

Report No. : FR322212AC

RADIO TEST REPORT

FCC ID	: LDKIW9167IH
Equipment	: Cisco Catalyst IW9167I Heavy Duty Access Point
Brand Name	: CISCO
Model Name	: IW9167IH-B , IW9167IH-ROW
Applicant	: Cisco Systems Inc 125 West Tasman Drive San Jose California United States 95134-1706
Manufacturer	: Cisco Systems Inc 125 West Tasman Drive San Jose California United States 95134-1706
Standard	: 47 CFR FCC Part 15.247

The product was received on Feb. 16, 2023, and testing was started from Mar. 17, 2023 and completed on Jul. 10, 2023. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full.

Approved by: Sam Chen

Sporton International Inc. Hsinchu Laboratory No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Template No.: CB-A10_6 Ver1.3 Page Number: 1 of 35Issued Date: Aug. 15, 2023Report Version: 01

Table of Contents

History	History of this test report3				
Summ	ary of Test Result4				
1	General Description5				
1.1	Information5				
1.2	Applicable Standards10				
1.3	Testing Location Information				
1.4	Measurement Uncertainty				
2	Test Configuration of EUT11				
2.1	Test Channel Mode11				
2.2	The Worst Case Measurement Configuration11				
2.3	EUT Operation during Test				
2.4	Accessories				
2.5	Support Equipment14				
2.6	Test Setup Diagram16				
3	Transmitter Test Result19				
3.1	AC Power-line Conducted Emissions19				
3.2	DTS Bandwidth21				
3.3	Maximum Conducted Output Power				
3.4	Power Spectral Density				
3.5	Emissions in Non-restricted Frequency Bands				
3.6	Emissions in Restricted Frequency Bands				
4	Test Equipment and Calibration Data33				
Appen	dix A. Test Results of AC Power-line Conducted Emissions				
Appen	dix B. Test Results of DTS Bandwidth				
Appen	dix C. Test Results of Maximum Conducted Output Power				
Appen	dix D. Test Results of Power Spectral Density				
Appen	dix E. Test Results of Emissions in Non-restricted Frequency Bands				
Appen	dix F. Test Results of Emissions in Restricted Frequency Bands				
Appen	dix G. Test Photos				

Photographs of EUT v01

History of this test report

Report No.	Version	Description	Issued Date
FR322212AC	01	Initial issue of report	Aug. 15, 2023

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	PASS	-
3.1	15.207	AC Power-line Conducted Emissions	PASS	-
3.2	15.247(a)	DTS Bandwidth	PASS	-
3.3	15.247(b)	Maximum Conducted Output Power	PASS	-
3.4	15.247(e)	Power Spectral Density	PASS	-
3.5	15.247(d)	Emissions in Non-restricted Frequency Bands	PASS	-
3.6	15.247(d)	Emissions in Restricted Frequency Bands	PASS	-

Conformity Assessment Condition:

- 1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
- 2. The measurement uncertainty please refer to each test result in the chapter "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Sam Chen Report Producer: Sophia Shiung

1 General Description

1.1 Information

1.1.1 **RF General Information**

Frequency Range (MHz)	Bluetooth Mode	Ch. Frequency (MHz)	Channel Number
2400-2483.5	LE	2402-2480	0-39 [40]
Band	Mode	BWch (MHz)	Nant
2.4-2.4835GHz	BT-LE(1Mbps)	1.0	1TX
2.4-2.4835GHz	BT-LE Coded (S=2)	1.0	1TX
2.4-2.4835GHz	BT-LE Coded (S=8)	1.0	1TX
2.4-2.4835GHz	BT-LE(2Mbps)	2.0	1TX

Note:

- Bluetooth LE uses a GFSK modulation.
- BWch is the nominal channel bandwidth.

1.1.2 Antenna Information

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	WNC	95XEAK15.G66	PIFA Antenna	I-PEX	
2	WNC	95XEAK15.G67	PIFA Antenna	I-PEX	
3	WNC	95XEAK15.G68	PIFA Antenna	I-PEX	
4	WNC	95XEAK15.G69	PIFA Antenna	I-PEX	
5	WNC	95XEAK15.G70	PIFA Antenna	I-PEX	
6	WNC	95XEAK15.G71	PIFA Antenna	I-PEX	Note 1
7	WNC	95XEAK15.G72	PIFA Antenna	I-PEX	Note 1
8	WNC	95XEAK15.G73	PIFA Antenna	I-PEX	
9	WNC	95XEAK15.G74	PIFA Antenna	I-PEX	
10	WNC	95XEAK15.G75	PIFA Antenna	I-PEX	
11	WNC	95XEAK15.G76	PIFA Antenna	I-PEX	
12	WNC	95XEAK15.G77	PIFA Antenna	I-PEX	

	Port					
Ant.	Iron R	adio 1	Scanning	g Radio 3	Radio 4	Radio 5
	WLAN 2.4GHz	WLAN 5GHz	WLAN 2.4GHz	WLAN 5GHz	Bluetooth	GPS
1	3	2	-	-	-	-
2	2	3	-	-	-	-
3	1	4	-	-	-	-
4	4	1	-	-	-	-
5~8	-	-	-	-	-	-
9	-	-	2	2	-	-
10	-	-	1	1	-	-
11	-	-	-	-	1	-
12	-	-	-	-	-	1

Note 1:

	Antenna Gain (dBi)						
Ant		Iron Radio 1					
Ant.	WLAN 5GHz						
	WLAN 2.4GHz	UNII 1	UNII 2A	UNII 2C	UNII 3		
1	2.17	1.39	1.71	3.09	3.45		
2	3.28	3.37	3.54	4.2	4.12		
3	3.95	3.42	3.05	3.92	4.41		
4	2.63	1.47	1.36	2.39	2.26		

	Antenna Gain (dBi)						
Amt		Sc	anning Radio	3		Radio 4	Radio 5
Ant.		WLAN 5GHz				Blueteeth	GPS
	WLAN 2.4GHz	UNII 1	UNII 2A	UNII 2C	UNII 3	Bluetooth	GFS
9	3.06	3.81	3.38	3.2	2.54	-	-
10	2.52	3.21	2.86	3.11	3.78	-	-
11	-	-	-	-	-	3.05	-
12	-	-	-	-	-	-	2.4

	Directional Gain (dBi)					
ltem		WLAN & 40U-				
	WLAN 2.4GHz	UNII 1	UNII 2A	UNII 2C	UNII 3	
2T1S	6.28	2.85	2.93	5.09	5.42	
2T2S	3.95	1.47	1.71	3.09	3.45	
4T1S	8.04	6.58	6.15	6.87	7.35	
4T2S	5.04	3.58	3.54	4.2	4.41	
4T4S	3.95	3.42	3.54	4.2	4.41	

Note 2: The above information (except antenna gain and directional gain of Ant. 1~11) was declared by manufacturer.

Note 3: The antenna gain and directional gain of Ant. 1~11 are measured which follow the procedure of KDB 662911 D03.

Note 4: The EUT does not enable the Ant. 5~8.

Note 5: For Iron Radio 1

For 2.4GHz function:

For IEEE 802.11 b/g/n/VHT/ax (1TX/4RX):

Only Port 1 can be use as transmitting antenna.

Port 1~4 can be used as receiving antenna.

Port 1~4 can receive simultaneously.

For IEEE 802.11 b/g/n/VHT/ax (2TX/4RX):

Port 1 and Port 2 can be used as transmitting antenna.

Port 1~4 can be used as receiving antenna.

Port 1 and Port 2 can transmit simultaneously; Port 1~4 can receive simultaneously.

For IEEE 802.11 b/g/n/VHT/ax (4TX/4RX):

Port 1~4 can be used as transmitting/receiving antenna.

Port 1~4 can transmit/receive simultaneously.

For 5GHz function:

For IEEE 802.11 a/n/ac/ax (1TX/4RX):

Only Port 1 can be use as transmitting antenna.

Port 1~4 can be used as receiving antenna.

Port 1~4 can receive simultaneously.

For IEEE 802.11 a/n/ac/ax (2TX/4RX):

Port 1 and Port 2 can be used as transmitting antenna.

Port 1~4 can be used as receiving antenna.

Port 1 and Port 2 can transmit simultaneously; Port 1~4 can receive simultaneously.

For IEEE 802.11 a/n/ac/ax (4TX/4RX):

Port 1~4 can be used as transmitting/receiving antenna.

Port 1~4 can transmit/receive simultaneously.

For Scanning Radio 3 For 2.4GHz function: For IEEE 802.11 b/g/n/VHT/ax (1TX/2RX): Only Port 1 can be use as transmitting antenna. Port 1 and Port 2 can be used as receiving antenna. Port 1 and Port 2 can receive simultaneously. For 5GHz function: For IEEE 802.11 a/n/ac/ax (1TX/2RX): Only Port 1 can be use as transmitting antenna. Port 1 and Port 2 can be used as receiving antenna. Port 1 and Port 2 can receive simultaneously.

For Radio 4

For bluetooth function (1TX/1RX):

Only Port 1 can be used as transmitting/receiving antenna.

For Radio 5

For GPS function (1RX):

Only Port 1 can be used as receiving antenna.

1.1.3 Mode Test Duty Cycle

Mode	DC	DCF(dB)	T(s)	VBW(Hz) ≥ 1/T
BT-LE(1Mbps)	0.684	1.65	427.5u	3k
BT-LE(2Mbps)	0.389	4.1	243.125u	10k

Note:

٠

DC is Duty Cycle.

DCF is Duty Cycle Factor.

1.1.4 EUT Operational Condition

EUT Power Type	From power adapter or PoE or DC 48V		
Function	Point-to-multipoint Point-to-point		
Test Software Version	QSPR 5.0-00201		
	LE 1M PHY: 1 Mb/s		
Support Modo	LE Coded PHY (S=2): 500 Kb/s		
Support Mode	LE Coded PHY (S=8): 125 Kb/s		
	LE 2M PHY: 2 Mb/s		
Supported Software Product IDs (PID)	IW9167IH-B, IW9167IH-ROW IW9167IH-B-AP, IW9167IH-ROW-AP		

Note: The above information was declared by manufacturer.

1.1.5 Table for Radio Function

Radio (R)	WLAN 2.4GHz	WLAN 5GHz	Bluetooth	GPS
R1 (Iron Radio)	V (20MHz)	V (20/40/80MHz)	-	-
R2	-	-	-	-
R3 (Scanning Radio)	V (20MHz)	V (20/40/80/160MHz)	-	-
R4	-	-	V	-
R5	-	-	-	V

Note 1: The Radio 1 and Radio 3 can't operate at the same frequency.

Note 2: The above information was declared by manufacturer.

1.1.6 Table for Multiple Listing

The model names in the following table are all refer to the identical product.

Model Name	Description
IW9167IH-B	All the models are identical, the difference model names served as
IW9167IH-ROW	marketing strategy.

Note 1: From the above models, model: IW9167IH-B was selected as representative model for the test and its data was recorded in this report.

Note 2: The above information was declared by manufacturer.

1.2 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15.247
- ANSI C63.10-2013

The following reference test guidance is not within the scope of accreditation of TAF.

- FCC KDB 558074 D01 v05r02
- FCC KDB 414788 D01 v01r01

1.3 Testing Location Information

Testing Location Information

Test Lab. : Sporton International Inc. Hsinchu LaboratoryHsinchuADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)(TAF: 3787)TEL: 886-3-656-9065FAX: 886-3-656-9085Test site Designation No. TW3787 with FCC.Conformity Assessment Body Identifier (CABID) TW3787 with ISED.

Test Condition	Test Site No.	Test Engineer	Test Environment (°C / %)	Test Date
RF Conducted	TH02-CB	Gino Huang	22.6~23.2 / 59~62	Mar. 17, 2023~ Mar. 23, 2023
Radiated < 1GHz	03CH05-CB		24.2~25.1 / 57~61	
	03CH06-CB	Roy Mai 22.7~24.2 / 59~63	Mar. 24, 2023~ May 25, 2023	
Radiated > 1GHz	03CH01-CB		23.8~24.9 / 55~58	
AC Conduction	CO01-CB	Elvin Yeh	21~23 / 51~54	Jul. 10, 2023

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.4 dB	Confidence levels of 95%
Radiated Emission (9kHz ~ 30MHz)	3.4 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	5.6 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	5.2 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	4.7 dB	Confidence levels of 95%
Conducted Emission	3.2 dB	Confidence levels of 95%
Output Power Measurement	0.8 dB	Confidence levels of 95%
Power Density Measurement	3.2 dB	Confidence levels of 95%
Bandwidth Measurement	2.0 %	Confidence levels of 95%

2 Test Configuration of EUT

2.1 Test Channel Mode

Mode	Power Setting
BT-LE(1Mbps)	-
2402MHz	160
2404MHz	170
2440MHz	200
2478MHz	150
2480MHz	140
BT-LE(2Mbps)	-
2402MHz	170
2404MHz	200
2440MHz	200
2478MHz	200
2480MHz	120

2.2 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests			
Tests Item	AC power-line conducted emissions		
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz		
Operating Mode	Normal Link		
1 EUT + Adapter_WLAN 2.4GHz (R1) + WLAN 5GHz (R1) + WLAN 2.4GHz (R3)			
2 EUT + Adapter_WLAN 2.4GHz (R1) + WLAN 5GHz (R1) + WLAN 5GHz (R3)			
Mode 2 has been evaluated to be the worst case among Mode 1~2, so measurement for Mode 3~5 will follow this same test mode.			
3 EUT + PoE_WLAN 2.4GHz (R1) + WLAN 5GHz (R1) + WLAN 5GHz (R3)			
4 EUT + Ethernet cable + DC 48V_WLAN 2.4GHz (R1) + WLAN 5GHz (R1) + WLAN 5GHz (R3)			
5	5 EUT + Ethernet cable + PoE_WLAN 2.4GHz (R1) + WLAN 5GHz (R1) + WLAN 5GHz (R3)		
For operating, Mode 5 is the worst case and it was record in this test report.			

The Worst Case Mode for Following Conformance Tests	
Tests Item	DTS Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in Non-restricted Frequency Bands
Test Condition Conducted measurement at transmit chains	

Th	The Worst Case Mode for Following Conformance Tests			
Tests Item	Emissions in Restricted Frequency Bands			
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.			
Operating Mode < 1GHz	СТХ			
After evaluating, the worst cases of axis position for each band were found at Radiated measurement above 1GHz, and the results are listed below. Thus, the measurement will follow these test configurations.				
1	EUT in Y axis + Adapter_WLAN 2.4GHz (R1)			
2 EUT in Y axis + PoE_WLAN 2.4GHz (R1)				
Mode 2 has been evaluate follow this same test mode	ed to be the worst case among Mode 1~2, thus measurement for Mode 3~6 will			
3	EUT in Y axis + PoE_WLAN 5GHz (R1)			
4	EUT in Y axis + PoE_WLAN 2.4GHz (R3)			
5	EUT in Y axis + PoE_WLAN 5GHz (R3)			
6	EUT in Z axis + PoE_Bluetooth (R4)			
Mode 3 has been evaluated to be the worst case among Mode 1~6, thus measurement for Mode 7~8 will follow this same test mode.				
7	EUT in Y axis + Ethernet cable + DC 48V_WLAN 5GHz (R1)			
8	EUT in Y axis + Ethernet cable + PoE_WLAN 5GHz (R1)			
For operating, Mode 3 is the worst case and it was record in this test report.				

