

Radio Test Report

(Radiated Spurious Emissions Only)

For

WiFi module: WP-WIFI6-A, WP-WIFI6-B

Supports 2.4 GHz / 5 GHz 802.11 a/ac/ax/b/g/n Wi-Fi radio

In

Host systems: IR1821-K9, IR1831-K9, IR1833-K9, IR1835-K9

FCC ID: LDKWPWIFI6 IC: 2461N-WPWIFI6

5250-5350 MHz

Against the following Specifications: 47 CFR 15.205 47 CFR 15.209 47 CFR 15.407 RSS-247 issue 2 RSS-Gen issue 5

Cisco Systems 170 West Tasman Drive San Jose, CA 95134

Page No: 1 of 42

Author:	
	par &
Tested By: Title: Test Engineers	Vant. L
	Vincent Chiu, Farida Rahmanzai, Danh Le
	fala P.
	Farida Rahmanzai
	Pale
	Danh Le
Approved By: Title: Compliance Manager	And E
	Howard Ji
Version:	1.0

This report replaces any previously entered test report under EDCS – 21673978. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. Test Report Template EDCS# 1526149.

Page No: 2 of 42

This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

SECTION 1: OVERVIEW	4
1.1 Test Summary	4
SECTION 2: ASSESSMENT INFORMATION	5
 2.1 GENERAL. 2.2 UNITS OF MEASUREMENT	5 7 7 7 7 7
SECTION 3: RESULT SUMMARY	11
3.1 Results Summary Table	11
SECTION 4: SAMPLE DETAILS	12
APPENDIX A: RADIATED SPURIOUS EMISSION	13
 A.1: SETUP DIAGRAM A.2: RADIATED SPURIOUS EMISSIONS TEST REQUIREMENTS & LIMITS A.2.1: Limit Conversion (power to field strength) A.2.2: Test Procedure A.2.3: TX Radiated Spurious Emissions Graphical Data Results A.3: RECEIVER SPURIOUS EMISSIONS A.3.1: Rx Radiated Spurious Emissions Graphical Data Results A.4 AC CONDUCTED EMISSIONS A.4.1: AC Line conducted emissions results 	
APPENDIX B: LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST	
APPENDIX C: PHOTOGRAPHS OF TEST SETUPS	
APPENDIX D: ABBREVIATION KEY AND DEFINITIONS	
APPENDIX E: SOFTWARE USED TO PERFORM TESTING	
APPENDIX F: TEST PROCEDURES	40
APPENDIX G: SCOPE OF ACCREDITATION (A2LA CERTIFICATE NUMBER 1178-01)	41
APPENDIX H: TEST ASSESSMENT PLAN	42
APPENDIX I: WORST CASE JUSTIFICATION	42

Page No: 3 of 42

Section 1: Overview

1.1 Test Summary

The samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

Specifications
47 CFR 15.205 47 CFR 15.209 47 CFR 15.407
RSS-247 Issue 2 RSS-Gen Issue 5

Page No: 4 of 42

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Radio Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature	15°C to 35°C (59°F to 95°F)
Atmospheric Pressure	860mbar to 1060mbar (25.4" to 31.3")
Humidity	10% to 75*%

e) All DC testing was performed at one or more of the following supply voltages:
 12VDC (The supply voltage range supports 12V-36VDC)

2.2 Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

```
Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB]
```

The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss..

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Page No: 5 of 42

Measurement Uncertainty Values

voltage and power measurements	± 2 dB
conducted EIRP measurements	± 1.4 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7
temperature measurements	± 0.54°.
humidity measurements	± 2.3%
DC and low frequency measurements	± 2.5%.

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

30 MHz – 40GHz	+/- 0.38 dB
----------------	-------------

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

Page No: 6 of 42

2.3 Date of testing (initial sample receipt date to last date of testing)

30-March-2021 to 09-April-2021

2.4 Report Issue Date

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled

2.5 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc. 425 West Tasman Drive (Building 7) San Jose, CA 95134 USA

Headquarters

Cisco Systems, Inc., 170 West Tasman Drive San Jose, CA 95134, USA

Registration Numbers for Industry Canada

Cisco System Site	Address	Site Identifier
Building P, 10m Chamber	125 West Tasman Dr	Company #: 2461N-2
	San Jose, CA 95134	
Building P, 5m Chamber	125 West Tasman Dr	Company #: 2461N-1
	San Jose, CA 95134	
Building 7, 5m Chamber	425 E. Tasman Drive	Company #: 2461N-3
	San Jose, California 95134	
	United States	

Test Engineers

Farida Rahmanzai, Vincent Chiu, Danh Le

2.6 Equipment Assessed (EUT)

Radio Module: WP-WIFI6-B Host System: IR1835-K9

Page No: 7 of 42

2.7 EUT Description

WP-WIFI6 is Wifi 802.11ax Wi-Fi 6 access point module for industrial IoT routing and gateway platforms which is a field replaceable Wifi interface module designed for IR1800 series platform. It includes a 2x2 MIMO 802.11ax 2.4 GHz radio and a 2x2 MIMO 802.11ax 5 GHz radio

IR1835-K9 is the next generation of IR829, based on IOS XE, with advanced features such as modular WiFi, modular Cellular/WAN, CAN Bus, Dead Reckoning etc.

The product has the following interfaces: 4 GE LAN Ports 1 GE WAN / 1 Fiber Port (Alternate to GE Copper port) 1 RS-232 Serial 1 RS232/RS485 1 Type-A USB for Storage 1 GPS Slot1.6 EUT Description 1 WIFI Slot 1 mSATA Slot 2 Cellular PIM Slots [Main Aux and GPS (Only on Sierra Wireless Modules)] Alarm Port Micro-USB DC Power input (DC Min/Max 9-32)

Page No: 8 of 42

WiFi module Model/PID Differences

The WP-WIFI6 Access Point module is designed for use in many countries with varying regulatory requirements. The WP-WIFI6-A and WP-WIFI6-B, both have the same identical components, electronics circuitries, PCB layout and enclosure. The WP-WIFI6-A module is configured with the Canada country code and the WP-WIFI6-B module is configured with US country code. The US and Canada country codes are configured according to the test results demonstrated compliance in the RF conducted emissions FCC/RSS test reports. The difference between the 2 PIDs (WP-WIFI6-A and WP-WIFI6-B) is the UNII-1 (5150MHz – 5250MHz) band is not supported in the WP-WIFI6-A PID.

Host system Model/PID differences

IR1821-K9 IR1831-K9 IR1833-K9 IR1835-K9 ------ System Tested

The following host models are in the same IR18xx family. IR1835-K9 is the highly populated host model out of all 4 models and selected model for testing. The radio WP-WiFi6-E module in these host has the same identical components, electronics circuitries and PCB layout. Below table summarizes the differences between all four host models.

	IR1821-K9	No PoE IR1831-K9	With PoE IR1833-K9	IR1835-K9
	IR1821-K9	IR1831-K9	IR1833-K9	IR1835-K9
Processor	600MHz	600MHz	600MHz	1200MHz
Memory	4GB	4GB	4GB	8GB
Single LTE Slots	✓ ✓	×	×	×
Dual LTE Slot	×	v	1	1
WIFI (FRU)	×	4	4	4
PoE	×	×	1	4
mSAIA (FRU)	×	×	1	v
moves (PRO)	1000	×	J	1
Dedicated GPS (FRU)	×	<u>^</u>		
	x	×	×	4

Page No: 9 of 42

Antenna Specification

The following antennas are supported by this product series. The data included in this report represent the worst-case data for all antennas.

Frequency	Part Number	Antenna Type	Peak Antenna Gain (dBi)	>30 degree 5 GHz Antenna Gain (dBi)
0 4/5	W-ANTM2050D-RPSMA=	Omnidirectional swivel stick dipole	2/4	0
2.4/5	W-ANTM2-O-2-RPSMA	Omnidirectional	4 / 4	0
GHz	ANT-7-5G4WL2G1-O=	7-in-1 vehicle mount omnidirectional	8/8	3
	5G-ANTM-O-4-B=	9-in-1 vehicle mount omnidirectional	8 / 8	3

Page No: 10 of 42

Section 3: Result Summary

3.1 Results Summary Table

Radiated Emissions (General requirements)

Basic Standard	Technical Requirements / Details	Result
FCC 15.205 FCC 15.209	TX Spurious Emissions: Except as provided elsewhere in this subpart, the emissions from an	Pass
FCC 15.407 (b) (6)	intentional radiator shall not exceed the field strength levels specified in the field strength limits table in this section.	

