

Elliott Laboratories Inc. 684 West Maude Avenue

Elliott Laboratories Inc. 684 West Maude Avenue 408-245-7800 Phone www.elliottlabs.com Sunnyvale, CA 94086-3518 408-245-3499 Fax

June 21,2000

Chief, Equipment Authorization Branch, Authorization and Evaluation Division, Office of Engineering and Technology FEDERAL COMMUNICATIONS COMMISSION P.O. Box 358315 Pittsburgh, PA 15251-5315

Gentlemen:

The enclosed documents constitute a formal submittal and application for a Grant of Equipment Authorization pursuant to Subpart E of Part 24 of FCC Rules (CFR 47) regarding broadband PCS. Data within this report demonstrates that the equipment tested complies with the FCC limits for broadband PCS devices.

Elliott Laboratories, as duly authorized agent prepared this submittal. A copy of the letter of our appointment as agent is enclosed.

If there are any questions or if further information is needed, please contact Elliott Laboratories for assistance.

Sincerely,

Javer W Bare

David W. Bare **Principal Engineer**

DWB/bab Enclosures:

Agent Authorization Letter Emissions Test Report with Exhibits

Elliott Laboratories Inc. www.elliottlabs.com

684 West Maude Avenue Sunnyvale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 24, Subpart E Specifications for a Broadband PCS Device on the Cisco Systems, Inc. Model: VP1900BX

FCC ID: LDKVP1900XX

GRANTEE: Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA. 95134-1706

TEST SITE:

Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE:

June 21,2000

FINAL TEST DATE:

June 16, 2000

laved W Bare

AUTHORIZED SIGNATORY:

David W. Bare **Principal Engineer**

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

		CONTENTS
IADLE	UF	CONTENTS

COVER PAGE		1
TABLE OF CONTE	ENTS	2
SCOPE		3
OBJECTIVE		3
STATEMENT OF C	COMPLIANCE	3
EMISSION TEST R	ESULTS	4
LIMITS OF POW	VER AND BANDWIDTH	4
	DIATED SPURIOUS EMISSIONS	
LIMITS OF FREQ	QUENCY TOLERANCE	
MEASUREMEN	T UNCERTAINTIES	5
EQUIPMENT UNDE	ER TEST (EUT) DETAILS	6
ENCLOSURE		6
SUPPORT EQUI	PMENT	6
EXTERNAL I/O	CABLING	6
TEST SOFTWAR	RE	6
TEST SITE		7
GENERAL INFO	RMATION	7
	MISSIONS CONSIDERATIONS	
RADIATED EMI	ISSIONS CONSIDERATIONS	7
MEASUREMENT I	NSTRUMENTATION	8
RECEIVER SYST	EM	8
	CONTROL COMPUTER	
	CE STABILIZATION NETWORK (LISN)	
FILTERS/ATTEN	NUATORS	9
	ST AND EQUIPMENT TURNTABLE	
	CALIBRATION	
TEST PROCEDURE	ES	10
EUT AND CABL	E PLACEMENT	
	ISSIONS	
CONDUCTED E	MISSIONS FROM ANTENNA PORT	
SPECIFICATION L	IMITS AND SAMPLE CALCULATIONS	11
RADIATED EMI	SSIONS SPECIFICATION LIMITS, SECTION 24.238)	
EXHIBIT 1:	Test Equipment Calibration Data	
EXHIBIT 2:	Test Data Log Sheets	2
EXHIBIT 3:	Radiated Emissions Test Configuration Photographs	
EXHIBIT 4:	Proposed FCC ID Label & Label Location	
EXHIBIT 5:	Detailed Photographs of	
	s, Inc. Model VP1900BXConstruction	
	Dperator's Manual for s, Inc. Model VP1900BX	
	s, mc. model VF1900BX Block Diagram of	
	s, Inc. Model VP1900BX	
5	chematic Diagrams for	
	s, Inc. Model VP1900BX	
	Theory of Operation for	
Cisco Systems	s, Inc. Model VP1900BX	10

SCOPE

An electromagnetic emissions test has been performed on the Cisco Systems, Inc. model VP1900BX pursuant to Subpart E of Part 24 of FCC Rules for broadband PCS. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 insofar as they apply as outlined in Elliott Laboratories test procedures.

The broadband PCS device above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Cisco Systems, Inc. model VP1900BX and therefore apply only to the tested sample. The sample was selected and prepared by Semyon Grozman of Cisco Systems, Inc.

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart E of Part 24 of FCC Rules for the radiated and conducted emissions of broadband PCS devices. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units which are subsequently manufactured.

STATEMENT OF COMPLIANCE

The tested sample of Cisco Systems, Inc. model VP1900BX complied with the requirements of Subpart E of Part 24 of the FCC Rules for low power broadband PCS.

Maintenance of FCC compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

EMISSION TEST RESULTS

The following emissions tests were performed on the Cisco Systems, Inc. model VP1900BX. The actual test results are contained in an exhibit of this report.

LIMITS OF POWER AND BANDWIDTH

The EUT tested complied with the limits detailed in FCC Rules Part 24 Sections 24.229 and 24.232

The maximum power output was 0.219 watts on channel 810. The 99% power bandwidth was 236 kilohertz with the normal GSMK modulation. The actual test data and any correction factors are contained in an exhibit of this report.

LIMITS OF RADIATED SPURIOUS EMISSIONS

The EUT tested complied with the limits detailed in FCC Rules Part 24 Section 24.238.