The Worst Case Mode for Following Conformance Tests		
Tests Item Emissions in Restricted Frequency Bands		
Test Condition Conducted measurement at transmit chains		
Operating Mode > 1GHz CTX (Harmonic and bandedge)		

The Worst Case Mode for Following Conformance Tests		
Tests Item Emissions in Restricted Frequency Bands		
Test Condition Radiated measurement		
Operating Mode > 1GHz CTX (Cabinet)		
After evaluating, the worst cases of axis position for each band were found, and the result for Bluetooth is listed below. Thus, the measurement will follow this test configuration.		
1	EUT in Z axis	

The Worst Case Mode for Following Conformance Tests			
Tests Item Simultaneous Transmission Analysis - Co-location RF Exposure Evaluation			
Operating Mode			
1 WLAN 2.4GHz (R1) + WLAN 5GHz (R1) + WLAN 2.4GHz (R3) + Bluetooth (I			
2 WLAN 2.4GHz (R1) + WLAN 5GHz (R1) + WLAN 5GHz (R3) + Bluetooth (R4)			
Refer to Sporton Test Report No.: FA322212 for Co-location RF Exposure Evaluation.			

Note: The adapter and PoE were for measurement only and would not be marketed. Their information is shown as below:

Equipment	Brand Name	Model Name	FCC ID
Adapter	LITEON	PA-1600-1C	N/A
PoE	CISCO	POE075U-1BT-C	N/A

2.3 EUT Operation during Test

For CTX Mode:

The EUT was programmed to be in continuously transmitting mode.

For Normal Link Mode:

During the test, the EUT operation to normal function.

2.4 Accessories

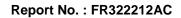
Accessories
Waterproof cover 1*1
Waterproof cover 2*1
Waterproof cover 3*1
Wall bracket 1*1
Wall bracket 2*1
Ground cable*1: Non-shielded, 0.8m
DC cable (Yellow)*1: Non-shielded, 2.6m
DC cable connector*1
Ethernet cable*2: Shielded, 3m
Ethernet cable connector*2

2.5 Support Equipment

For AC Conduction:

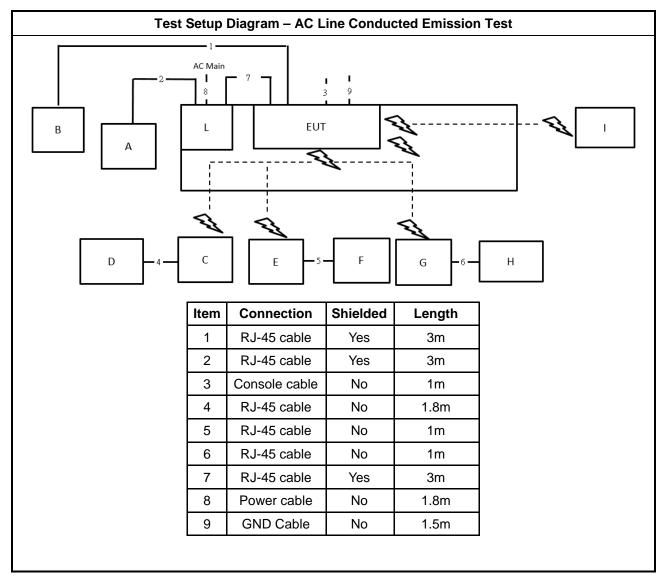
Support Equipment					
No.	Equipment	Brand Name	Model Name	FCC ID	
А	LAN NB	DELL	E6430	N/A	
В	SFP LAN NB	DELL	E6430	N/A	
С	2.4G Client	WNC	N/A	N/A	
D	2.4G Client NB	DELL	E6430	N/A	
Е	5G Client	WNC	N/A	N/A	
F	5G Client NB	DELL	E6430	N/A	
G	Scan Radio Client	WNC	N/A	N/A	
Н	Scan Radio Client NB	DELL	E6430	N/A	
Ι	GPS Simulator	WELNAVIGATE	GS-100	N/A	
J	PoE	CISCO	POE075U-1BT-C	N/A	

For Radiated: <Below 1GHz>

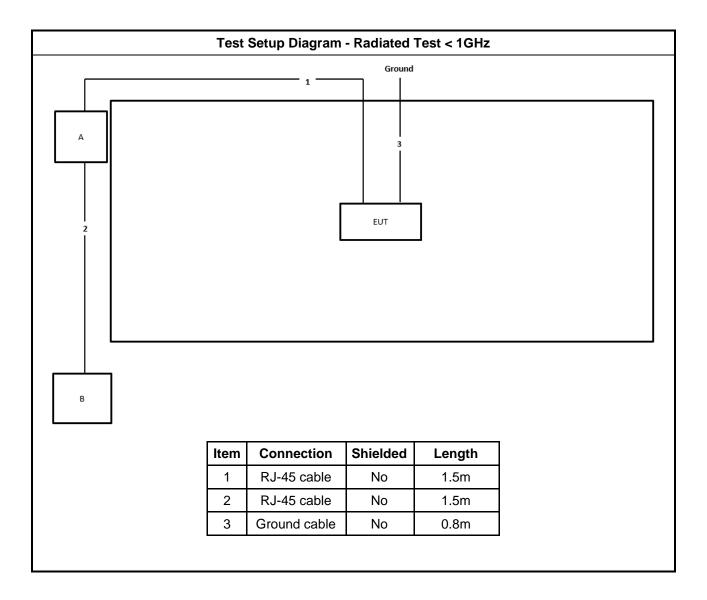

	Support Equipment				
No.	No. Equipment Brand Na		Model Name	FCC ID	
А	NB	DELL	E4300	N/A	
В	PoE	CISCO	POE075U-1BT-C	N/A	

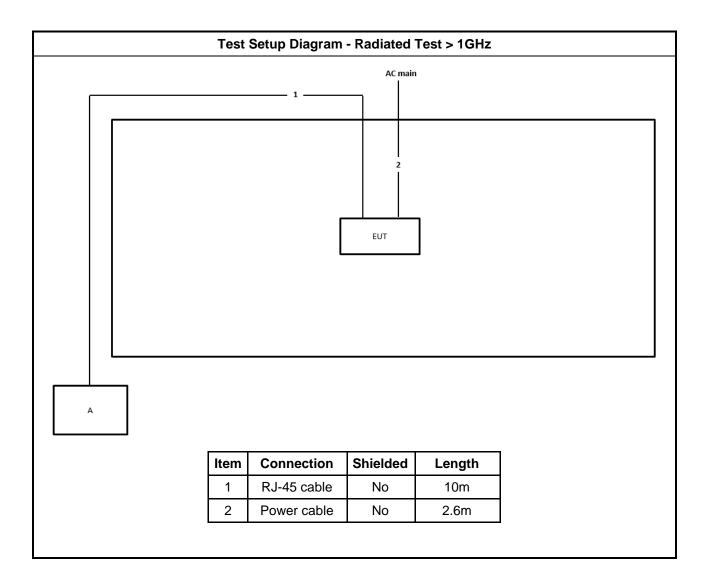
<Above 1GHz>

Support Equipment				
No.	Equipment Brand Name		Model Name	FCC ID
А	NB	DELL	E4300	N/A
В	Adapter	LITEON	PA-1600-1C	N/A


For RF Conducted:

	Support Equipment				
No.	o. Equipment Brand Name Model Name FCC ID				
А	NB	DELL	E4300	N/A	
В	Adapter	LITEON	PA-1600-1C	N/A	




2.6 Test Setup Diagram

3 Transmitter Test Result

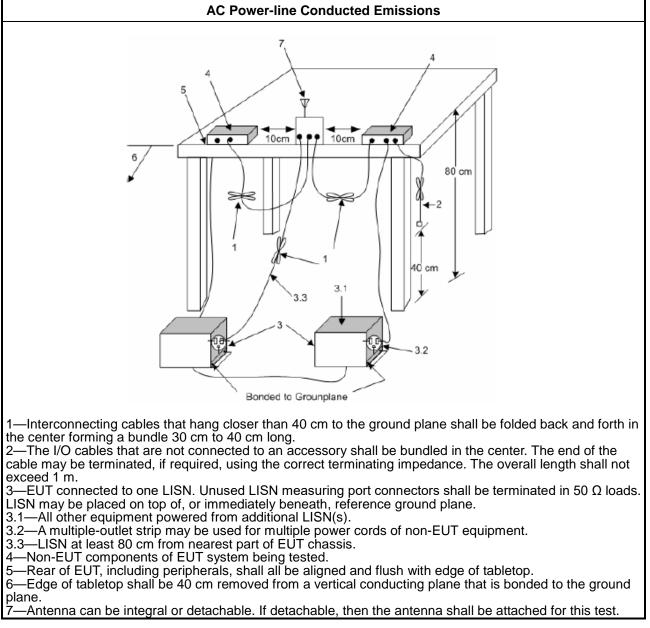
3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit				
Frequency Emission (MHz) Quasi-Peak Average				
0.15-0.5	66 - 56 *	56 - 46 *		
0.5-5	56	46		
5-30	60	50		
Note 1: * Decreases with the logarithm of the frequency.				

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.1.3 Test Procedures

Test Method

• Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

1.1.1. Measurement Results Calculation

The measured Level is calculated using:

- a. Corrected Reading: LISN Factor (LISN) + Attenuator (AT/AUX) + Cable Loss (CL) + Read Level (Raw) = Level
- b. Margin = -Limit + Level

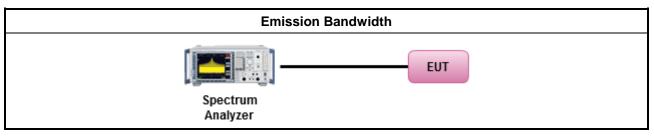
3.1.5 Test Result of AC Power-line Conducted Emissions

Refer as Appendix A

3.2 DTS Bandwidth

3.2.1 6dB Bandwidth Limit

Systems using digital modulation techniques:		
 6 dB bandwidth ≥ 500 kHz. 		


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

■ For	the emission handwidth shall be measured using one of the entires helow.				
	 For the emission bandwidth shall be measured using one of the options below: 				
	Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.1 Option 1 for 6 dB bandw measurement.				
	Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.2 Option 2 for 6 dB bandwidth measurement.				
	Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.				

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Refer as Appendix B

3.3 Maximum Conducted Output Power

3.3.1 Maximum Conducted Output Power Limit

Maximum Conducted Output Power Limit

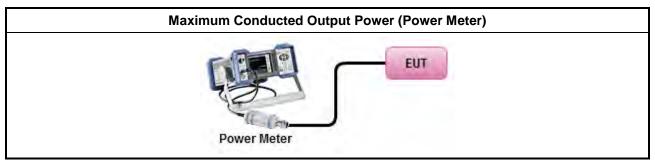
• If $G_{TX} \le 6 \text{ dBi}$, then $P_{Out} \le 30 \text{ dBm} (1 \text{ W})$
• Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm

- Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
- Smart antenna system (SAS):
 - Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
 - Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
 - Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3 + 8$ dB dBm

 P_{Out} = maximum peak conducted output power or maximum conducted output power in dBm, G_{TX} = the maximum transmitting antenna directional gain in dBi.

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.3.3 Test Procedures

		Test Method
•	Max	imum Peak Conducted Output Power
		Refer as FCC KDB 558074, clause 8.3.1.1 & C63.10 clause 11.9.1.1 (RBW ≥ EBW method).
		Refer as FCC KDB 558074, clause 8.3.1.3 & C63.10 clause 11.9.1.3 (peak power meter).
•	Max	imum Conducted Output Power
	[duty	/ cycle ≥ 98% or external video / power trigger]
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.2 Method AVGSA-1.
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.3 Method AVGSA-1A. (alternative)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.4 Method AVGSA-2.
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.5 Method AVGSA-2A (alternative)
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.6 Method AVGSA-3
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.7 Method AVGSA-3A (alternative)
	Mea	surement using a power meter (PM)
		Refer as FCC KDB 558074, clause 8.3.2.3 & C63.10 clause 11.9.2.3.1 Method AVGPM (using an RF average power meter).
	\boxtimes	Refer as FCC KDB 558074, clause 8.3.2.3 & C63.10 clause 11.9.2.3.2 Method AVGPM-G (using an gate RF average power meter).
•	For	conducted measurement.
		If the EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
		If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG

3.3.4 Test Setup

3.3.5 Test Result of Maximum Conducted Output Power

Refer as Appendix C

3.4 Power Spectral Density

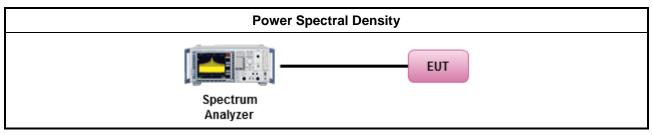
3.4.1 Power Spectral Density Limit

Power Spectral Density Limit	
l Density (PSD)≤8 dBm/3kHz	

3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures


Power Spectral

•

	Test Method					
•	Peak power spectral density procedures that the same method as used to determine the conducted output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option).					
	\square	Refer as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10 Method Max. PSD.				
	[duty	cycle ≥ 98% or external video / power trigger]				
•	For	conducted measurement.				
	•	If The EUT supports multiple transmit chains using options given below:				
		Option 1: Measure and sum the spectra across the outputs. Refer as FC In-band power spectral density (PSD). Sample all transmit ports simultar spectrum analyzer for each transmit port. Where the trace bin-by-bin of ea summing can be performed. (i.e., in the first spectral bin of output 1 is summe first spectral bin of output 2 and that from the first spectral bin of output 3, and NTX output to obtain the value for the first frequency bin of the summed spec the amplitude (power) values for the different transmit chains and use this a trace.	neously using a ch transmit port d with that in the d so on up to the ectrum.). Add up			
		Option 2: Measure and sum spectral maxima across the outputs. With this tea are measured at each output of the device at the required resolution maximum value (peak) of each spectrum is determined. These maximum summed mathematically in linear power units across the outputs. These ope performed separately over frequency spans that have different out-of-ba emission limits,	bandwidth. The values are then erations shall be			
		Option 3: Measure and add 10 log(N) dB, where N is the number of transmit FCC KDB 662911, In-band power spectral density (PSD). Performed at each and each transmit chains shall be compared with the limit have been reduced Or each transmit chains shall be add 10 log(N) to compared with the limit.	transmit chains			

3.4.4 Test Setup

3.4.5 Test Result of Power Spectral Density

Refer as Appendix D

3.5 Emissions in Non-restricted Frequency Bands

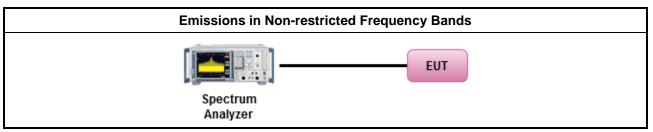
3.5.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit						
RF output power procedure Limit (dBc)						
20						
30						

Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.5.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

Test Method

Refer as FCC KDB 558074, clause 8.5 for unwanted emissions into non-restricted bands.

