

UNII-1 (5150-5250MHz) Wi-Fi Radio Test Report (Radiated Spurious Emissions Only)

For

IW9165DH-B, IW9165DH-A & IW9165DH-ROW

Supports

5/6 GHz 802.11 a/n/ac/ax Wi-Fi + Bluetooth LE v5.0 + GNSS radio

FCC ID: LDKIW9165DH IC: 2461A-IW9165DH

Against the following Specifications:

47 CFR 15.205 47 CFR 15.209 CFR47 Part 15.407 RSS-247 issue 2 RSS-Gen issue 5

Cisco Systems 170 West Tasman Drive San Jose, CA 95134

Page No: 1 of 40

Author: Danh Le	Lafe
Tested By: Farida Rahmanzai Title: Test Engineer	fala P.
Approved By: Howard Ji Title: Compliance Manager	And E
Revision	1.0

This report replaces any previously entered test report under EDCS – 23771100. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. Test Report Template EDCS# 1526148

This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. SECTION 1: OVERVIEW5 TEST SUMMARY 5 SECTION 2: ASSESSMENT INFORMATION......6 2.1 General 6 2.3 REPORT ISSUE DATE 8 2.4 2.5 EQUIPMENT ASSESSED (EUT)......9 2.6 2.7 EUT DESCRIPTION 9 3.1 4.2 System Details 13 APPENDIX A: RADIATED SPURIOUS EMISSION14 A.1 SETUP DIAGRAM 14 A.2 A.3 A.4 Test Procedure 21 A.5 APPENDIX B: LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST34 APPENDIX C: ABBREVIATION KEY AND DEFINITIONS......35 APPENDIX D: PHOTOGRAPHS OF TEST SETUPS......36 APPENDIX E: SOFTWARE USED TO PERFORM TESTING......37 APPENDIX F: TEST PROCEDURES38 APPENDIX G: SCOPE OF ACCREDITATION (A2LA CERTIFICATE NUMBER 1178-01)......99 APPENDIX H: TEST ASSESSMENT PLAN......40 APPENDIX I: WORST CASE JUSTIFICATION40

Revision History

Revision	Date	Comment
1	01/12/2023	Initial release

Section 1: Overview

1.1 Test Summary

The samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

Specifications	
47 CFR 15.205	
47 CFR 15.209	
47 CFR 15.407	
RSS-247 Issue 2	
RSS-Gen Issue 5	

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Radio Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature 15°C to 35°C (54°F to 95°F)

Atmospheric Pressure 860mbar to 1060mbar (25.4" to 31.3")

Humidity 10% to 75*%

e) All AC testing was performed at one or more of the following supply voltages:

48VDC

2.2 Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB]

The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss..

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Measurement Uncertainty Values

voltage and power measurements	± 2 dB
RF Output Power, conducted	± 2 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7 MHz
temperature measurements	± 0.54°C
humidity measurements	± 2.3%
DC and low frequency measurements	± 2.5%.

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

2.3 Date of testing (initial sample receipt date to last date of testing)

21-November-2022 to 05-January-2023

2.4 Report Issue Date

12-January-2023

2.5 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc. 125 West Tasman Drive (Building P) San Jose, CA 95134 USA

Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134 USA

Registration Numbers for Industry Canada

region and in trainbold for inductry surface				
Cisco System Site	Address	Site Identifier		
Building P, 10m Chamber	125 West Tasman Dr	Company #: 2461N-2		
	San Jose, CA 95134			
Building P, 5m Chamber	125 West Tasman Dr	Company #: 2461N-1		
	San Jose, CA 95134			
Building 7, 5m Chamber	425 E. Tasman Drive	Company #: 2461N-3		
	San Jose, California 95134			
	United States			

Test Engineer Farida Rahmanzai

2.6 Equipment Assessed (EUT)

IW9165DH-B with embedded 5/6GHz radio module.

2.7 EUT Description

The Catalyst IW9165 Series addresses the growing need for reliable client wireless connectivity to mission-critical applications as organizations automate processes and operations. It comes with two 2x2 radios, features an industrial design, and is packed with advanced features.

The Cisco Catalyst IW9165D Heavy Duty Access Point is designed to make wireless backhaul deployment simple. It comes with a built-in directional antenna that enables long-range, high-throughput connectivity anywhere fiber is not an option. The external antenna ports let you quickly extend your network to new places when needed and choose the right antenna based on the use cases and deployment architectures. With heavy-duty IP67 design, the Catalyst IW9165D is certified to operate under wet, dusty, and extreme temperature conditions.

