Radio Test Report

For

CP-9971

2.4 GHz/5.0 GHz Wi-Fi Radio 802.11a + Bluetooth v2.0

FCC ID: LDK7925G0269

UNII-3 (5725-5850 MHz)

Against the following Specifications:

CFR47 Part 15.407

Cisco Systems 170 West Tasman Drive San Jose, CA 95134

> Author: Danh Le Approved By: Title: See EDCS Revision: See EDCS

This report replaces any previously entered test report under EDCS –. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. Test Report Template EDCS# 1526149.

Page No: 1 of 45

SECT	FION 1: OVERVIEW
1.1	Test Summary 5
SECT	FION 2: ASSESSMENT INFORMATION
2.1	General6
2.2	Units of Measurement
2.3	Date of testing (initial sample receipt date to last date of testing)
2.4	Report Issue Date
2.5	Testing facilities
2.6	Purpose of Assessment
2.7	Equipment Assessed (EUT)
2.8	EUT Description9
SECT	ΓΙΟΝ 3: RESULT SUMMARY10
3.1	Results Summary Table 10
SECT	ΓΙΟΝ 4: SAMPLE DETAILS11
4.1	Sample Details
4.2	Antenna Information11
4.4	Mode of Operation Details 11
APPH	ENDIX A: CONDUCTED TEST RESULTS12
A.1	DUTY CYCLE, TRANSMISSION DURATION13
A.1.1	Duty Cycle Test Requirement13
A.1.2	Duty Cycle Test Method
A.1.2	Duty Cycle Data Table13

Page No: 2 of 45

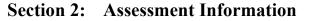
A.1.3	Duty Cycle Graphical Test results14
A.2	99% OCCUPIED BANDWIDTH AND 6DB BANDWIDTH15
A.2.1	Limits15
A.2.2	99% OBW and 6dB Bandwidth Test Procedure15
A.2.3	99% Occupied & 6dB Bandwidth data table16
A.2.4	99% Occupied Bandwidth & 6dB Emission Bandwidth Graphical Test Results17
A.3	MAXIMUM CONDUCTED OUTPUT POWER18
A.3.1	Limits18
A.4.2	Test Procedure
A.3.3	Maximum Output Power Data Table19
A.3.4	Maximum Conducted Power Graphical Test Results20
A.4	POWER SPECTRAL DENSITY
A.4.1	Limits
A.4.2	Test Procedure
A.4.3	Power Spectral Density Data Table22
A.4.4	Power Spectral Density Graphical Test Results
A.5	BAND EDGE AND OUT-OF-BAND
A.5.1	Limits
A.5.2	Test Procedure
A.5.3	Radiated Band Edge and Out-of-Band Test Data25
A.5.4	Conducted Band Edge Graphical Test Results26
A.6	UNWANTED/ SPURIOUS EMISSIONS27
A.6.1	Limits
	Page No: 3 of 45

BA.6.2	Test Proc	2edure	9
From 18	GHz – 40 (GHz 3	0
A.6.3	Unwanted	/ Spurious Emissions Test Data and Graphical Test Results	1
APPEN	DIX B:	LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST4	0
APPEN	DIX C:	ABBREVIATION KEY AND DEFINITIONS4	1
APPEN	DIX D:	SOFTWARE USED TO PERFORM TESTING4	2
APPEN	DIX E:	TEST PROCEDURES4	3
APPEN	DIX F:	SCOPE OF ACCREDITATION4	4
APPEN	DIX G:	TEST ASSESSMENT PLAN4	5
APPEN	DIX H:	WORST CASE JUSTIFICATION4	5

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

Section 1: Overview

1.1 Test Summary


The samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

Specifications	
CFR47 15.407	

Measurements were made in accordance with

- ANSI C63.10:2013,
- KDB 789033 D02 General UNII Test Procedures New Rules v01

Page No: 5 of 45

2.1 General

This report contains an assessment of an apparatus against Radio Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc.:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature	15°C to 35°C (54°F to 95°F)
Atmospheric Pressure	860mbar to 1060mbar (25.4" to 31.3")
Humidity	10% to 75*%

e) All AC testing was performed at one or more of the following supply voltages: 110V 60 Hz (+/-20%)

2.2 Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB]

The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss..

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Page No: 6 of 45

cisco

Measurement Uncertainty Values

voltage and power measurements	$\pm 2 \text{ dB}$
conducted EIRP measurements	± 1.4 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7
temperature measurements	$\pm 0.54^{\circ}$.
humidity measurements	$\pm 2.3\%$
DC and low frequency measurements	± 2.5%.

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Conducted emissions (expanded uncertainty, confidence interval 95%)

30 MHz – 40GHz +/- 0.38 dB

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

Page No: 7 of 45

2.3 Date of testing (initial sample receipt date to last date of testing)

April 21st – May 5th, 2016

2.4 Report Issue Date

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled

2.5 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc. 125 West Tasman Drive (Building P) San Jose, CA 95134 USA

Headquarters

Cisco Systems, Inc., 170 West Tasman Drive San Jose, CA 95134, USA

Registration Numbers			
Cisco System Site	Address	Site Identifier	
Building P, 10m Chamber	125 West Tasman Dr	Company #: 2461N-2	
	San Jose, CA 95134		
Building P, 5m Chamber	125 West Tasman Dr	Company #: 2461N-1	
	San Jose, CA 95134		
Building I, 5m Chamber	285 W. Tasman Drive	Company #: 2461M-1	
	San Jose, California 95134		
Building N, 5m Chamber	125 Rio Robles,	Company #: 6111A	
	San Jose, California 95134		

Test Engineers

Danh Le

Page No: 8 of 45

2.6 **Purpose of Assessment**

The purpose of the assessment is to show proof that the UNII-3 radio device specified in section 2.7, has been tested and determined in compliance with FCC part15.407 (new rules) which was previously tested under FCC part 15.247 rules.

2.7 Equipment Assessed (EUT)

CP-9971

2.8 EUT Description

The CP-9971- is the next generation desktop Wireless IP Phone that supports Wi-Fi 802.11a/b/g in addition to Ethernet as Network interface.

The WLAN subsystem of CP-9971 will comprise of the MuRata LEH1WULQC module with support for TNET1253 for WLAN and BRF6350 for Bluetooth support also using WP Wireless dual-band SMD antenna p/n: WPIANTFRCUS03A20/C

CP-9971-C-K9: Cisco Unified IP Endpoint 9971, Charcoal, Thick Handset CP-9971-CL-K9: Cisco Unified IP Endpoint 9971, Charcoal, Thin Handset CP-9971-W-K9: Cisco Unified IP Endpoint 9971, White, Thick Handset CP-9971-WL-K9: Cisco Unified IP Endpoint 9971, White, Thin Handset

Page No: 9 of 45

Section 3: Result Summary

3.1 **Results Summary Table**

Basic Standard	Technical Requirements / Details	Result
15.407(e)	6 dB Bandwidth: Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.	
15.407(a)(3)	Maximum Conducted Output Power: For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If the transmitting antennas of directional gain greater than 6dBi are used, The maximum conducted output power shall be reduced by amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.	Pass
15.407(a)(3)	Power Spectral Density The maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	Pass
 15.407(b)(3) (i) Band-Edge and Out-of-Band: For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge. 		Pass
15.407(b)(4)&(6) 15.209(a)	Unwanted / Spurious Emissions For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge. Unwanted emissions below 1 GHz, must comply with the general field strength limits set forth in §15.209.	Pass

Page No: 10 of 45

Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing. Refer to the "Justification for worst Case test Configuration" section of this report for further details on the selection of EUT samples.

4.1 Sample Details

Sample Number	Equipment Details	Serial Number	Part Number
S01 CP-9971 desktop Wireless IP Phone		FCH181587NB	CP-9971-CK9V11

4.2 Antenna Information

The following antenna are supported by this product series.

Frequency (MHz)	Part Number	Antenna Type	Antenna Gain (dBi)
5725-5850	Internal	Dual Band	3.0

4.3 System Details

System #	Description	Samples
1	Radio Test Sample	S01
2	Power Supply	BT-AG4404GE

4.4 Mode of Operation Details

Mode#	Description	Comments
1	802.11a Test Mode	System is placed in a continuous Transmit Mode at various channels per test requirements with 802.11a running at 6Mbps

Measurements were made in accordance with

- ANSI C63.10:2013,
- KDB 789033 D02 General UNII Test Procedures New Rules v01,

Appendix A: Conducted Test Results

Target Maximum Channel Power

The following table details the maximum supported Total Channel Power for all operating modes.