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix E

3.6 Emissions in Restricted Frequency Bands

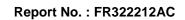
3.6.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit								
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)					
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300					
0.490~1.705	0.490~1.705 24000/F(kHz)		30					
1.705~30.0	1.705~30.0 30		30					
30~88	100	40	3					
88~216	150	43.5	3					
216~960	200	46	3					
Above 960	500	54	3					

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

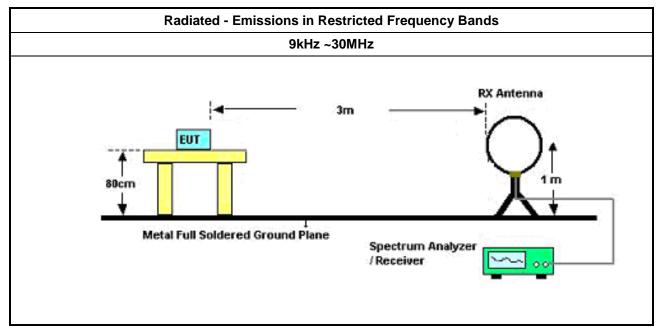
Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB / decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

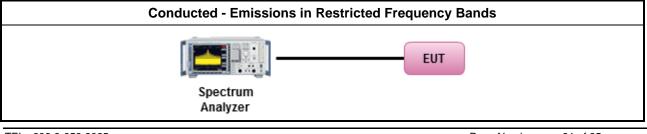
Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.


3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.6.3 Test Procedures


	Test Method
•	The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
•	Refer as ANSI C63.10, clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.
•	For the transmitter unwanted emissions shall be measured using following options below:
	 Refer as FCC KDB 558074, clause 8.6 for unwanted emissions into restricted bands.
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.1(trace averaging for duty cycle ≥98%).
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.2(trace averaging + duty factor).
	☑ Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.3(Reduced VBW≥1/T).
	□ Refer as ANSI C63.10, clause 11.12.2.5.3 (Reduced VBW). VBW \ge 1/T, where T is pulse time.
	Refer as ANSI C63.10, clause 7.5 average value of pulsed emissions.
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.4 measurement procedure peak limit.
•	For the transmitter band-edge emissions shall be measured using following options below:
	 Refer as FCC KDB 558074 clause 8.7 & c63.10 clause 11.13.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below.
	 Refer as FCC KDB 558074, clause 8.7 (ANSI C63.10, clause 6.10.6) for marker-delta method for band-edge measurements.
	 Refer as FCC KDB 558074, clause 8.7 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).
	 For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB
	 For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred.


	Test Method						
-	For conducted and cabinet radiation measurement, refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.2.						
	•	For conducted unwanted emissions into non-restricted bands (relative emission limits). Devices with multiple transmit chains: Refer as FCC KDB 662911, when testing out-of-band and spurious emissions against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N) if the measurements are made relative to the in-band emissions on the individual outputs.					
	•	For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB					
	•	For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred.					

3.6.4 Test Setup

TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Template No.: CB-A10_6 Ver1.3 Page Number: 31 of 35Issued Date: Aug. 15, 2023Report Version: 01

3.6.5 Measurement Results Calculation

The measured Level is calculated using:

Corrected Reading: Antenna factor (AF) + Cable loss (CL) + Read level (Raw) - Preamp factor (PA)(if applicable) = Level.

3.6.6 Emissions in Restricted Frequency Bands (Below 30MHz)

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to KDB414788 Radiated Test Site, and the result came out very similar.

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10th harmonic or 40 GHz, whichever is appropriate.

3.6.7 Test Result of Emissions in Restricted Frequency Bands

Refer as Appendix F

Test Equipment and Calibration Data 4

Instrument	Brand	Model No.	Serial No.	Characteristics Calibration Date		Calibration Due Date	Remark
EMI Receiver	Agilent	N9038A	My52260123	9kHz ~ 8.4GHz Feb. 20, 2023		Feb. 19, 2024	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50- 16-2	04083	150kHz ~ 100MHz	Feb. 16, 2023	Feb. 15, 2024	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Apr. 27, 2023	Apr. 26, 2024	Conduction (CO01-CB)
Pulse Limiter	Rohde& Schwarz	ESH3-Z2	100430	9kHz ~ 30MHz	Feb. 09, 2023	Feb. 08, 2024	Conduction (CO01-CB)
COND Cable	Woken	Cable	Low cable-CO01	9kHz ~ 30MHz	Oct. 18, 2022	Oct. 17, 2023	Conduction (CO01-CB)
Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Conduction (CO01-CB)
Loop Antenna	Teseq	HLA 6120	31244	9kHz - 30 MHz	Mar. 23, 2023	Mar. 22, 2024	Radiation (03CH05-CB)
3m Semi Anechoic Chamber NSA	TDK	SAC-3M	03CH05-CB	30 MHz ~ 1 GHz	Aug. 03, 2022	Aug. 02, 2023	Radiation (03CH05-CB)
Bilog Antenna with 6dB Attenuator	TESEQ & EMCI	CBL 6112D & N-6-06	35236 & AT-N0610	30MHz ~ 2GHz Mar. 24, 2023		Mar. 23, 2024	Radiation (03CH05-CB)
Pre-Amplifier	EMCI	EMC330N	980331	20MHz ~ 3GHz Apr. 26, 202		Apr. 25, 2023	Radiation (03CH05-CB)
Amplifier	EMCI	EMC330N	980331	20MHz ~ 3GHz	May 03, 2023	May 02, 2024	Radiation (03CH05-CB)
Signal Analyzer	R&S	FSV40	101904	9kHz ~ 40GHz	Apr. 26, 2022	Apr. 25, 2023	Radiation (03CH05-CB)
Spectrum Analyzer	R&S	FSP40	100304	9kHz ~ 40GHz	Apr. 18, 2023	Apr. 17, 2024	Radiation (03CH05-CB)
EMI Test Receiver	R&S	ESCS	826547/017	9kHz ~ 2.75GHz	Jun. 17, 2022	Jun. 16, 2023	Radiation (03CH05-CB)
RF Cable-low	Woken	RG402	Low Cable-04+23	30MHz~1GHz	Oct. 03, 2022	Oct. 02, 2023	Radiation (03CH05-CB)
Test Software	SPORTON	SENSE	V5.10	- N.C.R.		N.C.R.	Radiation (03CH05-CB)
Loop Antenna	Teseq	HLA 6120	31244	9kHz - 30 MHz Mar. 23, 2023		Mar. 22, 2024	Radiation (03CH06-CB)
3m Semi Anechoic Chamber NSA	TDK	SAC-3M	03CH06-CB	30 MHz ~ 1 GHz	Aug. 04, 2022	Aug. 03. 2023	Radiation (03CH06-CB)
Bilog Antenna with 6 dB attenuator	TESEQ & EMCI	CBL6112D & N-6-06	37878 & AT-N0606	20MHz ~ 2GHz	Jul. 31, 2022	Jul. 30, 2023	Radiation (03CH06-CB)
Pre-Amplifier	Agilent	310N	187290	0.1MHz ~ 1GHz Nov. 04, 2022		Nov. 03, 2023	Radiation (03CH06-CB)

TEL: 886-3-656-9065 FAX: 886-3-656-9085 Report Template No.: CB-A10_6 Ver1.3 Page Number : 33 of 35

Issued Date : Aug. 15, 2023

Report Version : 01

Instrument	Brand	Model No.	Serial No.	Characteristics Calibration Date		Calibration Due Date	Remark
Spectrum analyzer	R&S	FSP40	100080	9kHz~40GHz Dec. 21, 2022		Dec. 20, 2023	Radiation (03CH06-CB)
EMI Test Receiver	R&S	ESCS	826547/017	9kHz ~ 2.75GHz	Jun. 17, 2022	Jun. 16, 2023	Radiation (03CH06-CB)
RF Cable-low	Woken	RG402	Low Cable-24+68	30MHz~1GHz	Oct. 03, 2022	Oct. 02, 2023	Radiation (03CH06-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Radiation (03CH06-CB)
3m Semi Anechoic Chamber VSWR	TDK	SAC-3M	03CH01-CB	1GHz ~18GHz 3m	May 06, 2022	May 05, 2023	Radiation (03CH01-CB)
3m Semi Anechoic Chamber VSWR	TDK	SAC-3M	03CH01-CB	1GHz ~18GHz 3m	May 05, 2023	May 04, 2024	Radiation (03CH01-CB)
Horn Antenna	ETS-LINDGRE N	3115	00075790	750MHz ~ 18GHz	Nov. 04, 2022	Nov. 03, 2023	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz Aug. 22, 2022		Aug. 21, 2023	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02121	1GHz ~ 26.5GHz May 19, 2022		May 18, 2023	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02121	1GHz ~ 26.5GHz May 18, 2023		May 17, 2024	Radiation (03CH01-CB)
Pre-Amplifier	SGH	SGH184	20221107-3	18GHz ~ 40GHz Nov. 16, 2022		Nov. 15, 2023	Radiation (03CH01-CB)
Signal Analyzer	R&S	FSV3044	101437	10kHz ~ 44GHz	Nov. 29, 2022	Nov. 29, 2023	Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-16	1 GHz ~ 18 GHz	Oct. 03, 2022	Oct. 02, 2023	Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-16+17	1 GHz ~ 18 GHz	Oct. 03, 2022	Oct. 02, 2023	Radiation (03CH01-CB)
High Cable	Woken	WCA0929M	40G#5+6	1GHz ~ 40 GHz	Dec. 07, 2022	Dec. 06, 2023	Radiation (03CH01-CB)
High Cable	Woken	WCA0929M	40G#5	1GHz ~ 40 GHz	Dec. 07, 2022	Dec. 06, 2023	Radiation (03CH01-CB)
High Cable	Woken	WCA0929M	40G#6	1GHz ~ 40 GHz Dec. 07, 2022		Dec. 06, 2023	Radiation (03CH01-CB)
Test Software	SPORTON	SENSE	V5.10	- N.C.R.		N.C.R.	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSV40	101027	9kHz~40GHz Aug. 15, 2022		Aug. 14, 2023	Conducted (TH02-CB)
Power Sensor	Anritsu	MA2411B	1126203	300MHz~40GHz Oct. 17, 2022		Oct. 16, 2023	Conducted (TH02-CB)
Power Meter	Anritsu	ML2495A	1210004	300MHz~40GHz Oct. 17, 2022		Oct. 16, 2023	Conducted (TH02-CB)

TEL: 886-3-656-9065 FAX: 886-3-656-9085 Report Template No.: CB-A10_6 Ver1.3 Page Number : 34 of 35 Issued Date

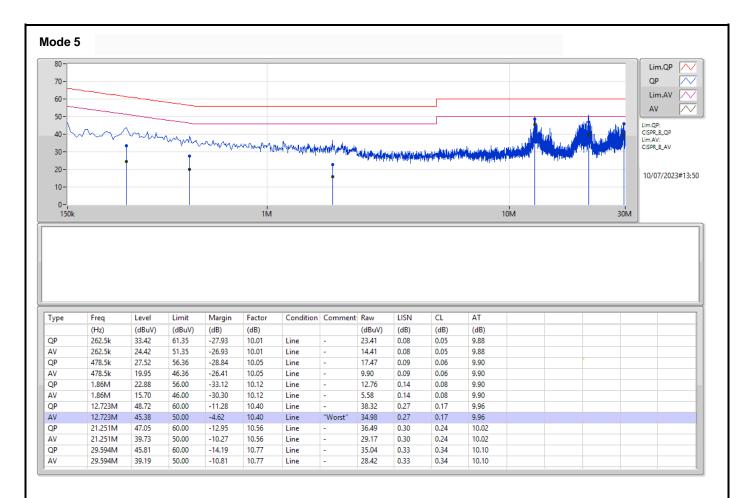
: Aug. 15, 2023

Report Version : 01

Instrument	Brand	Model No.	Serial No.	Characteristics Calibration Date		Calibration Due Date	Remark
RF Cable-high	Woken	RG402	High Cable-01	1 GHz – 18 GHz Oct. 03, 2022		Oct. 02, 2023	Conducted (TH02-CB)
RF Cable-high	Woken	RG402	High Cable-02	1 GHz – 18 GHz	Oct. 03, 2022	Oct. 02, 2023	Conducted (TH02-CB)
RF Cable-high	Woken	RG402	High Cable-03	1 GHz – 18 GHz	Oct. 03, 2022	Oct. 02, 2023	Conducted (TH02-CB)
RF Cable-high	Woken	RG402	High Cable-04	1 GHz – 18 GHz	Oct. 03, 2022	Oct. 02, 2023	Conducted (TH02-CB)
RF Cable-high	Woken	RG402	High Cable-05	1 GHz – 18 GHz	Oct. 03, 2022	Oct. 02, 2023	Conducted (TH02-CB)
High Cable	Woken	WCA0929M	40G#5+6	1GHz ~ 40 GHz	GHz ~ 40 GHz Dec. 07, 2022		Conducted (TH02-CB)
High Cable	Woken	WCA0929M	40G#5	1GHz ~ 40 GHz	1GHz ~ 40 GHz Dec. 07, 2022		Conducted (TH02-CB)
High Cable	Woken	WCA0929M	40G#6	1GHz ~ 40 GHz Dec. 07, 2022		Dec. 06, 2023	Conducted (TH02-CB)
Switch	SPTCB	SP-SWI	SWI-02	1 GHz –26.5 GHz Oct. 04, 2022		Oct. 03, 2023	Conducted (TH02-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Conducted (TH02-CB)

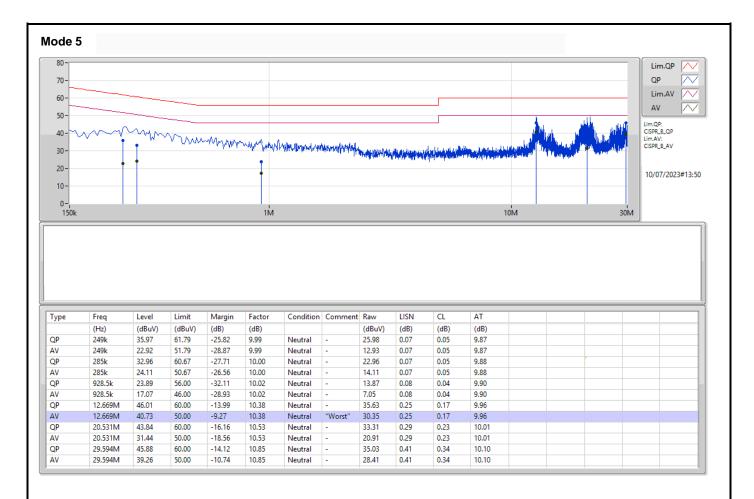
Note: Calibration Interval of instruments listed above is one year.

NCR means Non-Calibration required.