IW9165DH Key Features:

- Dual radio 5GHz, 5/6GHz
- Directional & External (2 x N Type) antennas
- 2x2 MIMO 2SS, Max data rate 3.6 Gbps
- · BTLE, GNSS radio
- CURWB mode provides reliable wireless connectivity
- RJ45, M12 1 x 2.5Gbps, 1x 1 Gbps
- Dual power input PoE-in & 24-48VDC
- Dual mounting options Pole & Wall mount
- IP67

Wireless Protocols support

- Wi-Fi: IEEE 802.11a, 802.11n, 802.11ac, 802.11ax
- Bluetooth Low Energy v5.0: IEEE 802.15 (1Mbps & 2Mbps, single stream)
- GNSS (Global Navigation Satellite System) receiver

5/6 GHz radio specification:

- 802.11a (5 GHz band only): 6, 9, 12, 18, 24, 36, 48, 54 Mbps
- 802.11n (5 GHz band only): HT20 and HT40, MCS0 to 15
- 802.11ac (5 GHz band only): ∘ VHT20 MCS0 to 8, 1 or 2 spatial streams
 - ∘ VHT80, VHT160 MCS0 to 9, 1 or 2 spatial streams
- 802.11ax: HE20, HT40, HE80, and HE160 MCS0 to 11, 1 or 2 spatial streams

The following antennas are supported by this product series.

Please note the following antenna gain information was provided by the customer:

Frequency	Part Number	Antenna Type	Peak Antenna Gain (dBi)
5/6 GHz	IW-ANT-OMH-2567-N	Tri-band 2.4Ghz 4dBi, 5/6GHz 7dBi	7.0
		Omnidirectional Collinear Array Antenna,	
		Horizontally Polarized, N male connector	

Model/PID differences

All PIDs have identical components, PCB layout, electronics circuitries and enclosure. The only difference is domain code selected in the software.

The model differences are described below:
IW9165DH-B represents U.S PID with US domain code selected
IW9165DH-A represents Canada PID with Canada domain code selected.
IW9165DH-ROW represents Worldwide PID, except for US & CAN, with ROW domain code selected.

Section 3: Result Summary

3.1 Results Summary Table

Radiated Emissions (General requirements)

Basic Standard	Technical Requirements / Details	Result			
	TX Spurious Emissions in non-restricted bands:				
FCC 15.407					
(b)(1)	(b)(7) of this section, the maximum emissions outside of the frequency				
	bands of operation shall be attenuated in accordance with the following				
	limits:				
	For transmitters operating in the 5.15–5.25 GHz band: All emissions				
	outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p. of –27				
	dBm/MHz.				
FCC 15.407	FCC: Unwented emissions below 1 GHz must comply with the general				
(b)(9)	(L)(O) FCC: Onwanted emissions below 1 GHz must comply with the general				
. , , ,	field strength limits set forth in §15.209.				
	FCC: Except as provided elsewhere in this subpart, the emissions from				
FCC 15.209	an intentional radiator shall not exceed the field strength levels specified				
	in the field strength limits table in this section.				
RSS-247 RSS: For transmitters with operating frequencies in the band 5150-5250					
6.2.1.2	MHz, all emissions outside the band 5150-5350 MHz shall not exceed -				
27 dBm/MHz e.i.r.p.					
EGG 15 300	TX Spurious Emissions in restricted bands:				
FCC 15.209	FCC 15.209 FCC: Unwanted emissions falling within the restricted bands, as defined				
ECC 15 205	in FCC 15.205 (a) must also comply with the radiated emission limits				
FCC 15.205	specified in FCC 15.209 (a).				
RSS-Gen 8 10	RSS-Gen 8.10 RSS: Unwanted emissions falling into restricted bands of Table 6 shall				
1255 Gen 6.10					
	comply with the limits of Table 4 specified in RSS-Gen 8.9.				

Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing. Please also refer to the "Justification for worst Case test Configuration" section of this report for further details on the selection of EUT samples.

4.1 Sample Details

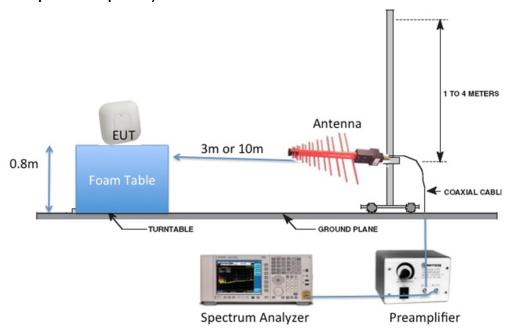
Sample Number	Equipment Details	Serial Number	CISCO Part Number	Radio FW Version
S01	IW9165DH-B with embedded 5GHz radio module.	FOC2638BL8Z	68-103412-02	WLAN.HK.2.4.c2-00211- QCAHKSWPL_SILICO
S02	IW-PWRADPT-MFIT4PN Liteon AC Adaptor	LIN2631203M	341-101392-01	

4.2 System Details

System #	Description	Samples
1	IW9165DH-B w/ embedded Wi-Fi Radio module + external power supply	S01, S02

