4 FCC §2.1091, §15.407(f) & ISEDC RSS-102 – RF Exposure

4.1 Applicable Standards

According to FCC §15.407(f), §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for	General Pop	ulation/U	Jncontroll	ed Exposure
------------	-------------	-----------	------------	-------------

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)			
Limits for General Population/Uncontrolled Exposure							
0.3-1.34	614	1.63	* (100)	30			
1.34-30	824/f	2.19/f	* (180/f ²)	30			
30-300	27.5	0.073	0.2	30			
300-1500	/	/	f/1500	30			
1500-100,000	/	/	1.0	30			

f = frequency in MHz

According to ISED RSS-102 Issue 5:

2.5.2 Exemption Limits for Routine Evaluation – RF Exposure Evaluation

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz⁶ and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the
 device is equal to or less than 4.49/f^{0.5} W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the
 device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x 10⁻² f^{0.6834} W (adjusted for tune-up tolerance), where f is in MHz:
- at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

^{* =} Plane-wave equivalent power density

4.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

4.3 MPE Results for FCC

2.4 GHz Wi-Fi Aux

Maximum output power at antenna input terminal (dBm):

Maximum output power at antenna input terminal (mW):

Prediction distance (cm):

Prediction frequency (MHz):

Maximum Antenna Gain, typical (dBi):

Maximum Antenna Gain (numeric):

Power density of prediction frequency at 30.0 cm (mW/cm²):

0.0160

FCC MPE limit for uncontrolled exposure at prediction frequency (mW/cm²): 1.0

The device is compliant with the requirement MPE limit for uncontrolled exposure. The maximum power density at the distance of 30 cm is 0.016 mW/cm². Limit is 1.0 mW/cm².

2.4 GHz Wi-Fi

Maximum output power at antenna input terminal (dBm): 22.9 Maximum output power at antenna input terminal (mW): 194.98 Prediction distance (cm): 30 Prediction frequency (MHz): 2437 Maximum Antenna Gain, typical (dBi): 10 Maximum Antenna Gain (numeric): 10 Power density of prediction frequency at 30.0 cm (mW/cm²): 0.1725 FCC MPE limit for uncontrolled exposure at prediction frequency (mW/cm²): 1.0

The device is compliant with the requirement MPE limit for uncontrolled exposure. The maximum power density at the distance of 30 cm is 0.1725 mW/cm². Limit is 1.0 mW/cm².

2.4 GHz BLE

 Maximum peak output power at antenna input terminal (dBm):
 3.67

 Maximum peak output power at antenna input terminal (mW):
 2.33

 Prediction distance (cm):
 30

 Prediction frequency (MHz):
 2426

 Maximum Antenna Gain, typical (dBi):
 3

 Maximum Antenna Gain (numeric):
 3.98

 Power density of prediction frequency at 30.0 cm (mW/cm²):
 0.0004

FCC MPE limit for uncontrolled exposure at prediction frequency (mW/cm²): 1.0

The device is compliant with the requirement MPE limit for uncontrolled exposure. The maximum power density at the distance of 30 cm is 0.0004 mW/cm². Limit is 1.0 mW/cm².

5 GHz Wi-Fi Aux

Maximum peak output power at antenna input terminal (dBm):

Maximum peak output power at antenna input terminal (mW):

Prediction distance (cm):

Prediction frequency (MHz):

Maximum Antenna Gain, typical (dBi):

Maximum Antenna Gain (numeric):

Power density of prediction frequency at 30.0 cm (mW/cm²):

Power density of prediction frequency (mW/cm²):

Power density of prediction frequency (mW/cm²):

1.0

The device is compliant with the requirement MPE limit for uncontrolled exposure. The maximum power density at the distance of 30 cm is 0.0386 mW/cm². Limit is 1.0 mW/cm².