Conducted Emissions at Powerline

Appendix A

Summary									
Mode	Result	Туре	Freq	Level	Limit	Margin	Condition		
			(Hz)	(dBuV)	(dBuV)	(dB)			
Mode 5	Pass	AV	12.723M	45.38	50.00	-4.62	Line		



Appendix A

Appendix A

EBW-DTS

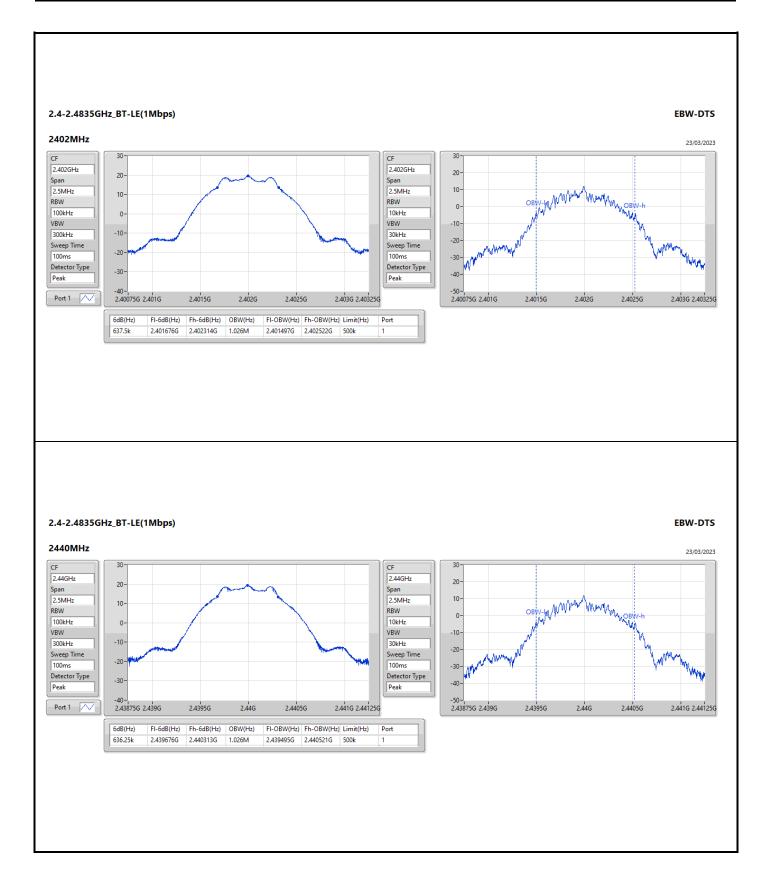
Summary

Mode	Max-N dB (Hz)	Max-OBW (Hz)	ITU-Code	Min-N dB (Hz)	Min-OBW (Hz)
2.4-2.4835GHz	-	-	-	-	-
BT-LE(1Mbps)	637.5k	1.028M	1M03F1D	633.75k	1.026M
BT-LE(2Mbps)	1.094M	2.035M	2M04F1D	1.089M	2.025M

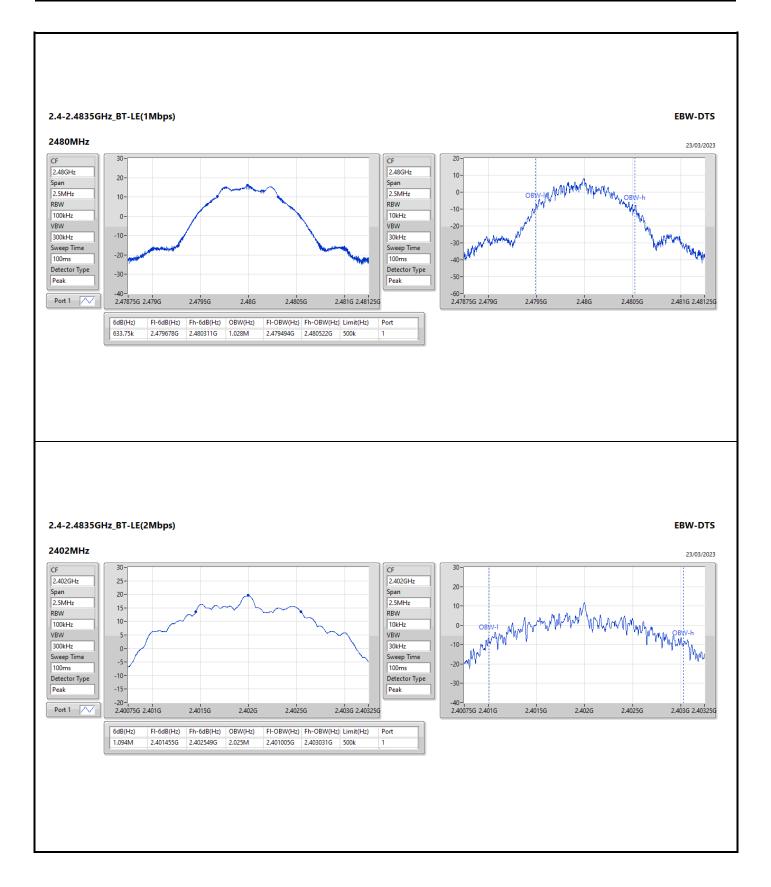
 $Max\cdot N\ dB = Maximum\ 6dB\ down\ bandwidth;\ Max-OBW = Maximum\ 99\%\ occupied\ bandwidth;\ Min-OBW = Minimum\ 99\%\ occupied\ bandwidth;\ 90\%\ occupied\ bandwidth;\ 90\%\ occupied\ 90\%\ occupied\$

EBW-DTS

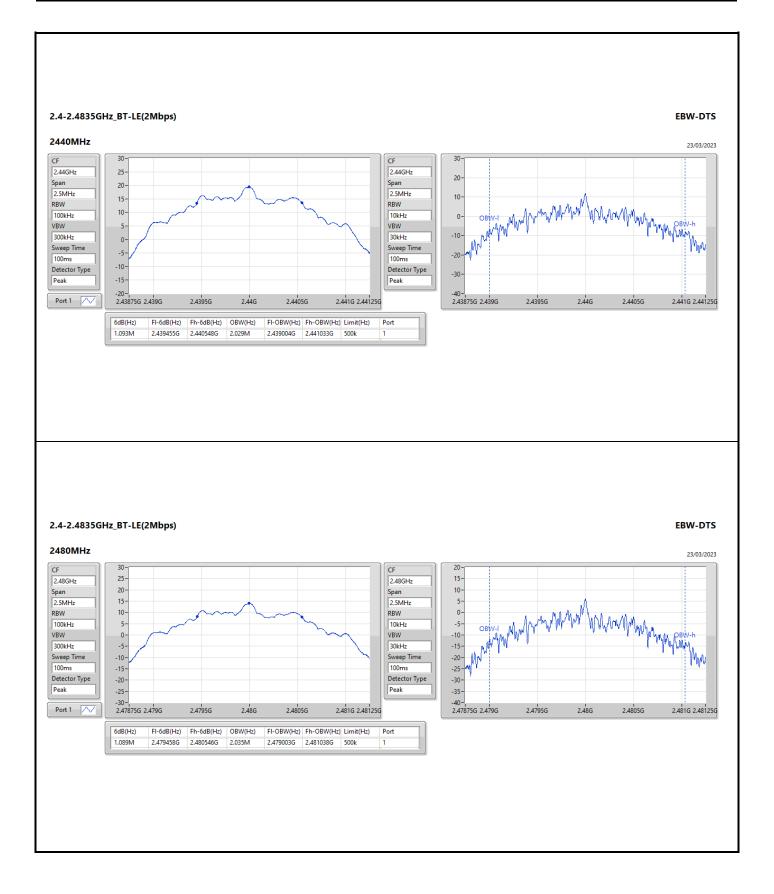
Appendix B


Result

Mode	Result	Limit	Port 1-N dB	Port 1-OBW
		(Hz)	(Hz)	(Hz)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	500k	637.5k	1.026M
2440MHz	Pass	500k	636.25k	1.026M
2480MHz	Pass	500k	633.75k	1.028M
BT-LE(2Mbps)	-	-	-	-
2402MHz	Pass	500k	1.094M	2.025M
2440MHz	Pass	500k	1.093M	2.029M
2480MHz	Pass	500k	1.089M	2.035M


Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth

Sporton International Inc. Hsinchu Laboratory



Appendix C

Summary

Mode	Total Power (dBm)	Power (W)
2.4-2.4835GHz	-	-
BT-LE(1Mbps)	18.89	0.07745
BT-LE(2Mbps)	18.74	0.07482

Average Power-DTS

Appendix C

Result

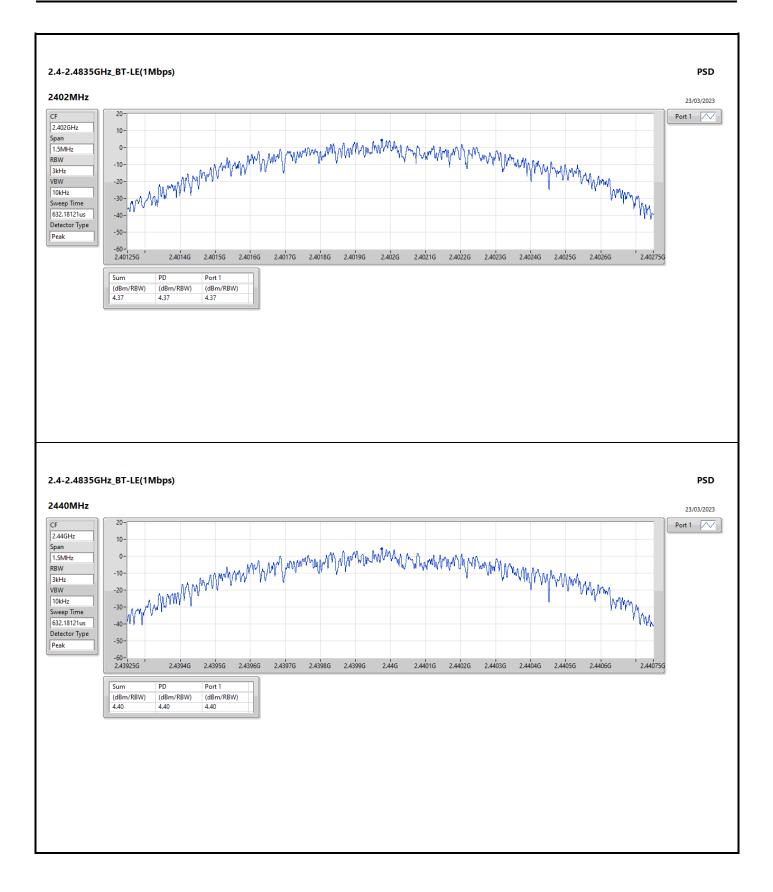
Mode	Result	DG	Total Power	Power Limit
		(dBi)	(dBm)	(dBm)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	3.05	17.00	30.00
2404MHz	Pass	3.05	17.71	30.00
2440MHz	Pass	3.05	18.89	30.00
2478MHz	Pass	3.05	15.58	30.00
2480MHz	Pass	3.05	14.61	30.00
BT-LE(2Mbps)	-	-	-	-
2402MHz	Pass	3.05	17.47	30.00
2404MHz	Pass	3.05	18.72	30.00
2440MHz	Pass	3.05	18.74	30.00
2478MHz	Pass	3.05	8.61	30.00
2480MHz	Pass	3.05	12.22	30.00

DG = Directional Gain; Port X = Port X output power

Summary

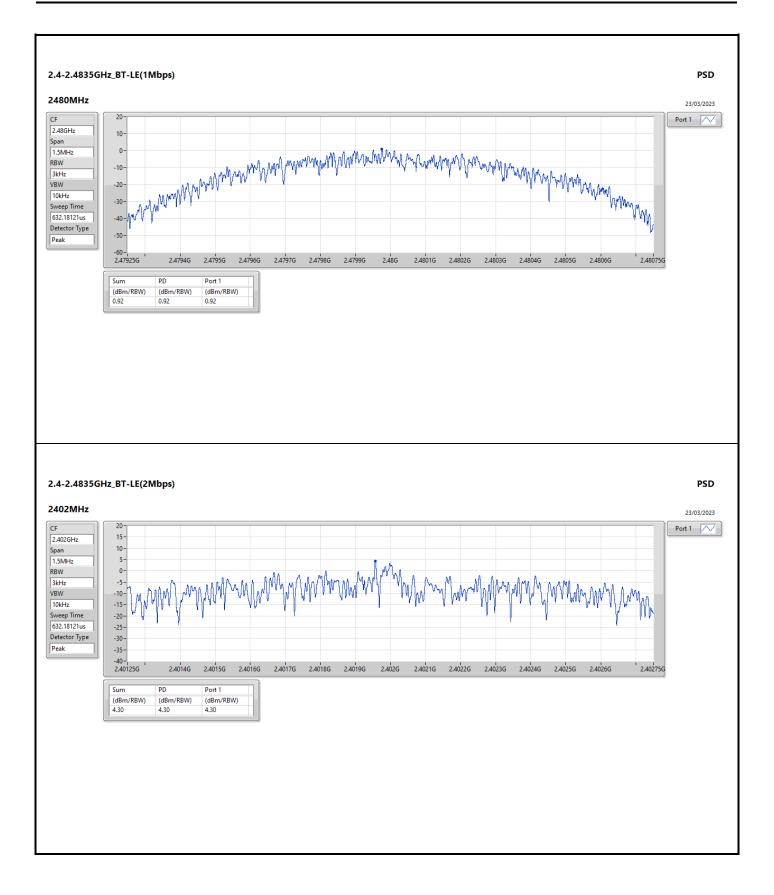
Mode	PD (dBm/RBW)
2.4-2.4835GHz	
BT-LE(1Mbps)	4.40
BT-LE(2Mbps)	4.30

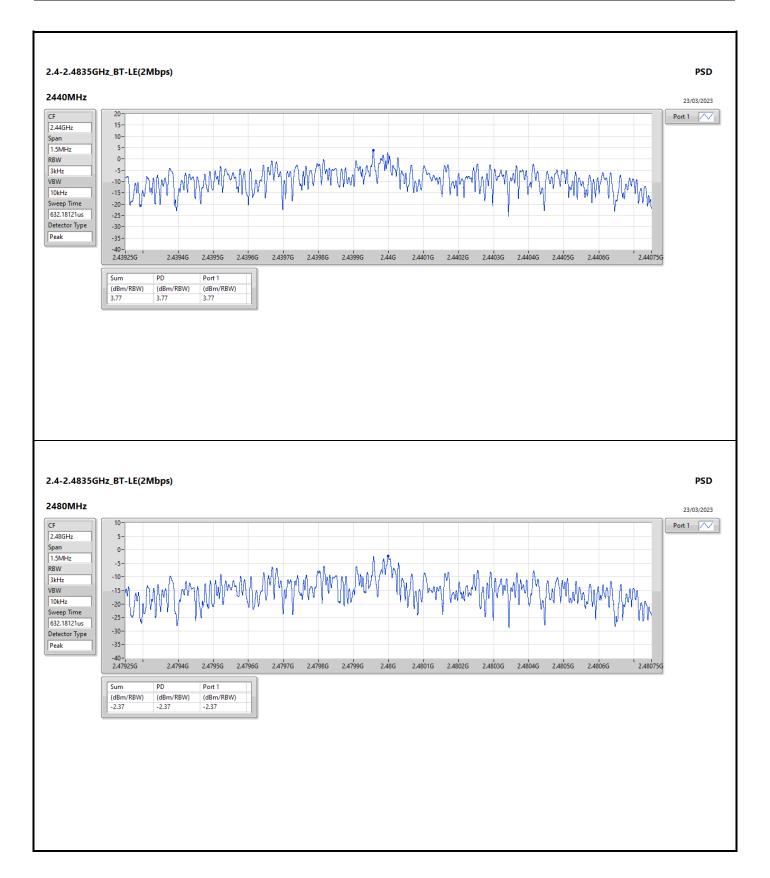
RBW = 3kHz;


PSD-DTS

Result

Mode	Result	DG	PD	PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	3.05	4.37	8.00
2440MHz	Pass	3.05	4.40	8.00
2480MHz	Pass	3.05	0.92	8.00
BT-LE(2Mbps)	-	-	-	-
2402MHz	Pass	3.05	4.30	8.00
2440MHz	Pass	3.05	3.77	8.00
2480MHz	Pass	3.05	-2.37	8.00