	Maximum Channel Power (dBm)					
Operating Mode		Frequency (MH	[z)			
	5745	5785	5805			
802.11a	17	18	17			

Page No: 12 of 45

A.1 Duty Cycle, transmission duration

Ref. KDB 789033 D02 General U-NII Test Procedure New Rules v01r02, section B.1

A.1.1 Duty Cycle Test Requirement

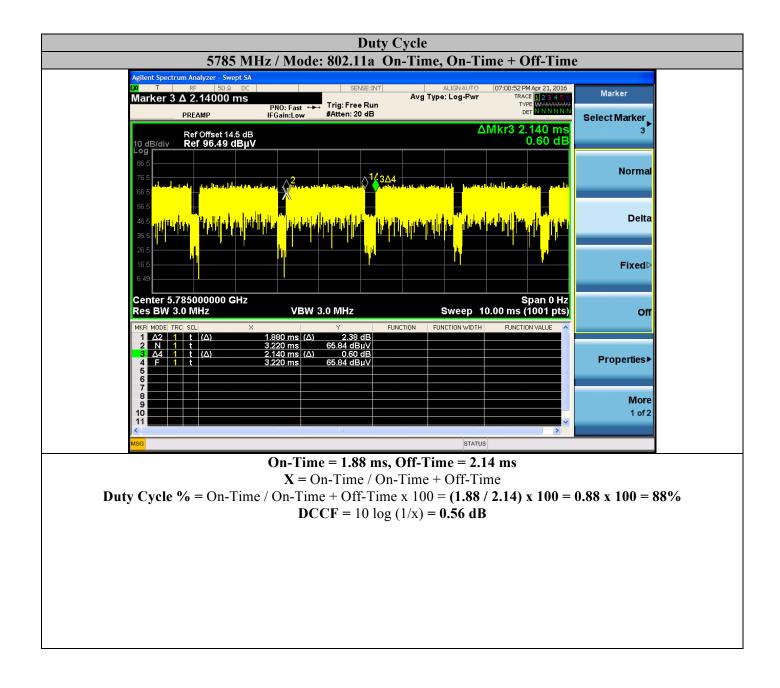
All measurements are to be performed with the EUT transmitting at 100 percent duty cycle at its maximum power control level; however, if 100 percent duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.

A.1.2 Duty Cycle Test Method

Ref. KDB 789033 D02 General U-NII Test Procedure New Rules v01r02, section B.2 (b)

B. Measurements of duty cycle and transmission duration shall be performed using the following technique:

2 (b) The zero-span mode on a spectrum analyzer or EMI receiver, if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq EBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in section II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)


A.1.2 Duty Cycle Data Table

	Data Rate	On-time	On-time + Off-time	Duty Cycle	Correction
Mode					Factor
	(Mbps)	(ms)	(ms)	(%)	(dB)
802.11a	6	1.88	2.14	88	0.56

Duty Cycle Correction Factor = 10 log (Txon / Txon+Txoff) Duty Cycle % = (Txon / Txon+Txoff) * 100 = 1.8/2.14 * 100 = 88% DCCF = 10 (log 1/DC) = 10 (log (1/ 0.88) = 0.56 dB

Page No: 13 of 45

A.1.3 Duty Cycle Graphical Test results

Page No: 14 of 45

A.2 99% occupied bandwidth and 6dB Bandwidth

The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW.

The 6 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

A.2.1 Limits.

Ref. FCC 15.407 (e)

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz

A.2.2 99% OBW and 6dB Bandwidth Test Procedure

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01, section C (2) & E

99% BW and EBW (-6dB)

Test Procedure

- 1. Set the radio in the continuous transmitting mode.
- 2. Allow the trace to stabilize.

3. Setting the x-dB bandwidth mode to -6dB within the measurement set up function.

4. Select the automatic OBW measurement function of an instrument to perform bandwidth measurement.

5. Capture graphs and record pertinent measurement data.

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01, section C (2) & E

99% BW and EBW (-6dB)

Test parameters

- a) Span = Large enough to capture the entire EBW
- b) Set RBW = 100 kHz.
- c) Set the video bandwidth (VBW) $\ge 3 \times RBW$.
- d) Detector = Peak.
- e) Trace mode = max hold.
- f) Sweep = auto couple.
- g) Allow the trace to stabilize.

h) For 6 dB BW, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

i) For 99% BW, the recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as lower frequency. The process is repeated until the 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

Page No: 15 of 45

Frequency (MHz)	Mode	Data Rate (Mbps)	99% BW (MHz)	6dB BW (MHz)	Limits (KHz)	Results	
5745	802.11a	6	16.49	16.34	≥500	Pass	
5785	802.11a	6	16.37	16.12	≥ 500	Pass	
5805	802.11a	6	16.38	15.86	≥500	Pass	

A.2.3 99% Occupied & 6dB Bandwidth data table

Page No: 16 of 45

A.2.4 99% Occupied Bandwidth & 6dB Emission Bandwidth Graphical Test Results

սիսիս

Page No: 17 of 45

A.3 Maximum Conducted Output Power

Maximum Conducted Output Power is defined as the total transmit power delivered to all antenna when the transmitter is operating at its maximum control level.

A.3.1 Limits.

Ref. FCC 15.407(a) (3)

30dBm

A.4.2 Test Procedure

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01, section II E

Test Procedure

1. Set the radio in the transmitting mode

2. Compute power by integrating the spectrum across the EBW (or alternatively entire 99% OBW) of the signal using the instrument's band power measurement function. The integration shall be performed using the spectrum analyzer band-power measurement function with band limits set equal to the EBW or the OBW band edges.

3. Capture graphs and record pertinent measurement data.

4. Make the following adjustments to the measured power, by adding duty cycle correction factor to the measured value using the formula 10 log (1/x), where x is the duty cycle.

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01, section II E (2) (b) SA-2

Test parameters

(i) Set span to encompass the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(ii) Set RBW = 1 MHz

(iii) Set VBW \ge 3 MHz

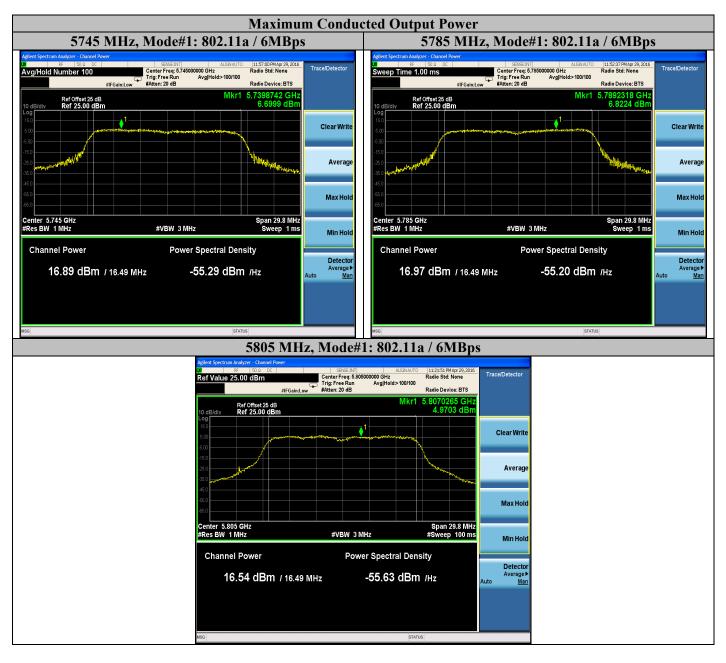
(iv) Number of points in sweep ≥ 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

(v) Sweep time = auto.

(vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode

(vii) Do not use sweep triggering. Allow the sweep to "free run".

(viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number, the number of traces to be averaged shall be increased above 100 as needed to ensure that the average accurately represents the true average over the on and off periods of the transmitter.


