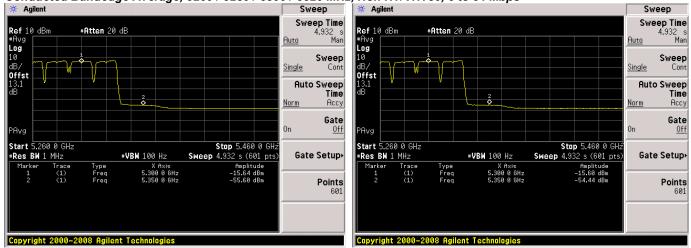
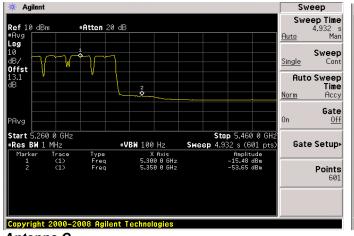
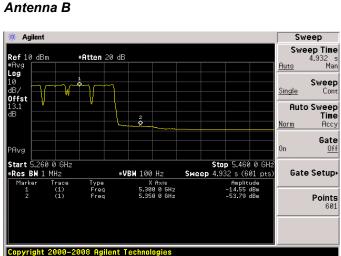
Conducted Band Edge Average Table


Frequency (MHz)	Mode	Tx Paths	Target Power Setting (dBm)	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Tx 3 Bandedge Level (dBm)	Tx 4 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dBm)	Margin (dB)
	Non HT/VHT80, 6 to 54 Mbps	4	5	7	-55.6	-54.44	-53.65	-53.79	-41.28	-41.25	0.03
	HT/VHT80, M0 to M7, M0.1 to M9.1	4	8	7	-54.05	-54.59	-54.99	-55.67	-41.76	-41.25	0.51
5290	HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2	2	12	7	-52.3	-51.66			-41.96	-41.25	0.71
	HT/VHT80 Beam Forming, M16 to M23, M0.3 to M9.3	3	10	7	-53.41	-52.97	-54.68		-41.86	-41.25	0.61
	Non HT/VHT40, 6 to 54 Mbps	3	11	7	-52.95	-55.37	-54.87		-42.50	-41.25	1.25
	HT/VHT40, M8 to M15, M0.2 to M9.2	4	11	7	-55.28	-55.63	-54.58	-55.65	-42.24	-41.25	0.99
<mark>5310</mark>	HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1	2	11	10	-55.1	-55.23			-42.15	-41.25	0.90
	HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3	3	13	7	-53.5	-53.58	-53.7		-41.82	-41.25	0.57
5320	Non HT/VHT20, 6 to 54 Mbps	1	16	7	-51.41				-44.41	-41.25	3.16
	Non HT/VHT20 Beam Forming, 6 to 54 Mbps	2	16	10	-56.53	-56.78			-43.64	-41.25	2.39
	HT/VHT20, M8 to M15, M0.2 to M9.2	3	14	7	-53.5	-53.69	-55.19		-42.29	-41.25	1.04
	HT/VHT20, M16 to M23, M0.3 to M9.3	4	13	7	-55.33	-55.01	-55.4	-56.86	-42.57	-41.25	1.32