DG = Directional Gain: RBW = 3kHz; PD = trace bin-by-bin of each transmits port summing can be performed maximum power density; Port X = Port X Power Density;



PSD-DTS

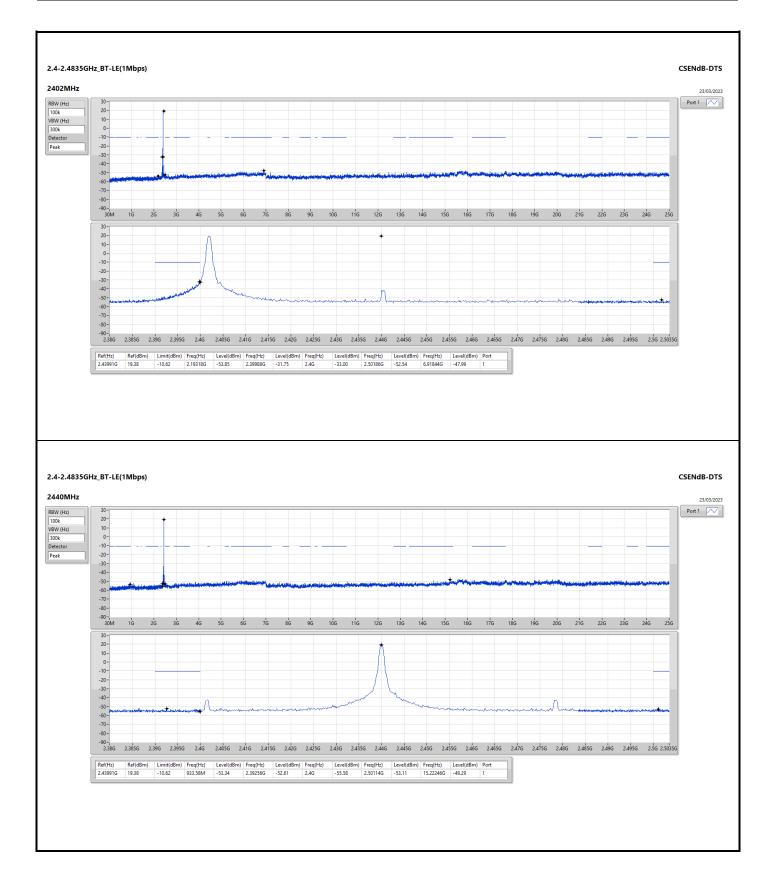
CSE NdB-DTS

Appendix E

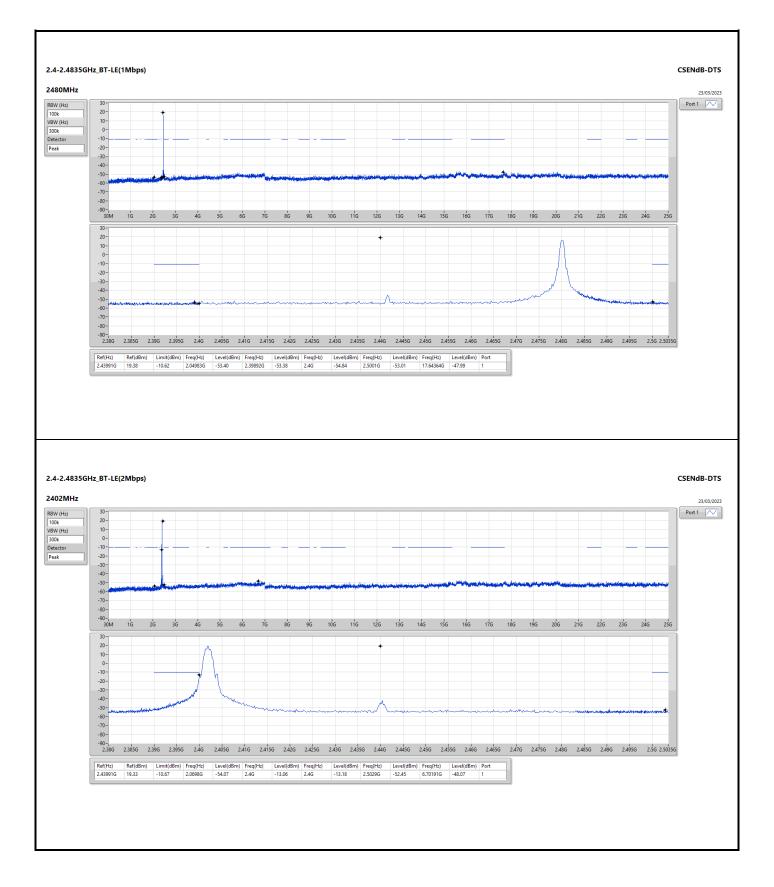
Summary

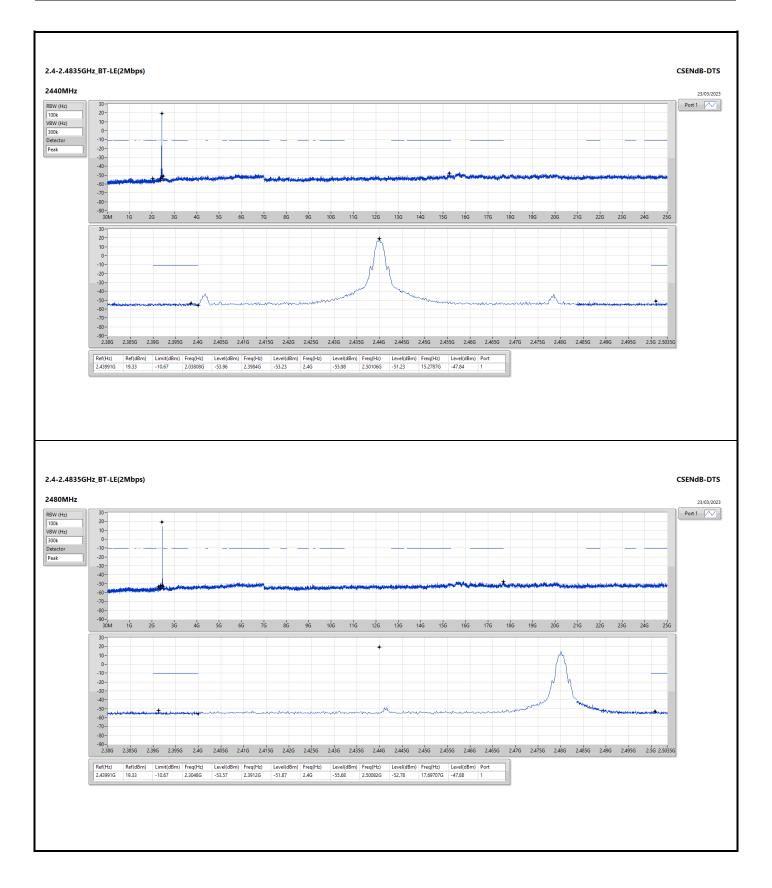
Mode	Result	Ref (Hz)	Ref (dBm)	Limit (dBm)	Freq (Hz)	Level (dBm)	Port								
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-	-		
BT-LE(1Mbps)	Pass	2.43991G	19.38	-10.62	2.19318G	-53.85	2.39988G	-31.75	2.4G	-33.00	2.50186G	-52.54	6.91844G	-47.99	1
BT-LE(2Mbps)	Pass	2.43991G	19.33	-10.67	2.0698G	-54.07	2.4G	-13.06	2.4G	-13.18	2.5029G	-52.45	6.70191G	-48.07	1

CSE NdB-DTS


Appendix E

Result


Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
BT-LE(1Mbps)	-	-	-	-	-	-	-	-	-	-	-			-	-
2402MHz	Pass	2.43991G	19.38	-10.62	2.19318G	-53.85	2.39988G	-31.75	2.4G	-33.00	2.50186G	-52.54	6.91844G	-47.99	1
2440MHz	Pass	2.43991G	19.38	-10.62	933.58M	-53.34	2.39256G	-52.61	2.4G	-55.58	2.50114G	-53.11	15.22246G	-48.29	1
2480MHz	Pass	2.43991G	19.38	-10.62	2.04983G	-53.40	2.39892G	-53.38	2.4G	-54.84	2.5001G	-53.01	17.64364G	-47.99	1
BT-LE(2Mbps)	-			-	-		-	-	-	-	-			-	-
2402MHz	Pass	2.43991G	19.33	-10.67	2.0698G	-54.07	2.4G	-13.06	2.4G	-13.18	2.5029G	-52.45	6.70191G	-48.07	1
2440MHz	Pass	2.43991G	19.33	-10.67	2.03808G	-53.96	2.3984G	-53.23	2.4G	-55.98	2.50106G	-51.23	15.2787G	-47.84	1
2480MHz	Pass	2.43991G	19.33	-10.67	2.3048G	-53.57	2.3912G	-51.87	2.4G	-55.68	2.50082G	-52.78	17.69707G	-47.88	1


Appendix E

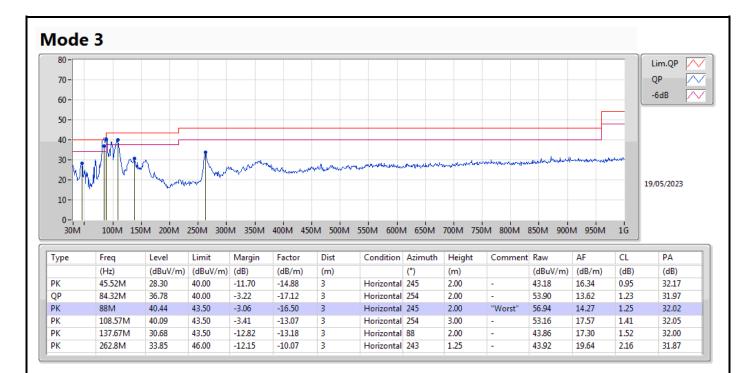
Radiated Emissions below 1GHz

Appendix F.1

Summary							-
Mode	Result	Туре	Freq	Level	Limit	Margin	Condition
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	
Mode 3	Pass	PK	88M	40.44	43.50	-3.06	Horizontal

Radiated Emissions below 1GHz

Mode 3 80-Lim.QP \sim 70 -QP \sim -6dB 60 -50 -40 -30-20-19/05/2023 10-0-30M 100M 150M 200M 250M 300M 350M 400M 450M 500M 550M 600M 650M 700M 750M 800M 850M 900M 950M 1G Туре PA CL Freq Level Limit Margin Factor Dist Condition Azimuth Height Comment Raw AF

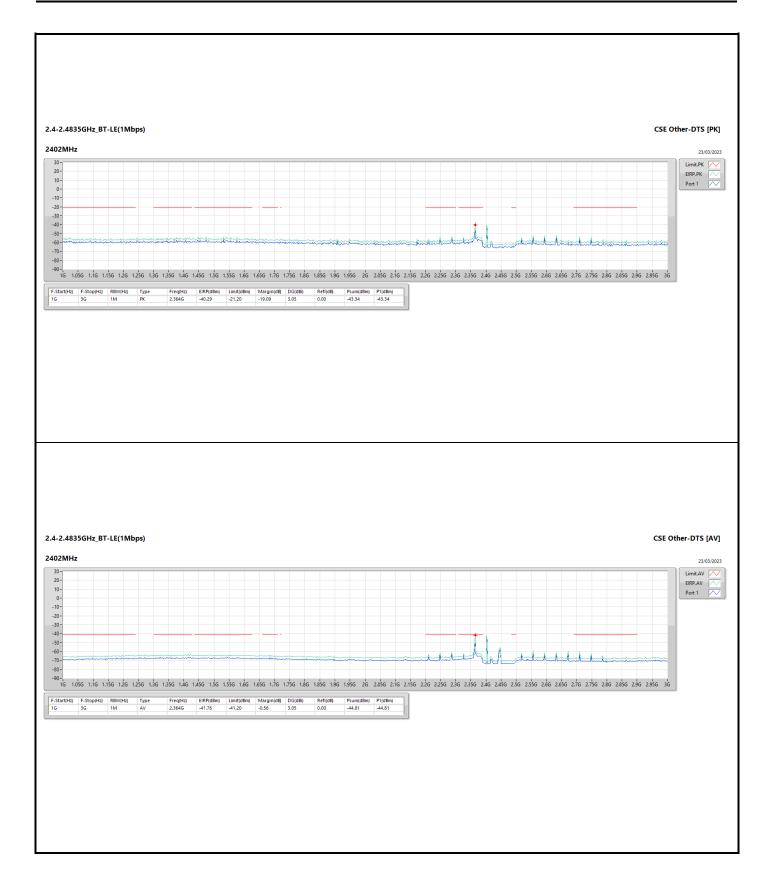

1.76-														
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)	(m)		(°)	(m)		(dBuV/m)	(dB/m)	(dB)	(dB)
QP	44.55M	36.86	40.00	-3.14	-14.46	3	Vertical	5	1.00	"Worst"	51.32	16.76	0.95	32.17
QP	55.22M	31.28	40.00	-8.72	-18.22	3	Vertical	18	1.25	-	49.50	12.92	1.08	32.22
QP	84.32M	34.58	40.00	-5.42	-17.12	3	Vertical	354	3.00	-	51.70	13.62	1.23	31.97
РК	87.23M	36.73	40.00	-3.27	-16.60	3	Vertical	97	1.25	-	53.33	14.16	1.25	32.01
РК	106.63M	37.25	43.50	-6.25	-13.28	3	Vertical	158	1.00	-	50.53	17.41	1.39	32.08
PK	159.01M	33.72	43.50	-9.78	-14.33	3	Vertical	123	1.00	-	48.05	16.10	1.65	32.08