Basic Standard	Technical Requirements / Details	Result
RSS-Gen	Gen TX Spurious Emissions: Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the filed strength limits table in this section.	
RSS-Gen	RX Spurious Emissions: Spurious emissions from the receivers shall not exceed the radiated limits of receiver spurious emissions shown in RSS-Gen section 8.9 & 8.10	Pass
15.207 RSS-Gen	AC conducted Emissions: U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207 & RSS-Gen	Pass

Page No: 11 of 42

Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing. Please also refer to the "Justification for worst Case test Configuration" section of this report for further details on the selection of EUT samples.

4.1 Sample Details

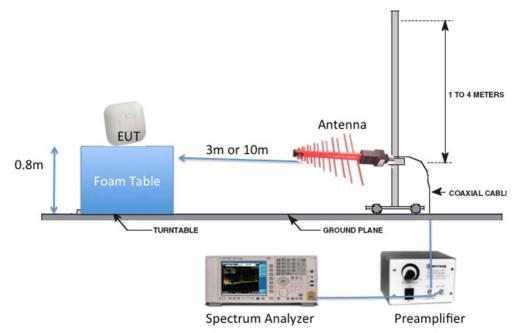
Sample Number	Equipment Details	Serial Number	CISCO Part Number
S01	WP-WiFi6-B Dual Band Radio in IR1835 Host system with 5GHz Wi-Fi radio actives	Module: FOC24490FG7 Host: FCW2443P0DH	Module: 68-103267-01 13
S02	External Patch antenna (8 dBi Gain)		5G-ANTM-O-4-B=

Note: The host system is powered by 12VDC. The host supply voltage range supports 12V-36VDC.

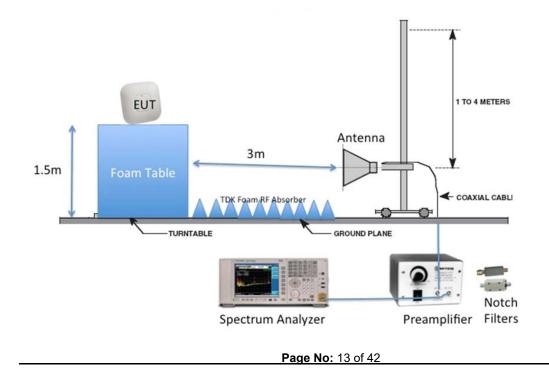
4.2 System Details

System #	Description	Samples
1	WP-WiFi6-B Dual Band Radio in IR1835 Host system with 5GHz Wi-Fi radio actives + ext. PS + ext. 8 dBi patch ant.	S01, S02

4.3 Mode of Operation / Modulation / Data Rate Details


Mode (Radio band support, # of active antenna)	Wi-Fi Mode	Modulation	Data Rate							
Transmit (dual antenna)	802.11HE20(5GHz)	MIMO-OFDMA	M0h1							
Receive (dual antenna)	802.11HE20(5GHz)	MIMO-OFDMA	M0h1							
Note: All testing was performed at 19dBm per antenna port which is maximum supported power level. The testing at maximum supported power will cover all other power levels and other supported modes										

Page No: 12 of 42


Appendix A: Radiated Spurious Emission

A.1: Setup Diagram

Radiated Emission Setup Diagram-Below 1G (Preamp used is optional)

Radiated Emission Setup Diagram-Above 1G

A.2: Radiated Spurious Emissions Test Requirements & Limits

Emissions on frequency or frequencies which are outside the necessary bandwidth and level of which may be reduced without effecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Page No: 14 of 42

Restricted bands Limits

15.407 (b) (7) The provisions of 15.205 apply to intentional radiators operating under this section

15.205 (b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

	Restricted Bands for FCC											
MHz	MHz	MHz	GHz									
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15									
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46									
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75									
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5									
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2									
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5									
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7									
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4									
6.31175-6.31225	123-138	2200-2300	14.47-14.5									
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2									
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4									
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12									
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0									
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8									
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5									
12.57675-12.57725	322-335.4	3600-4400	Above 38.6									
13.36-13.41												

Page No: 15 of 42

RSS-Gen 8.10

(**b**) Unwanted emissions that fall into restricted bands of Table 7 shall comply with the limits specified in table 5 (general field strength limits at frequencies above 30 MHz) and table 6 (general field strength limits at frequencies below 30 MHz).

(c) Unwanted emissions that do not fall within the restricted frequency bands of Table 7 comply either with the limits specified in the applicable RSS or with those specified in table 5 and table 6.

Table / Restricted Bands										
MHz	MHz	GHz								
0.090-0.110	74.8-75.2	9.0-9.2								
2.1735-2.1905	108-138	9.3-9.5								
3.020-3.026	156.52475-156.52525	10.6-12.7								
4.125-4.128	156.7-156.9	13.25-13.4								
4.17725-4.17775	240-285	14.47-14.5								
4.20725-4.20775	322-335.4	15.35-16.2								
5.677-5.683	399.9-410	17.7-21.4								
6.215-6.218	608-614	22.01-23.12								
6.26775-6.26825	960-1427	23.6-24.0								
6.31175-6.31225	1435-1626.5	31.2-31.8								
8.291-8.294	1645.5-1646.5	36.43-36.5								
8.362-8.366	1660-1710	Above 38.6								
8.37625-8.38675	1718.8-1722.2	*								
8.41425-8.41475	2200-2300									
12.29-12.293	2310-2390									
12.51975-12.52025	2655-2900									
12.57675-12.57725	3260-3267									
13.36-13.41	3332-3339									
16.42-16.423	3345.8-3358									
16.69475-16.69525	3500-4400									
16.80425-16.80475	4500-5150									
25.5-25.67	5350-5460									
37.5-38.25	7250-7750									
73-74.6	8025-8500									

Table 7 Restricted Bands

Page No: 16 of 42

Non-Restricted Bands Limits

Below 1 GHz

FCC 15.209

The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the table specified in the table in FCC§15.209(a).

FCC15.407

(b) (6) Unwanted emissions below 1GHz must comply with general field strength limits set forth in §15.209.

RSS-Gen 8.9: Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

General Field Strength Limits Table											
Field strengthField strengthMeasurementFrequency (MHz)(uV/meter)(meter)											
30-88	100**	40 Qp	3								
88-216	150**	43.5 Qp	3								
216-960	200**	46 Qp	3								
Above 960	500	54 Av / 74 Pk	3								

Above 1 GHz

15.407 (b) *Undesirable emission limits.* Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

RSS-247 6.2.2.2

a) All emissions outside the band 5250-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p

A.2.1: Limit Conversion (power to field strength)

The field strength limit in $dB\mu V$ can be converted from power (logarithmic) by using the field strength (linear) approach formula as follows:

$$V/m = \frac{\sqrt{30 \ x \ Pt \ x \ gt}}{d}$$

where: **pt** = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unit less),

 \mathbf{E} = electric field strength in V/m,

d = measurement distance in meters (m).

From the equation above, unit conversion from log => linear with a known power limit of -27 dBm.

(1) Conversion from dBm to Watt

dBm to Watts W = 10((dBm - 30)/10)

 $P(W) = 10^{(-27 - 120)/20}$ = 10^{-5.7} = 1.995 x 10^{-6}

(2) Convert from Watt to field strength

a. Convert from Watt to V/m @ 3m distance

$$V/m = \frac{\sqrt{30 \times Pt \times gt}}{3}$$
$$= \frac{\sqrt{30 \times 0.000001995 \times 1}}{3}$$

= 0.00257

b. Convert field strength to power density (V/m to dBµV/m)

dBµV/m = 20 log (V/m) + 120

= 68.2

Page No: 18 of 42

A.2.2: Test Procedure

Ref. ANSI C63.10-2013 section 6.5 & 6.6, Cispr16-1-1

ANSI C63.10: 2013 section 4.1.4 / section 12.7.5 (Quasi-Peak), section 12.7.6 (peak), section 12.7.7.3 (average)

Test parameters

(i) Span = Entire frequency range or segment if necessary.

