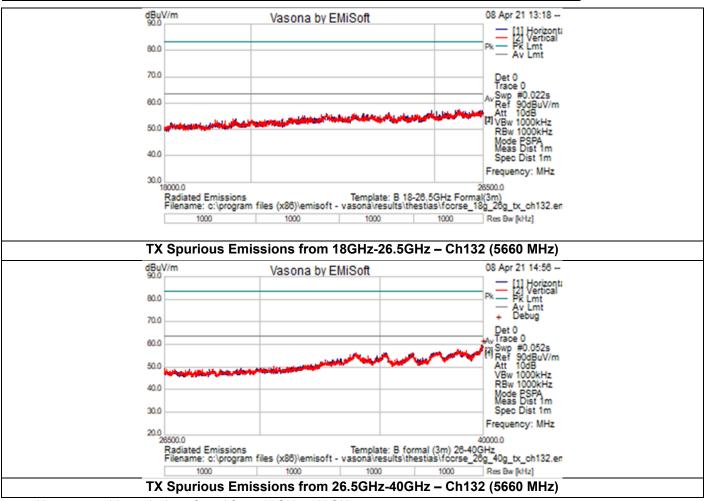
սիսիս

Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)	Azt (Deg)	Limit (dBuV)	Margin	Results Pass / Fail	Comments
39.07375	8.91	0.63	14.54	24.08	Quasi-Pk	V	128	365	40	-15.92	Pass	
916.81775	5.24	3.06	22.6	30.9	Quasi-Pk	Н	118	365	46	-15.1	Pass	