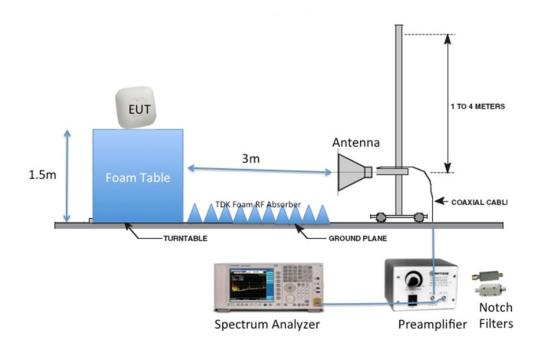
4.3 Mode of Operation Details

Mode #	Mode # Wi-Fi Mode		Modulation	Data Rate	BW
1. Transmit	2x2	MIMO 802.11n/HT20	MIMO-OFDM	MCS0	20MHz


Note: Table above represents the worst-case scenarios for all modulations and data rate combination of each mode. The TX modes in the table above were determined to be the worst-case emissions of all TX modes and selected for RSE testing.

Appendix A: Radiated Spurious Emission

A.1 Setup Diagram


Radiated Emission Setup Diagram-Below 1G (Preamp used is optional)

Note: The radiated spurious emissions test setup referenced to KDB789033 D02, v02r01, Section II (G)(3)(b)(i)), the EUT antenna ports were terminated with 50Ω loads.

Radiated Emission Setup Diagram-Above 1G

Note: The radiated spurious emissions test setup referenced to KDB789033 D02, v02r01, Section II (G)(3)(b)(i)), the EUT antenna ports were terminated with 50Ω loads.

A.2 Radiated Spurious Emissions Test Requirements & Limits

Emissions on frequency or frequencies which are outside the necessary bandwidth and level of which may be reduced without effecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands Limits

FCC 15.407 (b) (10) The provisions of 15.205 apply to intentional radiators operating under this section.

FCC 15.205 (b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

Restricted Bands for FCC				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	Above 38.6	
13.36-13.41				

RSS-Gen 8.10

- (b) Unwanted emissions that fall into restricted bands of Table 7 shall comply with the limits specified in table 5 (general field strength limits at frequencies above 30 MHz) and table 6 (general field strength limits at frequencies below 30 MHz).
- (c) Unwanted emissions that do not fall within the restricted frequency bands of Table 7 comply either with the limits specified in the applicable RSS or with those specified in table 5 and table 6.

Table 7 Restricted Bands

Table / Restricted Ballus						
MHz	MHz	GHz				
0.090-0.110	74.8-75.2	9.0-9.2				
2.1735-2.1905	108-138	9.3-9.5				
3.020-3.026	156.52475-156.52525	10.6-12.7				
4.125-4.128	156.7-156.9	13.25-13.4				
4.17725-4.17775	240-285	14.47-14.5				
4.20725-4.20775	322-335.4	15.35-16.2				
5.677-5.683	399.9-410	17.7-21.4				
6.215-6.218	608-614	22.01-23.12				
6.26775-6.26825	960-1427	23.6-24.0				
6.31175-6.31225	1435-1626.5	31.2-31.8				
8.291-8.294	1645.5-1646.5	36.43-36.5				
8.362-8.366	1660-1710	Above 38.6				
8.37625-8.38675	1718.8-1722.2	*				
8.41425-8.41475	2200-2300					
12.29-12.293	2310-2390					
12.51975-12.52025	2655-2900					
12.57675-12.57725	3260-3267					
13.36-13.41	3332-3339					
16.42-16.423	3345.8-3358					
16.69475-16.69525	3500-4400					
16.80425-16.80475	4500-5150					
25.5-25.67	5350-5460					
37.5-38.25	7250-7750					
73-74.6	8025-8500					

Non-Restricted Bands Limits

Below 1 GHz

FCC 15.209

The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the table specified in the table in FCC§15.209(a).

FCC15.407

(b) (9) Unwanted emissions below 1GHz must comply with general field strength limits set forth in §15.209.

RSS-Gen 8.9

Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

General Field Strength Limits Table						
Frequency (MHz)	Field strength (uV/meter)	Field strength (dBuV/meter)	Measurement distance (meters)			
30-88	100**	40 Qp	3			
88-216	150**	43.5 Qp	3			
216-960	200**	46 Qp	3			
Above 960	500	54 Av / 74 Pk	3			

Above 1 GHz

FCC15.407

(b) *Undesirable emission limits*. Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz

RSS-247 (6.2.1.2)

For transmitters with operating frequencies in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p.

A.3 Limit Conversion (power to field strength)

The field strength limit in dBµV can be converted from power (logarithmic) by using the field strength (linear) approach formula as follows:

V/m =
$$\frac{\sqrt{30 \times Pt \times gt}}{d}$$

where: **pt** = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unit less),

E = electric field strength in V/m,

d = measurement distance in meters (m).