Page No: 18 of 45

	Maximum Conducted Output Power											
Mode: 802.11a												
Frequency	Cable Loss	Ext. Attenuator	Measured Output Power	Duty Cycle Correction Factor	Corrected Output Power	Limit	Results					
(MHz)	(dB)	(dB)	(dBm)	(dB)	(dBm)	(dBm)	Pass / Fail					
5745	5*	20*	16.89	0.56	17.45	30	Pass					
5785	5*	20*	16.97	0.56	17.53	30	Pass					
5805	5*	20*	16.54	0.56	17.10	30	Pass					

A.3.3 Maximum Output Power Data Table

Note:*represents the compensated correction factors of cable losses (5 dB) and external attenuator (20 dB) in the offset function of measuring instrument.

Page No: 19 of 45

A.3.4 Maximum Conducted Power Graphical Test Results

Page No: 20 of 45

A.4 Power Spectral Density

The Power Spectral Density is the total energy output per unit bandwidth from a pulse or sequence of pulses for which the transmit power is at its maximum level, divided by the total duration of the pulses, This total time does not include the time between pulses during which the transmit power is off or below its maximum level.

A.4.1 Limits.

FCC 15.407(3) 30dBm/500 KHz

A.4.2 Test Procedure

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01, section II F

Test Procedure

1. Set the radio in the transmitting mode

2. Use the peak search function on the instrument to find the peak of the spectrum.

3. Capture graphs and record pertinent measurement data.

4. Make the following adjustments to the value by adding duty cycle correction factor to the measured value

5. The result is the Maximum PSD over 500 KHz reference bandwidth.

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01, section II E (2) (b) SA-2

Test parameters

(i) Set span to encompass the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal.

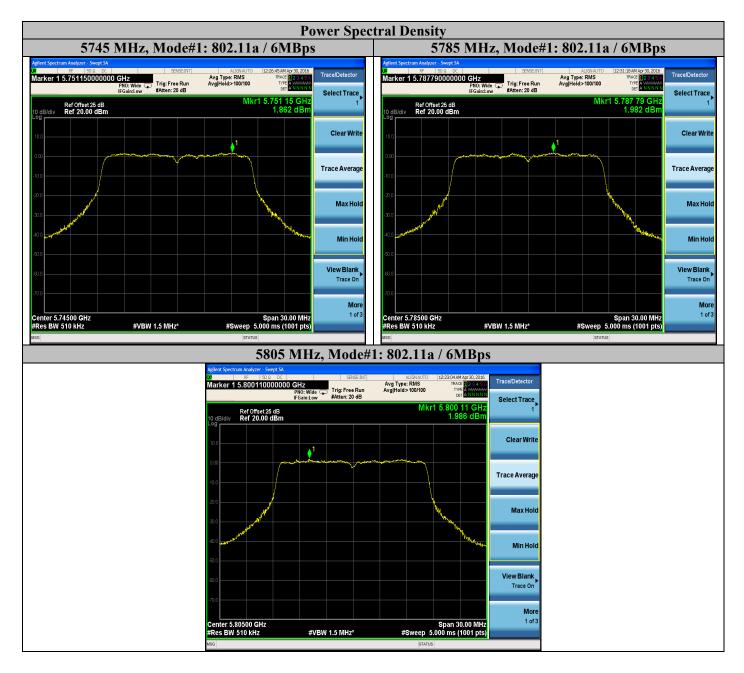
(ii) Set RBW = 500 KHz

(iii) Set VBW \ge 3 X RBW

(iv) Number of points in sweep ≥ 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

(v) Sweep time = auto.

(vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.


(vii) If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \ge 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run." (viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.

A.4.3 Power Spectral Density Data Table

	Power Spectral Density												
Mode: 802.11a													
Frequency	Cable	Ext.	Measured	Duty Cycle	Corrected PSD	Limits	Results						
(MHz)	Loss (dB)	Attenuator (dB)	PSD (dBm)	Correction Factor (dB)	(dBm/500 KHz	(dBm/500 KHz)	Pass /						
()	(uD)	(ub)	()	()		iiiiz)	Fail						
5745	5*	20*	1.862	0.56	2.422	30	Pass						
5785	5*	20*	1.982	0.56	2.542	30	Pass						
5805	5*	20*	1.986	0.56	2.542	30	Pass						

Note:*represents the compensated correction factors of cable losses (5 dB) and external attenuator (20 dB) in the offset function of measuring instrument.

Page No: 22 of 45

սիսիս

cisco

A.4.4 Power Spectral Density Graphical Test Results

Page No: 23 of 45

A.5 Band Edge and Out-of-band

A.5.1 Limits

15.407(b) Undesirable emission limits. Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

15.407(b) (4) For transmitter operating in the 5.725 MHz - 5.850 Mhz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.

A.5.2 Test Procedure

Ref. 789033 D02 General UNII Test Procedures New Rules v01, section II.G.3

Conducted Band Edge and Out-of-band Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode. Note that if the transmission is not continuous, the time required for the trace to stabilize will increase by a factor of approximately 1/x, where x is the duty cycle. For example, at 50 percent duty cycle, the measurement time will increase by a factor of two relative to measurement time for continuous transmission.

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Place markers at the peak of all measurable emissions.

5. Capture graphs and record pertinent measurement data.

6. Correct all readings with correction factors if applicable (cable loss, ext. attenuators, duty cycle correction factors, etc) to show compliance.

Ref. 789033 D02 General UNII Test Procedures New Rules v01, section II.G.5

Conducted Band Edge and Out-of-band
Test parameters
RBW = 1 MHz
VBW \geq 3MHz for Peak
Sweep = Auto
Detector = Peak
Trace = Max Hold.

Page No: 24 of 45

Operating Frequency (MHz)	Data Rate (Mbps)	Measured Frequency (MHz)	Emission Level (dBm/MHz)	Antenna Gain (dBi)	E.I.R.P (dBm)	Limit (dBm)	Result
			Mode#: 802.1	11a	~ /		
5745	6	5749.5	8.634	3.11	11.744	27	Pass
5745	6	5663.1	-41.736	3.11	-38.626	-18.3	Pass
5825	6	5809.9	8.539	3.11	11.649	27	Pass
5825	6	5905.1	-42.512	3.11	-39.402	-13.3	Pass

A.5.3 Radiated Band Edge and Out-of-Band Test Data

Page No: 25 of 45

սիսիս

cisco

A.5.4 Conducted Band Edge Graphical Test Results

Page No: 26 of 45

A.6 Unwanted/ Spurious Emissions

Spurious emissions are harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

A.6.1 Limits

15.407 (b) *Unwanted emission limits.* Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

Frequency range: Below 1GHz

FCC 15.407 (b) (6): Unwanted emissions below 1GHz must comply with general field strength limits set forth in §15.209. Further any U-NII devices using an AC power line are required to comply also with conducted emissions limits set forth in §15.207.

FCC 15.209: The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the table specified in the table in FCC§15.209 (a).

General Field Strength Limits Table										
Field strength (uV/meter)Field strength (dBuV/meter)Measurement dista (meters)										
30-88	100**	40 Qp	3							
88-216	150**	43.5 Qp	3							
216-960	200**	46 Qp	3							
Above 960	500	54 Av / 74 Pk	3							

Frequency range: Above 1GHz

FCC 15.407 (b) (4): Unwanted emissions above 1000 MHz that are outside of the restricted bands are subject to a maximum emission limit of -27dBm/MHz.

Limit Conversion

When the DUT power is measured using a radiated test configuration, the EIRP can be directly determined using the power (logarithmic) approach as follows:

eirp = pt x gt = (E x d)2/30

where: **pt** = transmitter output power in watts,

- **gt** = numeric gain of the transmitting antenna (unit less),
- \mathbf{E} = electric field strength in V/m,
- **d** = measurement distance in meters (m).

Based on the equation above, unit conversion from log => linear

(1) Conversion from dBm to Watt

W = 10 EXP (-27dBm - 30 /10) W = 10 EXP (-5.7) = 2 E-6

(2) E Field Strength can be derived by inverse calculation.

E = 9 (pt x gt x 30) / dE = SQRT (2E-6 x 1.0 x 30) / 3 = 0.0026 V/m

(3) Conversion from Linear to Log, using the following formula

Volts to dBuV = 20 log (*Volts*) + 120 E (in dBuV) = 20 Log (0.0026) + 120 = 68.23/m @ 3 meter

Page No: 28 of 45

BA.6.2 Test Procedure

Ref. ANSI C63.10-2013 section 6.5 & 6.6

Unwanted Emissions Test Procedure below 1 GHz

1. Using Vasona software, configure the spectrum analyzer as shown above (be sure to enter all losses between the transmitter output and the spectrum analyzer).