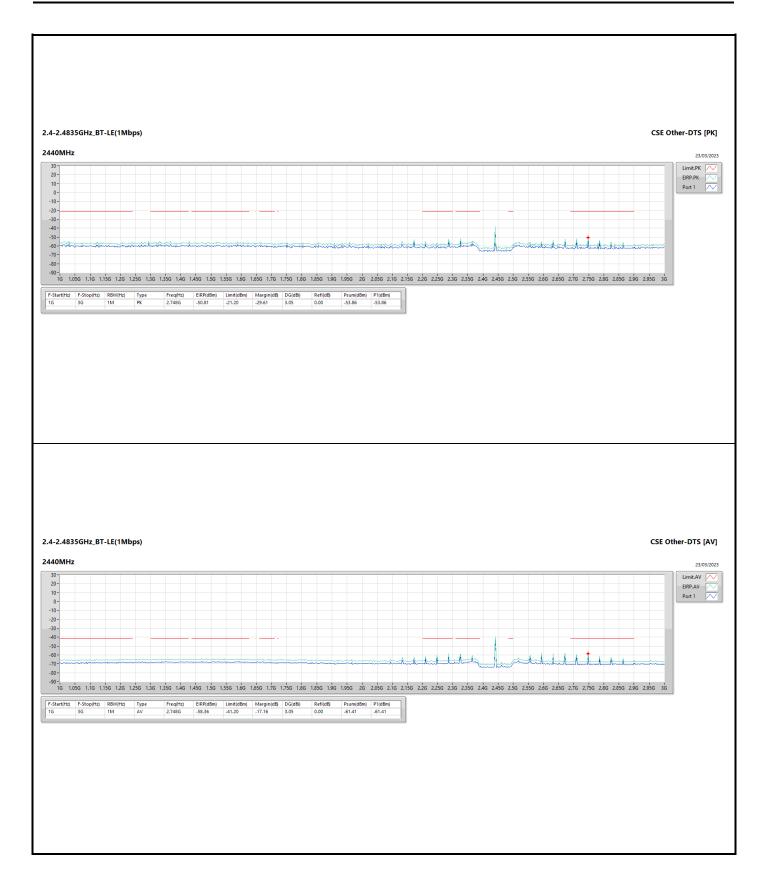
Appendix F.1

Radiated Emissions below 1GHz

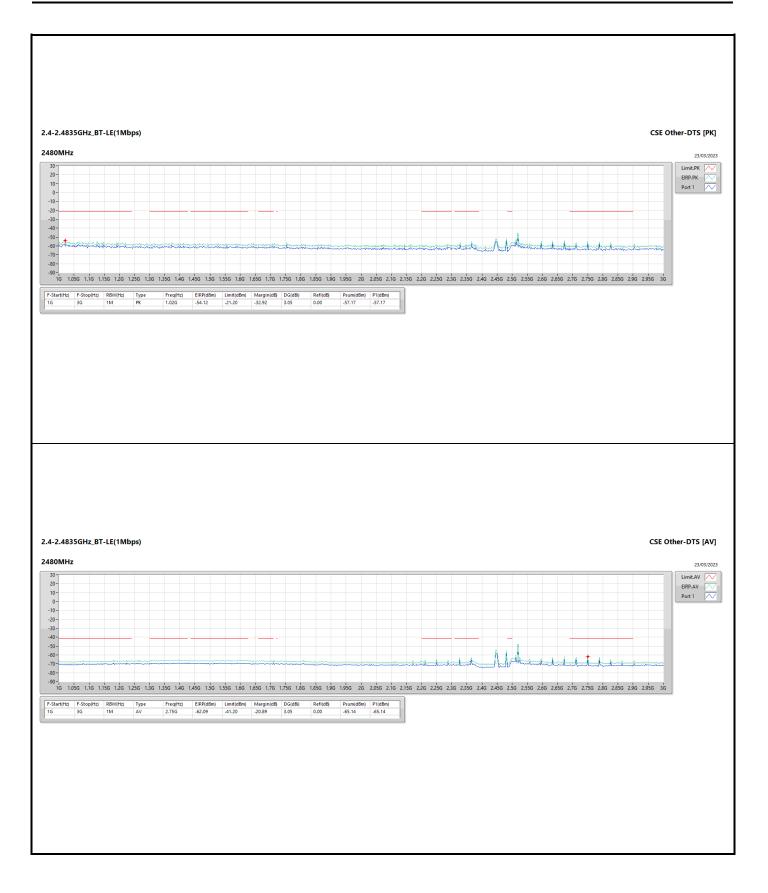
Appendix F.1

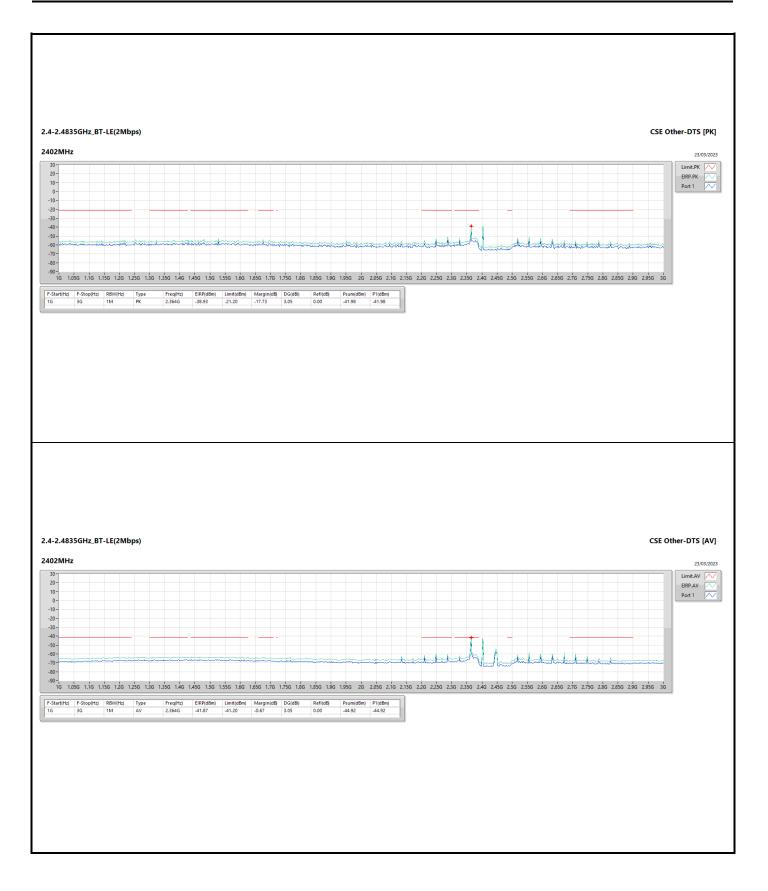
Summary

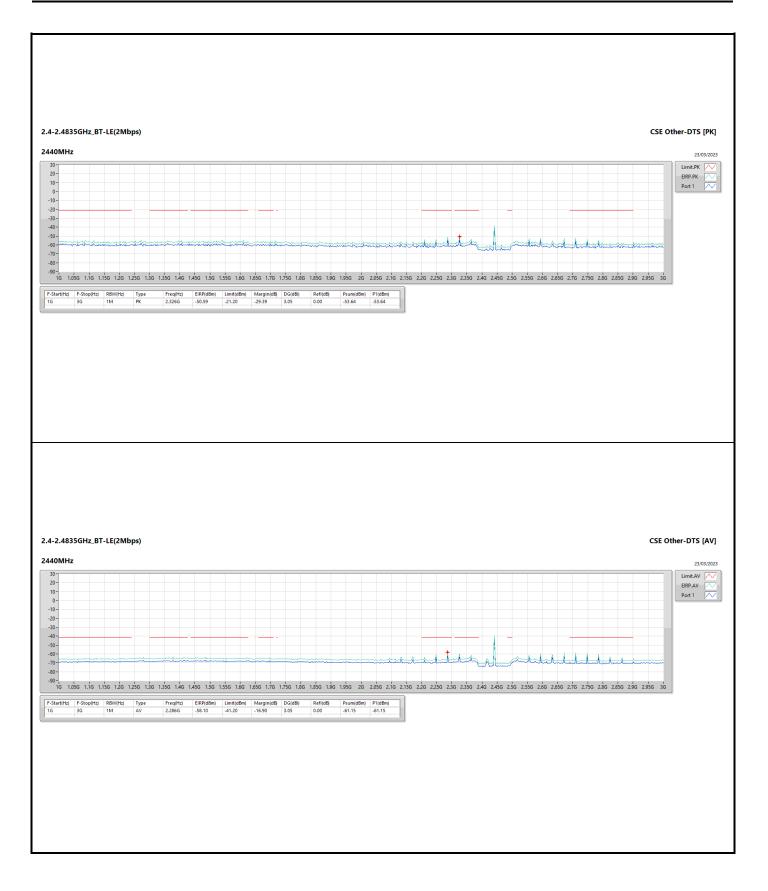

Mode	Result	F-Start	F-Stop	Туре	Freq	EIRP	Limit	Margin
		(Hz)	(Hz)		(Hz)	(dBm)	(dBm)	(dB)
2.4-2.4835GHz	-	÷	÷	-	-	÷	÷	-
BT-LE(1Mbps)	Pass	1G	3G	AV	2.364G	-41.76	-41.20	-0.56
BT-LE(2Mbps)	Pass	1G	3G	AV	2.364G	-41.87	-41.20	-0.67

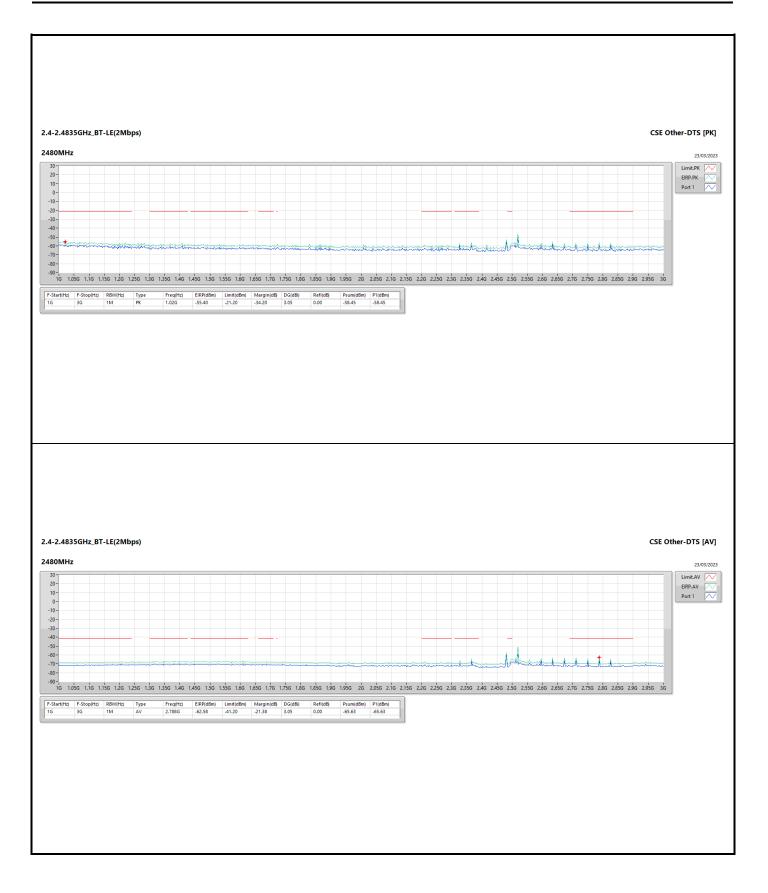

Result

Mode	Result	F-Start	F-Stop	Туре	Freq	EIRP	Limit	Margin
		(Hz)	(Hz)		(Hz)	(dBm)	(dBm)	(dB)
BT-LE(1Mbps)	-	-	-	-	-	-	-	-
2402MHz	Pass	1G	3G	AV	2.364G	-41.76	-41.20	-0.56
2402MHz	Pass	1G	3G	PK	2.364G	-40.29	-21.20	-19.09
2440MHz	Pass	1G	3G	AV	2.748G	-58.36	-41.20	-17.16
2440MHz	Pass	1G	3G	PK	2.748G	-50.81	-21.20	-29.61
2480MHz	Pass	1G	3G	AV	2.75G	-62.09	-41.20	-20.89
2480MHz	Pass	1G	3G	PK	1.02G	-54.12	-21.20	-32.92
BT-LE(2Mbps)	-	-	-	-	-	-	-	-
2402MHz	Pass	1G	3G	AV	2.364G	-41.87	-41.20	-0.67
2402MHz	Pass	1G	3G	PK	2.364G	-38.93	-21.20	-17.73
2440MHz	Pass	1G	3G	AV	2.286G	-58.10	-41.20	-16.90
2440MHz	Pass	1G	3G	PK	2.326G	-50.59	-21.20	-29.39
2480MHz	Pass	1G	3G	AV	2.788G	-62.58	-41.20	-21.38
2480MHz	Pass	1G	3G	PK	1.02G	-55.40	-21.20	-34.20







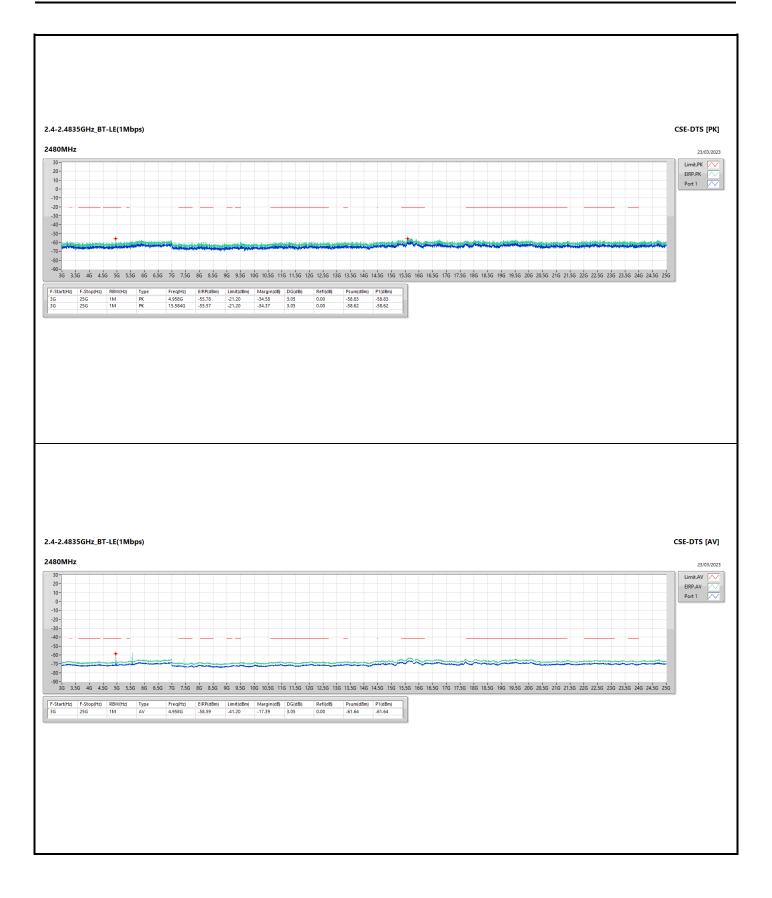


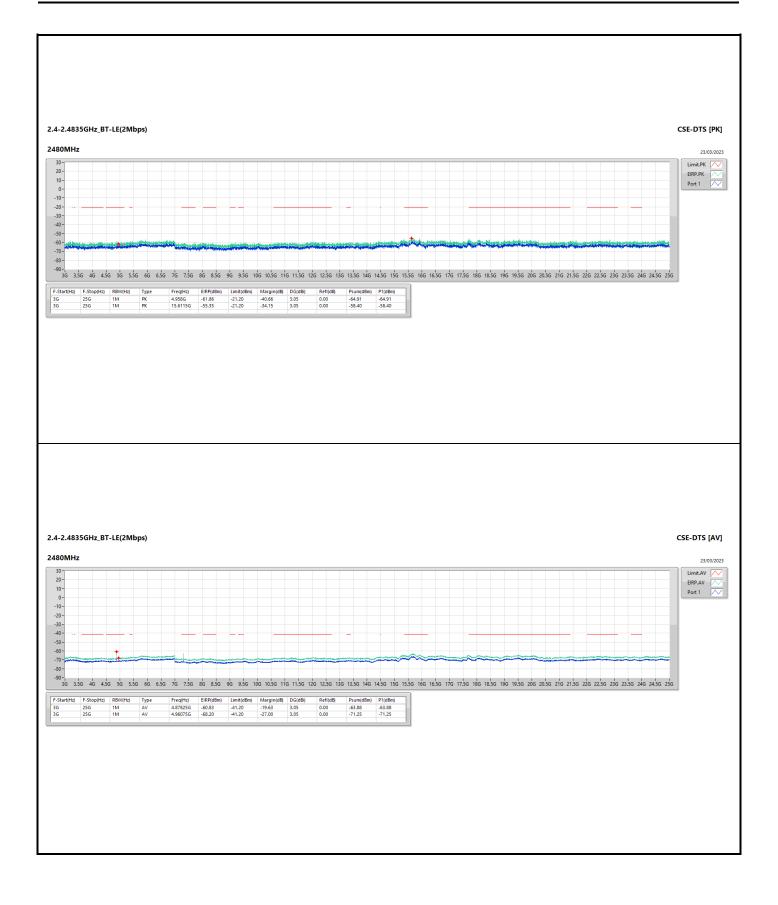
Summary


Mode	Result	F-Start	F-Stop	Туре	Freq	EIRP	Limit	Margin
		(Hz)	(Hz)		(Hz)	(dBm)	(dBm)	(dB)
2.4-2.4835GHz	÷	÷	÷	-	-	-	÷	-
BT-LE(1Mbps)	Pass	3G	25G	AV	4.804G	-54.35	-41.20	-13.15
BT-LE(2Mbps)	Pass	3G	25G	AV	4.804G	-54.30	-41.20	-13.10