5 GHz Wi-Fi XOR

Maximum peak output power at antenna input terminal (dBm): 23.6 Maximum peak output power at antenna input terminal (mW): 229.09 Prediction distance (cm): <u>30</u> 5745 Prediction frequency (MHz): Maximum Antenna Gain, typical (dBi): 11 Maximum Antenna Gain (numeric): 12.59 Power density of prediction frequency at 30.0 cm (mW/cm²): 0.2551 FCC MPE limit for uncontrolled exposure at prediction frequency (mW/cm²): 1.0

The device is compliant with the requirement MPE limit for uncontrolled exposure. The maximum power density at the distance of 30 cm is 0.2551 mW/cm². Limit is 1.0 mW/cm².

5 GHz Wi-Fi Regular

Maximum peak output power at antenna input terminal (dBm): 23.7

Maximum peak output power at antenna input terminal (mW): 234.42

Prediction distance (cm): 30
Prediction frequency (MHz): 5230
Maximum Antenna Gain, typical (dBi): 11

Maximum Antenna Gain (numeric): 12.59

Power density of prediction frequency at 30.0 cm (mW/cm²): 0.2611

FCC MPE limit for uncontrolled exposure at prediction frequency (mW/cm²): 1.0

The device is compliant with the requirement MPE limit for uncontrolled exposure. The maximum power density at the distance of 30 cm is 0.2611 mW/cm². Limit is 1.0 mW/cm².

Worst case colocation 5 GHz Wi-Fi Regular, 5 GHz Wi-Fi Aux, 5 GHz Wi-Fi XOR and BLE.

Frequency Band	Max Conducted Power(dBm)	Evaluated Distance (cm)	Worst- Case MPE (mW/cm²)	MPE Limit (mW/cm²)	Worst- Case MPE Ratios	Sum of MPE Ratios	Limit	
Worst Case								
5 GHz Wi-Fi Regualr	23.7	30	0.2611	1.0	26.11 %	. 55.52 %	100%	
5 GHz Wi-Fi Aux	21.4	30	0.0386	1.0	3.86 %			
5 GHz Wi-Fi XOR	23.6	30	0.2551	1.0	25.51%			
2.4 GHz BLE	3.67	30	0.0004	1.0	0.04%			

Note: EUT can operate in the following colocation cases, the worst colocation case has been selected to analyze.

Case1: 5 GHz Wi-Fi Regular, 5 GHz Wi-Fi Aux, 5 GHz Wi-Fi XOR and BLE.

Case2: 5 GHz Wi-Fi Regular, 2.4 GHz Wi-Fi Aux, 5 GHz Wi-Fi XOR and BLE.

Case3: 5 GHz Wi-Fi Regular, 2.4 GHz Wi-Fi Aux, 2.4 GHz Wi-Fi and BLE.

Case4: 5 GHz Wi-Fi Regular, 5 GHz Wi-Fi Aux, 2.4 GHz Wi-Fi and BLE.

4.4 RF exposure evaluation exemption for ISEDC

2.4 GHz Wi-Fi

$$22.9 \text{ dBm} + 10 \text{ dBi} = 32.9 \text{ dBm} < 1.31 \times 10^{-2} f^{0.6834} = 2.703 \text{ W} = 34.318 \text{ dBm}$$

5 GHz Wi-Fi Aux

$$21.4 + 5 \text{ dBi} = 21.9 \text{ dBm} < 1.31 \times 10^{-2} f^{0.6834} = 4.903 \text{ W} = 36.904 \text{ dBm}$$

5 GHz Wi-Fi XOR

$$23.6 + 11 \text{ dBi} = 34.6 \text{ dBm} < 1.31 \times 10^{-2} f^{0.6834} = 4.880 \text{ W} = 36.884 \text{ dBm}$$

5 GHz Wi-Fi Regular

$$23 + 11 \text{ dBi} = 34 \text{ dBm} < 1.31 \times 10^{-2} f^{0.6834} = 4.880 \text{ W} = 36.884 \text{ dBm}$$

Therefore, the RF exposure is not required.