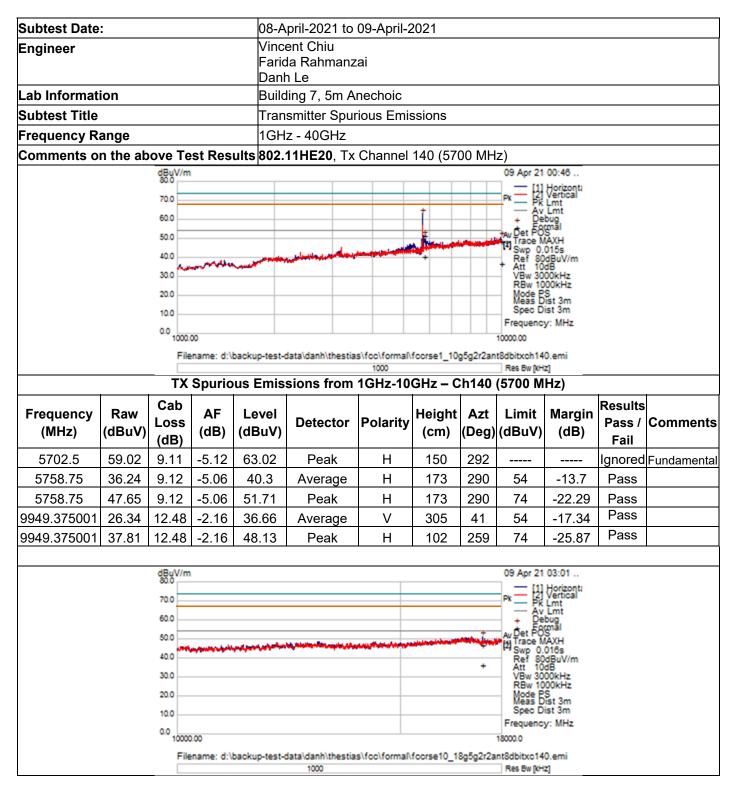

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

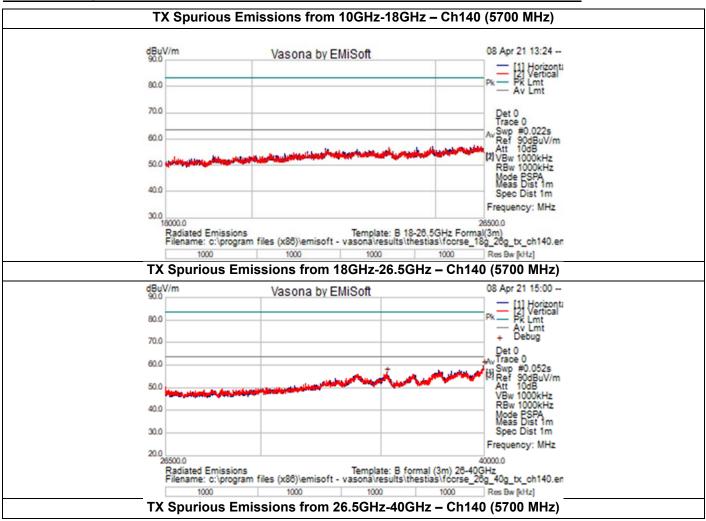
1111111


Page No: 24 of 44


Note: No measurable emissions found from 10GHz - 40GHz

Page No: 25 of 44


Page No: 26 of 44


Note: No measurable emissions found from 10GHz - 40GHz

Page No: 27 of 44

Page No: 28 of 44

Note: No measurable emissions found from 10GHz - 40GHz

Page No: 29 of 44

A.3: Receiver Spurious Emissions

RSS-Gen

Receivers are required to comply with the limits of spurious emissions as set out in this section. Receiver emission measurements are to be performed as per the normative test method referenced in Section 3.

For emissions at frequencies below 1 GHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. At frequencies above 1 GHz, measurements shall be performed using a linear average detector with a minimum resolution bandwidth of 1 MHz

Ref. RSS-Gen sec 8.9 & 8.10

Ref. ANSI C63.10: 2013 Section 12.7.6 (Peak), Section 12.7.7.2 (Method AD), and Section 6.6

Radiated Spurious Emissions Test parameters	
Peak	Average
Span = 1-18GHz /18GHz-26.5GHz/26.5GHz-	Span = 1-18GHz /18GHz-26.5GHz/26.5GHz-40GHz
40GHz	RBW = 1 MHz
RBW = 1 MHz	$VBW \ge 3 MHz$
$VBW \ge 3 MHz$	Sweep = Auto couple
Sweep = Auto couple	Detector = RMS
Detector = Peak	Power Averaging
Trace = Max Hold.	

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

Save 2 plots: 1) Average Plot (Vertical and Horizontal), Limit= 54dBuV/m @3m 2) Peak plot (Vertical and Horizontal), Limit = 74dBuV/m @3m

Radiated emission measurements shall be performed with the receiver antenna connected to the receiver antenna terminals. Terminate the access Point RF ports with 50-ohm loads.

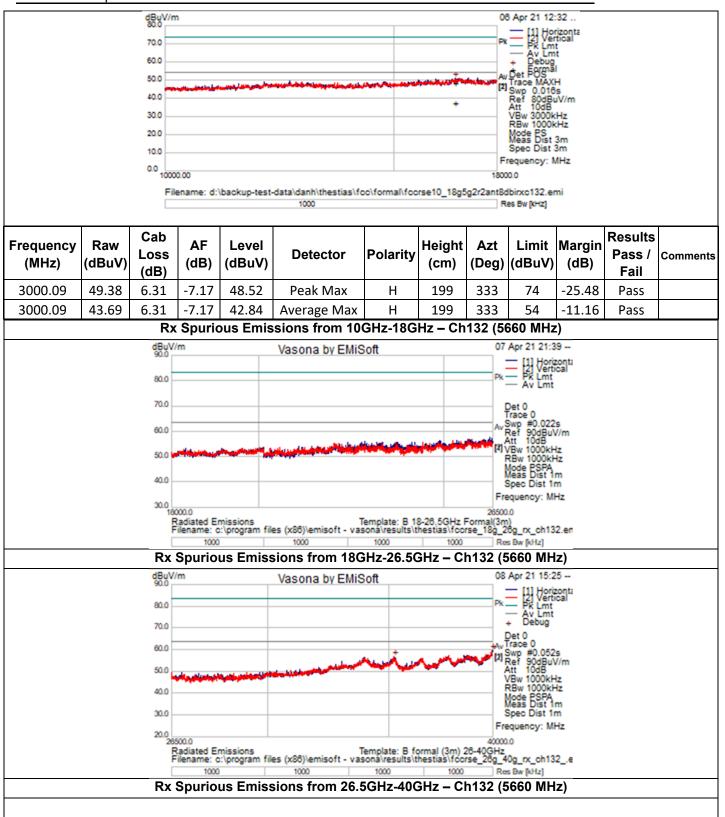
This report represents the worst-case data for all supported operating modes and antennas.