From the equation above, unit conversion from log => linear with a known power limit of -27 dBm.

(1) Conversion from dBm to Watt

$$dBm to Watts W = 10((dBm - 30)/10)$$

$$P(W) = 10^{(-27 - 120)/20}$$
= 10 -5.7
= 1.995 x 10 -6

(2) Convert from Watt to field strength

a. Convert from Watt to V/m @ 3m distance

V/m =
$$\frac{\sqrt{30 \times \text{Pt} \times \text{gt}}}{3}$$

= $\frac{\sqrt{30 \times 0.000001995 \times 1}}{3}$
= 0.00257

b. Convert field strength to power density (V/m to dBµV/m)

$$dB\mu V/m = 20 \log (V/m) + 120$$

= 68.2

A.4 Test Procedure

Ref. ANSI C63.10: 2013 section 5 / section 6.5, section 6.6

Test Procedure

- 1.Place EUT on the tabletop 80cm above ground below 1GHz scan and 1.5m above 1GHz scan with @3m test distance from measuring antenna from 30MHz 40GHz preferably. If necessary due to instrument setup capabilities in higher frequency range, 1m test distance can be used.
- 2. Turn on the lowest radio operating frequency in continuous transmit mode.
- 3. Use Vasona software to configure the Spectrum analyzer test parameters as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer).
- 4. Allow Vasona software to initiate the pre-scan and identify all emissions close to the limits.
- 5. Manually fine tune all identified emissions and use the marker function to determine the maximum spurs amplitude level.
- 6. Record at least 6 highest identified emissions with amplitude relative to the limits. Emissions more than 20 dB below the peak limits do not need to be reported.
- 7. For all emissions identified in the restricted bands, perform formal measurement.
- 8. Capture graphs and record pertinent measurement data.
- 9. Repeat step 2- 8 with middle and highest operating radio frequency.

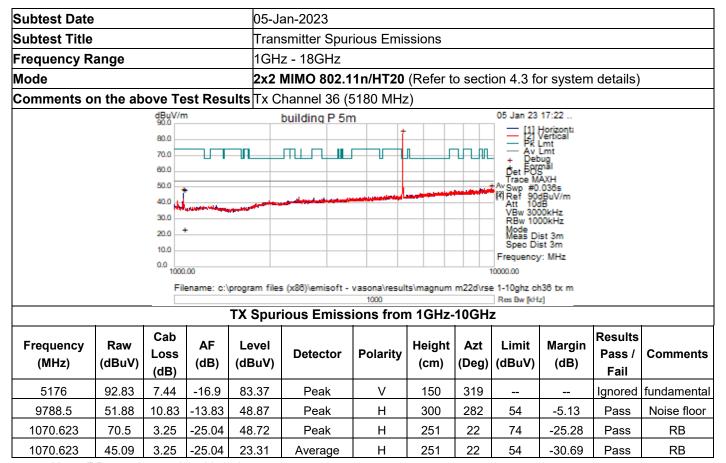
Note: Vasona software shall automatically control the movement of the antenna height from 1m - 4m and rotation of the turntable from 0° - 360° and perform the measurement for all identified emissions.

Ref. ANSI C63.10: 2013 section 4.1.4 / section 12.7.5 (Quasi-Peak), section 12.7.6 (peak), section 12.7.7.3 (average), Cispr16-1-1

Test parameters

- (i) Span = Entire frequency range or segment if necessary.
- (ii) Reference Level ≥ 10dB headroom between Spectrum analyzer's ceiling and top carrier signal
- (iii) RBW = 100 kHz (less than or equal to 1 GHz); 1 MHz (above 1 GHz)
- (iv) VBW \geq 3 x RBW
- (v) Detector = Peak & Quasi-Peak (frequency range 30 MHz to 1 GHz);

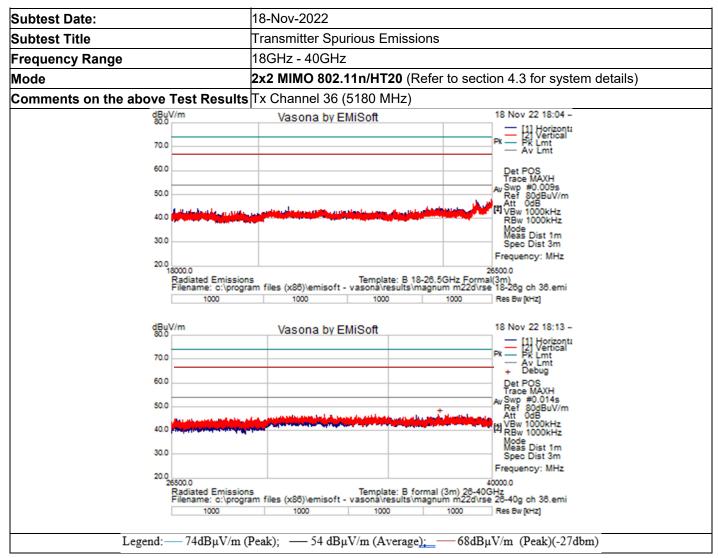
Peak & Average (frequency range above 1 GHz); Change VBW to 10 Hz for average measurement


(vi) Sweep Time = Couple

Note: The data displayed on the plots detailed in the graphical test results section were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements.