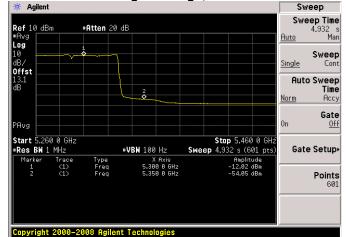
Page No: 77 of 152

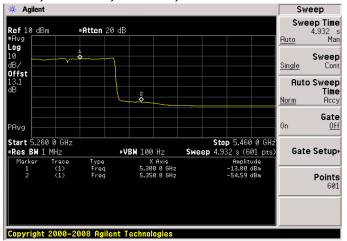
Conducted Band Edge Peak Table


Frequency (MHz)	Mode	Tx Paths	Target Power Setting (dBm)	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Tx 3 Bandedge Level (dBm)	Tx 4 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dBm)	Margin (dB)
	Non HT/VHT80, 6 to 54 Mbps	4	5	7	-38.41	-39.82	-39.73	-36.2	-25.26	-21.25	4.01
5290	HT/VHT80, M0 to M7, M0.1 to M9.1	4	8	7	-41.55	-37.04	-35.11	-40.04	-24.71	-21.25	3.46
	HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2	2	12	7	-33.64	-34.4			-23.99	-21.25	2.74
	HT/VHT80 Beam Forming, M16 to M23, M0.3 to M9.3	3	10	7	-34.6	-38.39	-43.77		-25.73	-21.25	4.48
						_	-		-		
	Non HT/VHT40, 6 to 54 Mbps	3	11	7	-41.38	-42.02	-44.24		-30.61	-21.25	9.36
	HT/VHT40, M8 to M15, M0.2 to M9.2	4	11	7	-42.13	-46.01	-40.67	-46.47	-30.11	-21.25	8.86
5310	HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1	2	11	10	-38.94	-42.87			-27.46	-21.25	6.21
	HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3	3	13	7	-39.5	-43.46	-42.53		-29.71	-21.25	8.46
5320	Non HT/VHT20, 6 to 54 Mbps	1	16	7	-45.05				-38.05	-21.25	16.80
	Non HT/VHT20 Beam Forming, 6 to 54 Mbps	2	16	10	-52.19	-51.11			-38.61	-21.25	17.36
	HT/VHT20, M8 to M15, M0.2 to M9.2	3	14	7	-45.65	-44.54	-48.62		-34.18	-21.25	12.93
	HT/VHT20, M16 to M23, M0.3 to M9.3	4	13	7	-41.88	-47.21	-47.52	-49.43	-32.47	-21.25	11.22

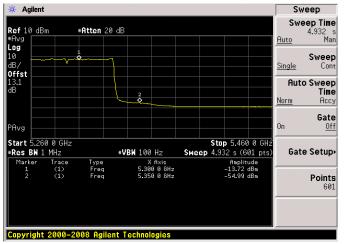

Page No: 78 of 152

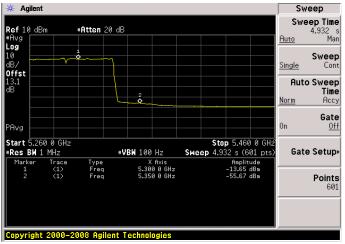
Conducted Bandedge Average, 5260 / 5280 / 5300 / 5320 MHz, Non HT/VHT80, 6 to 54 Mbps


uluilu cisco


Antenna C

Antenna D


Page No: 79 of 152

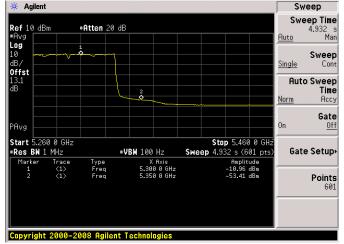

Conducted Bandedge Average, 5260 / 5280 / 5300 / 5320 MHz, HT/VHT80, M0 to M7, M0.1 to M9.1

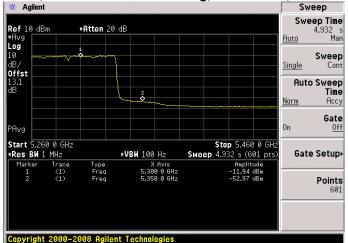
Antenna C

Antenna A

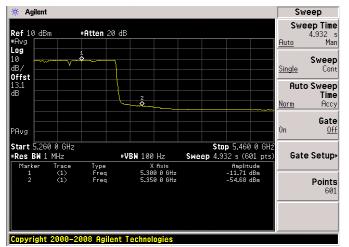
Page No: 80 of 152

Conducted Bandedge Average, 5260 / 5280 / 5300 / 5320 MHz, HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2