Page No: 30 of 44

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

A.3.1: Rx Radiated Spurious Emissions Graphical Data Results

Subtest Date: 9th April 2					April 2021							
Engineer				Far	Vincent Chiu Farida Rahmanzai Danh Le							
Lab Informa	ation			Buil	ding 7, 5m A	Anechoic						
Subtest Tit	le			Rec	eiver Spuric	ous Emiss	ions					
Frequency	Range			30N	/Hz - 1GHz							
Comments	on the a	above Te	st Res	ults Rx	Channel 13	2 (5660 N	/Hz)					
dBuV/m 60.0 50.0 40.0 20.0 10.0 0.0 30.00 Filename: d:\backup					00.00 lata\danh\thestias sions from	12	20 -		+ Di Cop+ Fic Det PC Trace I Swp # Ref 7/ Att 00 VBw 30 VBw 30 VBw 30 VBw 30 Node E Spec D Frequence 1000.00 ant8dbirxc13 Res Bw (or	Horizont: Vertical Sk Lmt Houg MAXH 0.165s JOBUV/m JB JOBUV/m JB JOBHZ 20kHz 20kHz 20kHz 20kHz 20kHz 20kHz 35 Jist 3m Jist 3m Jist 3m Jist 3m Jist 3m Jist 2, emi Hz		
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)		Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
39.08125	8.16	0.63	14.53	23.33	Quasi Max	V	109	31	40	-16.67	Pass	
39.215	20.79	0.63	14.43	35.85	Peak [Scan]	V	100	0	40	-4.15	Pass	
48.915	18.29	0.7	8.33	27.32	Peak [Scan]	V	100	0	40	-12.68	Pass	
99.84	16.34	1.01	10.34	27.68	Peak [Scan]	V	100	0	43.5	-15.82	Pass	
987.39	11.64	3.19	23.2	38.03	Peak [Scan]	V	300	0	54	-15.97	Pass	


Page No: 31 of 44

Subtest Date: 06-April-2021 – 08 th April 2021												
Eliginool					Vincent Chiu Farida Rahmanzai							
				Dank								
Lab Inform	ation			Build	ling 7, 5m Anec	hoic						
Subtest Tit	le			Rece	eiver Spurious E	Emissions						
Frequency	Range			1GH	z - 40GHz							
Comments	on the a	above Te	st Res	ults Rx C	hannel 132 (56	60MHz)						
		dBuV/r 80.0	n		Vasona by EMiS	Soft		06	Apr 21 12:	07		
		70.0						Pk				
		60.0							Av Lmi + Debug			
		50.0			*+			AW.		ts		
		40.0		. Jak	when the second se			12	Swp 0.015 Ref 80dBu	s V/m		
		30.0 🍟	and a second second						Att 10dB VBw 3000k	Hz		
		20.0							RBw 1000k Mode PS Meas Dist 3			
		10.0							Spec Dist 3 equency: M	m		
		0.0 100	0.00					1000	0.00			
		R	adiated En lename: d	hissions Nackup-tes	t-data\danh\thestias\f	femplate: RS cc\formal\fc	E 15.209 P crse1_10g5	k 1-18GH: g2r2ant8d	z birxch132.e	mi		
		R	c Spuri	ous Emi	ssions from 10	Hz-10Gł	lz – Ch	132 (56	60 MHz			
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)	Azt (Deg)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
3000.09	49.38	6.31	-7.17	48.52	Peak Max	Н	199	333	74	-25.48	Pass	
3000.09	43.69	6.31	-7.17	42.84	Average Max	Н	199	333	54	-11.16	Pass	
3200.03	44.36	6.55	-6.65	44.25			189	365	74	-29.75	Pass	
3200.03	38.39	6.55	-6.65	38.28	Average Max	V	189	365	54	-15.72	Pass	
9955.00	26.64	12.48	-2.1	37.01	Average Max	V	262	22	54	-16.99	Pass	
9955.00	36.85	12.48	-2.1	47.23	Peak Max	V	262	22	74	-26.77	Pass	. <u> </u>

ոլովո

Page No: 32 of 44

Note: No measurable emissions found from 10GHz - 40GHz

Page No: 33 of 44

A.4 AC Conducted Emissions

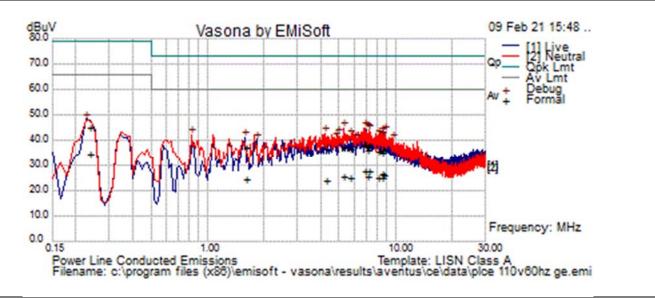
FCC 15.207 (a) & RSS-Gen 8.8 Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.