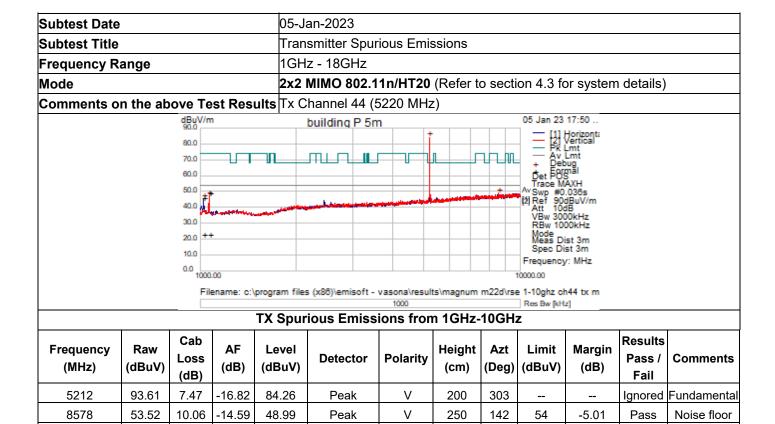
A.5 TX Radiated Spurious Emissions Graphical Data Results

Subtest Da	te	21-Nov-2022										
Subtest Titl	le	Transmitter Spurious Emissions										
Frequency	Range			30N								
Mode)				
Comments on the above Test Results Tx Channel 36 (5180 MHz)												
dBuV/m Vasona by EMiSoft 21 Nov 22 16:17 .												
60.0 60.0												
			Lilomic. O.	program rucs	(xoo) Emisore	10			Res Bw [kH	_		
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)	Azt (Deg)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
30.22638	12.2	0.46	21.17	33.83	Quasi-pk	V	102	296	40	-6.17	Pass	
76.25291	24.3	0.72	7.9	32.92	Quasi-pk	V	122	69	40	-7.08	Pass	
560.0398	15.51	2	18.35	35.86	Quasi-pk	V	99	250	46	-10.14	Pass	
41.16175	10.81	0.54	13.38	24.73	Quasi-pk	V	215	332	40	-15.27	Pass	
232.2887	19.24	1.27	11.05	31.57	Quasi-pk	V	99	127	46	-14.43	Pass	


Note: RB means restricted band

Subtest Date	17-Nov-2022	17-Nov-2022				
Subtest Title	Transmitter Spurious Emission	Transmitter Spurious Emissions				
Frequency Range	1GHz - 18GHz	1GHz - 18GHz				
Mode	2x2 MIMO 802.11n/HT20 (Re	2x2 MIMO 802.11n/HT20 (Refer to section 4.3 for system details)				
Comments on the above Test Resu	Ilts Tx Channel 36 (5180 MHz)					
	•					
dBuV/m 90.0	building P 5m	17 Nov 22 14:11 — [1] Horizonta				
80.0		— [2] Vertical — PK Lmt				
70.0		- Av Lmt + Debug - Formal				
60.0		Det POS Trace MAXH				
40.0		(2) Swp #0.0325 Ref 90dBuV/m Att 10dB				
30.0		+ VBw 3000kHz RBw 1000kHz				
20.0		Mode Meas Dist 3m				
10.0		Spec Dist 3m Frequency: MHz				
0.0 10000.00 Cisco	51-7-001	18000.0				
Filename: c:\p	rogram files (x86)\emisoft - vasona\results\m 1000	agnum m22d\rse 10-18g m22d 5g cl Res Bw [kHz]				
Cisco	orogram files (x88)\emisoft - vasona\results\m 1000	agnum m22d\rse 10-18g m22d 5g cl				

Note: No measurable emissions found from 10GHz - 18GHz



Note: No measurable emissions found from 18GHz - 40GHz.