Antenna A

Page No: 81 of 152


Conducted Bandedge Average, 5260 / 5280 / 5300 / 5320 MHz, HT/VHT80 Beam Forming, M16 to M23, M0.3 to M9.3

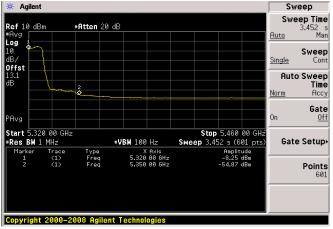
Antenna B

Antenna A

Antenna C

Page No: 82 of 152

uluulu cisco


Conducted Bandedge Average, 5300/5320 MHz, Non HT/VHT40, 6 to 54 Mbps

Antenna B

Antenna A

Antenna C

Page No: 83 of 152

cisco Sweep Agilent Sweep Time Sweep Time **эр** 3.452 s Man 3.452 Man #Atten 20 dB Ref 10 dBm #Hvs Auto **Log** 10 Sweep Sweep Single Cont Cont **0ffst** 13.1 Auto Sweep Auto Sweep Time ٩R Time Accy Norm Ассу Gate Gate 0n Off Off PAvg Start 5.320 00 GHz Stop 5.460 00 GH: Gate Setup *Res BW 1 MHz #VBW 100 Hz Sweep 3.452 s (601 pts) Gate Setup X Axis 5.320 00 GHz 5.350 00 GHz Amplitude -7.13 dBm -55.63 dBm Trac (1) (1) Type Freq Freq Points Points 601 601

Copyright 2000–2008 Agilent Technologies

Type Freq Freq

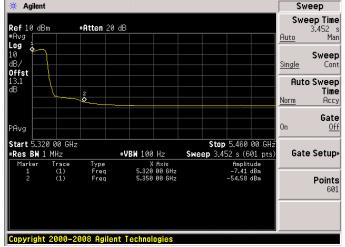
#Atten 20 dB

#VBW 100 Hz

X Axis 5.320 00 GHz 5.350 00 GHz

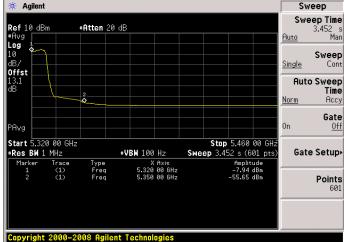
Ref 10 dBm

#Avg Log 10


dB/ Offst 13.1 dB


PAvg

Start 5.320 00 GHz


Trac (1) (1)

#Res BW 1 MHz

սիսիս

Antenna C

Antenna D

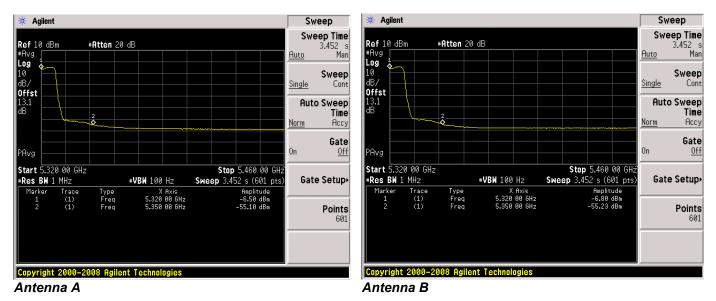
Page No: 84 of 152

Conducted Bandedge Average, 5300/5320 MHz, HT/VHT40, M8 to M15, M0.2 to M9.2 Sweep 🔆 Agilent

Auto

Single

Norm


Ûn

Stop 5.460 00 GHz

Amplitude -6.72 dBm -55.28 dBm

Sweep 3.452 s (601 pts)

Conducted Bandedge Average, 5300/5320 MHz, HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1