Measurement Procedure Accordance with ANSI C63.10:2013 section 6.2

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span:150 KHz – 30 MHzAttenuation:10 dBSweep Time:CoupledResolution Bandwidth:9 KHzVideo Bandwidth:30 KHzDetector:Quasi-Peak / Average

Page No: 34 of 44


A.4.1: AC Line conducted emissions results

Subtest Date: 09 Feb 21										
Engineer Chakravarthy Sulva										
Lab Informa	ation			Building F	P, formal imm	unity room				
Subtest Tit	le			•	d Emissions	5				
Frequency	Range			150 kHz -	30 MHz					
Comments	-	above Tes	st	2.4GHz/5	GHz					
Results										
d	1BuV			Vasona	a by EMiSo	ft		09 F	Feb 21 15:48	B
									2 Neutr	al
	70.0							- cop	 Opk Lmt Av Lmt 	
	50.0							Av +	Debug	
1	50.0	+							i vinai	
	40.0	AN		1	++	test to the test				
	1	+	190	Maluk	MANNA	WHAT WHAT HAD CARE		-		
	30.0	114	10	Maria	A MARINE	. ++ # .+	Contraction of the local division of the loc	[2]		
1	20.0 V	-11-	- ŋ 4			+				
0	10.0	Y	Y							
								-		
	00							Free	quency: MH	z
C	0.0			1.00		10.0		30.00		z
	0.15 Powe	er Line Con ame: c:\pro	ducted E	missions	misoft - vasor		plate: LISI	30.00 N Class A		
	0.15 Powe	er Line Con ame: c:\pro	ducted E ogram file	missions	misoft - vasor	Temp	plate: LISI	30.00 N Class A		
	0.15 Powe	ame: c:\pro	ogram file	missions es (x88)\er		Temp	olate: LISI tus\ce\da	30.00 N Class A ta\pice 11		
Frequency	0.15 Powe	ame: c:\pro	ogram fik Conduct	missions es (x88)\er		Temp na\results\aven	olate: LISI tus\ce\da	30.00 N Class A ta\pice 11		
	0.15 Powe Filen	ame: c:\pro	ogram fik Conduct	missions es (x88)\er ed Emiss	ions Test R	Temp na\results\aven esult Tables f	olate: LISI tus\ce\da	30.00 N Class A ta\pice 11 z/5GHz	0v60hz ge.e	emi Comments
Frequency	0.15 Powe Filen Raw	AC (Cab Loss	ogram fik Conduct Factors	ed Emiss Level	ions Test R	Temp na\results\aven esult Tables f Lines	or 2.4GH	30.00 N Class A ta\ploe 11 z/5GHz Margin	0v60hz ge.e	Comments
Frequency (MHz)	0.15 Powe Filen Raw (dBuV)	AC (Cab Loss (dB)	ogram fik Conduct Factors (dB)	ed Emiss Level (dBuV)	ions Test R Detector	Temp ha\results\aven esult Tables f Lines (Live/Neutral)	olate: LISI tus/ce/da or 2.4GH Limit (dBuV)	30.00 N Class A ta\pice 11 Iz/5GHz Margin (dB)	0v80hz ge.e Results Pass / Fail	emi Comments
Frequency (MHz) 0.236	0.15 Powe Filen Raw (dBuV) 14.1	AC (Cab Loss (dB) 20.6	Conduct Factors (dB) 0	ed Emiss Level (dBuV) 34.7	ions Test R Detector Average	Temp na\results\aven esult Tables f Lines (Live/Neutral) Live	for 2.4GH Limit (dBuV) 52.35	30.00 N Class A ta\pice 11 z/5GHz Margin (dB) -17.65	Ov60hz ge.e Results Pass / Fail Pass	Comments 2.4GHz/5GHz
Frequency (MHz) 0.236 6.83	0.15 Powe Filen (dBuV) 14.1 7.5	AC (Cab Loss (dB) 20.6 20.1	ogram file Conduct Factors (dB) 0 0	ed Emiss Level (dBuV) 34.7 27.6	Detector Average Average	Temp halresults a ven esult Tables f Lines (Live/Neutral) Live Neutral	or 2.4GH Limit (dBuV) 52.35 50	30.00 N Class A ta pice 11 Z/5GHz Margin (dB) -17.65 -22.4	Ov60hz ge.e Results Pass / Fail Pass Pass	Comments 2.4GHz/5GHz 2.4GHz/5GHz