The following measurement was extracted from the data recorded during the radiated electric field emissions scan and represents the highest amplitude equivalent radiated power relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

Frequency	Level	Pol	FCC 2	24.238	Detector	Comments
MHz	dBm	v/h	Limit	Margin	Pk/QP/Avg	
7959.200	-21.1	v	-12.4	-8.7	Pk	

LIMITS OF FREQUENCY TOLERANCE

The EUT tested complied with the limits detailed in FCC Rules Part 24 Section 24.235.

The frequency of the transmitter varied by less than 0.00004 % over the temperature range of -30 to +50 degrees Celsius. The frequency varied by less than 0.00005 % over the mains voltage range of 85 to 138 volts. The actual test data and any correction factors are contained in an exhibit of this report.

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Radiated Emissions	30 to 1000	± 3.2

EQUIPMENT UNDER TEST (EUT) DETAILS

The Cisco Systems, Inc. is a 1900 MHz dual transceiver designed to send packet data over the link. The sample was received on June 7, 2000 and tested through June 16, 2000. The EUT consisted of the following component(s):

Manufacturer/Model/Description	Serial Number
Cisco Systems, VP1900BX, Transceiver	168
Cincon Electronics, TR70A12, Power supply	A-70-0000122

ENCLOSURE

The EUT enclosure is primarily constructed of fabricated sheet steel.

SUPPORT EQUIPMENT

The following equipment was used as remote support equipment for emissions testing:

Manufacturer/Model/Description	Serial Number	FCC ID Number
Toshiba, Tecra 8100, laptop	40552164U	DoC

EXTERNAL I/O CABLING

The I/O cabling configuration during emissions testing was as follows:

Cable Description	Length (m)	From Unit/Port	To Unit/Port
Unshielded	30	EUT Ethernet	Laptop ethernet

TEST SOFTWARE

The EUT was configured using the ethernet port for continuous transmission of GSMK modulated data. A Rhode & Schwarz CMD 57 was connected to the transmitter during setup only to verify transmission parameters.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on June 16, 2000 at the Elliott Laboratories Open Area Test Site #3 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from the lowest frequency generated in the device up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these are with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth that results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions that have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

The recorded level is then reproduced using a signal generator and antenna located where the device was on the test table. The power necessary to reproduce the amplitude of the measured emissions from the device was recorded. The effective radiated power (ERP) is then calculated based on the signal generator level and the gain of the substitution antenna relative to a dipole antenna.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for radiated emissions are based on the power of the transmitter at the operating frequency. Data is measured in the logarithmic form of decibels relative to one milliwatt, or dB milliwatts (dBm). For radiated emissions, the measured data is obtained by the substitution method. The field strength of the emissions from the EUT are measured on a test site with a receiver. A signal generator and antenna are then substituted for the EUT. The output of the signal generator is adjusted to a level such that the same field strength as was measured from the EUT is observed. The power level is corrected by the difference between the gain of the antenna and the gain of a dipole antenna. This level is recorded as the equivalent radiated power (ERP) of the EUT.

RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 24.238)

Frequency	
Range	Limit
(MHz)	

Operating frequency

2 watts

Outside of the assigned frequency block

43+10log₁₀ (mean output power in watts) dB below the measured amplitude at the operating frequency EXHIBIT 1:Test Equipment Calibration Data

Σ	
38	
conducted and Radiated Emissions, 16-Jun-00 05:38 PM	
Ş	
jun	
ر 16-	
Š,	
sior	
Jiss	
Ш	
Ited	
Idia	
I Ra	
and	i P
ed	>
uct	indineer. Vichal
pud	Dir
	<u> </u>

Conducted and Radiate Engineer: Vishal	Conducted and Radiated Emissions, 16-Jun-00 05:38 PM Engineer: Vishal					
Manufacturer	Description	Model #	Assett #	<u>#</u> Cal interval I	Last Calibrated	Cal Due
Elliott Laboratories	300-1000 MHz Log Periodic Antenna	EL300.1000	55	11	11/03/1999	10/03/2000
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	54	12	12/21/1999	12/21/2000
Fischer Custom Comm.	LISN, 50A	FCC-LISN-50/250-50-2	810	12	02/28/2000	02/28/2001
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	812	12	12/06/1999	12/06/2000
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	215, (F197)	12	02/17/2000	02/17/2001
Rohde & Schwarz	Test Receiver, 20-1300MHz	ESVP	273	12	09/09/1999	09/09/2000

EXHIBIT 2:Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T 37895 18 Pages

Ellio	l	EMC Te	st Data
	Cisco Systems	Job Number:	J37867
Model:	VP1900BX	T-Log Number:	
		Proj Eng:	David W. Bare
	Phillip Carranco		
	FCC Part 24 E	Class:	-
Immunity Spec:	-	Environment:	-
	EMC Tes	st Data	
	For Th	ne	
	Cisco Sy	vstems	
	Mode	el	
	VP1900	DBX	