Page No: 85 of 152

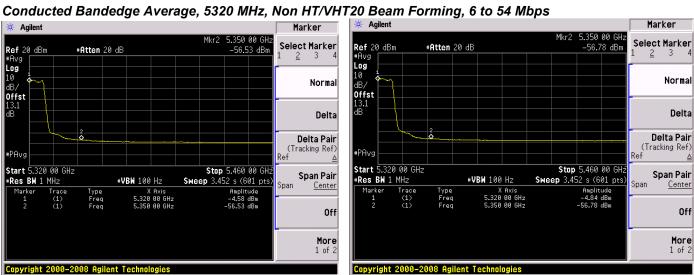
Conducted Bandedge Average, 5300/5320 MHz, HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3

Antenna B

Antenna A

🔆 Agilent Sweep Sweep Time **ер** 3.452 si Man Ref 10 dBm *Atten 20 dB #Avg Auto Log 10 Sweep Cont dB/ Offst Single Auto Sweep Time 3.1 dB Norm Accy Gate Ûn <u>0ff</u> PAvg Start 5.320 00 GHz Stop 5.460 00 GH; *Res BW 1 MHz **#VBW** 100 Hz **Sweep** 3.452 s (601 pts Gate Setup Marker Trace Type Freq Freq X Axis 5.320 00 GHz 5.350 00 GHz (1) (1) -6.12 dBm -53.70 dBm Points 601 Copyright 2000-2008 Agilent Technologies

Antenna C


Page No: 86 of 152

Conducted Bandedge Average, 5320 MHz, Non HT/VHT20, 6 to 54 Mbps

Antenna A

Page No: 87 of 152

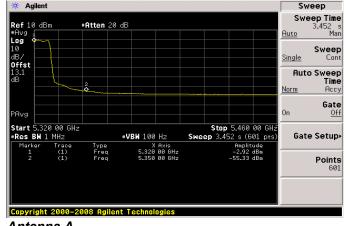
Antenna A

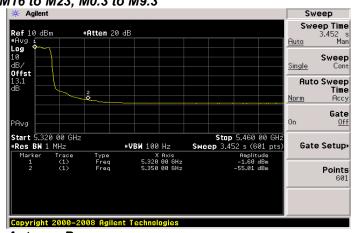
սիսիս **CISCO**

Page No: 88 of 152

Conducted Bandedge Average, 5320 MHz, HT/VHT20, M8 to M15, M0.2 to M9.2

Antenna A

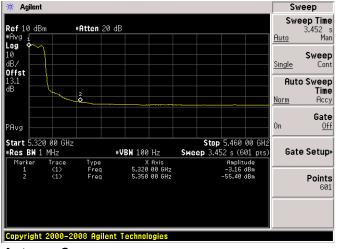

🔆 Agilent Sweep Sweep Time 3.452 s Man #Atten 20 dB Ref 10 dBm #Avg Log <u>Auto</u> Sweep Cont 10 Single Offst Auto Sweep Time Norm Accy Gate Ûn <u>Off</u> Avg Start 5.320 00 GHz #Res BW 1 MHz Stop 5.460 00 GHz Sweep 3.452 s (601 pts) **∗VBW** 100 Hz Gate Setup Type Freq Freq X Axis 5.320 00 GHz 5.350 00 GHz Amplitude -2.17 dBm -55.19 dBm Points 601 Copyright 2000-2008 Agilent Technologies


Antenna C

Antenna B

Page No: 89 of 152

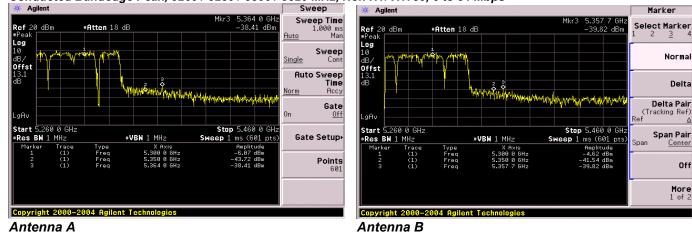
Conducted Bandedge Average, 5320 MHz, HT/VHT20, M16 to M23, M0.3 to M9.3