Frequency (MHz) 0.236 6.83 7.236	0.15 Power Filen (dBuV) 14.1 7.5 7.4	AC (Cab Loss (dB) 20.6 20.1 20.1	ogram file Conduct Factors (dB) 0 0 0	ed Emiss (x88)\er Level (dBuV) 34.7 27.6 27.5	ions Test R Detector Average Average Average	esult Tables f Lines (Live/Neutral) Live Neutral Neutral	or 2.4GF Limit (dBuV) 52.35 50 50	30.00 N Class A ta\pice 11 z/5GHz Margin (dB) -17.65 -22.4 -22.5	Results Pass / Fail Pass Pass Pass Pass	Comments 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz
Frequency (MHz) 0.236 6.83 7.236 8.449	0.15 Power Filen (dBuV) 14.1 7.5 7.4 6.5	AC (Cab Loss (dB) 20.6 20.1 20.1 20.1	ogram file Conduct Factors (dB) 0 0 0 0 0.1	ed Emiss (x88)\er (dBuV) 34.7 27.6 27.5 26.8	Detector Average Average Average Average	esult Tables f Lines (Live/Neutral) Live Neutral Neutral Neutral	or 2.4GH Limit (dBuV) 52.35 50 50 50	30.00 N Class A ta ploe 11 Z/5GHz Margin (dB) -17.65 -22.4 -22.5 -23.2	Ov60hz ge.e Results Pass / Fail Pass Pass Pass Pass Pass	Comments 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz
Frequency (MHz) 0.236 6.83 7.236 8.449 8.676	0.15 Power Filen Raw (dBuV) 14.1 7.5 7.4 6.5 6.1	AC 0 Cab Loss (dB) 20.6 20.1 20.1 20.1 20.1 20.2	ogram file Conduct Factors (dB) 0 0 0 0 0 0.1 0.1	ed Emiss (x88)\er (dBuV) 34.7 27.6 27.5 26.8 26.4	DetectorAverageAverageAverageAverageAverageAverageAverageAverageAverageAverage	esult Tables f Lines (Live/Neutral) Live Neutral Neutral Neutral Neutral Neutral	or 2.4GF Limit (dBuV) 52.35 50 50 50 50	30.00 Class A a ploe 11 z/5GHz Margin (dB) -17.65 -22.4 -22.5 -23.2 -23.6	Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass	Comments 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz
Frequency (MHz) 0.236 6.83 7.236 8.449 8.676 0.236	0.15 Power Filen Raw (dBuV) 14.1 7.5 7.4 6.5 6.1 24.3	AC (Cab Loss (dB) 20.6 20.1 20.1 20.1 20.1 20.2 20.6	ogram file Conduct Factors (dB) 0 0 0 0 0 0 0 0 0 0 1 0.1 0.1 0	ed Emiss (x88))er (dBuV) 34.7 27.6 27.5 26.8 26.4 45	Detector Average Average Average Average Average Quasi Peak	esult Tables f Lines (Live/Neutral) Live Neutral Neutral Neutral Neutral Live	or 2.4GH Limit (dBuV) 52.35 50 50 50 50 62.35	30.00 N Class A ta pice 11 Z/5GHz Margin (dB) -17.65 -22.4 -22.5 -23.2 -23.6 -17.35	Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass Pas	Comments 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz
Frequency (MHz) 0.236 6.83 7.236 8.449 8.676 0.236 5.285	0.15 Power Filen Raw (dBuV) 14.1 7.5 7.4 6.5 6.1 24.3 5.6	AC 0 Cab Loss (dB) 20.6 20.1 20.1 20.1 20.2 20.6 20.2 20.6 20.1	ogram file Conduct Factors (dB) 0 0 0 0.1 0.1 0 0.1	ed Emiss (x88) er (dBuV) 34.7 27.6 27.5 26.8 26.4 45 25.7	DetectorAverageAverageAverageAverageAverageAverageQuasi PeakAverage	esult Tables f Lines (Live/Neutral) Live Neutral Neutral Neutral Neutral Live Neutral Live Neutral	or 2.4GH Limit (dBuV) 52.35 50 50 50 50 62.35 50	30.00 Class A a ploe 11 Iz/5GHz Margin (dB) -17.65 -22.4 -22.5 -23.2 -23.6 -17.35 -24.3	Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass Pas	Comments 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz
Frequency (MHz) 0.236 6.83 7.236 8.449 8.676 0.236 5.285 6.83	0.15 Power Filen Raw (dBuV) 14.1 7.5 7.4 6.5 6.1 24.3 5.6 18.4	AC 0 Cab Loss (dB) 20.6 20.1 20.1 20.1 20.2 20.6 20.1 20.2 20.6 20.1 20.1	ogram file Conduct Factors (dB) 0 0 0 0 0 0 0 0 0 0 0 0 0	ed Emiss (x88) er (dBuV) 34.7 27.6 27.5 26.8 26.4 45 25.7 38.6	DetectorAverageAverageAverageAverageAverageAverageQuasi PeakQuasi PeakQuasi Peak	esult Tables f Lines (Live/Neutral) Live Neutral Neutral Neutral Neutral Live Neutral Live Neutral Live	or 2.4GH Limit (dBuV) 52.35 50 50 50 50 62.35 50 60	30.00 N Class A ta pice 11 Z/5GHz Margin (dB) -17.65 -22.4 -22.5 -23.2 -23.6 -17.35 -24.3 -21.4	Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass Pas	Comments 2.4GHz/5GHz
Frequency (MHz) 0.236 6.83 7.236 8.449 8.676 0.236 5.285 6.83 7.04	0.15 Power Filen Raw (dBuV) 14.1 7.5 7.4 6.5 6.1 24.3 5.6 18.4 5.3	AC 0 Cab Loss (dB) 20.6 20.1 20.1 20.1 20.2 20.6 20.1 20.1 20.1 20.1	ogram file Conduct Factors (dB) 0 0 0 0 0.1 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0	ed Emiss (x88) er (dBuV) 34.7 27.6 27.5 26.8 26.4 45 25.7 38.6 25.5	DetectorAverageAverageAverageAverageAverageAverageQuasi PeakAverageQuasi PeakAverageQuasi PeakAverage	esult Tables f Lines (Live/Neutral) Live Neutral Neutral Neutral Neutral Live Neutral Live Neutral Live	or 2.4GH Limit (dBuV) 52.35 50 50 50 62.35 50 60 50 60 50	30.00 Class A a ploe 11 Iz/5GHz Margin (dB) -17.65 -22.4 -22.5 -23.2 -23.6 -17.35 -24.3 -21.4 -24.5	Ov60hz ge.e Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass	Comments 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz
Frequency (MHz) 0.236 6.83 7.236 8.449 8.676 0.236 5.285 6.83 7.04 8.425	0.15 Power Filen Raw (dBuV) 14.1 7.5 7.4 6.5 6.1 24.3 5.6 18.4 5.3 5	AC 0 Cab Loss (dB) 20.6 20.1 20.1 20.1 20.2 20.6 20.1 20.1 20.1 20.1 20.1 20.1	ogram file Conduct Factors (dB) 0 0 0 0 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0	ed Emiss (x88))er (dBuV) 34.7 27.6 27.5 26.8 26.4 45 25.7 38.6 25.5 25.2	Detector Average Average Average Average Average Quasi Peak Average Quasi Peak Average Quasi Peak	esult Tables f Lines (Live/Neutral) Live Neutral Neutral Neutral Live Neutral Live Neutral Live Neutral Live	or 2.4GH tus ce da or 2.4GH Limit (dBuV) 52.35 50 50 50 50 62.35 50 60 50 50 60 50 50 50 50	30.00 Class A a ploe 11 Z/5GHz Margin (dB) -17.65 -22.4 -22.5 -23.2 -23.6 -17.35 -24.3 -21.4 -24.5 -24.8	Ov80hz ge.e Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass Pas	Comments 2.4GHz/5GHz
Frequency (MHz) 0.236 6.83 7.236 8.449 8.676 0.236 5.285 6.83 7.04 8.425 5.755	Raw (dBuV) 14.1 7.5 7.4 6.5 6.1 24.3 5.6 18.4 5.3 5 4.9	AC (Cab Loss (dB) 20.6 20.1 20.1 20.1 20.1 20.2 20.6 20.1 20.1 20.1 20.1 20.1 20.1	ogram file Conduct Factors (dB) 0 0 0 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0	ed Emiss (x88) er (dBuV) 34.7 27.6 27.5 26.8 26.4 45 25.7 38.6 25.5 25.2 25.2 25.2	Detector Average Average Average Average Quasi Peak Average Quasi Peak Average Quasi Peak Average Average Average	esult Tables f Lines (Live/Neutral) Live Neutral Neutral Neutral Neutral Live Neutral Live Neutral Live Live Live	or 2.4GH Limit (dBuV) 52.35 50 50 50 62.35 50 60 50 50 50 50 50 50 50 50 50 50 50 50 50	30.00 Class A a ploe 11 Iz/5GHz Margin (dB) -17.65 -22.4 -22.5 -23.2 -23.6 -17.35 -24.3 -21.4 -24.5 -24.8 -25	Ov60hz ge.e Results Pass / Fail Pass	Comments 2.4GHz/5GHz