Ellio	Cisco Systems			Job Number:	137867
	VP1900BX and VP1	800BX		T-Log Number:	
modeli		ooob/(David W. Bare
Contact:	Phillip Carranco				
Emissions Spec:				Class:	-
Immunity Spec:	-			Environment:	-
			IFORMATI		
			ral Description		
				ata over the link. It employ	S
SMK modulation. Norm erefore, placed in this p				operation. The EUT was,	
oronore, placed in this p		ons testing it			
		F !	n ant llu dan Ta	~ !	
	Model		ment Under Te Description	Serial Number	FCC ID
Manutacturor			DESCHINITOH		
Manufacturer				168	-
Cisco Systems	VP1900BX	Transo	ceiver	168 170	-
Cisco Systems Cisco Systems		Transo Transo	ceiver ceiver	168 170 A-70-0000122	-
isco Systems isco Systems	VP1900BX VP1800BX	Transo Transo Power	ceiver	170	- - -
isco Systems isco Systems	VP1900BX VP1800BX	Transc Transc Power input 1	ceiver ceiver supply	170	-
isco Systems isco Systems	VP1900BX VP1800BX	Transc Transc Power input 1 50/50F	ceiver ceiver supply 00 ~240 V 1.5A Hz output 12VDC	170	-
isco Systems isco Systems	VP1900BX VP1800BX	Transc Transc Power input 1 50/50F	ceiver ceiver supply 00 ~240 V 1.5A	170	-
isco Systems isco Systems	VP1900BX VP1800BX	Transc Transc Power input 1 50/50F	ceiver ceiver supply 00 ~240 V 1.5A Hz output 12VDC	170	-
isco Systems isco Systems	VP1900BX VP1800BX	Transc Transc Power input 1 50/50F	ceiver ceiver supply 00 ~240 V 1.5A Hz output 12VDC	170	-
isco Systems isco Systems	VP1900BX VP1800BX	Transc Transc Power input 1 50/50F	ceiver ceiver supply 00 ~240 V 1.5A Hz output 12VDC	170	-
cisco Systems cisco Systems	VP1900BX VP1800BX	Transc Transc Power input 1 50/50F	ceiver seiver supply 00 ~240 V 1.5A Hz output 12VDC er EUT Details	170	-
isco Systems isco Systems incon Electronics	VP1900BX VP1800BX TR70A12	Transo Transo Power input 1 50/50F Othe	ceiver seiver supply 00 ~240 V 1.5A Hz output 12VDC er EUT Details	170	- -
cisco Systems Cisco Systems Cincon Electronics	VP1900BX VP1800BX TR70A12	Transo Transo Power input 1 50/50F Othe	ceiver seiver supply 00 ~240 V 1.5A Hz output 12VDC er EUT Details	170	- -
isco Systems isco Systems incon Electronics	VP1900BX VP1800BX TR70A12	Transo Transo Power input 1 50/50F Othe	ceiver seiver supply 00 ~240 V 1.5A Hz output 12VDC er EUT Details	170	- -
Cisco Systems Cisco Systems Cincon Electronics	VP1900BX VP1800BX TR70A12	Transo Transo Power input 1 50/50F Othe	ceiver seiver supply 00 ~240 V 1.5A Hz output 12VDC er EUT Details	170	- -
Cisco Systems Cisco Systems Cincon Electronics	VP1900BX VP1800BX TR70A12	Transo Transo Power input 1 50/50F Othe	ceiver seiver supply 00 ~240 V 1.5A Hz output 12VDC er EUT Details	170	- -
Manufacturer Cisco Systems Cincon Electronics The EUT enclosure is privi	VP1900BX VP1800BX TR70A12	Transo Transo Power input 1 50/50F Othe EU fabricated sh	ceiver seiver supply 00 ~240 V 1.5A Hz output 12VDC er EUT Details	170 A-70-0000122	- -
cisco Systems Cisco Systems Cincon Electronics	VP1900BX VP1800BX TR70A12	Transo Transo Power input 1 50/50F Othe EU fabricated sh	ceiver supply 00 ~240 V 1.5A Hz output 12VDC er EUT Details	170 A-70-0000122	- -
Cisco Systems Cisco Systems Cincon Electronics	VP1900BX VP1800BX TR70A12 marily constructed of	Transo Transo Power input 1 50/50F Othe fabricated sh	ceiver supply 00 ~240 V 1.5A Hz output 12VDC er EUT Details	170 A-70-0000122	- -
Sisco Systems Sisco Systems Sincon Electronics The EUT enclosure is print Mod. #	VP1900BX VP1800BX TR70A12 marily constructed of	Transo Transo Power input 1 50/50F Othe fabricated sh	ceiver supply 00 ~240 V 1.5A Hz output 12VDC er EUT Details	170 A-70-0000122	- -

Client	Cisco Systems		Job Number:	137867
	VP1900BX		T-Log Number:	
	-			David W. Bare
	Phillip Carranco		, ,	
Emissions Spec:			Class:	
Immunity Spec:	-		Environment:	-
		onfiguration Infor		
Manufacturer	Model	Description	Serial Number	FCC ID
wanuacturer	IVIOUEI	Description		FUU
		emote Support Equip		
Manufacturer Toshiba	Model	Description	Serial Number	FCC ID DoC
Manufacturer Toshiba				
	Model	Description	Serial Number	
	Model	Description	Serial Number	
	Model	Description	Serial Number 40552164U	
Toshiba	Model Tecra 8100	EUT Interface Ports	Serial Number 40552164U	DoC
Toshiba EUT Port	Model Tecra 8100	EUT Interface Ports	Serial Number 40552164U	DoC
Toshiba EUT Port Tx	Model Tecra 8100 Connected To Load	EUT Interface Ports Description Description Description Description Description Direct	Serial Number 40552164U	ded Length(r
Toshiba EUT Port Tx Rx	Model Tecra 8100 Connected To Load Load	EUT Interface Ports Description EUT Interface Description Description Direct Direct Direct	Serial Number 40552164U Cable(s) Shielded or Unshiel	ded Length(r
Toshiba EUT Port Tx	Model Tecra 8100 Connected To Load	EUT Interface Ports Description Description Description Description Description Direct	Serial Number 40552164U	ded Length(r
Toshiba EUT Port Tx Rx	Model Tecra 8100 Connected To Load Load	EUT Interface Ports Description EUT Interface Description Description Direct Direct Direct	Serial Number 40552164U Cable(s) Shielded or Unshiel	ded Length(r
Toshiba EUT Port Tx Rx	Model Tecra 8100 Connected To Load Load	EUT Interface Ports Description EUT Interface Description Description Direct Direct Direct	Serial Number 40552164U Cable(s) Shielded or Unshiel	ded Length(r