Subtest Date				21-N	21-Nov-2022							
Subtest Title Transmitter Spurious Emissions												
Frequency	Range			30MI	Hz - 1GHz							
Mode 2x2 MIMO 802.11n/HT20 (Refer to section 4.3 for system details)												
Comments	on the a	above Te	st Res	ults Char	nel 44 (522	0 MHz)						
		dBuV/m 70.0 ⊢	1	1	/asona by EN	/liSoft			21 Nov 22			
		60.0							— [1] — Opk + Deb			
		40.0	a .	į,		<u>.</u>	† ŧ.	والمعاد ال	Det POS Trace M Swp #0	AXH .01s		
		20.0	+ Const	mand that	· · · · · · · · · · · · · · · · · · ·	Murum	A PARTY OF THE PERSON NAMED IN		VBw 300 RBw 100	3)kHz)kHz		
	10.0 Mode PS Meas Dist 3m Spec Dist 3m Spec Dist 3m Frequency: MHz											
		30.00 Ra File			00.00 (x88)\emisoft -	Template: F vasona\result			1000.00 GHz e 30m-1g m: Res Bw (kH:	_		
				TX Spur	ious Emiss	ions fron	n 30MHz	z-1GH	Z	-		
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)	Azt (Deg)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
30.11048	12.33	0.46	21.23	34.02	Quasi-pk	Н	225	221	40	-5.98	Pass	
75.80988	23.69	0.72	7.96	32.37	Quasi-pk	V	143	110	40	-7.63	Pass	
560.0523	16.76	2	18.35	37.11	Quasi-pk	V	101	245	46	-8.89	Pass	
899.9786	11.23	2.54	22.35	36.12	Quasi-pk	V	99	253	46	-9.88	Pass	
474.9629	9.91	1.84	17.46	29.21	Quasi-pk	V	100	-1	46	-16.79	Pass	
41.59052	11.11	0.54	13.05	24.7	Quasi-pk	V	187	330	40	-15.3	Pass	