Page No: 35 of 44

Subtest Date:	09 Feb 21
Engineer	Chakravarthy Sulva
Lab Information	Building P, formal immunity room
Subtest Title	Conducted Emissions
Frequency Range	150 kHz - 30 MHz
Comments on the above Test	2.4GHz/5GHz
Results	

AC Conducted Emissions Test Result Tables for 2.4GHz/5GHz

Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	Factors (dB)	Level (dBuV)	Detector	Lines (Live/Neutral)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
4.235	4.2	20	0	24.3	Average	Neutral	46	-21.7	Pass	2.4GHz/5GHz
5.285	16.9	20.1	0.1	37	Quasi Peak	Neutral	60	-23	Pass	2.4GHz/5GHz
1.586	17	20	0	37	Quasi Peak	Live	56	-19	Pass	2.4GHz/5GHz
4.235	16.7	20	0	36.8	Quasi Peak	Neutral	56	-19.2	Pass	2.4GHz/5GHz
5.755	16.4	20.1	0	36.5	Quasi Peak	Live	60	-23.5	Pass	2.4GHz/5GHz
7.04	16.1	20.1	0.1	36.3	Quasi Peak	Live	60	-23.7	Pass	2.4GHz/5GHz
8.449	16.1	20.1	0.1	36.3	Quasi Peak	Neutral	60	-23.7	Pass	2.4GHz/5GHz
8.676	15.7	20.2	0.1	35.9	Quasi Peak	Neutral	60	-24.1	Pass	2.4GHz/5GHz
8.091	15.4	20.1	0.1	35.6	Quasi Peak	Live	60	-24.4	Pass	2.4GHz/5GHz
8.425	15	20.1	0.1	35.2	Quasi Peak	Live	60	-24.8	Pass	2.4GHz/5GHz

Page No: 36 of 44

Equip#	Manufacturer Model Descr		Description	Last Cal	Next Due
	Test Equipme	nt used for Radiated	Emissions 30MHz to 1GHz		
CIS44908	ROHDE & SCHWARZ	ESCI	EMI Test Receiver	12-Dec-2020	12-Dec-2021
CIS30654	SUNOL SCIENCES	JB1	Combination Antenna, 30MHz-2GHz	14-Jul-2020	14-Jul-2021
CIS47311	HUBER + SUHNER	Sucoflex 106PA	RF Type N Antenna Cable 18 GHz 8.5m	30-Sep-2019	30-June-2021
CIS25640	MICRO-COAX	UFB311A-0-2720- 520520	Coaxial Cable, 272.0 in. to 18GHz	30-Sep-2019	30-June-2021
CIS25660	MICRO-COAX	UFB311A-1-0840- 504504	Coaxial Cable, 84.0 in. to 18GHz	30-Sep-2019	30-June-2021
CIS08113	CISCO	NSA CAL	NSA Chamber	27-Mar-2021	27-Mar-2022
	Test Equipme	nt used for Radiated	Emissions 1GHz to 18GHz		
CIS24905	Keysight (Agilent/HP)	E4440A	Spectrum Analyzer 3Hz-26.5GHz	21-Oct-2020	21-Oct-2021
CIS34741	ETS Lindgren	3117	Double Ridged Guide Horn Antenna	01-Oct-2020	01-Oct-2021
CIS39124	CISCO	TH0118	Mast Mount Preamplifier Array, 1-18GHz	21-Jan-2020	21-Jul-2021
CIS47311	HUBER + SUHNER	Sucoflex 106PA	RF Type N Antenna Cable 18 GHz 8.5m	30-Sep-2019	30-June-2021
CIS25640	MICRO-COAX	UFB311A-0-2720- 520520	Coaxial Cable, 272.0 in. to 18GHz	30-Sep-2019	30-June-2021
CIS25660	MICRO-COAX	UFB311A-1-0840- 504504	Coaxial Cable, 84.0 in. to 18GHz	30-Sep-2019	30-June-2021
CIS54402	HUBER + SUHNER	Sucoflex 102	K Type 40 GHz Cable	10-Feb-2021	10-Feb-2022
CIS8113	CISCO	NSA CAL	NSA Chamber	27-Mar-2021	27-Mar-2022
CIS43024	CISCO	Above 1GHz Site Ca	1GHz Cispr Site Verification	03-Oct-2020	03-Oct-2021
CIS56057	Wainwright Instruments	WRCJV16-5440-5 470-5725-5755-4+	SMA Band Reject Filter. 5.440GHz to 5.755GHz	02-Apr-2021	02-Apr-2022
			Emissions 18GHz to 26GHz		
CIS08113	CISCO	NSA CAL	NSA Chamber	27-Mar-2021	27-Mar-2022
CIS36710	Cisco	1840	18-40GHz EMI Test Head/Verification Fixture	17-Sep-2020	17-Sep-2021
CIS19630	Rohde & Schwarz	ESI 40(ESIB 40)	EMI RECEIVER TEST 20Hz-40GHz	28-Jan-2021	28-Jan-2022