2. Place the radio in continuous transmit mode. Maximize Turntable (find worst case table angle) and maximize Antenna (find worst case height).

3. Use the peak marker function to determine the maximum amplitude level.

4. Center marker frequency and perform final measurement in Quasi-peak (\leq 1Ghz) and Average (above 1 GHz)

5. Record at least 6 highest readings for the worst case operating mode.

Ref. ANSI C63.10: 2013 section 4.1.4 (Quasi-Peak) / section 12.7.6 (peak), section 12.7.5, section 12.7.7.3 (VBW average),

Test parameters

(i) Span = Entire frequency range or segment if necessary.

(ii) Reference Level = 80 dBuV

(iii) RBW = 100 kHz (less than or equal to 1 GHz); 1 MHz (above 1 GHz)

(iv) $VBW \ge 3 \times RBW$

(v) Detector = Peak & Quasi-Peak (frequency range 30 MHz to 1 GHz);

Peak & Average (frequency range above 1 GHz); Change VBW to 10 Hz for average measurement (vi) Sweep Time = Couple

Ref. 789033 D02 General UNII Test Procedures New Rules v01, section II.G.2/3

Conducted Unwanted Emissions Measurement Test Procedure above 1 GHz

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode. Note that if the transmission is not continuous, the time required for the trace to stabilize will increase by a factor of approximately 1/x, where x is the duty cycle. For example, at 50 percent duty cycle, the measurement time will increase by a factor of two relative to measurement time for continuous transmission.

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Allow sweeps to continue until the trace stabilizes. Use the peak search marker function to determine the maximum amplitude level for all measurable emissions.

5. Capture graphs and record pertinent measurement data.

6. Correct all readings with correction factors if applicable (cable loss, ext. attenuators, duty cycle correction factors, etc) to show compliance.

Ref. 789033 D02 General UNII Test Procedures New Rules v01, section II.G.5

Inwanted Emissions Test Parameters above 1 GHz	
i) $RBW = 1 MHz$	
ii) VBW \geq 3MHz	
iii) Sweep = Auto	
iv) Detector = Peak	
v) Trace = Max Hold.	

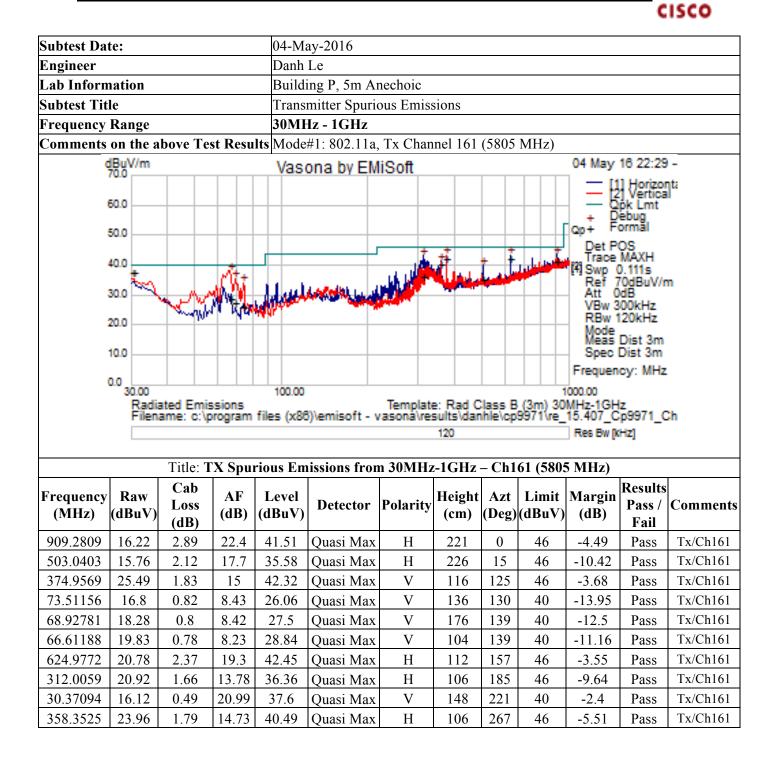
Note1: A Notch Filter was used during formal testing above 1 GHz to help prevent the front end of the analyzer from over loading. The Notch filters used are designed to suppress TX fundamental frequency but do not effect harmonics of the fundamental frequency from being measured.

- . The system was evaluated up to 40 GHz but there were no measurable emissions above 18 GHz.
- . These data represent the worst case mode data for all supported operating modes and antennas.
 - For emissions below 1000 MHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. As an alternative to CISPR quasi-peak measurement, compliance with the emission limit can be demonstrated using measuring equipment employing a peak detector function properly adjusted for factors such as pulse desensitization as required, with an equal or greater measurement bandwidth relative to the applicable CISPR quasi-peak bandwidth.
 - Above 1000 MHz, measurements shall be performed using a peak detector with a minimum resolution bandwidth of 1 MHz.

Note2: The data displayed on the plots detailed in the graphical test results section were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements.

Page No: 30 of 45

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential


Subtest Dat	te:			04-Ma	ay-2016							
Engineer				Danh	Le							
Lab Inform	nation			Buildi	ng P, 5m A	nechoic						
Subtest Tit	le			Transi	mitter Spuri	ous Emiss	sions					
Frequency	Range			30MH	Iz - 1GHz							
Comments	on the a	bove Tes	st Resu	lts Mode	#1: 802.11a	, Tx Chan	nel 149	(5745	MHz)			
Ģ	IBuV/m			Vaso	ona by EM	liSoft				04 May	16 20:57	-
	60.0 50.0 40.0 20.0 10.0 0.0 30.00 Radia	ated Emis	sions rogram	100.00)\emisoft - \	Templat	e: Rad C	lass B	(3m) 30	(2) Swp (Ref 7 Att 0 VBw 3 RBw 1 Mode Meas Spec Frequen 000.00 MHz-1GH	MAXH 0.111s 70dBuV/r dB 120kHz 120kHz Dist 3m Dist 3m cy: MHz	
					-		120			Res Bw [k	Hz]	
		Title: T	X Snu	rious Em	issions from	n 30MHz	-1GHz	– Ch1	49 (5744	5 MHz)		
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)	Azt		Margin	Results Pass / Fail	Comments
917.7456	16.84	2.9	22.35	42.1	Quasi Max	Н	328	14	46	-3.9	917.745	Tx/Ch149
64.95938	20.55	0.77	8.1	29.42	Quasi Max	V	117	86	40	-10.58	64.9593	Tx/Ch149
375.0322	25.94	1.83	15	42.77	Quasi Max	Н	226	125	46	-3.23	375.032	Tx/Ch149
625.0881	18.83	2.37	19.3	40.5	Quasi Max	Н	104	152	46	-5.5	625.088	Tx/Ch149
396.0234	19.09	1.88	15.26	36.23	Quasi Max	V	108	157	46	-9.77	396.023	Tx/Ch149
358.3491	23.59	1.79	14.73	40.11	Quasi Max	V	115	161	46	-5.89	358.349	Tx/Ch149
59.18938	16.64	0.73	7.44	24.81	Quasi Max	V	217	161	40	-15.19	59.1893	Tx/Ch149
308.3609	23	1.65	13.63	38.29	Quasi Max	Н	111	210	46	-7.71	308.360	Tx/Ch149
30.0023	15.94	0.49	21.3	37.73	Quasi Max	V	307	258	40	-2.27	30.0023	Tx/Ch149
907.2631	16.98	2.89	22.4	42.26	Quasi Max	V	169	258	46	-3.74	907.263	Tx/Ch149