Elliot	t	EMC Te	st Data
Client:	Cisco Systems	Job Number:	J37867
	VP1900BX	T-Log Number:	T37895
		Proj Eng:	David W. Bare
Contact:	Phillip Carranco		
Emissions Spec:		Class:	-
Immunity Spec:	-	Environment:	-
	EUT Operation During Emis using the ethernet port for continuous transmssion of o the transmitter during setup only.		NR&S
	EUT Operation During Imm	nunity	
Criterion A:	Performance Criteria for Im	munity	
Criterion B:			
Criterion C:			

Ellio	ott		EMC	Test	Data	
Client: Cisco Sys			Jo	b Number:	J37867	
Model: VP1900B	X		T-Lo	g Number:	T37895	
			Proj Eng:	David W. Ba	re	
Contact: Phillip Car	ranco					
Spec: FCC Part	24 E			Class:	N/A	
	Free	quency Stabilit	У			
Test Specifics						
-	The objective of this test session specification(s) defined above.	n is to perform final qualif	ication testir	ng the EUT	relative to th	9
Date of Test:		Config. Used: Config Change:				
Test Engineer:	David W. Bare Temp. Chamber	120V, 60Hz	,			
General Test Cor The EUT and all loc	nfiguration al support equipment were locat	ed in a thermal chamber			testing. All re	mote
General Test Cor The EUT and all loc support equipment When measuring th	nfiguration cal support equipment were locat was located outside the chambe e stability, a probe was placed n	red in a thermal chamber r. ear the antenna of the El 21°C	for frequenc	cy stability t		
General Test Cor The EUT and all loc support equipment When measuring th Ambient Conditio	nfiguration cal support equipment were locat was located outside the chambe e stability, a probe was placed n ons: Temperature: Rel. Humidity:	red in a thermal chamber r. ear the antenna of the El 21°C	for frequenc	cy stability t		
General Test Cor The EUT and all loc support equipment When measuring th Ambient Conditio	nfiguration cal support equipment were locat was located outside the chambe e stability, a probe was placed n ons: Temperature: Rel. Humidity:	red in a thermal chamber r. ear the antenna of the El 21°C	for frequenc	cy stability t		
General Test Cor The EUT and all loc support equipment When measuring th Ambient Condition Summary of Res	nfiguration cal support equipment were locat was located outside the chambe e stability, a probe was placed n ons: Temperature: Rel. Humidity: ults	red in a thermal chamber r. ear the antenna of the Et 21°C 47%	for frequenc	cy stability t connected	to the spectr	

Elliott	EMC Test Data
Client: Cisco Systems	Job Number: J37867
Model: VP1900BX	T-Log Number: T37895
	Proj Eng: David W. Bare
Contact: Phillip Carranco	
Spec: FCC Part 24 E	Class: N/A
Spec: FCC Part 24 E	CIASS: IN/A

Run #1: Frequency Stability

Measured frequency 30 minutes after stabilization at each temperature point.

Temperature (°C)	Freqency (MHz)	Deviation from 20°C
-30	1930.200180	0.000005%
-20	1930.200180	0.000005%
-10	1930.200180	0.000005%
0	1930.200180	0.000005%
10	1930.200800	0.000037%
20	1930.200088	0.000000%
30	1930.200780	0.000036%
40	1930.200780	0.000036%
50	1930.200780	0.000036%

The stability was 0.000037% over the range of -30 to +50°C thereby complying with the requirement to remain within the block

At 20°C, the voltage to the EUT was set to 85 volts and 138 volts (85% of 100v and 115% of 120v) The frequency was measured at 1930.20108 and 1930.20098 MHz or 0.00005% from the frequency at nominal 120v

Temperature (°C)	Freqency (MHz)	Deviation from 20°C
-30	1989.800100	0.000000%
-20	1989.800080	-0.000001%
-10	1989.800080	-0.000001%
0	1989.800180	0.000004%
10	10 1989.800080 -0.000001%	
20	1989.800098	0.000000%
30	1989.800088	-0.000001%
40	1989.800068	-0.000002%
50	1989.800068	-0.000002%

The stability was 0.000004% over the range of -30 to +50°C thereby complying with the requirement to remain within the block

At 20°C, the voltage to the EUT was set to 85 volts and 138 volts (85% of 100v and 115% of 120v) The frequency was measured at 1989.800098 and 1989.800098 MHz or 0% from the frequency at nominal 120v