V

٧

Н

Н

201

201

146

146

329

329

53

53

74

54

74

54

-25.21

-30.98

-28.11

-31.01

Pass

Pass

Pass

Pass

RB

RB

RΒ

RB

Note: RB means restricted band

3.25

3.25

3.18

3.18

-25.04

-25.04

-24.56

-24.56

48.79

23.02

45.89

22.99

Peak

Average

Peak

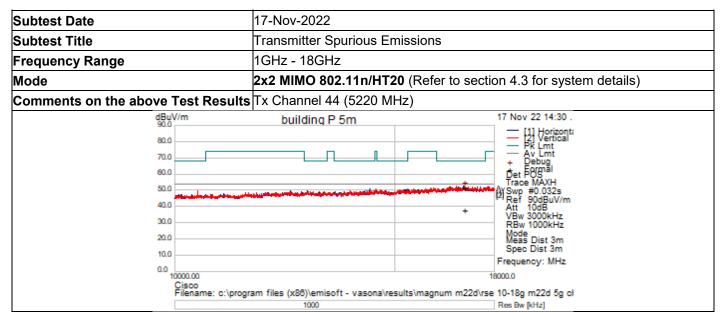
Average

70.58

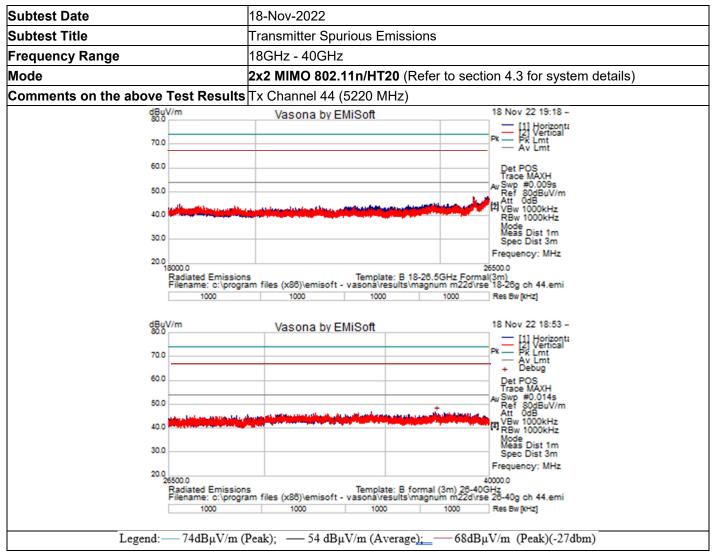
44.81

67.26

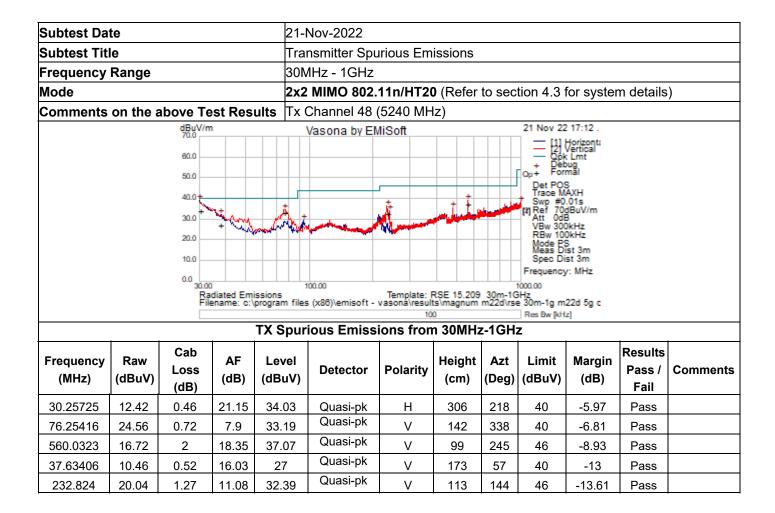
44.37

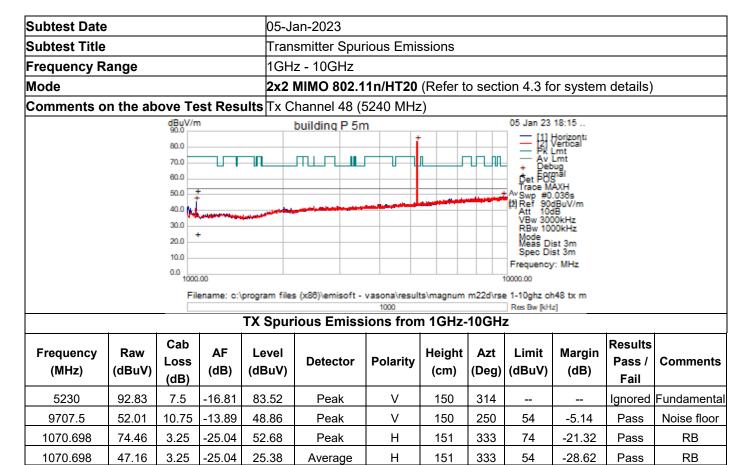

1071.423

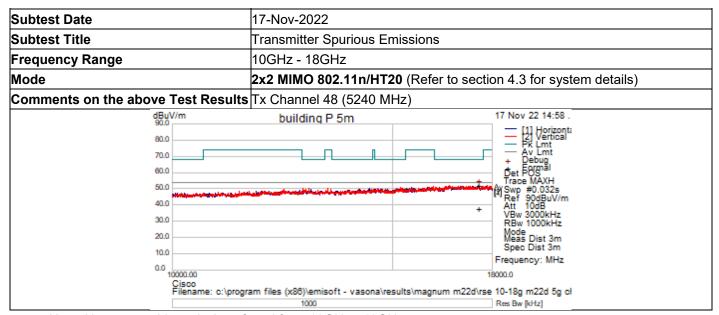
1071.423

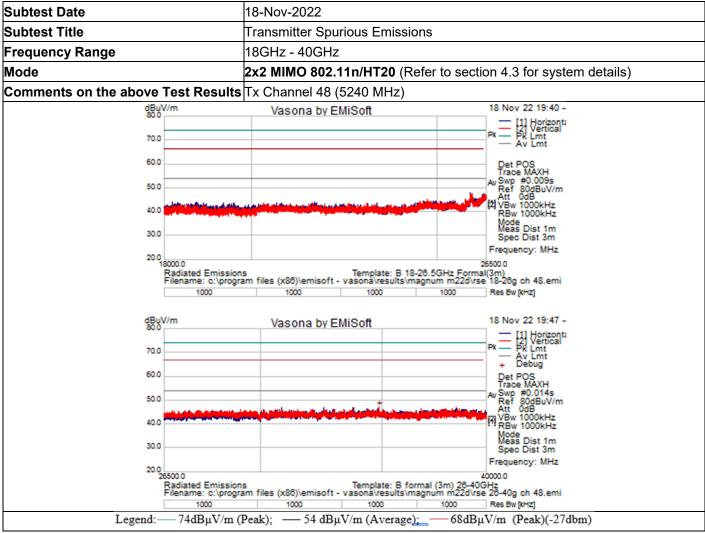

1029.775

1029.775




Note: No measurable emissions found from 10GHz - 18GHz


Note: No measurable emissions found from 18GHz - 40GHz.



Note: RB means restricted band

Note: No measurable emissions found from 10GHz - 18GHz

Note: No measurable emissions found from 18GHz - 40GHz.