A.6.3 Unwanted/ Spurious Emissions Test Data and Graphical Test Results

սիսիս

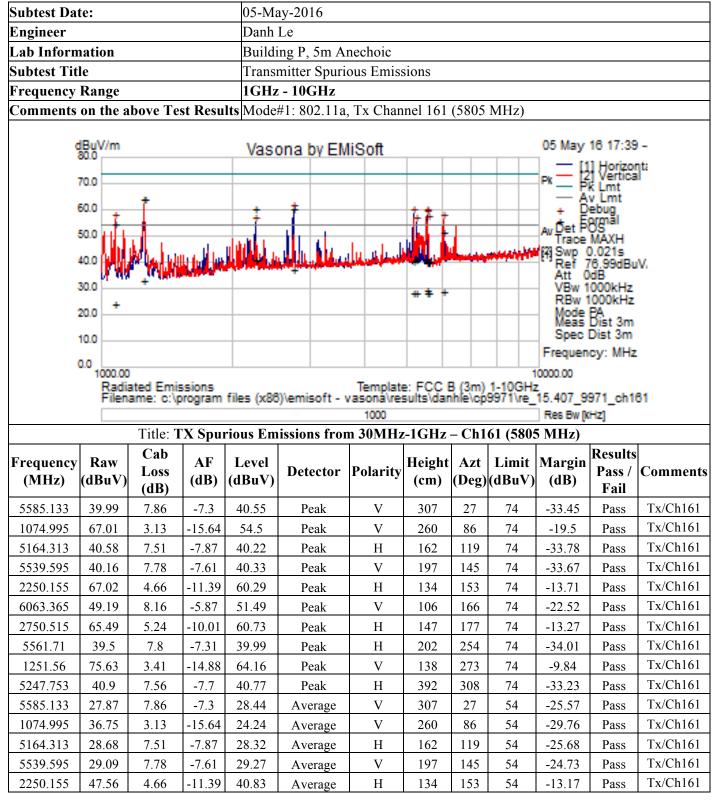
cisco

Page No: 31 of 45

Page No: 32 of 45

Subtest Dat	te:			05-Ma	05-May-2016								
Engineer				Danh	Le								
Lab Inform	nation			Buildi	ing P, 5m A	nechoic							
Subtest Titl	le			Transı	mitter Spuri	ous Emiss	sions						
Frequency	Range			1GHz	- 10GHz								
Comments	on the a	bove Te	st Resu	lts Mode	#1: 802.11a	, Tx Chan	nel 149	(5745	MHz)				
	dBuV/m 80.0 60.0 50.0 40.0 30.0				ona by EM	liSoft	ă.			Att 0	1 Horizo Vertica k Lmt v Lmt ebug ormal MAXH 0.021s 76.99dBu dB	nt:	
	20.0 +	+		+			+#			RBw 1 Mode Meas Spec	1000kHz 1000kHz Ba Dist 3m Dist 3m		
	10.0 0.0 1000.00 Radia Filena	ated Emis ame: c:\p))\emisoft - v	1000			1-10GH2 9971\re_	0000.00 2 15.407_C] Res Bw [k			
	0.0	ated Emis ame: c:\p)\emisoft - \	1000			1-10GH2 9971\re_	0000.00 2 15.407_C] Res Bw [k	;p9971_0		
(Frequency	0.0	ated Emis ame: c:\p			nissions from	1000	10GHz Height	- Ch1 Azt	1-10GH 9971\re_ 49 (5745	15.407_C Res Bw (k MHz) Margin	;p9971_0	Ch	
(Frequency	0.0 1000.00 Radia Filen	Title: T Cab Loss	X Spur	rious Em Level	nissions from	1000 m 1GHz-1	10GHz Height	- Ch1 Azt	1-10GH 9971\re_ 49 (5745 Limit	15.407_C Res Bw (k MHz) Margin	p9971_0 Hz] Results Pass /	Ch	
Frequency (MHz)	0.0 1000.00 Radia Filen Raw (dBuV)	ated Emis ame: c:\p Title: T Cab Loss (dB)	TX Spur AF (dB)	rious Em Level (dBuV)	issions from Detector	1000 n 1GHz- Polarity	10GHz Height (cm)	– Ch1 Azt (Deg)	1-10GH; 9971\re_ 49 (5745 Limit (dBuV)	0000.00 15.407_C Res Bw [k 5 MHz) Margin (dB)	p9971_0 Hz] Results Pass / Fail	Ch Comments	
Frequency (MHz) 1095.27	0.0 1000.00 Radia Filen (dBuV) 46.57	Title: T Cab Loss (dB) 3.17	AF (dB) -15.73	rious Em Level (dBuV) 34.01	iissions from Detector Peak Max	1000 n 1GHz- Polarity V	10GHz Height (cm) 185	- Ch1 Azt (Deg) 112	1-10GHi 9971\re_ 49 (5745 Limit (dBuV) 74	00000.00 15.407_C Res Bw [k 5 MHz] Margin (dB) -39.99	p9971_0 Hz] Results Pass / Fail Pass	Comments Tx/Ch149	
Frequency (MHz) 1095.27 5242.923	0.0 1000.00 Radia Filen (dBuV) 46.57 48.35	Title: T Cab Loss (dB) 3.17 7.56	AF (dB) -15.73 -7.68	rious Em Level (dBuV) 34.01 48.23	iissions from Detector Peak Max Peak Max	1000 m 1GHz- Polarity V V	10GHz - Height (cm) 185 187	- Ch1 Azt (Deg) 112 141	1-10GHi 9971\re_ 49 (5745 Limit (dBuV) 74 74	00000.00 15.407_C Res Bw [k 5 MHz) Margin (dB) -39.99 -25.78	p9971_0 Hz] Results Pass / Fail Pass Pass	Comments Tx/Ch149 Tx/Ch149	
Frequency (MHz) 1095.27 5242.923 2749.493	0.0 1000.00 Radia Filen (dBuV) 46.57 48.35 65.13	Title: 1 Cab Loss (dB) 3.17 7.56 5.24	AF (dB) -15.73 -7.68 -10	rious Em Level (dBuV) 34.01 48.23 60.37	iissions from Detector Peak Max Peak Max Peak Max	1000 m 1GHz- Polarity V V H	10GHz - Height (cm) 185 187 166	- Ch1 Azt (Deg) 112 141 174	1-10GH 9971/re_ 49 (5745 Limit (dBuV) 74 74 74	15.407_C Res Bw w 5 MHz) Margin (dB) -39.99 -25.78 -13.63	Results Pass / Fail Pass Pass Pass Pass	Comments Tx/Ch149 Tx/Ch149 Tx/Ch149	
Frequency (MHz) 1095.27 5242.923 2749.493 3249.068	Raw (dBuV) 46.57 48.35 65.13 57.49	Title: 7 Cab Loss (dB) 3.17 7.56 5.24 5.79	AF (dB) -15.73 -7.68 -10 -9.86	rious Em Level (dBuV) 34.01 48.23 60.37 53.42	iissions froi Detector Peak Max Peak Max Peak Max Peak Max	1000 m 1GHz- Polarity V V H H	10GHz Height (cm) 185 187 166 117	- Ch1 Azt (Deg) 112 141 174 178	1-10GH 9971 re 49 (5745 Limit (dBuV) 74 74 74 74 74	00000.00 15.407_C Res Bw [k 5 MHz) Margin (dB) -39.99 -25.78 -13.63 -20.58	Results Pass / Fail Pass Pass Pass Pass Pass	Comments Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149	
Frequency (MHz) 1095.27 5242.923 2749.493 3249.068 2248.515	Raw (dBuV) 46.57 48.35 65.13 57.49 64.84	Title: 1 Cab Loss (dB) 3.17 7.56 5.24 5.79 4.66	AF (dB) -15.73 -7.68 -10 -9.86 -11.39	rious Em Level (dBuV) 34.01 48.23 60.37 53.42 58.1	iissions fron Detector Peak Max Peak Max Peak Max Peak Max Peak Max	1000 m 1GHz- Polarity V V H H H	Height (cm) 185 187 166 117 132	- Ch1 Azt (Deg) 112 141 174 178 191	1-10GHi 9971\re_ 49 (5745 (dBuV) 74 74 74 74 74 74 74	15.407_C Res Bw w 5 MHz) Margin (dB) -39.99 -25.78 -13.63 -20.58 -15.9	Results Pass / Fail Pass Pass Pass Pass Pass Pass	Comments Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149	
Frequency (MHz) 1095.27 5242.923 2749.493 3249.068 2248.515 1251.21	Raw (dBuV) 46.57 48.35 65.13 57.49 64.84 72.8	Title: 7 Cab Loss (dB) 3.17 7.56 5.24 5.79 4.66 3.41	AF (dB) -15.73 -7.68 -10 -9.86 -11.39 -14.88	rious Em Level (dBuV) 34.01 48.23 60.37 53.42 58.1 61.32	iissions froi Detector Peak Max Peak Max Peak Max Peak Max Peak Max Peak Max	1000 m 1GHz- Polarity V V H H H V	10GHz Height (cm) 185 187 166 117 132 185	- Ch1 Azt (Deg) 112 141 174 178 191 286	1-10GH 9971 re 49 (5745 Limit (dBuV) 74 74 74 74 74 74 74 74	15.407_C Res Bw k MHz) Margin (dB) -39.99 -25.78 -13.63 -20.58 -15.9 -12.68	p9971_0 Hz] Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass	Comments Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149	