Ć	Elliot	[ЕМС	Test l	Data
Client:	Cisco Systems				lob Number:	J37867
Model:	VP1900BX			T-L	og Number:	T37895
					Proj Eng:	David W. Bare
Contact:	Phillip Carranco)				
Spec:	FCC Part 24 E				Class:	-
		Radiated an	d Conducted	Emissio	ons	
Test Spe	cifics					
-		bjective of this test session	is to perform engineer	ing evaluatio	n testing of t	he EUT relative
	•	fication(s) defined above. T		•	•	
	the E	UT relative to the specification	ion(s) defined above.			
			Config Lloop	ŀ 1		
Πa	to of Tost. 670	า				
	te of Test: 6.7.0 Engineer: David		Config. Usec Config Change			
Test	te of Test: 6.7.0 Engineer: Davic Location: Chan	I W. Bare	Config Change EUT Voltage	:	Z	
Test	Engineer: David	I W. Bare	Config Change	:	Z	
Test Test	Engineer: David	I W. Bare nber #2	Config Change	:	Z	
Test Test General	Engineer: Davic Location: Chan	I W. Bare nber #2	Config Change EUT Voltage	e: 120V, 60H		missions testing
Test Test General The EU1	Engineer: Davic Location: Chan Test Configu and all local su	I W. Bare nber #2 ration oport equipment were locate	Config Change EUT Voltage ed on the turntable for	e: 2007, 60H radiated and	conducted e	
Test Test General The EUT For radia	Engineer: David Location: Chan Test Configu and all local sup ated emissions te	I W. Bare nber #2 ration oport equipment were locate esting between 1800 and 18	Config Change EUT Voltage ed on the turntable for	e: 2007, 60H radiated and	conducted e	
Test Test General The EUT For radia from the	Engineer: Davic Location: Chan Test Configu and all local sup ated emissions te EUT, unless oth	I W. Bare hber #2 ration oport equipment were locate esting between 1800 and 18 erwise noted.	Config Change EUT Voltage ed on the turntable for 900 MHz, the measure	e: 2007, 60H radiated and	conducted e	
Test Test General The EUT For radia from the	Engineer: David Location: Chan Test Configu and all local sup ated emissions te	I W. Bare hber #2 ration oport equipment were locate esting between 1800 and 18 erwise noted. Temperature: 2	Config Change EUT Voltage ed on the turntable for 900 MHz, the measure 21°C	e: 2007, 60H radiated and	conducted e	
Test Test General The EUT For radia from the	Engineer: Davic Location: Chan Test Configu and all local sup ated emissions te EUT, unless oth	I W. Bare hber #2 ration oport equipment were locate esting between 1800 and 18 erwise noted.	Config Change EUT Voltage ed on the turntable for 900 MHz, the measure 21°C	e: 2007, 60H radiated and	conducted e	
Test Test General The EUT For radia from the Ambient	Engineer: Davic Location: Chan Test Configu and all local sup ated emissions te EUT, unless oth Conditions:	I W. Bare hber #2 ration oport equipment were locate esting between 1800 and 18 erwise noted. Temperature: 2	Config Change EUT Voltage ed on the turntable for 900 MHz, the measure 21°C	e: 2007, 60H radiated and	conducted e	
Test Test General The EUT For radia from the Ambient	Engineer: Davic Location: Chan Test Configu and all local sup ated emissions te EUT, unless oth	I W. Bare hber #2 ration oport equipment were locate esting between 1800 and 18 erwise noted. Temperature: 2	Config Change EUT Voltage ed on the turntable for 900 MHz, the measure 21°C	e: 2007, 60H radiated and	conducted e	
Test Test General The EUT For radia from the Ambient	Engineer: David Location: Chan Test Configu and all local sup ated emissions te EUT, unless oth Conditions: y of Results	I W. Bare hber #2 ration oport equipment were locate esting between 1800 and 18 erwise noted. Temperature: 2	Config Change EUT Voltage ed on the turntable for 900 MHz, the measure 21°C	e: 2007, 60H radiated and	conducted e	
Test Test General The EUT For radia from the Ambient Summar	Engineer: David Location: Chan Test Configu and all local sup ated emissions te EUT, unless oth Conditions: y of Results	I W. Bare her #2 ration port equipment were locate esting between 1800 and 18 erwise noted. Temperature: 2 Rel. Humidity: 7 Test Performed Preliminary Scan 1900 -	Config Change EUT Voltage ed on the turntable for 900 MHz, the measure 21°C 72%	:: 120V, 60H radiated and ement antenr	conducted e	ed at 3 meters d
Test Test General The EUT For radia from the Ambient Summar	Engineer: David Location: Chan Test Configu and all local su ated emissions te EUT, unless oth Conditions: y of Results n # RE,	I W. Bare hber #2 ration oport equipment were locate esting between 1800 and 18 erwise noted. Temperature: 2 Rel. Humidity: 7 Test Performed	Config Change EUT Voltage ed on the turntable for 900 MHz, the measure 21°C 72% Limit	:: 120V, 60H radiated and ement antenr	conducted e na was locate	ed at 3 meters d
Test Test General The EUT For radia from the Ambient Summar 1 2	Engineer: David Location: Chan Test Configu and all local sup ated emissions te EUT, unless oth Conditions: y of Results n # RE,	I W. Bare her #2 ration port equipment were locate esting between 1800 and 18 erwise noted. Temperature: 2 Rel. Humidity: 7 Test Performed Preliminary Scan 1900 - 19900 MHz Output Power	Config Change EUT Voltage ed on the turntable for 900 MHz, the measure 21°C 72% <u>Limit</u> FCC Part 24 E FCC Part 24 E	e: 120V, 60H radiated and ement antenr Result Pass	conducted e na was locate	ed at 3 meters d evel - on Ch 810
Test Test General The EUT For radia from the Ambient Summar Run 1	Engineer: David Location: Chan Test Configu and all local sup ated emissions te EUT, unless oth Conditions: y of Results n # RE,	I W. Bare her #2 ration oport equipment were locate esting between 1800 and 18 erwise noted. Temperature: 2 Rel. Humidity: 7 Test Performed Preliminary Scan 1900 - 19900 MHz	Config Change EUT Voltage ed on the turntable for 900 MHz, the measure 21°C 72% Limit FCC Part 24 E	e: 120V, 60H radiated and ement antenr Result	conducted e na was locate	ed at 3 meters d evel -