(ii) Reference Level = 80 dBuV

(iii) RBW = 100 kHz (less than or equal to 1 GHz); 1 MHz (above 1 GHz)

(iv) VBW ≥ 3 x RBW

(v) Detector = Peak & Quasi-Peak (frequency range 30 MHz to 1 GHz);

Peak & Average (frequency range above 1 GHz); Change VBW to 10 Hz for average measurement (vi) Sweep Time = Couple

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

30MHz – 18GHz,

Save plots: Peak plot (Vertical and Horizontal) @3m

Above 18 GHz,

Save plots: Peak plot (Vertical and Horizontal) @1m

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

Note: The data displayed on the plots detailed in the graphical test results section were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements.

Page No: 19 of 42

Subtest Date:		30-M	lar-2021							
Engineer		Farid	Vincent Chiu Farida Rahmanzai Danh Le							
Lab Information		Build	Building 7, 5m Anechoic							
Subtest Title		Tran	Transmitter Spurious Emissions							
Frequency Range		30MI	Hz - 1GHz							
Comments on the above	Test Res	ults 802.′	11HE20, Tx	Channel	52 (5260) MHz)			
60. 50. 40.	30.00		/asona by EN				+ De Det PO Trace M Swp #0 20 Ref 70 Att od VBw 30 RBw 10 Mode P Meas D Spec D Frequence	Horizont: Vertical k Lmt bug rmal S JAXH 0.1s JAXH 0.1s 0kHz 0kHz 0kHz 0kHz S S sist 3m ist 3m y: MHz emi		
	TX Spurie	ous Emis	sions from	30MHz-1	GHz – G	Ch52 (5260 MI	Hz)		
Frequency Raw (MHz) (dBuV) Cal Los (dBuV)	S AF	Level (dBuV)	Detector	Polarity	Height (cm)		Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
42.9845 11.13 0.6	6 11.61	23.41	Quasi-Pk	V	202	144	40	-16.59	Pass	
46.765 13.27 0.6	9 9.29	23.25	Quasi-Pk	V	130	365	40	-16.75	Pass	

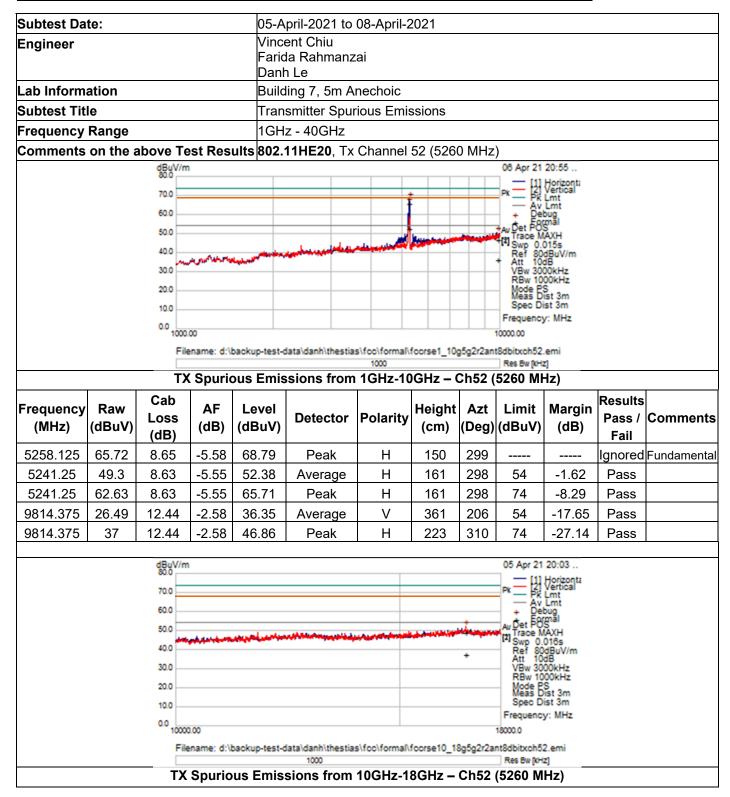
A.2.3: TX Radiated Spurious Emissions Graphical Data Results

Note: 5260MHz is only supported by WP-WIFI6-B domain. The 5260MHz is not supported by WP-WIFI6-A Wifi Module

Page No: 20 of 42

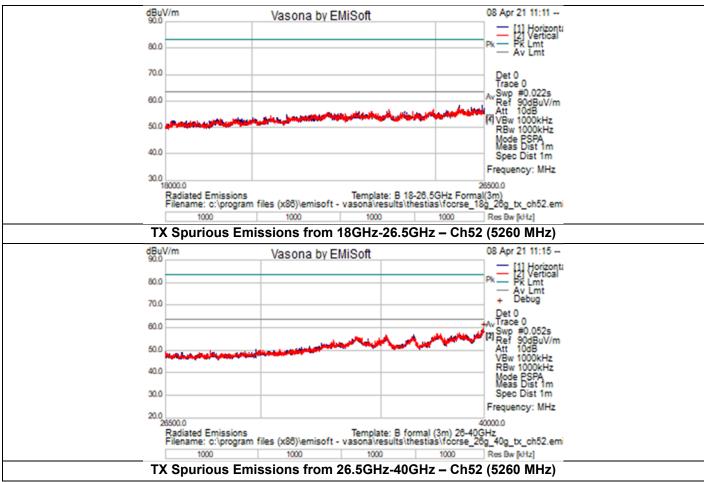
Subtest Date:			31-1	31-Mar-2021								
Engineer			Fari	cent Chiu da Rahman: Ih Le	zai							
Lab Information	Buil	ding 7, 5m A	nechoic									
Subtest Title			Trar	nsmitter Spu	rious Em	issions						
Frequency Range			30N	1Hz - 1GHz								
Comments on the abo	ove Te	st Resi	ults 802	.11HE20, Tx	Channe	I 60 (530	0 MH	z)				
	Filer	iated Emis name: d:\b	1 ssions sackup-test-d	Vasona by EN	Template: F	0	30m-1G ig2r2ant8	+ Det Qp+ Foi Det PO Trace M Swp #C (2) Ref 70 Att 0d VBw 30 RBw 10 Mode P Meas D Spec D Frequency 1000.00 Hz Sdbitxch80f. Res Bw [tH	Horizont: Vertical k Lmt bug mmal S JAXH 0.1s JAXH 0.1s 0kHz 0kHz 0kHz 0kHz 0kHz 0kHz 0kHz 0kHz			
Frequency Raw	Cab Loss	AF (dB)		Detector	Polarity	Height		Limit	Margin	Results Pass /	Comments	

uluilu cisco


Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector		Height (cm)			Margin	Results Pass / Fail	Comments
42.889	11.11	0.66	11.69	23.46	Quasi-Pk	V	210	258	40	-16.54	Pass	
895.30025	5.45	3.03	22.4	30.88	Quasi-Pk	V	391	194	46	-15.12	Pass	

Page No: 21 of 42

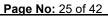
Subtest Date:			31-M	lar-2021							
Engineer			Farid	Vincent Chiu Farida Rahmanzai Danh Le							
Lab Information			Build	Building 7, 5m Anechoic							
Subtest Title	Tran	smitter Spur	ious Emis	ssions							
Frequency Range	Frequency Range										
Comments on the abo	ove Te	st Res	ults 802.′	11HE20, Tx	Channel	64 (5320) MHz) 31 Mar 21			
		iated Emis name: d:\t	11 ssions sackup-test-d	/asona by EN	Template: F S\foc\formal\ 10	0	30m-1G ig2r2anti	Att Od VBw 30 RBw 10 Meas D Spec D Frequency 1000.00 Hz 3dbitxch64.e).1s dBuV/m B 0kHz 0kHz S sist 3m ist 3m y: MHz emi z]		
	ТХ	Spuric	ous Emis	sions from	30MHz-1	GHz – C	Ch60 (5320 MI	Hz)		
Frequency Raw	Cab .oss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)		Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
41.14975 10.74 (0.65	12.98	24.37	Quasi-Pk	V	364	155	40	-15.63	Pass	
947.09875 4.96	3.11	22.79	30.86	Quasi-Pk	V	310	0	46	-15.14	Pass	