Frequency (MHz) 1095.27 5242.923 2749.493 3249.068 2248.515 1251.21 5546.08	Raw (dBuV) 46.57 48.35 65.13 57.49 64.84 72.8 51.27	Title: 1 Cab Loss (dB) 3.17 7.56 5.24 5.79 4.66 3.41 7.78	AF (dB) -15.73 -7.68 -10 -9.86 -11.39 -14.88 -7.52	rious Em Level (dBuV) 34.01 48.23 60.37 53.42 58.1 61.32 51.54	iissions fron Detector Peak Max Peak Max Peak Max Peak Max Peak Max Peak Max Peak Max	1000 m 1GHz- Polarity V V V H H H H V V V	10GHz - Height (cm) 185 187 166 117 132 185 115	- Ch1 Azt (Deg) 112 141 174 178 191 286 328	1-10GHi 9971\re_ 49 (5745 (dBuV) 74 74 74 74 74 74 74 74 74 74	15.407_C Res Bw w 5 MHz) Margin (dB) -39.99 -25.78 -13.63 -20.58 -15.9 -12.68 -22.46	Pass Pass Pass Pass Pass Pass Pass Pass	Comments Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149	
Frequency (MHz) 1095.27 5242.923 2749.493 3249.068 2248.515 1251.21 5546.08 5285.623	Raw (dBuV) 46.57 48.35 65.13 57.49 64.84 72.8 51.27 47.17	Title: 7 Cab Loss (dB) 3.17 7.56 5.24 5.79 4.66 3.41 7.78 7.61	AF (dB) -15.73 -7.68 -10 -9.86 -11.39 -14.88 -7.52 -7.77	rious Em Level (dBuV) 34.01 48.23 60.37 53.42 58.1 61.32 51.54 47.02	iissions froi Detector Peak Max Peak Max Peak Max Peak Max Peak Max Peak Max Peak Max Peak Max	1000 m 1GHz- Polarity V V H H H V V V V V	10GHz - Height (cm) 185 187 166 117 132 185 115 210	- Ch1 (Deg) 112 141 174 178 191 286 328 328	1-10GH 9971 re 49 (5745 Limit (dBuV) 74 74 74 74 74 74 74 74 74 74 74	15.407_C Res Bw k 5 MHz) Margin (dB) -39.99 -25.78 -13.63 -20.58 -15.9 -12.68 -22.46 -26.98	p9971_0 Hz] Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass Pas	Comments Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149	
Frequency (MHz) 1095.27 5242.923 2749.493 3249.068 2248.515 1251.21 5546.08 5285.623 5410.815	Raw (dBuV) 46.57 48.35 65.13 57.49 64.84 72.8 51.27 47.17 44.4	Title: 7 Title: 7 Cab Loss (dB) 3.17 7.56 5.24 5.79 4.66 3.41 7.78 7.61 7.69	AF (dB) -15.73 -7.68 -10 -9.86 -11.39 -14.88 -7.52 -7.77 -7.59	rious Em Level (dBuV) 34.01 48.23 60.37 53.42 58.1 61.32 51.54 47.02 44.5	iissions fron Detector Peak Max Peak Max Peak Max Peak Max Peak Max Peak Max Peak Max Peak Max Peak Max	1000 n 1GHz- Polarity V V V H H H H V V V V V	10GHz Height (cm) 185 187 166 117 132 185 115 210 226	- Ch1 Azt (Deg) 112 141 174 178 191 286 328 328 328 328	1-10GHi 9971\re_ 49 (5745 (dBuV) 74 74 74 74 74 74 74 74 74 74 74 74 74	00000.00 15.407_C Res Bw [k 5 MHz) Margin (dB) -39.99 -25.78 -13.63 -20.58 -15.9 -12.68 -22.46 -26.98 -29.5	Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass Pas	Comments Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149	
Frequency (MHz) 1095.27 5242.923 2749.493 3249.068 2248.515 1251.21 5546.08 5285.623 5410.815 5482.493	Raw (dBuV) 46.57 48.35 65.13 57.49 64.84 72.8 51.27 47.17 44.4 40.81	Title: T Cab Loss (dB) 3.17 7.56 5.24 5.79 4.66 3.41 7.78 7.61 7.8	AF (dB) -15.73 -7.68 -10 -9.86 -11.39 -14.88 -7.52 -7.77 -7.59 -7.77	rious Em Level (dBuV) 34.01 48.23 60.37 53.42 58.1 61.32 51.54 47.02 44.5 40.84	iissions froi Detector Peak Max Peak Max Peak Max Peak Max Peak Max Peak Max Peak Max Peak Max Peak Max Peak Max	1000 m 1GHz- Polarity V V V H H H H V V V V V V V	10GHz Height (cm) 185 187 166 117 132 185 115 210 226 358	- Ch1 Azt (Deg) 112 141 174 178 191 286 328 328 328 328 328	1-10GHi 9971\re_ 49 (5745 (dBuV) 74 74 74 74 74 74 74 74 74 74 74 74 74	15.407_C Res Bw k 5 MHz) Margin (dB) -39.99 -25.78 -13.63 -20.58 -15.9 -12.68 -22.46 -26.98 -29.5 -33.16	p9971_0 Hz] Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass Pas	Comments Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149	
Frequency (MHz) 1095.27 5242.923 2749.493 3249.068 2248.515 1251.21 5546.08 5285.623 5410.815 5482.493 1095.27	Raw (dBuV) 46.57 48.35 65.13 57.49 64.84 72.8 51.27 47.17 44.4 40.81 34.22	Title: 1 Cab Loss (dB) 3.17 7.56 5.24 5.79 4.66 3.41 7.78 7.61 7.69 7.8 3.17	AF (dB) -15.73 -7.68 -10 -9.86 -11.39 -14.88 -7.52 -7.77 -7.59 -7.77 -15.73	rious Em Level (dBuV) 34.01 48.23 60.37 53.42 58.1 61.32 51.54 47.02 44.5 40.84 21.66	iissions fron Detector Peak Max Peak Max	1000 m 1GHz- Polarity V V H H H V V V V V V V V V V	10GHz - Height (cm) 185 187 166 117 132 185 115 210 226 358 185	- Ch1 Azt (Deg) 112 141 174 178 191 286 328 328 328 328 328 328 112	1-10GHi 9971/re_ 49 (5745 (dBuV) 74 74 74 74 74 74 74 74 74 74 74 74 74	00000.00 15.407_C Res Bw k 5 MHz) Margin (dB) -39.99 -25.78 -13.63 -20.58 -15.9 -12.68 -22.46 -26.98 -29.5 -33.16 -32.34	p9971_C Hz] Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass Pas	Comments Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149	
Frequency (MHz) 1095.27 5242.923 2749.493 3249.068 2248.515 1251.21 5546.08 5285.623 5410.815 5482.493 1095.27 5242.923	Raw (dBuV) 46.57 48.35 65.13 57.49 64.84 72.8 51.27 47.17 44.4 40.81 34.22 28.97	Title: T Cab Loss (dB) 3.17 7.56 5.24 5.79 4.66 3.41 7.78 7.61 7.69 7.8 3.17 7.56	AF (dB) -15.73 -7.68 -10 -9.86 -11.39 -14.88 -7.52 -7.77 -7.59 -7.77 -15.73 -7.68	rious Em Level (dBuV) 34.01 48.23 60.37 53.42 58.1 61.32 51.54 47.02 44.5 40.84 21.66 28.85	iissions fron Detector Peak Max Peak Max	1000 m 1GHz- Polarity V V V H H H H V V V V V V V V V V	10GHz - Height (cm) 185 187 166 117 132 185 115 210 226 358 185 185 187	- Ch1 Azt (Deg) 112 141 174 178 191 286 328 328 328 328 328 328 112 141	1-10GHi 9971/re_ 49 (5745 (dBuV) 74 74 74 74 74 74 74 74 74 74 74 74 74	Margin (dB) -39.99 -25.78 -13.63 -20.58 -15.9 -12.68 -22.46 -26.98 -29.5 -33.16 -32.34 -25.15	p9971_0 Hz] Results Pass / Fail Pass Pass Pass Pass Pass Pass Pass Pas	Comments Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149 Tx/Ch149	