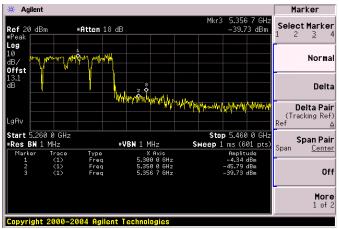


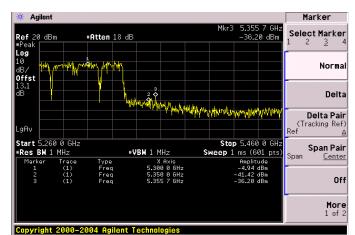
սիսիս **CISCO**

<u>0ff</u>

601



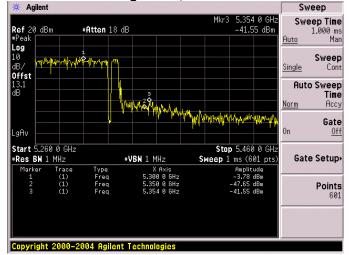

Antenna C

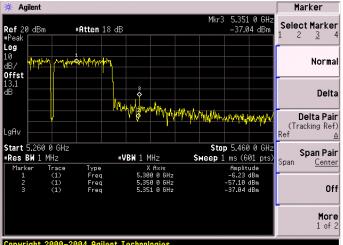

Antenna D

Page No: 90 of 152

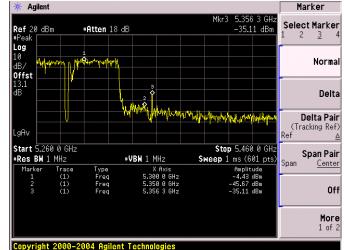
Conducted Bandedge Peak, 5260 / 5280 / 5300 / 5320 MHz, Non HT/VHT80, 6 to 54 Mbps

uluilu cisco

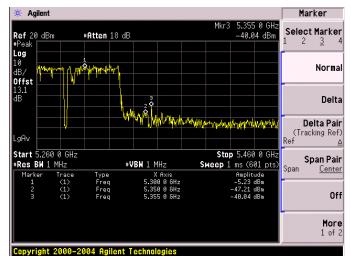

Antenna C

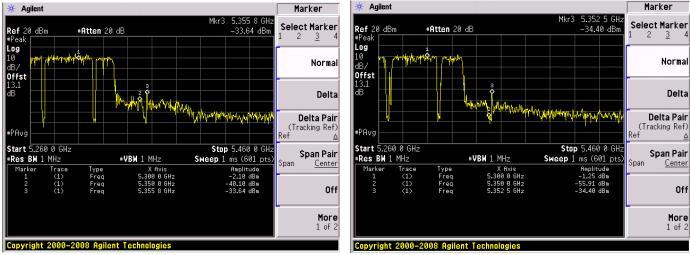


Page No: 91 of 152


սիսիս CISCO

Conducted Bandedge Peak, 5260 / 5280 / 5300 / 5320 MHz, HT/VHT80, M0 to M7, M0.1 to M9.1

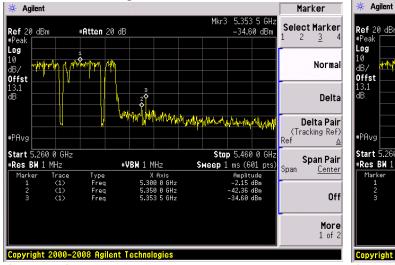


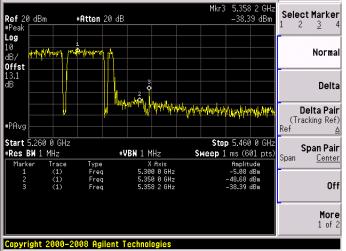


Page No: 92 of 152

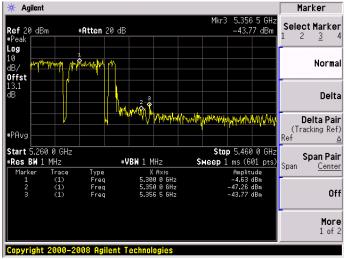
uluulu cisco

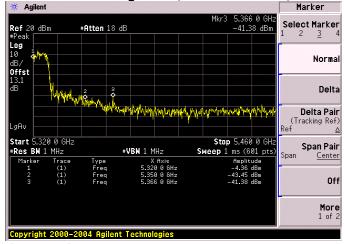
Conducted Bandedge Peak, 5260 / 5280 / 5300 / 5320 MHz, HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2