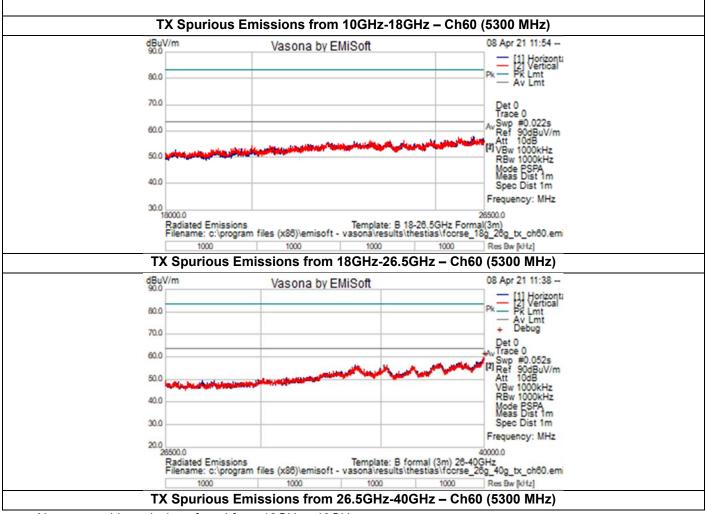

uluilu cisco

Page No: 22 of 42

1 1

Page No: 23 of 42

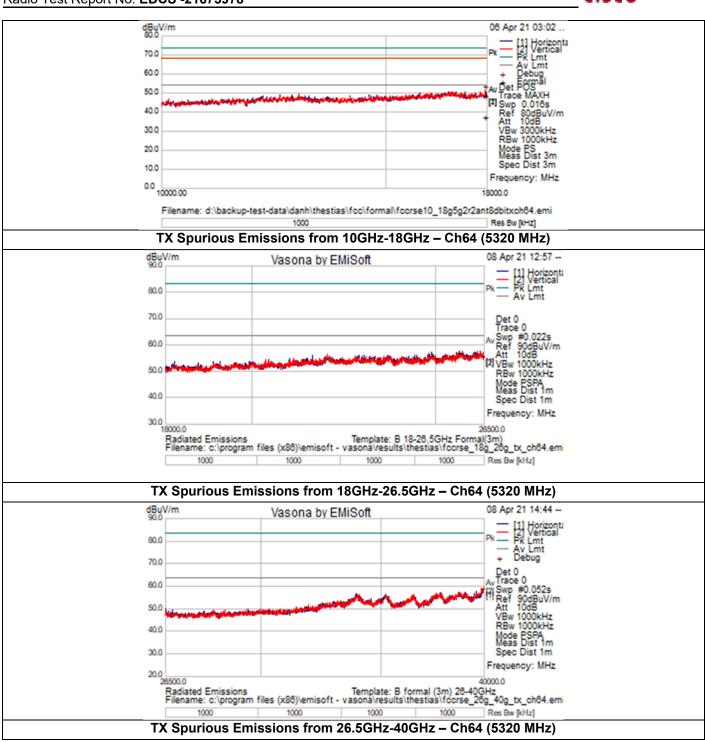



Note: No measurable emissions found from 10GHz - 40GHz

Page No: 24 of 42

Subtest Da	te:			05-A	pril-2021 to	08-April	-2021					
Engineer				Fario	Vincent Chiu Farida Rahmanzai Danh Le							
Lab Inform	ation				ding 7, 5m A	Anechoic						
Subtest Tit	le				smitter Spu		issions					
Frequency	Range				z - 40GHz							
Comments	-	bove Te	est Res	ults 802.	11HE20 , T	c Channe	I 60 (530	00 MH	z)			
		dBuV/m			,				,	1 21:25		
		70.0								Horizonta Vertical		
		60.0					Í			k Lmt v Lmt ebug		
		50.0				+			+Av Det F	ormal		
		40.0	t		a construction of the second	مىسىبىلىر				0.015s 0dBuV/m		
		30.0	A MARINA	and the second s	-	+			Att 1 VBw 3	0dB 000kHz		
		20.0								1000kHz PS Dist 3m		
		10.0							Spec	Dist 3m		
		0.0	00						10000.00	cy: MHz		
				backup-test-	data\danh\thesti	as\fcc\forma	Nfccrse1 1	0g5g2r2a		0f.emi		
					ssions fron	1000	-		Res Bw [k	Hz]		
							UGHZ -	CIIOU	(5300 1		Beaulta	
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)		Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
5308.75	64.67	8.72	-5.61	67.78	Peak	Н	250	303			Ignored	Fundamenta
3801.25	33.28	7.21	-6.38	34.1	Average	Н	193	286	54	-19.9	Pass	
3801.25	45.17	7.21	-6.38	46	Peak	Н	193	286	74	-28	Pass	
5213.125	36.25	8.62	-5.58	39.29	Average	Н	236	296	54	-14.71	Pass	
5213.125	47.41	8.62	-5.58	50.45	Peak	Н	236	296	74	-23.55	Pass	
5393.125	35.73	8.79	-5.32	39.2	Average	Н	111	295	54	-14.8	Pass	
5393.125	46.4	8.79	-5.32	49.87	Peak	Н	111	295	74	-24.13	Pass	
9881.875	26.35	12.45	-2.4	36.4	Average	V	115	101	54	-17.6	Pass	
9881.875	37.23	12.45	-2.4	47.28	Peak	Н	353	112	74	-26.72	Pass	
		dB-M/m							05 4 4 4 2	1 20.28		
		dBuV/m 80.0							05 Apr 2	Horizonta Vertical		
		70.0								k Lmt		
		60.0							- F	v Lmt ebug ormal		
		50.0				yan mana			Z Swp (MAXH 0.016s		
		40.0			+				Att 1	0dBuV/m		
		30.0							- VBw 3 RBw 1	000kHz 1000kHz		
		20.0							Mode	PS Dist 3m Dist 3m		
		10.0								cy: MHz		
		0.0	0.00						18000.0			
		File	ename: d:\\	backup-test-	data\danh\thesti	as\foo\forma	Moorse10	186562r2	ant8dbitxch	60 emi		
					1000	astroottoima		i ogogene	Res Bw [k			

uluilu cisco


Note: No measurable emissions found from 10GHz - 40GHz

Page No: 26 of 42

Subtest Date:					pril-2021 to	08-April-	2021						
Engineer					Vincent Chiu								
_					Farida Rahmanzai								
	_				Danh Le								
Lab Informat	ion				ling 7, 5m A								
Subtest Title					smitter Spu	rious Em	issions						
Frequency R				-	z - 40GHz								
Comments o	n the ab	_		ults 802.	11HE20, T>	Channe	l 64 (532	20 MH2	,				
		dBuV/m 80.0							06 Apr 21				
		70.0					+		PK PK	Horizonta Vertical Lmt			
		60.0							Av	Lmt bug			
		50.0			+		÷		t Av Det P8	(AXH			
		40.0		-	and a manufalue	- Alexandress	et carrier		Ref 80	015s dBuV/m			
		30.0	ALC: NO		-		+	_		dB 00kHz			
		20.0						_	- RBw 10 Mode F	S S Sust 3m			
				_		Spec D	ist 3m						
		0.0	00						Frequenc 10000.00	y: MHZ			
				backup-test-	data\danh\thesti	as\fcc\forma	Afocrse1 10	Do5o2r2a		f.emi			
						1000			Res Bw [kH	z]			
			Spurie	ous Emis	sions fron	n 1GHz-1	0GHz –	Ch64	(5320 M	Hz)			
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)	Azt (Deg)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments	
5325.625	65.49	8.74	-5.61	68.62	Peak	Н	250	293			Ignored	Fundamental	
3002.4999	31.6	6.31	-7.17	30.74	Average	Н	229	329	54	-23.26	Pass		
3002.4999	44.02	6.31	-7.17	43.16	Peak	Н	229	329	74	-30.84	Pass		
5078.125	29.31	8.49	-5.71	32.09	Average	V	232	335	54	-21.91	Pass		
5078.125	39.9	8.49	-5.71	42.69	Peak	V	232	335	74	-31.31	Pass		
5376.25	36.05	8.77	-5.37	39.44	Average	Н	110	306	54	-14.56	Pass		
5376.25	48.44	8.77	-5.37	51.83	Peak	Н	110	306	74	-22.17	Pass		
9589.375001	27	12.29	-2.86	36.43	Average	Н	264	282	54	-17.57	Pass		
9589.375001	37.88	12.29	-2.86	47.31	Peak	V	168	365	74	-26.69	Pass		

rijuiju cisco

Page No: 27 of 42

Page No: 28 of 42

A.3: Receiver Spurious Emissions

RSS-Gen

Receivers are required to comply with the limits of spurious emissions as set out in this section. Receiver emission measurements are to be performed as per the normative test method referenced in Section 3.