cisco

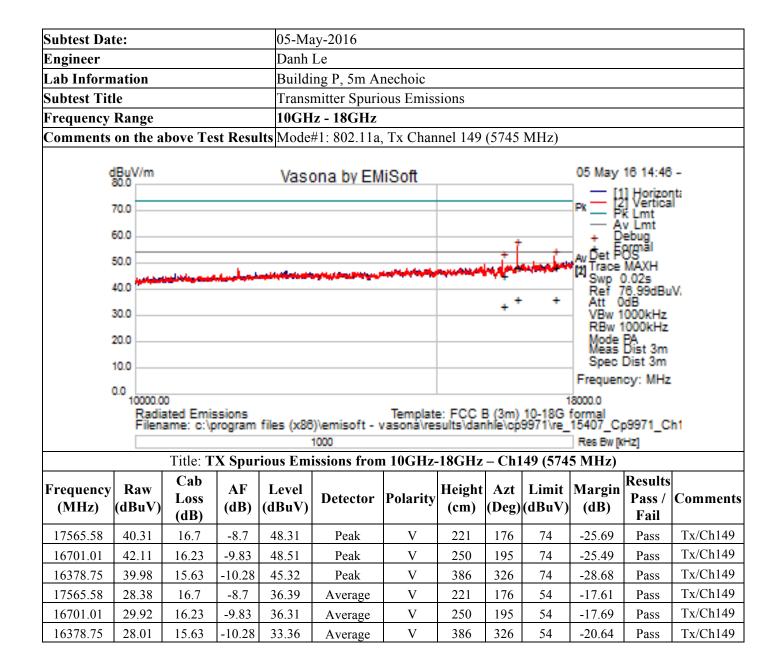

Page No: 33 of 45

Subtest Dat	te:			05-Ma	ay-2016								
Engineer	Engineer					Danh Le							
Lab Inform	nation		Buildi	Building P, 5m Anechoic									
Subtest Tit	le			Transmitter Spurious Emissions									
Frequency	Range			1GHz - 10GHz									
Comments	on the a	bove Te	st Resu	lts Mode	#1: 802.11a,	Tx Char	nel 149	(5745	MHz)				
1251.21	42.88	3.41	-14.88	31.4	Average	V	185	286	54	-22.6	Pass	Tx/Ch149	
5546.08	28.91	7.78	-7.52	29.18	Average	V	115	328	54	-24.83	Pass	Tx/Ch149	
5285.623	29.02	7.61	-7.77	28.86	Average	V	210	328	54	-25.14	Pass	Tx/Ch149	
5410.815	28.52	7.69	-7.59	28.62	Average	V	226	328	54	-25.38	Pass	Tx/Ch149	
5482.493	27.87	7.8	-7.77	27.9	Average	V	358	328	54	-26.1	Pass	Tx/Ch149	

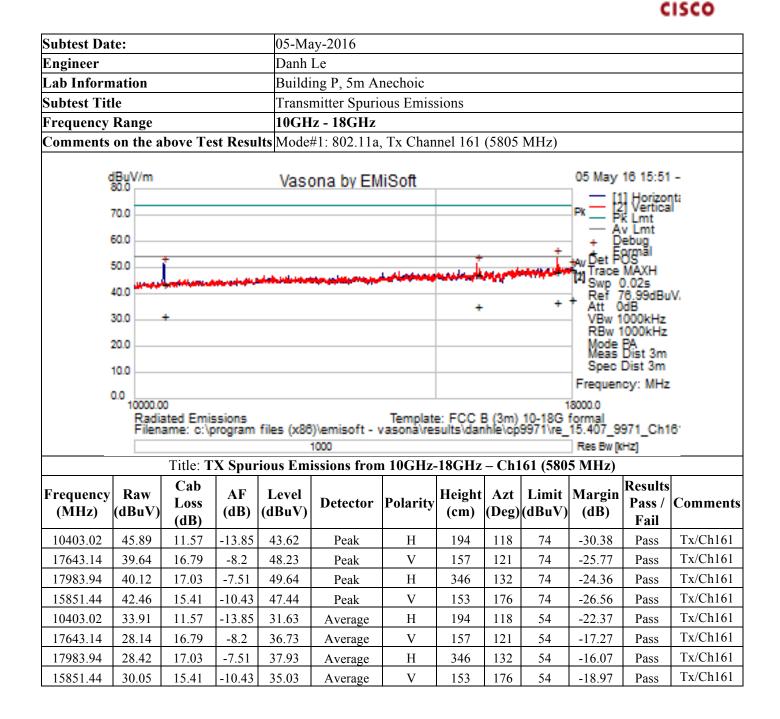
սիսիս

cisco

Page No: 34 of 45


Page No: 35 of 45

Subtest Dat	te:			05-Ma	ay-2016							
Engineer				Danh	Le							
Lab Inform	nation			Buildi	ng P, 5m Ar	nechoic						
Subtest Tit	le			Transi	mitter Spurio	ous Emis	sions					
Frequency	Range			1GHz	- 10GHz							
Comments	on the a	bove Te	st Resu	Its Mode	#1: 802.11a,	Tx Chan	nel 161	(5805	MHz)			
6063.365	26.71	8.16	-5.87	29	Average	V	106	166	54	-25	Pass	Tx/Ch161
2750.515	41.93	5.24	-10.01	37.16	Average	Н	147	177	54	-16.84	Pass	Tx/Ch161
5561.71	27.68	7.8	-7.31	28.17	Average	Н	202	254	54	-25.83	Pass	Tx/Ch161
1251.56	44.59	3.41	-14.88	33.12	Average	V	138	273	54	-20.88	Pass	Tx/Ch161
5247.753	28.62	7.56	-7.7	28.48	Average	Н	392	308	54	-25.52	Pass	Tx/Ch161