Result

Result								
Mode	Result	F-Start	F-Stop	Туре	Freq	EIRP	Limit	Margin
		(Hz)	(Hz)		(Hz)	(dBm)	(dBm)	(dB)
BT-LE(1Mbps)	-	-	-	-	-	-	-	-
2402MHz	Pass	3G	25G	AV	4.804G	-54.35	-41.20	-13.15
2402MHz	Pass	3G	25G	PK	4.804G	-50.52	-21.20	-29.32
2440MHz	Pass	3G	25G	AV	4.87825G	-59.15	-41.20	-17.95
2440MHz	Pass	3G	25G	PK	4.87825G	-55.72	-21.20	-34.52
2440MHz	Pass	3G	25G	PK	15.59775G	-55.58	-21.20	-34.38
2480MHz	Pass	3G	25G	AV	4.958G	-58.59	-41.20	-17.39
2480MHz	Pass	3G	25G	PK	4.958G	-55.78	-21.20	-34.58
2480MHz	Pass	3G	25G	PK	15.584G	-55.57	-21.20	-34.37
BT-LE(2Mbps)	-	-	-	-		-	-	-
2402MHz	Pass	3G	25G	AV	4.804G	-54.30	-41.20	-13.10
2402MHz	Pass	3G	25G	PK	4.804G	-50.61	-21.20	-29.41
2440MHz	Pass	3G	25G	AV	4.87825G	-59.41	-41.20	-18.21
2440MHz	Pass	3G	25G	PK	4.881G	-62.96	-21.20	-41.76
2440MHz	Pass	3G	25G	PK	15.64725G	-55.48	-21.20	-34.28
2480MHz	Pass	3G	25G	AV	4.87825G	-60.83	-41.20	-19.63
2480MHz	Pass	3G	25G	AV	4.96075G	-68.20	-41.20	-27.00
2480MHz	Pass	3G	25G	PK	4.958G	-61.86	-21.20	-40.66
2480MHz	Pass	3G	25G	PK	15.6115G	-55.35	-21.20	-34.15



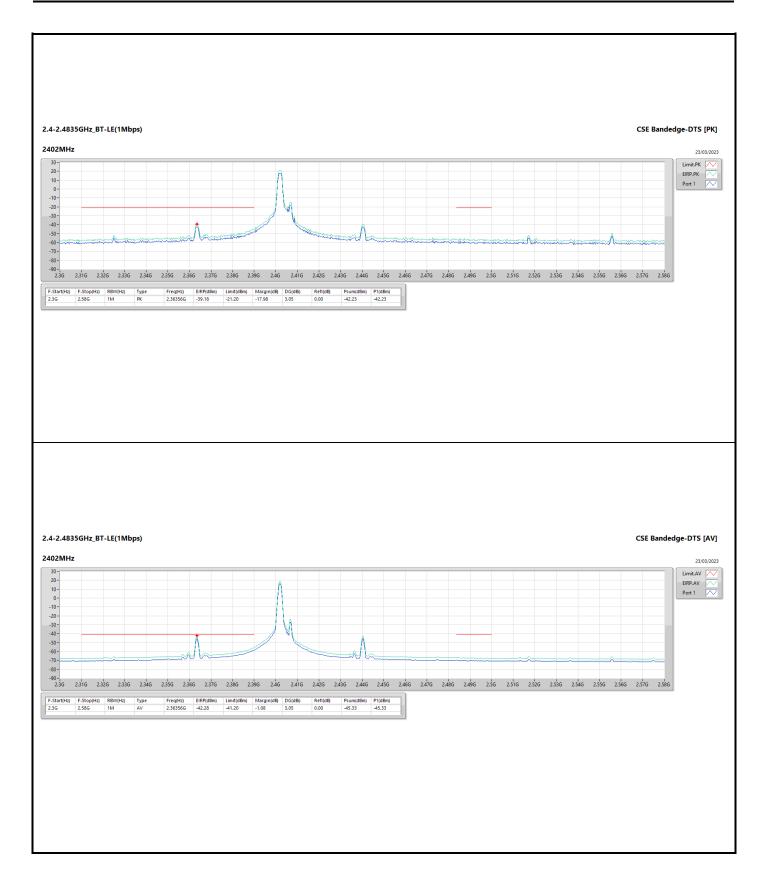


Appendix F.4

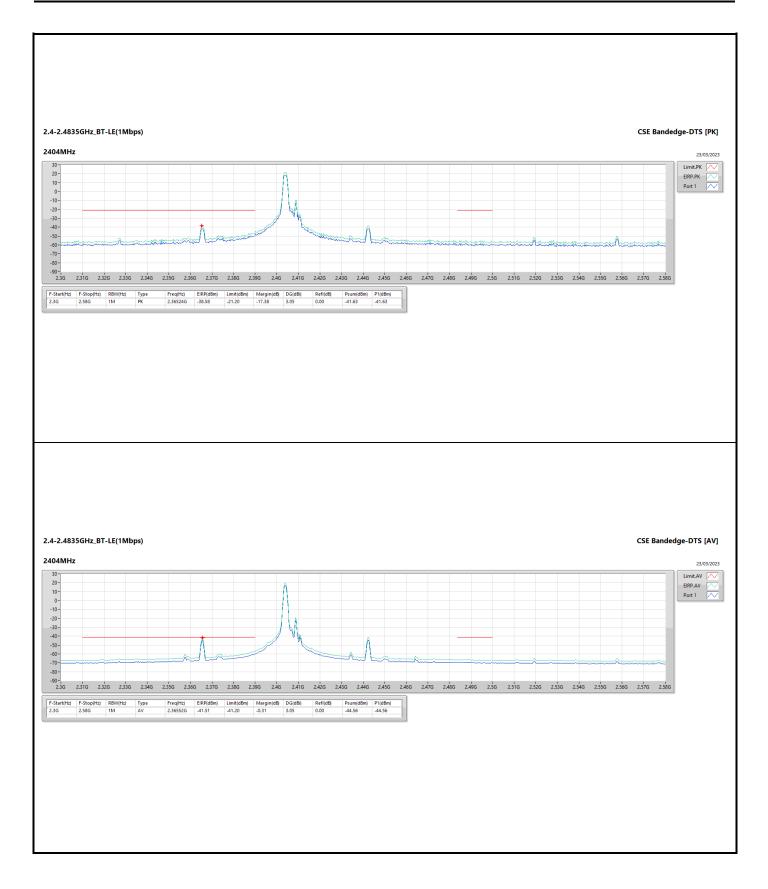
Summary

Mode	Result	F-Start (Hz)	F-Stop (Hz)	Туре	Freq (Hz)	DG (dBi)	Psum (dBm)	EIRP (dBm)	Limit (dBm)	Margin (dB)
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-
BT-LE(1Mbps)	Pass	2.3G	2.58G	AV	2.48368G	3.05	-44.47	-41.42	-41.20	-0.22
BT-LE(2Mbps)	Pass	2.3G	2.58G	AV	2.48368G	3.05	-44.28	-41.23	-41.20	-0.03

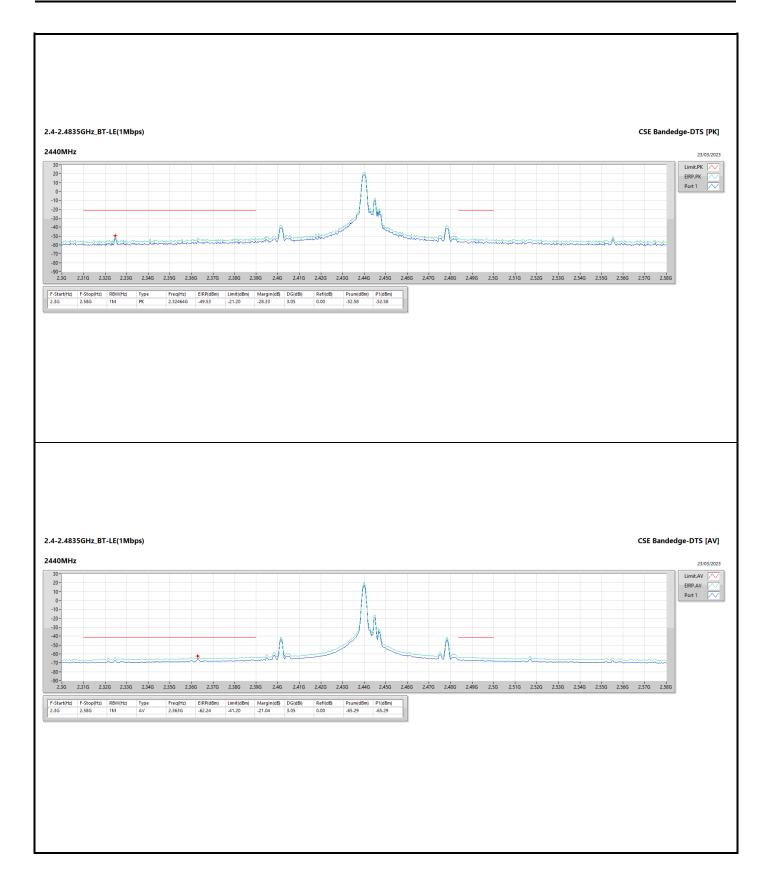
DG = Directional Gain ; PX=Port X; Psum=P1+P2+...PX


Appendix F.4

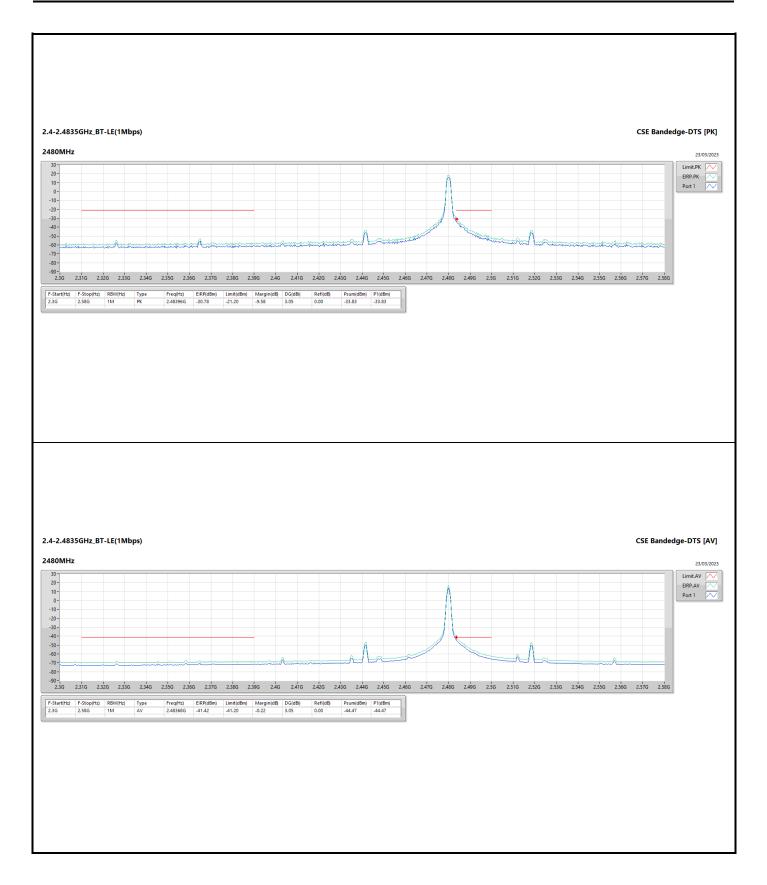
Result

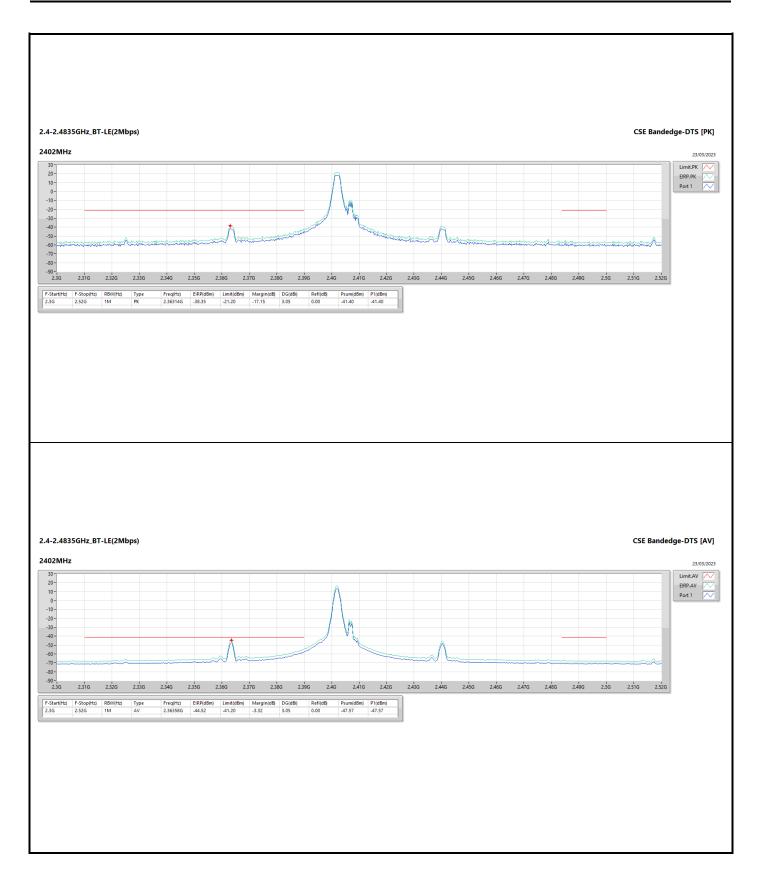

Mode	Result	F-Start	F-Stop	Туре	Freq	DG	Psum	EIRP	Limit	Margin
		(Hz)	(Hz)		(Hz)	(dBi)	(dBm)	(dBm)	(dBm)	(dB)
BT-LE(1Mbps)	-	-	-	-	-	-	-	-	-	-
2402MHz	Pass	2.3G	2.58G	AV	2.36356G	3.05	-45.33	-42.28	-41.20	-1.08
2402MHz	Pass	2.3G	2.58G	PK	2.36356G	3.05	-42.23	-39.18	-21.20	-17.98
2404MHz	Pass	2.3G	2.58G	AV	2.36552G	3.05	-44.56	-41.51	-41.20	-0.31
2404MHz	Pass	2.3G	2.58G	PK	2.36524G	3.05	-41.63	-38.58	-21.20	-17.38
2440MHz	Pass	2.3G	2.58G	AV	2.363G	3.05	-65.29	-62.24	-41.20	-21.04
2440MHz	Pass	2.3G	2.58G	PK	2.32464G	3.05	-52.58	-49.53	-21.20	-28.33
2478MHz	Pass	2.3G	2.58G	AV	2.48368G	3.05	-48.21	-45.16	-41.20	-3.96
2478MHz	Pass	2.3G	2.58G	PK	2.48368G	3.05	-37.09	-34.04	-21.20	-12.84
2480MHz	Pass	2.3G	2.58G	AV	2.48368G	3.05	-44.47	-41.42	-41.20	-0.22
2480MHz	Pass	2.3G	2.58G	PK	2.48396G	3.05	-33.83	-30.78	-21.20	-9.58
BT-LE(2Mbps)	-	-	-	-	-	-	-	-	-	-
2402MHz	Pass	2.3G	2.52G	AV	2.36358G	3.05	-47.57	-44.52	-41.20	-3.32
2402MHz	Pass	2.3G	2.52G	PK	2.36314G	3.05	-41.40	-38.35	-21.20	-17.15
2404MHz	Pass	2.3G	2.58G	AV	2.36524G	3.05	-46.19	-43.14	-41.20	-1.94
2404MHz	Pass	2.3G	2.58G	PK	2.36496G	3.05	-39.56	-36.51	-21.20	-15.31
2440MHz	Pass	2.3G	2.58G	AV	2.363G	3.05	-66.81	-63.76	-41.20	-22.56
2440MHz	Pass	2.3G	2.58G	PK	2.32464G	3.05	-53.50	-50.45	-21.20	-29.25
2478MHz	Pass	2.3G	2.58G	AV	2.48368G	3.05	-44.73	-41.68	-41.20	-0.48
2478MHz	Pass	2.3G	2.58G	PK	2.48368G	3.05	-31.55	-28.50	-21.20	-7.30
2480MHz	Pass	2.3G	2.58G	AV	2.48368G	3.05	-44.28	-41.23	-41.20	-0.03
2480MHz	Pass	2.3G	2.58G	PK	2.48368G	3.05	-31.77	-28.72	-21.20	-7.52