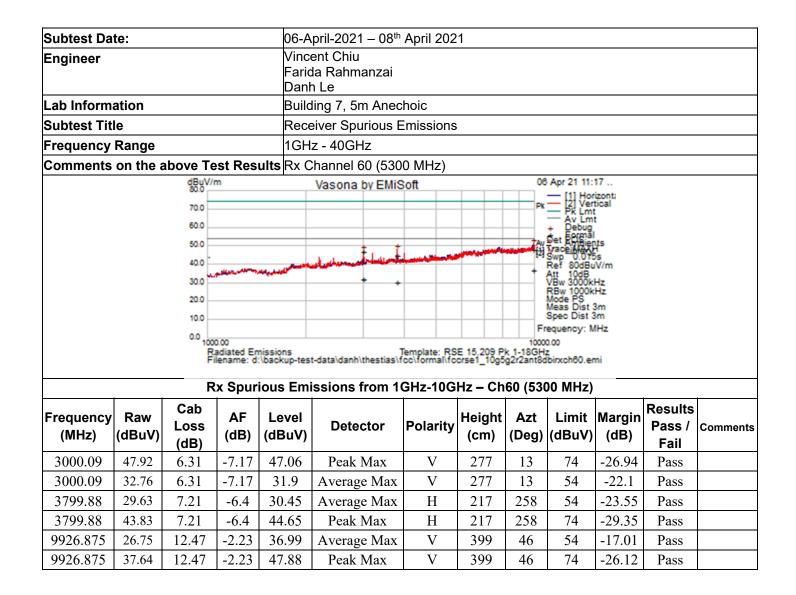
For emissions at frequencies below 1 GHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. At frequencies above 1 GHz, measurements shall be performed using a linear average detector with a minimum resolution bandwidth of 1 MHz

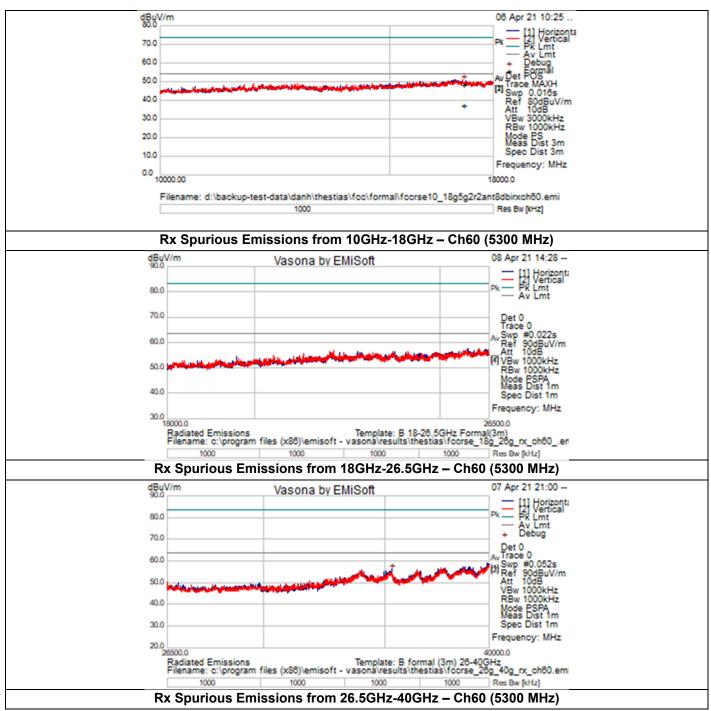
Ref.	RSS-Ger	sec 8	.9 &	8.10								
· Ref.	ANSI CO	53.10:	2013	Section	12.7.6	(Peak),	Section	12.7.7.2	(Method	AD),	and Section	n 6.6
-			-							200		

Radiated Spurious Emissions Test parameters	
Peak	Average
Span = 1-18GHz /18GHz-26.5GHz/26.5GHz-	Span = 1-18GHz /18GHz-26.5GHz/26.5GHz-40GHz
40GHz	RBW = 1 MHz
RBW = 1 MHz	$VBW \ge 3 MHz$
$VBW \ge 3 MHz$	Sweep = Auto couple
Sweep = Auto couple	Detector = RMS
Detector = Peak	Power Averaging
Trace = Max Hold.	

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

Save 2 plots: 1) Average Plot (Vertical and Horizontal), Limit= 54dBuV/m @3m 2) Peak plot (Vertical and Horizontal), Limit = 74dBuV/m @3m


Radiated emission measurements shall be performed with the receiver antenna connected to the receiver antenna terminals. Terminate the access Point RF ports with 50-ohm loads.


This report represents the worst-case data for all supported operating modes and antennas.

Page No: 29 of 42

A.3.1: Rx Radiated Spurious Emissions Graphical Data Results

Subtest Date:	31-	31-Mar-2021							
Engineer	Far	Vincent Chiu Farida Rahmanzai Danh Le							
Lab Information	Bui	lding 7, 5m A	Anechoic						
Subtest Title	Ree	ceiver Spuric	ous Emiss	ions					
Frequency Range	301	MHz - 1GHz							
Comments on the above Test R	sults Rx	Channel 60	(5300 MH	łz)					
10.0 0.0 Radiated F Filename:	missions 1:\backup-test-	100.00 data\danh\thestias	10	0	30m-1G 24g2r2an	+ Det Qp+ Foi Trace M Swp #0 (1) Ref 70 Att 0d VBw 30 RBw 10 Mode P Meas D Spec D Frequency 1000.00 Hz t8dbirxch60 Res Bw [0H	(AXH).1s dBUV/m B 0kHz 0kHz S ist 3m ist 3m ist 3m y: MHz f.emi z]		
· · · · · · · · · · · · · · · · · · ·	rious Emis	ssions from	30MHz-1	GHZ – (5n60 (5300 MI	·	i	
Frequency Raw (MHz) (dBuV) (dBu)	Level (dBuV)	Detector	Polarity	Height (cm)		Limit (dBuV)	Margin	Results Pass / Fail	Comments
931.74875 5.45 3.08 22.	31.33	Quasi Max	V	320	268	46	-14.67	Pass	
43.011 12.36 0.66 11.5	9 24.62	Quasi Max	V	174	149	40	-15.38	Pass	

Note: No measurable emissions found from 10GHz - 40GHz

Page No: 32 of 42

A.4 AC Conducted Emissions

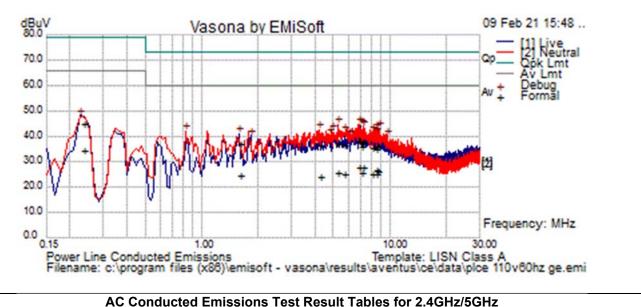
FCC 15.207 (a) & RSS-Gen 8.8 Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.