սիսիս

cisco

Page No: 36 of 45

Page No: 37 of 45

Page No: 38 of 45

Subtest Date:	30-Apr-2016		
Engineer	Danh Le		
Lab Information	Building P, Wireless	s Lab	
Subtest Title	Transmitter Spuriou		
Frequency Range	18GHz - 40GHz		
Comments on the above Test R	esults Mode#1: 802.11a		
Agilent Spectrum Analyzer - Swej		ALIGNAUTO 12:52:2	8 AM Apr 30, 2016
RBW 1.0 MHz	PNO: Fast 👝 Trig: Free Run	Avg Type: Log-Pwr Avg Hold:>1/1	TYPE MWWWWW
Ref Offset 5 d	IFGain:High #Atten: 0 dB		.702 GHz Auto MHz
10 dB/div Ref -15.00 d Log	IBm	-59	493 dBm
-25.0			
-45.0			
-65.0	and a stand and	and the second and th	Auto Man
-75.0			
-95.0			Span:3dB RBW 106 Auto Man
Start 18.00 GHz		Stor	40 00 GHZ
#Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 36.67 m	s (1001 pts)
MODE TRC SCL ×	38.702 GHz -59.493 dBm	N FUNCTION WIDTH FUNCTION	I VALUE
Title: TV S	nuvious Emissions from 1	STATUS	140 (5745 MIL-)
Agilent Spectrum Analyzer - Swer	purious Emissions from 1	ognz-40gnz – Cil	149 (5745 MINZ)
RBW 1.0 MHz	DC SENSE:INT	ALIGNAUTO 12:56:4 Avg Type: Log-Pwr	4 AM Apr 30, 2016 RACE 2 3 4 5 6 TYPE MANNANA DET P NANNANA Bes BW
	PNO: Fast 🕞 Trig: Free Run IFGain:High #Atten: 0 dB		1.0 MHz
Ref Offset 5 d 10 dB/div Ref -15.00 d			
10 dB/div Ref -15.00 d	IBm	Mkr1 37 -59	219 dBm
-25.0	Bm	Mkr1 37 -59	219 dBm 27.00 dBm Video BW
Log	Bm	-59	27.00 dBm 27.00 dBm Auto Man
-25 0	Bem	-59	219 dBm 27.00 dBm 27.00 dBm Auto Video BW 3.0 MHz Auto Man VBW:3dB RBW
-25.0 -35.0 -45.0		-59	1 VBW:3dB RBW
-25 0 -35 0 -46 0 -55 0 -66 0 -75 0 -85 0 -85 0		-59	219 dBm 27.00 dBm 27.00 dBm 27.00 dBm Video BW 3.0 MHz Auto Man 1 VBW:3dB RBW 10.0 Auto Man 10.0
-25 0 -35 0 -45 0 -55 0 -65 0 -75 0		-59	219 dBm Video BW 3.0 MHz Auto Man VBW:3dB RBW 10.0 Auto Man
Log -25.0 -35.0 -46.0 -55.0 -55.0 -65.0 -75.0 -85.0 -85.0 -95.0 -105 Start 18.00 GHz		-59	219 dBm Video BW 27.00 dBm Video BW 3.0 MHz Auto Man VBW:3dB RBW 10.0 Auto Man Span:3dB RBW 106 Auto Auto Man
Log -25 0 -35 0 -45 0 -55 0 -55 0 -55 0 -75 0 -85 0 -95 0 -105 Start 18.00 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	-59	219 dBm 27.09 dBm 27.09 dBm 27.09 dBm 1 Video BW 3.0 MHz Auto Man 1 VBW:3dB RBW 10.0 Auto Man 5 Span:3dB RBW 106 Auto Man 106 Auto Man 107 107 107 107 107 107 107 107
Log -25 0 -35 0 -45 0 -55 0 -55 0 -55 0 -75 0 -85 0 -95 0 -105 Start 18.00 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	-59	219 dBm 27.09 dBm 27.09 dBm 27.09 dBm 1 Video BW 3.0 MHz Auto Man 1 VBW:3dB RBW 10.0 Auto Man 5 Span:3dB RBW 106 Auto Man 106 Auto Man 107 107 107 107 107 107 107 107
Log -25 0 -35 0 -45 0 -55 0 -55 0 -55 0 -75 0 -85 0 -95 0 -105 Start 18.00 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	-59	219 dBm 27.09 dBm 27.09 dBm 27.09 dBm 1 Video BW 3.0 MHz Auto Man 1 VBW:3dB RBW 10.0 Auto Man 5 Span:3dB RBW 106 Auto Man 106 Auto Man 107 107 107 107 107 107 107 107
Log -25 0 -35 0 -45 0 -55 0 -55 0 -55 0 -75 0 -85 0 -95 0 -105 Start 18.00 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	-59	219 dBm 27.09 dBm 27.09 dBm 27.09 dBm 1 Video BW 3.0 MHz Auto Man 1 VBW:3dB RBW 10.0 Auto Man 5 Span:3dB RBW 106 Auto Man 106 Auto Man 107 107 107 107 107 107 107 107
Log -25 0 -35 0 -45 0 -55 0 -55 0 -55 0 -75 0 -85 0 -95 0 -105 Start 18.00 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	-59	219 dBm 2709 dBm 2709 dBm 2709 dBm 1 Video BW 3.0 MHz Auto Man 1 VBW:3dB RBW 10.0 Auto Man 5 5 40.00 GHz 5 (1001 pts) RBW Control [Gaussian, 3 dB]
Log -25 0 -35 0 -45 0 -55 0 -55 0 -55 0 -75 0 -85 0 -95 0 -105 Start 18.00 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	-59	219 dBm 2709 dBm 2709 dBm 2709 dBm 1 Video BW 3.0 MHz Auto Man 1 VBW:3dB RBW 10.0 Auto Man 5 5 40.00 GHz 5 (1001 pts) RBW Control [Gaussian, 3 dB]

cisco

Page No: 39 of 45

Appendix B: List of Test Equipment Used to perform the test

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due
CIS49516	Keysight Agilent/PXA N9030A	PXA Signal Analyzer	10/22/2015	10/22/2016
CIS49516	Agilent/E4440A	PSA Spectrum Analyzer	10/20/2015	10/20/2016
CIS49496	JFW / 50HF-020	20dB SMA Attenuator	10/16/2015	10/16/2015
CIS35095	Micro-Coax/UFA147A-00180110200	RF Coax Cable to 40GHz	11/17/2015	11/17/2016
CIS37553	Murata electronics/MXGS83RK3000	RF connector test probe	07/01/2015	07/01/2016
CIS44907	Rohde&Schwarz/ESCI	EMI Receiver	08/12/2015	08/12/2016
CIS30650	Sunol Sciences/JB1	BiLog Antenna	12/4/2015	12/04/2016
CIS024905	Agilent / E4440A	Precision Spectrum Analyzer	12/09/2015	12/09/2016
CIS41202	ETS Lindgren / 3117	Double Ridged Horn Antenna	11/03/2015	11/03/2016
CIS54444	Huber + Suhner / Sucoflex 106PA	N Type Black 7ft cable	12/01/2015	12/01/2016
CIS23697	Micro-Coax /UFB197C-1-3144-504504	RF Coaxial Cable, to 18GHz	01/05/2016	01/05/2017
CIS55294	Huber + Suhner / Sucoflex 106PA	N Type Black 7ft cable	01/15/2016	01/15/2017
CIS37226	Micro-Tronics / BRC50705-02	5.725-5.875GHz Notch Filter	04/05/2016	04/05/2017
CIS055357	Miteq / TTA1800-30-HG-N-M	Preamplifier (1-18GHz)	04/08/2016	04/08/2017

Page No: 40 of 45

Appendix C: Abbreviation Key and Definitions

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	°C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
ТАР	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	Emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control System	Qp	Quasi Peak
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak
Cal	Calibration	KHz	Kilohertz (1x10 ³)
EN	European Norm	MHz	MegaHertz (1x10 ⁶)
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)
CISPR	International Special Committee on Radio Interference	Н	Horizontal
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization Network	Db	decibel
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt $(1x10^3)$
L1	Line 1	μV	Microvolt $(1x10^{-6})$
L2	Line2	А	Amp
L3	Line 3	μΑ	Micro Amp $(1x10^{-6})$
DC	Direct Current	mS	Milli Second $(1x10^{-3})$
RAW	Uncorrected measurement value, as indicated by the measuring device	μS	Micro Second (1x10 ⁻⁶)
RF	Radio Frequency	μS	Micro Second $(1x10^{-6})$
SLCE	Signal Line Conducted Emissions	М	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
Ν	Neutral Line	R	Return
S	Supply	AC	Alternating Current

The following table defines abbreviations used within this test report.

Page No: 41 of 45

Appendix D: Software Used to Perform Testing

Monta Vista Linux terminal Vasona by EMIsoft

Page No: 42 of 45

Appendix E: Test Procedures

Measurements were made in accordance with

- KDB Publication No.789033 D02 General UNII Test Procedures New Rules v01
- ANSI C63.10: 2013 American National Standard for Testing Unlicensed Wireless Devices

Test procedures are summarized below:

FCC 5GHz Test Procedures EDCS # - 1445048

Page No: 43 of 45

cisco

Appendix F: Scope of Accreditation

(A2LA certificate number 1178-01)

The scope of accreditation of Cisco Systems, Inc. can be found on the A2LA web page at:

http://www.a2la.org/scopepdf/1178-01.pdf

Page No: 44 of 45

FCC15.407 new rules Compliance Test Plan (Excel) EDCS- 1509401 Target Power Tables: Based on previous test report under FCC part15.247, reference#EDCS784430

Appendix H: Worst Case Justification

Worst case modes were selected by ANSI C63.10 2013 Section 5.6.2.2

For devices with multiple operating modes, measurements on the middle channel can be used to determine the worst-case mode(s). The worst-case modes are as follows:

a) Band edge requirements—Measurements on the mode with the widest bandwidth can be used to cover the same channel (center frequency) on modes with narrower bandwidth that have the same or lower output power for each modulation family (e.g., OFDM and direct sequence spread spectrum).

b) Spurious emissions—Measure the mode with the highest output power and the mode with the highest output power spectral density for each modulation family (e.g., OFDM and direct sequence spread spectrum).

c) In-band PSD—Measurements on the mode with the narrowest bandwidth can be used to cover all modes within the same modulation family of an equal or lower output power provided the result is less than 50% of the limit.