C	Ellic	ott					EMC	Test	Data
Client:	Cisco Sys	tems						Job Number:	J37867
Model:	VP1900B	X					T-L	og Number:	T37895
								Proj Eng:	David W. Bare
Contact:	Phillip Car	ranco							
Spec:	FCC Part	24 E						Class:	-
Frequency		45.2 IVIA Pol	z and 1968 FCC F	Part 24	Detector	Azimuth	Height	Comments	
Frequency MHz	dBµV/m	V/h	Limit		Detector Pk/QP/Avg		meters	Comments	
1945.200		h	N/A	Margin N/A	Pk	0-360	1.7	Fc	
1968.200	78.9	h	N/A	N/A	Pk	0-360	1.7	Fc	
3890.400	54.0	h	N/A	N/A	Pk	0-360	1.7	2nd	
3936.400	60.2	h	N/A	N/A	Pk	0-360	1.7	2nd	
7780.800	56.9	h	N/A	N/A	Pk	0-360	1.7	4th	
7872.750	62.6	h	N/A	N/A	Pk	0-360	1.7	4th	
9726.000	53.7	h	N/A	N/A	Pk	0-360	1.7	5th	
9841.000	50.4	h	N/A	N/A	Pk	0-360	1.7	5th	

Note 1: Only these harmonics were observed

Run #2: Output Power

Channel	Frequency (MHz)	Res BW	Output Power (dBm)	Graph reference #
587	1945.2	1 M	22.8	-
702	1968.2	1 M	23.4	-
Spur	1991.2	1M	-26.2	-
512	1930.2	1 M	22.6	T37895 1
810	1989.8	1 M	23.4	T37895 1
512	1930.2	3 kHz	6.9	T37895 5
810	1989.8	3 kHz	4.1	T37895 6

Æ	Elliott	EMC Test	Data
Client:	Cisco Systems	Job Number:	J37867
Model:	VP1900BX	T-Log Number:	T37895
		Proj Eng:	David W. Bare
Contact:	Phillip Carranco		
Spec:	FCC Part 24 E	Class:	-

Run #3: Spurious Emissions (Channels 512 and 810)

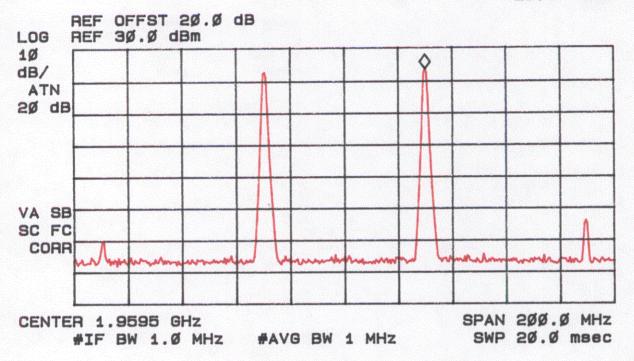
Channel	Frequency (MHz)	Res BW	Output Power (dBm)	Limit	Margin
Spur	2049	1 M	-23.9	-13.0	-10.9
Spur	1870.5	1 M	-30.6	-13.0	-17.6
Spur	1930.0	3 kHz	-37.0	-29.5	-7.5
Spur	1990.0	3 kHz	-38.8	-32.3	-6.5
Spur	7900	1 M	-61.1	-13.0	-48.1
Spur	19900	1 M	-50.3	-13.0	-37.3
Spur	3860	1 M	-64.0	-13.0	-51.0
Spur	63	1 M	-39.2	-13.0	-26.2
Spur	2049.4	1 M	-23.9	-13.0	-10.9
Spur	1870.4	1 M	-30.6	-13.0	-17.6

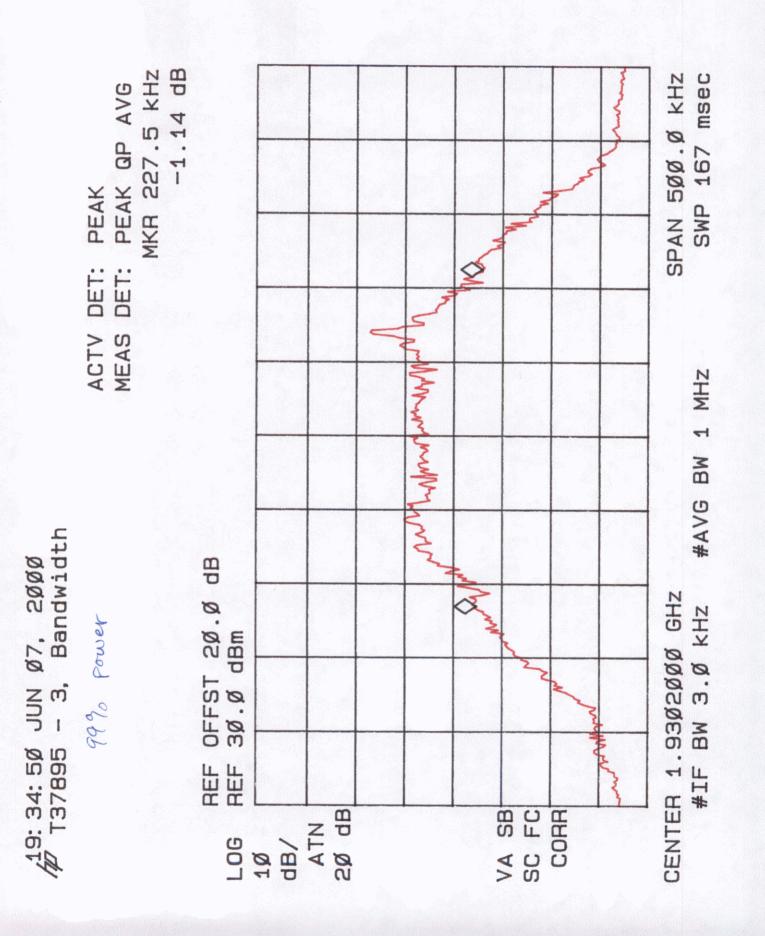
Run #4: Signal Bandwidth

Channel		Resolution Bandwidth	00% nowor handwidth	Graph reference #
512	1930.2	3 kHz	227.5 kHz	T37895 -3
810	1989.8	3 kHz	236.3 kHz	T37895 -4