Measurement Procedure Accordance with ANSI C63.10:2013 section 6.2

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span:150 KHz – 30 MHzAttenuation:10 dBSweep Time:CoupledResolution Bandwidth:9 KHzVideo Bandwidth:30 KHzDetector:Quasi-Peak / Average

Page No: 33 of 42


A.4.1: AC Line conducted emissions results

Subtest Date:				09 Feb 21							
Engineer				Chakravarthy Sulva							
Lab Information				Building P, formal immunity room							
Subtest Tit	le				ted Emission	•					
Frequency	Range			150 kHz	z - 30 MHz						
Comments Results		above Tes	st	2.4GHz	/5GHz						
dia	BuV			Vason	a by EMiS	oft		09	Feb 21 15:4	48	
7	0.0							00	- 2 Neu	tral	
									- Av Lmt	t	
6	0.0							Av	+ Debug + Formal		
5/	0.0	x							80 90400000		
4	0.0	1 10			30	7.41-01-					
	00W	-116	JAN	WWA	CAN WAR		and the second	[2]			
2	0.0 1		N W	1	+	+ ++ ++					
	0.0	Y	V								
								Fr	equency: M	HZ.	
	0			1.00		1	0.00			HZ	
	0 0.15 Power	Line Çond	lucted Er	missions		Ten	nplate: LIS	30.00 SN Class	A		
	0 0.15 Power	Line Cond	lucted Er gram file	missions	emisoft - vas		nplate: LIS	30.00 SN Class	A		
	0 0.15 Power	ime: c:\pro	gram file	missions s (x86)\e	emisoft - vas	Ten ona\results\ave	nplate: LIS ntus\ce\d	30.00 SN Class lata\ploe 1	A 110v60hz ge		
0	0.15 Power Filena	AC C	gram file onducte	missions s (x88)\e ed Emis	emisoft - vas sions Test I	Ten ona\results\ave Result Tables	for 2.4G	30.00 SN Class lata\ploe 1 Hz/5GHz	A 110v60hz ge	emi	
0 Frequency	0 0.15 Power Filena	AC C Cab Loss	gram file onducte Factors	ed Emis Level	emisoft - vas	Ten ona\results\ave Result Tables Lines	for 2.4G	30.00 SN Class ata\pice 1 Hz/5GHz Margin	A 110v60hz ge Results		
0	0.15 Power Filena	AC C Cab Loss (dB)	gram file onducte	missions s (x88)\e ed Emis	emisoft - vas sions Test I Detector	Ten ona\results\ave Result Tables	for 2.4G Limit (dBuV)	30.00 SN Class ata\ploe 1 Hz/5GHz Margin (dB)	A 110v60hz ge	emi Comments	
C Frequency (MHz) 0.236	Raw (dBuV) 14.1	AC C Cab Loss (dB) 20.6	gram file onducte Factors (dB) 0	ed Emis Level (dBuV) 34.7	sions Test I Detector Average	Ten ona\results\ave Result Tables Lines (Live/Neutral) Live	for 2.4G Limit (dBuV) 52.35	30.00 SN Class ataiplee 1 Hz/5GHz Margin (dB) -17.65	Results Pass / Fail Pass	emi Comments 2.4GHz/5GHz	
C Frequency (MHz)	0 0.15 Power Filena Raw (dBuV)	AC C Cab Loss (dB)	gram file onducte Factors (dB)	ed Emis Level (dBuV) 34.7 27.6	sions Test I Detector Average Average	Ten ona\results\ave Result Tables Lines (Live/Neutral)	for 2.4G Limit (dBuV)	30.00 N Class ata ploe 1 Hz/5GHz Margin (dB) -17.65 -22.4	A 110v60hz ge Results Pass / Fail	emi Comments 2.4GHz/5GHz 2.4GHz/5GHz	
C Frequency (MHz) 0.236 6.83	Raw (dBuV) 14.1 7.5	AC C Cab Loss (dB) 20.6 20.1	gram file onducte Factors (dB) 0 0	ed Emis Level (dBuV) 34.7	sions Test I Detector Average Average Average	Ten ona\results\ave Result Tables Lines (Live/Neutral) Live Neutral	for 2.4G Limit (dBuV) 52.35 50	30.00 SN Class ataiplee 1 Hz/5GHz Margin (dB) -17.65	Results Pass / Fail Pass Pass	emi	
C Frequency (MHz) 0.236 6.83 7.236	00.15 Power Filena (dBuV) 14.1 7.5 7.4	AC C Cab Loss (dB) 20.6 20.1 20.1	gram file onducte Factors (dB) 0 0 0	d Emis (x88)) ed Emis (dBuV) 34.7 27.6 27.5	sions Test I Detector Average Average Average Average	Result Tables Lines (Live/Neutral) Live Neutral Neutral	for 2.4G Limit (dBuV) 52.35 50 50	30.00 SN Class ataiplee 1 Hz/5GHz Margin (dB) -17.65 -22.4 -22.5	Results Pass / Fail Pass Pass Pass Pass	emi Comments 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz	
C Frequency (MHz) 0.236 6.83 7.236 8.449 8.676	Raw (dBuV) 14.1 7.5 7.4 6.5 6.1	AC C Cab Loss (dB) 20.6 20.1 20.1 20.1 20.1 20.2	gram file onducte Factors (dB) 0 0 0 0 0 0 0.1 0.1	Level (dBuV) 34.7 27.6 27.5 26.8 26.4	sions Test I Detector Average Average Average Average Average Average	Result Tables Lines (Live/Neutral) Live Neutral Neutral Neutral Neutral	for 2.4G Limit (dBuV) 52.35 50 50 50 50	30.00 N Class ata\ploe Hz/5GHz (dB) -17.65 -22.4 -22.5 -23.2 -23.6	Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass	emi Comments 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz	
C Frequency (MHz) 0.236 6.83 7.236 8.449 8.676 0.236	Raw (dBuV) 14.1 7.5 7.4 6.5 6.1 24.3	AC C Cab Loss (dB) 20.6 20.1 20.1 20.1 20.1 20.2 20.6	gram file onducte Factors (dB) 0 0 0 0 0 0 0 0 0 1 0.1 0 0	Level (dBuV) 34.7 27.6 27.5 26.8 26.4	sions Test I Detector Average Average Average Average Average Quasi Peak	Ten ona\results\ave Result Tables Lines (Live/Neutral) Live Neutral Neutral Neutral Neutral Live	for 2.4G Limit (dBuV) 52.35 50 50 50 50 62.35	30.00 N Class ata ploe Hz/5GHz Hz/5GHz -17.65 -22.4 -22.5 -23.2 -23.6 -17.35	Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass Pas	emi Comments 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz	
Frequency (MHz) 0.236 6.83 7.236 8.449 8.676 0.236 5.285	Raw (dBuV) 14.1 7.5 7.4 6.5 6.1 24.3 5.6	AC C Cab Loss (dB) 20.6 20.1 20.1 20.1 20.2 20.6 20.2 20.6 20.1	gram file onducte Factors (dB) 0 0 0 0 0.1 0.1 0 0.1	Level (dBuV) 34.7 27.6 27.5 26.8 26.4 45 25.7	sions Test I Detector Average Average Average Average Average Quasi Peak Average	Result Tables Lines (Live/Neutral) Live Neutral Neutral Neutral Neutral Live Neutral Live Neutral Live Neutral Live Neutral	for 2.4G Limit (dBuV) 52.35 50 50 50 50 62.35 50	30.00 N Class ata ploe Hz/5GHz (dB) -17.65 -22.4 -22.5 -23.2 -23.6 -17.35 -24.3	Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass Pas	emi Comments 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz	
Frequency (MHz) 0.236 6.83 7.236 8.449 8.676 0.236 5.285 6.83	Raw (dBuV) 14.1 7.5 7.4 6.5 6.1 24.3 5.6 18.4	AC C Cab Loss (dB) 20.6 20.1 20.1 20.1 20.2 20.6 20.1 20.2 20.6 20.1 20.1	gram file onducte Factors (dB) 0 0 0 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1	Level (dBuV) 34.7 27.6 27.5 26.8 26.4 45 25.7 38.6	misoft - vas sions Test I Detector Average Average Average Average Quasi Peak Average Quasi Peak	Result Tables Lines (Live/Neutral) Live Neutral Neutral Neutral Neutral Live Neutral Live Neutral Neutral Neutral	for 2.4G Limit (dBuV) 52.35 50 50 50 50 62.35 50 62.35 50 60	30.00 N Class ata ploe Hz/5GHz (dB) -17.65 -22.4 -22.5 -23.2 -23.6 -17.35 -24.3 -21.4	Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass Pas	emi Comments 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz	