Appendix B: List of Test Equipment Used to perform the test

Equip#	Manufacturer/ Model	Manufacturer/ Model Description Last Cal		Next Due	Test Section				
	Radiated Emissions 30MHz – 1GHz								
CIS008448	Cisco/NSA 5m Chamber	NSA 5m Chamber	23-Aug-2022	23-Aug-2023	A.5				
CIS058263	ROHDE & SCHWARZ/ ESW44	EMI TEST RECEIVER, 44Ghz	22-Aug-2022	22-Aug-2023	A.5				
CIS032367	Sunol Sciences / JB1	Combination Bi-Log Antenna, 30MHz-2GHz	16-May-2022	16-May-2023	A.5				
CIS008515	Huber+Suhner /SF106	Sucoflex Cable	30-Aug-2022	30-Aug-2023	A.5				
CIS021117	Micro-Coax / UFB311A-0- 2484-520520	RF Coaxial Cable, 272.0 in. - 18GHz	12-Sep-2022	12-Sep-2023	A.5				
CIS063069	Micro-Coax / UFB311A-0- 2484-520520	RF Coaxial Cable, 272.0 in. - 18GHz	12-Sep-2022	12-Sep-2023	A.5				
		Radiated Emissions 1GHz – 18	GHz						
CIS40597	Cisco/NSA 5m Chamber	NSA 5m Chamber Above 1GHz	10-Sep-2022	10-Sep-2023	A.5				
CIS037581	ETS Lindgren / 3117	Double Ridged Guide Horn Antenna	05-May-2022	05-May-2023	A.5				
CIS063061	Cisco / TstHd1	External Preamplifier Array, 1-18GHz	06-Jul-2022	06-Jul-2023	A.5				
CIS055357	MITEQ/TTA1800-30-HG-N-M	N-Type Pre-amplifier 18GHz	09-Jun-2022	09-Jun-2023	A.5				
CIS058263	ROHDE & SCHWARZ/ ESW44	EMI TEST RECEIVER, 44Ghz	22-Aug-2022	22-Aug-2023	A.5				
CIS008515	Huber+Suhner /SF106	Sucoflex Cable	30-Aug-2022	30-Aug-2023	A.5				
CIS021117	Micro-Coax / UFB311A-0- 2484-520520	RF Coaxial Cable, 272.0 in. - 18GHz	12-Sep-2022	12-Sep-2023	A.5				
CIS063069	Micro-Coax / UFB311A-0- 2484-520520	311A-0- RF Coaxial Cable, 272.0 in. - 18GHz 12-Sep-2022		12-Sep-2023	A.5				
CIS025000	Micro-Coax / UFB197C	RF Coaxial Cable	10-Aug-2022	10-Aug-2023	A.5				
	Radiated Emissions 18GHz – 40GHz								
CIS40597	Cisco/NSA 5m Chamber	NSA 5m Chamber Above 1GHz	10-Sep-2022	10-Sep-2023	A.5				
CIS41971	CISCO/1840	18-40GHz EMI Test Head/Verification Fixture including Horn antenna	14-Sep-2022	14-Sep-2023	A.5				
CIS59832	ROHDE & SCHWARZ/ ESW44	EMI TEST RECEIVER, 44Ghz	31-Oct-2022	31-Nov-2023	A.5				

Page No: 34 of 40

Appendix C: Abbreviation Key and Definitions

The following table defines abbreviations used within this test report.

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	°C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
TAP	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control System	Qp	Quasi Peak
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak
Cal	Calibration	kHz	Kilohertz (1x10³)
EN	European Norm	MHz	MegaHertz (1x10 ⁶)
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)
CISPR	International Special Committee on Radio Interference	Н	Horizontal
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization Network	dB	decibel
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³)
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)
L2	Line2	A	Amp
L3	Line 3	μА	Micro Amp (1x10 ⁻⁶)
DC	Direct Current	mS	Milli Second (1x10 ⁻³)
RAW	Uncorrected measurement value, as indicated by the measuring device	μS	Micro Second (1x10 ⁻⁶)
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)
SLCE	Signal Line Conducted Emissions	m	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
N	Neutral Line	R	Return
S	Supply	AC	Alternating Current

Page No: 35 of 40

Appendix D: Photographs of Test Setups

See FCC/RSS RSE Test Setup document – EDCS-23771099

Page No: 36 of 40

Appendix E: Software Used to Perform Testing

EMIsoft Vasona, version 6.083

Page No: 37 of 40

Appendix F: Test Procedures

Measurements were made in accordance with

- KDB 789033 D02 General UNII Test Procedures New Rules v02r01
- KDB 662911 MIMO
- ANSI C63.10 2013 Intentional Radiators

Test procedures are summarized below:

FCC 5GHz Test Procedures	EDCS # 1445048
FCC 5GHz RSE Test Procedures	EDCS # 1511600

Page No: 38 of 40

Appendix G: Scope of Accreditation (A2LA certificate number 1178-01)

The scope of accreditation of Cisco Systems, Inc. can be found on the A2LA web page at:

http://www.a2la.org/scopepdf/1178-01.pdf

Appendix H: Test Assessment Plan

Compliance Test Plan (Excel) EDCS# 23771097 Target Power Tables EDCS# 23409888

Appendix I: Worst Case Justification

Worst case modes were selected by by ANSI C63.10 2013 Section 5.6.2.2, 6.3.1

All 3 orientations (Z, Y, Z) of the EUT were assessed by performing pre-scan. The Y orientation was determined to be the worst-case orientation.