Emissions Designator 236KX7D

Client: Cisco	IOU		ЕМС	Test l	Data
Madal VD100	Systems		J	lob Number:	J37867
Model: VP190)0BX		T-L	og Number:	T37895
				Proj Eng:	David W. Ba
Contact: Phillip	Carranco				
Spec: FCC F	Part 24 E			Class:	-
	Rad	iated Emissio	ns		
Test Specifics					
Objecti	ve: The objective of this test session specification(s) defined above.	is to perform final qual	ification testi	ing the EUT r	elative to the
Date of Te	est: 06/07/2000	Config. Used	: 1		
-	eer: Rafael Varelas	Config Change			
Test Location	on: SVOATS #3	EUT Voltage	: 120V/60Hz	Z	
		16°C	nent antenna	a was located	l at 3 meters
	Rel. Humidity:	73%			
Summary of R	esults				
Summary of R	Test Performed	Limit	Result	Ma	argin
Summary of R Run # 1		Limit FCC Part 24 E	Result	Ma	irgin -
Run #	Test Performed RE, Maximized Emissions,		Result Pass		argin - 7959.2 MHz

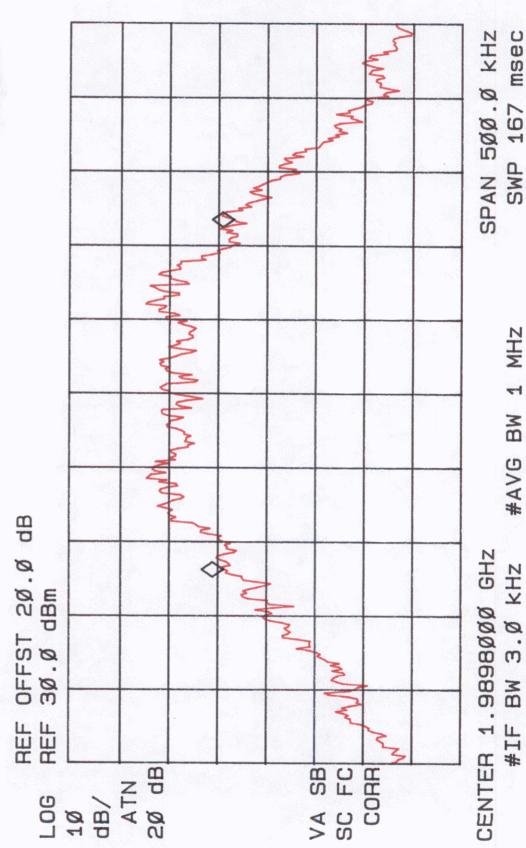

Client:	Ellic Cisco Sys						J	ob Number:	J37867
	VP1900B						T-L	og Number:	T37895
						-		0	David W. Bare
Contact	Phillip Car	ranco						rioj Elig.	Davia W. Darc
	FCC Part							Class:	
Spec:	FUC Part	24 E						CIASS:	-
Dum #1. D	adiatad an	niccion	1000 00E		ad an praca	n in a aham	har		
	adiated er minated in		5, 1900-995	U IVIHZ Dase	ed on presca	an in a cham	ber		
Frequency		Pol	FCCE	Part 24	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
1930.200	87.89	V	N/A	N/A	PK	0	1.1	Fc	
1989.800	90.50	V	N/A	N/A	PK	80	1.5		
3860.400	74.61	V	N/A	N/A	PK	353		2nd	
3979.600	76.60	V	N/A	N/A	PK	320		2nd	
7720.800	80.09	V	N/A	N/A	PK	0		4th	
7959.200	88.81	V	N/A	N/A	PK	100		4th	
9651.000	81.10	V	N/A	N/A	PK	70	1.4	5th	
9949.000	71.15	٧	N/A	N/A	PK	350	1.4	5th	
1930.200	80.17	h	N/A	N/A	PK	145	1.3	Fc	
1989.800	88.27	h	N/A	N/A	PK	15	1.8	Fc	
3860.400	66.50	h	N/A	N/A	PK	50		2nd	
3979.600	70.74	h	N/A	N/A	PK	310		2nd	
7720.800	73.44	h	N/A	N/A	PK	100		4th	
7959.200	81.94	h	N/A	N/A	PK	310		4th	
	73.48	h	N/A	N/A	PK	120		5th	
9651.000 9949.000	73.37	h	N/A	N/A	PK	85	1.3	5th	