C Frequency (MHz) 0.236 6.83 7.236 8.449 8.676 0.236 0.236 5.285 6.83 7.04	Raw (dBuV) 14.1 7.5 7.4 6.5 6.1 24.3 5.6 18.4 5.3	AC C Cab Loss (dB) 20.6 20.1 20.1 20.1 20.2 20.6 20.1 20.1 20.1 20.1 20.1	gram file onducte Factors (dB) 0 0 0 0 0.1 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0	Level (dBuV) 34.7 27.6 27.5 26.8 26.4 45 25.7 38.6 25.5	misoft - vas sions Test I Detector Average Average Average Average Quasi Peak Average Quasi Peak Average	Result Tables Lines (Live/Neutral) Live Neutral Neutral Neutral Neutral Live Neutral Live Neutral Live Neutral Live Neutral Live Live Live	for 2.4G Limit (dBuV) 52.35 50 50 50 62.35 50 60 50 60 50	Margin (dB) -17.65 -22.4 -22.5 -23.2 -23.6 -17.35 -24.3 -21.4 -24.5	Anove the second	emi Comments 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz	
Frequency (MHz) 0.236 6.83 7.236 8.449 8.676 0.236 5.285 6.83 7.04 8.425	Raw (dBuV) 14.1 7.5 7.4 6.5 6.1 24.3 5.6 18.4 5.3 5	AC C Cab Loss (dB) 20.6 20.1 20.1 20.1 20.2 20.6 20.1 20.1 20.1 20.1 20.1 20.1	gram file onducte Factors (dB) 0 0 0 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0	Level (dBuV) 34.7 27.6 27.5 26.8 26.4 45 25.7 38.6 25.5 25.2	misoft - vas sions Test I Detector Average Average Average Average Quasi Peak Average Quasi Peak Average Quasi Peak Average Average	Result Tables Lines (Live/Neutral) Live Neutral Neutral Neutral Neutral Live Neutral Live Neutral Live Neutral Live	for 2.4G Limit (dBuV) 52.35 50 50 50 50 62.35 50 60 50 50 60 50 50	30.00 N Class ata\ploc Hz/5GHz Margin (dB) -17.65 -22.4 -22.5 -23.6 -17.35 -24.3 -21.4 -24.5 -24.8	Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass Pas	emi Comments 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz	
 Frequency (MHz) 0.236 6.83 7.236 8.449 8.676 0.236 5.285 6.83 7.04 8.425 5.755 	Raw (dBuV) 14.1 7.5 7.4 6.5 6.1 24.3 5.6 18.4 5.3 5 4.9	AC C Cab Loss (dB) 20.6 20.1 20.1 20.1 20.1 20.2 20.6 20.1 20.1 20.1 20.1 20.1 20.1 20.1	gram file onducte Factors (dB) 0 0 0 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0	Level (dBuV) 34.7 27.6 27.5 26.8 26.4 45 25.7 38.6 25.2 25.2	misoft - vas sions Test I Detector Average Average Average Quasi Peak Average Quasi Peak Average Average Average Average Average	Result Tables Lines (Live/Neutral) Live Neutral Neutral Neutral Neutral Live Neutral Live Neutral Live Live	for 2.4G Limit (dBuV) 52.35 50 50 50 62.35 50 60 50 50 50 50 50 50 50 50	Margin (dB) -17.65 -22.4 -22.5 -23.2 -23.6 -17.35 -24.3 -21.4 -24.5 -24.5 -24.5 -24.5	Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass Pas	emi Comments 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz	
Frequency (MHz) 0.236 6.83 7.236 8.676 0.236 5.285 6.83 7.04 8.425 5.755 7.236	Raw (dBuV) 14.1 7.5 7.4 6.5 6.1 24.3 5.6 18.4 5.3 5 4.9 17.8	AC C Cab Loss (dB) 20.6 20.1 20.1 20.1 20.2 20.6 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1	gram file onducte Factors (dB) 0 0 0 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0	Level (dBuV) 34.7 27.6 27.5 26.8 26.4 45 25.7 38.6 25.5 25.2 37.9	misoft - vas sions Test I Detector Average Average Average Quasi Peak Average Quasi Peak Average Average Average Average Quasi Peak	Result Tables Lines (Live/Neutral) Live Neutral Neutral Neutral Neutral Live Neutral Live Neutral Live Live Live Live	for 2.4G Limit (dBuV) 52.35 50 50 50 50 62.35 50 60 50 50 60 50 60 50 60 50 60 50 60 50	Margin (dB) -17.65 -22.4 -22.5 -23.2 -23.6 -17.35 -24.3 -21.4 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.8 -25 -22.1	Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass Pas	emi Comments 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz	
Frequency (MHz) 0.236 6.83 7.236 8.676 0.236 5.285 6.83 7.04 8.425 5.755 7.236 8.091	Raw (dBuV) 14.1 7.5 7.4 6.5 6.1 24.3 5.6 18.4 5.3 5 4.9 17.8 4.6	AC C Cab Loss (dB) 20.6 20.1 20.1 20.1 20.1 20.2 20.6 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1	gram file onducte Factors (dB) 0 0 0 0 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0	Level (dBuV) 34.7 27.6 27.5 26.8 26.4 45 25.7 38.6 25.5 25.2 37.9 24.9	misoft - vas sions Test I Detector Average Average Average Quasi Peak Average Quasi Peak Average Quasi Peak Average Quasi Peak Average Quasi Peak	Result Tables Lines (Live/Neutral) Live Neutral Neutral Neutral Neutral Live Neutral Live Live Live Live	for 2.4G Limit (dBuV) 52.35 50 50 50 62.35 50 60 50 50 50 50 50 60 50 50 50 50 50	30.00 N class ata ploe Hz/5GHz Margin (dB) -17.65 -22.4 -22.5 -23.6 -17.35 -24.3 -21.4 -24.5 -24.8 -25 -22.1 -25.1	Anove on the second sec	emi Comments 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz	
Frequency (MHz) 0.236 6.83 7.236 8.676 0.236 5.285 6.83 7.04 8.425 5.755 7.236	Raw (dBuV) 14.1 7.5 7.4 6.5 6.1 24.3 5.6 18.4 5.3 5 4.9 17.8	AC C Cab Loss (dB) 20.6 20.1 20.1 20.1 20.2 20.6 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1	gram file onducte Factors (dB) 0 0 0 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0	Level (dBuV) 34.7 27.6 27.5 26.8 26.4 45 25.7 38.6 25.5 25.2 37.9	misoft - vas sions Test I Detector Average Average Average Quasi Peak Average Quasi Peak Average Average Average Average Quasi Peak	Result Tables Lines (Live/Neutral) Live Neutral Neutral Neutral Neutral Live Neutral Live Neutral Live Live Live Live	for 2.4G Limit (dBuV) 52.35 50 50 50 50 62.35 50 60 50 50 60 50 60 50 60 50 60 50 60 50	Margin (dB) -17.65 -22.4 -22.5 -23.2 -23.6 -17.35 -24.3 -21.4 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.5 -24.8 -25 -22.1	Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass Pas	emi Comments 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz 2.4GHz/5GHz	