Page No: 37 of 44

Equip#	Manufacturer	Model	Description	Last Cal	Next Due		
	Test Equipment used for AC line conducted emissions 150kHz-30MHz						
008496	Fischer Custom Communications	FCC-450B-2.4-N	Instrumentation Limiter	12/15/2020	12/15/2021		
007704	Fischer Custom Communications	FCC-LISN-50/250-50-2-01	LISN	12/7/2020	12/7/2021		
018963	York	CNE V	Comparison Noise Emitter,30- 1GHz	NA	NA		
019207	TTE	H785-150K-50-21378	High Pass Filter 150kHz	1/25/2021	1/25/2022		
020913	Fischer Custom Communications	FCC-LISN-PA-NEMA-5-15	AC Adapter	12/7/2020	12/7/2021		
037229	Coleman	RG-223	25ft BNC cable	2/26/2020	2/26/2021		
044021	Fischer Custom Communications	FCC-801-M2-32A	Power Line Coupling Decoupling Network	3/9/2020	3/9/2021		
046718	Bird	5-T-MB	5W 50 Ohm BNC Termination 4GHz	3/15/2019	3/15/2021		
049479	Coleman	RG223	BNC 2ft Cable	3/4/2020	3/4/2021		
004729	Fluke	77	Digital Multimeter	5/19/2020	5/19/2021		
058245	COMET	T7611-4	Humidity Temperature Probe	12/26/2020	12/26/2021		
058276	ROHDE & SCHWARZ	ESR3	EMI Receiver	6/25/2020	6/25/2021		

Page No: 38 of 44

Appendix C: Photographs of Test Setups

See FCC/RSS RSE Test Setup document - EDCS-21686217

Page No: 39 of 44

Appendix D: Abbreviation Key and Definitions

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	°C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
TAP	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control System	Qp	Quasi Peak
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak
Cal	Calibration	kHz	Kilohertz (1x10 ³)
EN	European Norm	MHz	MegaHertz (1x10 ⁶)
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)
CISPR	International Special Committee on Radio Interference	Н	Horizontal
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization Network	dB	decibel
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³)
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)
L2	Line2	А	Amp
L3	Line 3	μA	Micro Amp (1x10 ⁻⁶)
DC	Direct Current	mS	Milli Second (1x10 ⁻³)
RAW	Uncorrected measurement value, as indicated by the measuring device	μS	Micro Second (1x10 ⁻⁶)
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)
SLCE	Signal Line Conducted Emissions	m	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
Ν	Neutral Line	R	Return
S	Supply	AC	Alternating Current

The following table defines abbreviations used within this test report.

Page No: 40 of 44

Appendix E: Software Used to Perform Testing

EMIsoft Vasona, version 6.024

Page No: 41 of 44

Appendix F: Test Procedures

Measurements were made in accordance with

- KDB 789033 D02 General UNII Test Procedures New Rules v02r01
- KDB 662911 MIMO
- ANSI C63.4 2014 Unintentional Radiators
- ANSI C63.10 2013 Intentional Radiators

Test procedures are summarized below:

FCC 5GHz Test Procedures	EDCS # 1445048
FCC 5GHz RSE Test Procedures	EDCS # 1511600

Page No: 42 of 44

Appendix G: Scope of Accreditation (A2LA certificate number 1178-01)

The scope of accreditation of Cisco Systems, Inc. can be found on the A2LA web page at:

http://www.a2la.org/scopepdf/1178-01.pdf

Page No: 43 of 44

Appendix H: Test Assessment Plan

Compliance Test Plan (Excel) EDCS#21669684 Target Power Tables EDCS#19467753

Appendix I: Worst Case Justification

All 3 orientations (Z, Y, Z) of the EUT were assessed by performing pre-scan. The X orientation was determined to be the worst-case orientation.

Page No: 44 of 44