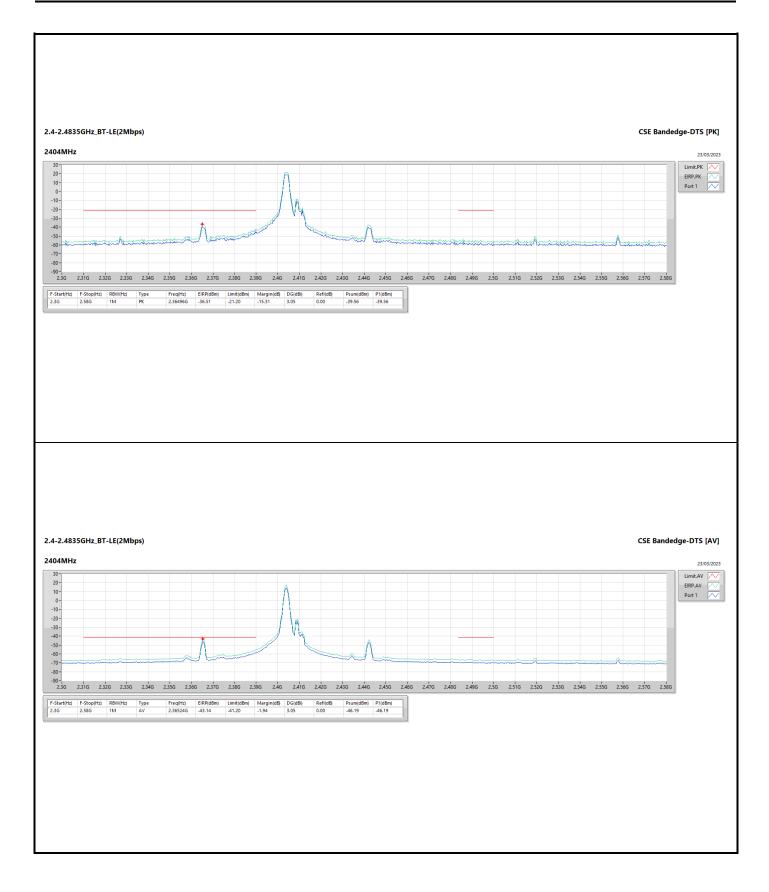
DG = Directional Gain ; PX=Port X; Psum=P1+P2+...PX

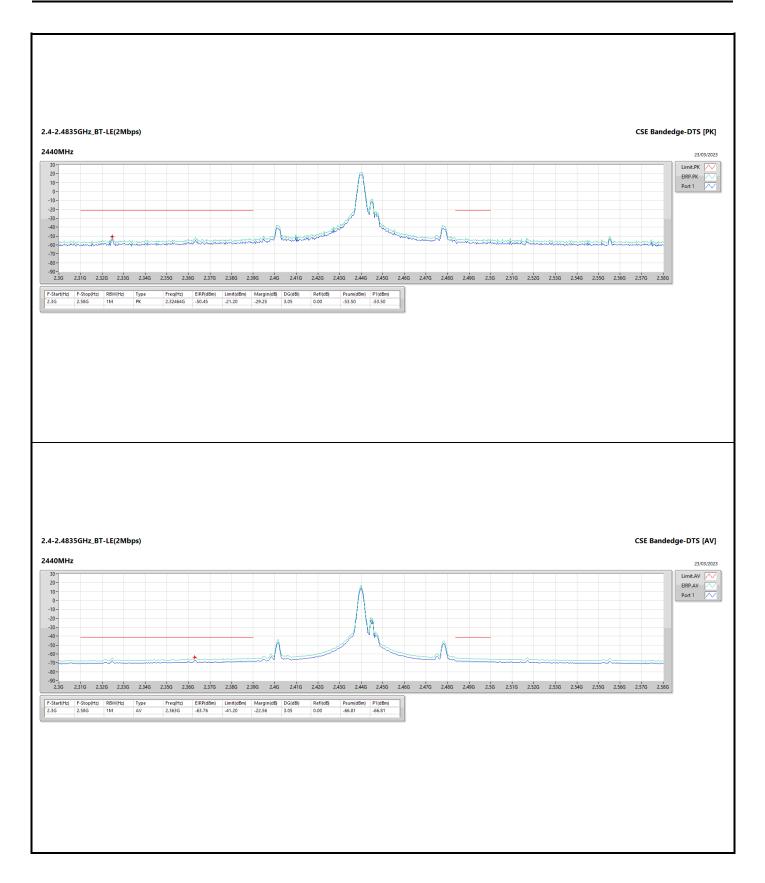


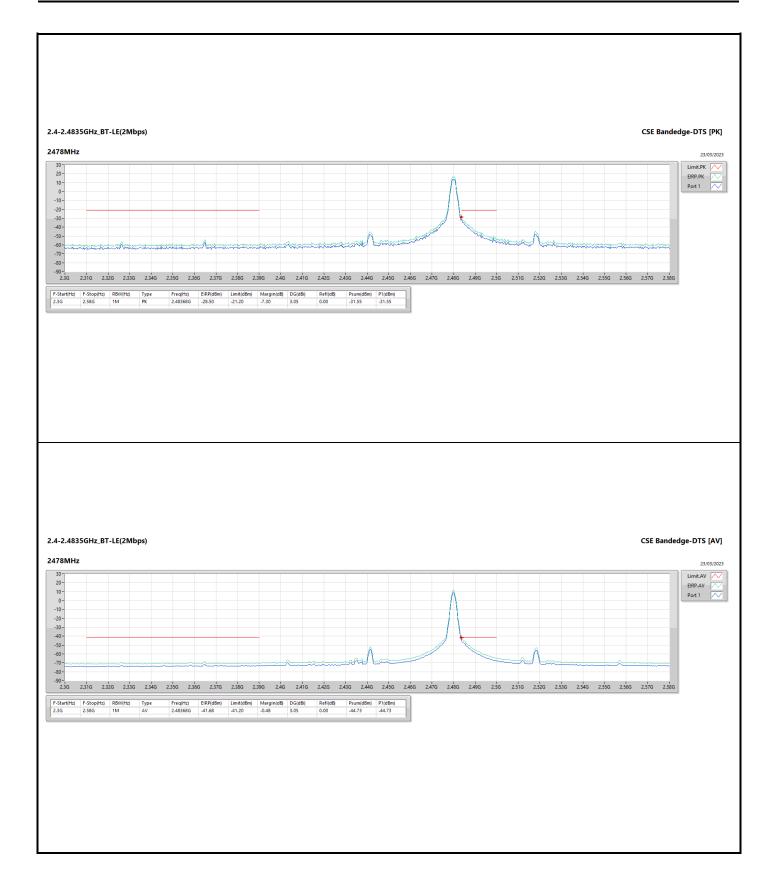


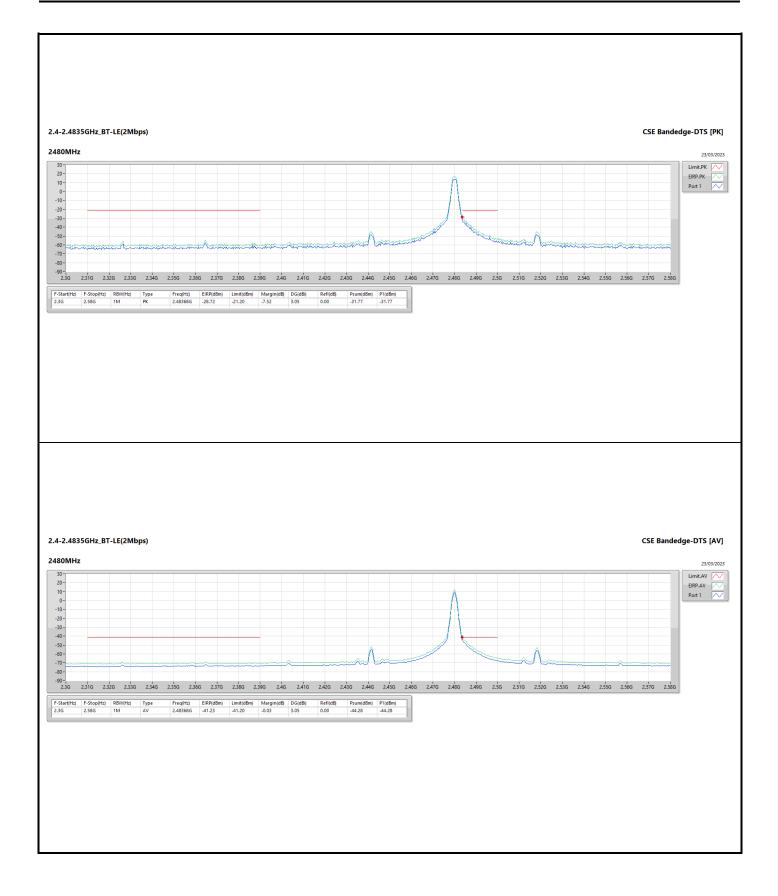


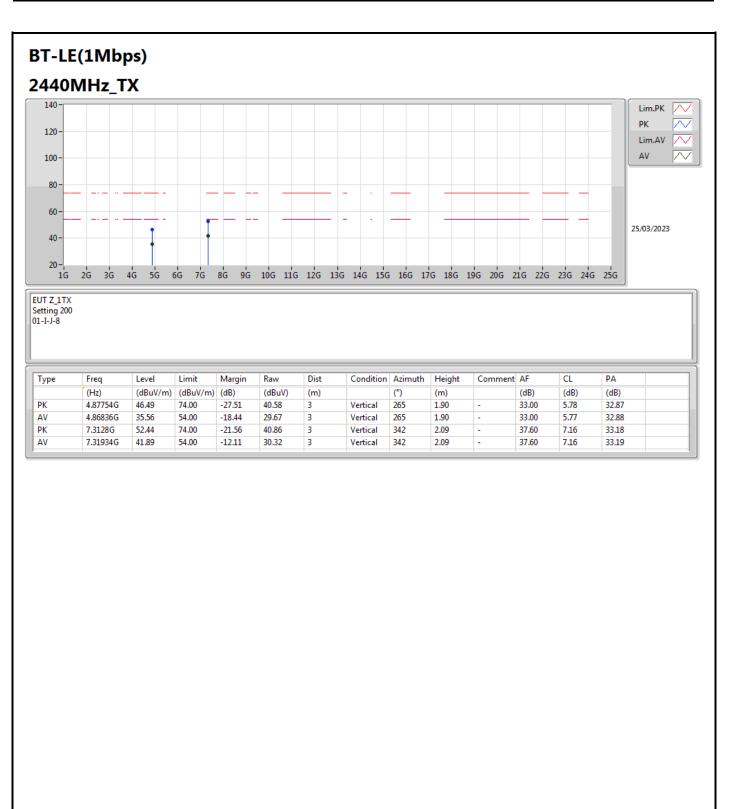




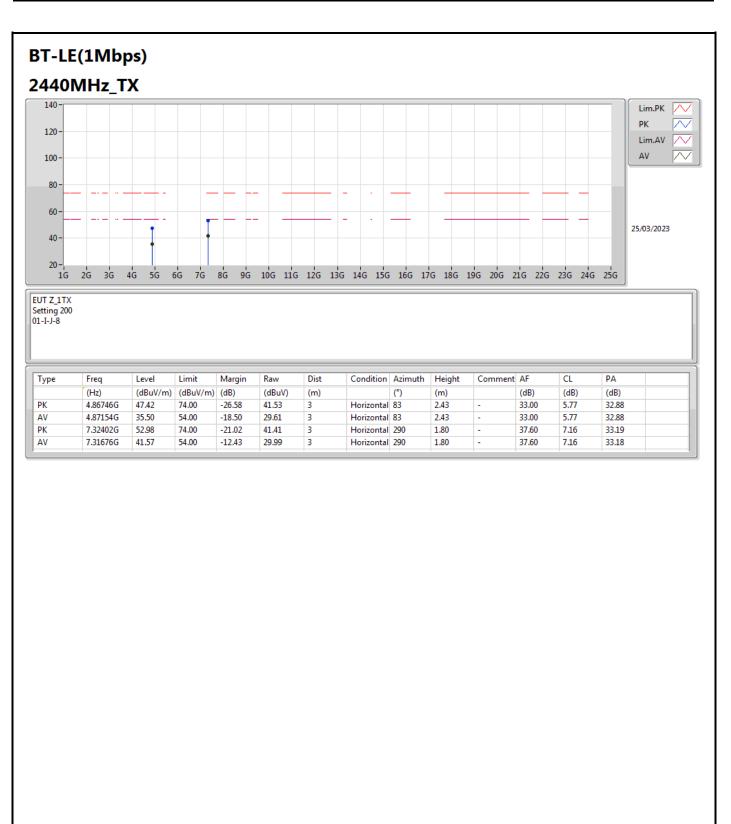







RSE TX above 1GHz (Cabinet)

Appendix F.5


Summary

Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Dist (m)	Condition	Azimuth (°)	Height (m)	Comments
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-
BT-LE(1Mbps)	Pass	AV	7.31934G	41.89	54.00	-12.11	3	Vertical	342	2.09	-