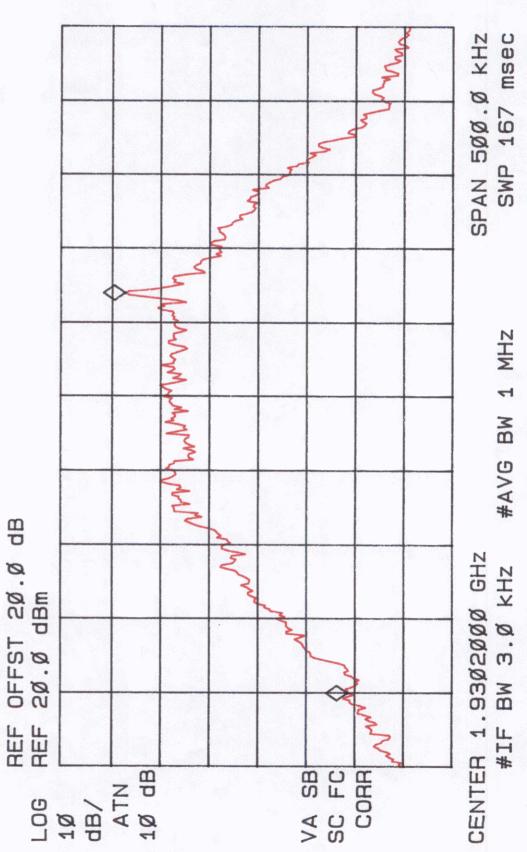

Frequency	Sig Gen	nt. Gair	ERP	FCC F	Part 24	Detector	Azimuth	Height	Comments
MHz	dBm	dBd		Limit	Margin	Pk/QP/Avg	degrees	meters	
1930.200	-24.1	5.7	-18.4	N/A	N/A	PK	0	1.1	Fc
9651.000	-38.80	10.0	-28.8	-12.4	-16.4	PK	70	1.4	5th
1989.800	-19.60	5.7	-13.9	N/A	N/A	PK	80	1.5	Fc
7959.200	-30.40	9.3	-21.1	-12.4	-8.7	PK	100	1.5	4th

19:04:12 JUN 07. 2000 T37895, Run #3 . Output Power

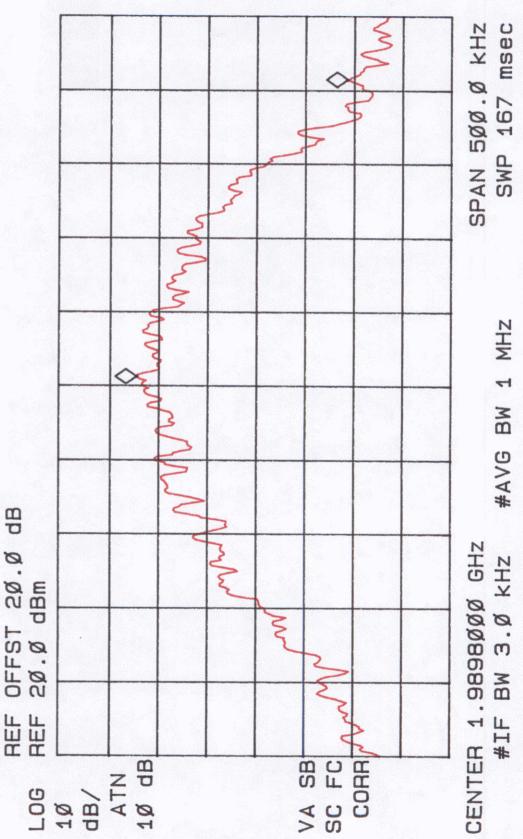
-1

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 1.9895 GHz 23.37 dBm




19:27:31 JUN Ø7, 2000 70 T37895 – 4, Bandwidth

99% Power


ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 236.3 kHz -1.98 dB

20:40:14 JUN 07, 2000 10 T37895 - 5, Bandedge ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR -27Ø.Ø kHz -45.58 dB

20: 45: 11 JUN 07, 2000 70 T37895 - 6, Bandedge ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 2Ø1.3 kHz -42.93 dB

21: Ø2: 42 JUN Ø7, 2000 70 T37895 – 7, Spurious Conducted ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 7.9Ø GHz -61.12 dBm

JUN Ø7, 2ØØØ – 8. Spurious Conducted 21: 10: 10 70 T37895

OFFST 2Ø.Ø dB 2Ø.Ø dBm REAS DET: MEAS DET:	warman warman warman war
REF OFFS	mon

EXHIBIT 3:Radiated Emissions Test Configuration Photographs

APPENDIX 3: Radiated Emissions Test Configuration Photographs

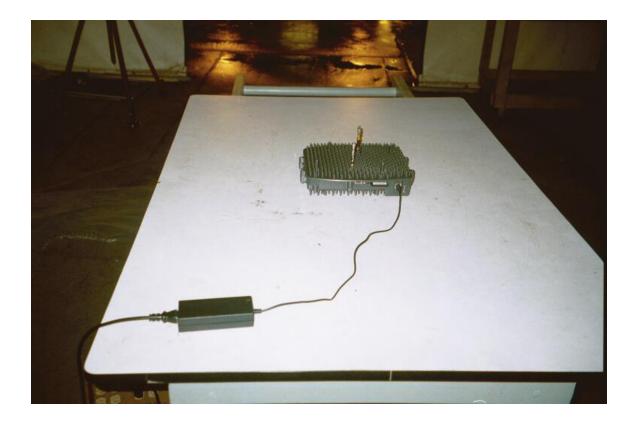


EXHIBIT 4: Proposed FCC ID Label & Label Location

EXHIBIT 5: Detailed Photographs of Cisco Systems, Inc. Model VP1900BXConstruction

EXHIBIT 6: Operator's Manual for Cisco Systems, Inc. Model VP1900BX

EXHIBIT 7: Block Diagram of Cisco Systems, Inc. Model VP1900BX

EXHIBIT 8: Schematic Diagrams for Cisco Systems, Inc. Model VP1900BX

EXHIBIT 9: Theory of Operation for Cisco Systems, Inc. Model VP1900BX