Radio Test Report No: EDCS -21673978

Subtest Date:	09 Feb 21
Engineer	Chakravarthy Sulva
Lab Information	Building P, formal immunity room
Subtest Title	Conducted Emissions
Frequency Range	150 kHz - 30 MHz
Comments on the above Test	2.4GHz/5GHz
Results	

Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	Factors (dB)	Level (dBuV)	Detector	Lines (Live/Neutral)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
5.285	16.9	20.1	0.1	37	Quasi Peak	Neutral	60	-23	Pass	2.4GHz/5GHz
1.586	17	20	0	37	Quasi Peak	Live	56	-19	Pass	2.4GHz/5GHz
4.235	16.7	20	0	36.8	Quasi Peak	Neutral	56	-19.2	Pass	2.4GHz/5GHz
5.755	16.4	20.1	0	36.5	Quasi Peak	Live	60	-23.5	Pass	2.4GHz/5GHz
7.04	16.1	20.1	0.1	36.3	Quasi Peak	Live	60	-23.7	Pass	2.4GHz/5GHz
8.449	16.1	20.1	0.1	36.3	Quasi Peak	Neutral	60	-23.7	Pass	2.4GHz/5GHz
8.676	15.7	20.2	0.1	35.9	Quasi Peak	Neutral	60	-24.1	Pass	2.4GHz/5GHz
8.091	15.4	20.1	0.1	35.6	Quasi Peak	Live	60	-24.4	Pass	2.4GHz/5GHz
8.425	15	20.1	0.1	35.2	Quasi Peak	Live	60	-24.8	Pass	2.4GHz/5GHz

Page No: 35 of 42

Appendix B: List of Test Equipment Used to perform the test

Equip#	Manufacturer	Model	Description	Last Cal	Next Due
	Test Equipm	ent used for Radiated E	missions 30MHz to 1GHz	1	
CIS44908	ROHDE & SCHWARZ	ESCI	EMI Test Receiver	12-Dec-2020	12-Dec-2021
CIS30654	SUNOL SCIENCES	JB1	Combination Antenna, 30MHz-2GHz	14-Jul-2020	14-Jul-2021
CIS47311	HUBER + SUHNER	Sucoflex 106PA	RF Type N Antenna Cable 18 GHz 8.5m	30-Sep-2019	30-June-2021
CIS25640	MICRO-COAX	UFB311A-0-2720-520 520	Coaxial Cable, 272.0 in. to 18GHz	30-Sep-2019	30-June-2021
CIS25660	MICRO-COAX	UFB311A-1-0840-504 504	Coaxial Cable, 84.0 in. to 18GHz	30-Sep-2019	30-June-2021
CIS08113	CISCO	NSA CAL	NSA Chamber	27-Mar-2021	27-Mar-2022
	Test Equipm	ent used for Radiated E	missions 1GHz to 18GHz		
CIS24905	Keysight (Agilent/HP)	E4440A	Spectrum Analyzer 3Hz-26.5GHz	21-Oct-2020	21-Oct-2021
CIS34741	ETS Lindgren	3117	Double Ridged Guide Horn Antenna	01-Oct-2020	01-Oct-2021
CIS39124	CISCO	TH0118	Mast Mount Preamplifier Array, 1-18GHz	21-Jan-2020	21-Jul-2021
CIS47311	HUBER + SUHNER	Sucoflex 106PA	RF Type N Antenna Cable 18 GHz 8.5m	30-Sep-2019	30-June-2021
CIS25640	MICRO-COAX	UFB311A-0-2720-520 520	Coaxial Cable, 272.0 in. to 18GHz	30-Sep-2019	30-June-2021
CIS25660	MICRO-COAX	UFB311A-1-0840-504 504	Coaxial Cable, 84.0 in. to 18GHz	30-Sep-2019	30-June-2021
CIS54402	HUBER + SUHNER	Sucoflex 102	K Type 40 GHz Cable	10-Feb-2021	10-Feb-2022
CIS8113	CISCO	NSA CAL	NSA Chamber	27-Mar-2021	27-Mar-2022
CIS43024	CISCO	Above 1GHz Site Ca	1GHz Cispr Site Verification	03-Oct-2020	03-Oct-2021
CIS56059	Wainwright Instruments	WRCJV8-5200-5250- 5350-5400-40+	SMA Band Reject Filter. 5.200GHz to 5.400GHz	30-Apr-2020	30-Apr-2021
	Test Equipme	ent used for Radiated Er	nissions 18GHz to 26GHz	•	
CIS08113	CISCO	NSA CAL	NSA Chamber	27-Mar-2021	27-Mar-2022
CIS36710	Cisco	1840	18-40GHz EMI Test Head/Verification Fixture	17-Sep-2020	17-Sep-2021
CIS19630	Rohde & Schwarz	ESI 40(ESIB 40)	EMI RECEIVER TEST 20Hz-40GHz	28-Jan-2021	28-Jan-2022

Page No: 36 of 42

Equip#	Manufacturer	Model	Description	Last Cal	Next Due	
Test Equipment used for AC line conducted emissions 150kHz-30MHz						
008496	Fischer Custom Communications	FCC-450B-2.4-N	Instrumentation Limiter	12/15/2020	12/15/2021	
007704	Fischer Custom Communications	FCC-LISN-50/250-50-2-01	LISN	12/7/2020	12/7/2021	
018963	York	CNE V	Comparison Noise Emitter,30- 1GHz	NA	NA	
019207	TTE	H785-150K-50-21378	High Pass Filter 150kHz	1/25/2021	1/25/2022	
020913	Fischer Custom Communications	FCC-LISN-PA-NEMA-5-15	AC Adapter	12/7/2020	12/7/2021	
037229	Coleman	RG-223	25ft BNC cable	2/26/2020	2/26/2021	
044021	Fischer Custom Communications	FCC-801-M2-32A	Power Line Coupling Decoupling Network	3/9/2020	3/9/2021	
046718	Bird	5-T-MB	5W 50 Ohm BNC Termination 4GHz	3/15/2019	3/15/2021	
049479	Coleman	RG223	BNC 2ft Cable	3/4/2020	3/4/2021	
004729	Fluke	77	Digital Multimeter	5/19/2020	5/19/2021	
058245	COMET	T7611-4	Humidity Temperature Probe	12/26/2020	12/26/2021	
058276	ROHDE & SCHWARZ	ESR3	EMI Receiver	6/25/2020	6/25/2021	

Page No: 37 of 42

Appendix C: Photographs of Test Setups

See FCC/RSS RSE Test Setup document - EDCS-21686217

Page No: 38 of 42

Appendix D: Abbreviation Key and Definitions

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	°C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
TAP	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control System	Qp	Quasi Peak
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak
Cal	Calibration	kHz	Kilohertz (1x10 ³)
EN	European Norm	MHz	MegaHertz (1x10 ⁶)
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)
CISPR	International Special Committee on Radio Interference	н	Horizontal
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization Network	dB	decibel
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³)
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)
L2	Line2	А	Amp
L3	Line 3	μA	Micro Amp (1x10 ⁻⁶)
DC	Direct Current	mS	Milli Second (1x10 ⁻³)
RAW	Uncorrected measurement value, as indicated by the measuring device	μS	Micro Second (1x10 ⁻⁶)
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)
SLCE	Signal Line Conducted Emissions	m	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
Ν	Neutral Line	R	Return
S	Supply	AC	Alternating Current

The following table defines abbreviations used within this test report.

Appendix E: Software Used to Perform Testing

EMIsoft Vasona, version 6.024

Page No: 39 of 42

Appendix F: Test Procedures

Measurements were made in accordance with

- KDB 789033 D02 General UNII Test Procedures New Rules v02r01
- KDB 662911 MIMO
- ANSI C63.4 2014 Unintentional Radiators
- ANSI C63.10 2013 Intentional Radiators

Test procedures are summarized below:

FCC 5GHz Test Procedures	EDCS # 1445048
FCC 5GHz RSE Test Procedures	EDCS # 1511600

Page No: 40 of 42

Appendix G: Scope of Accreditation (A2LA certificate number 1178-01)

The scope of accreditation of Cisco Systems, Inc. can be found on the A2LA web page at:

http://www.a2la.org/scopepdf/1178-01.pdf

Page No: 41 of 42

Appendix H: Test Assessment Plan

Compliance Test Plan (Excel) EDCS#21669684 Target Power Tables EDCS#19467753

Appendix I: Worst Case Justification

All 3 orientations (Z, Y, Z) of the EUT were assessed by performing pre-scan. The X orientation was determined to be the worst-case orientation.

Page No: 42 of 42