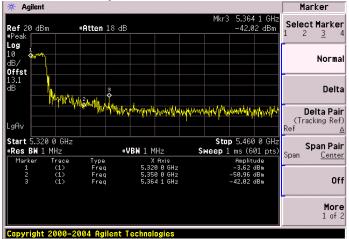



Antenna A

Page No: 93 of 152


Conducted Bandedge Peak, 5260 / 5280 / 5300 / 5320 MHz, HT/VHT80 Beam Forming, M16 to M23, M0.3 to M9.3

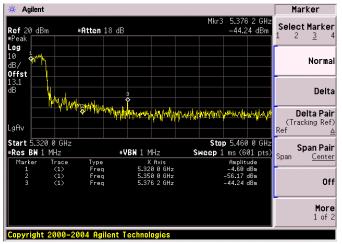

Antenna A



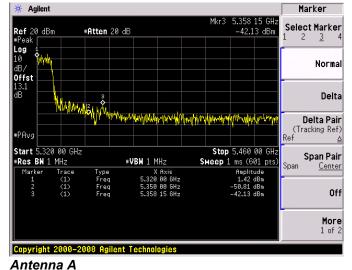
Antenna C

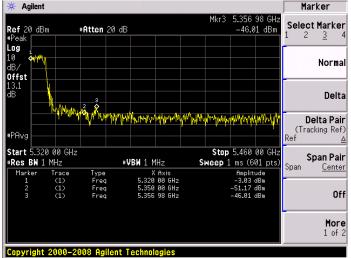
Page No: 94 of 152

Conducted Bandedge Peak, 5300 / 5320 MHz, Non HT/VHT40, 6 to 54 Mbps



cisco


Antenna A



Antenna C

Page No: 95 of 152

Conducted Bandedge Peak, 5300 / 5320 MHz, HT/VHT40, M8 to M15, M0.2 to M9.2

Marker

Select Marker

4

Norma

Delta

Delta Pair (Tracking Ref)

Span Pair

Center

Off

More 1 of 2

2

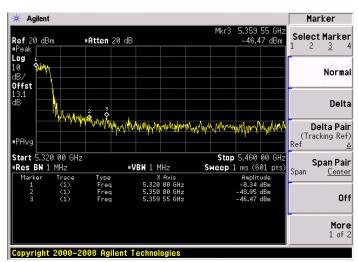
Re

Span

5.354 65 GH

Stop 5.460 00 GH;

olitu


dBm dBm dBm dBm

Sweep 1 ms (601 pts

-40.67 dBm

4kr3

MM WAR WAR WAR

Antenna C

🔆 Agilent

Ref 20 dBm

Pea

Log

10

dB/ Offst

#PAvg

Start 5.320 00 GHz

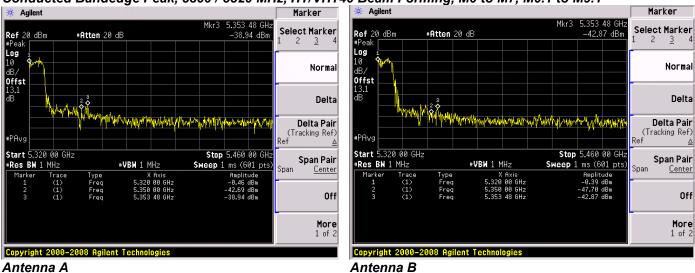
999a

*Res BW 1 MHz

#Atten 20 dB

3 0

> Type Freq Freq Freq

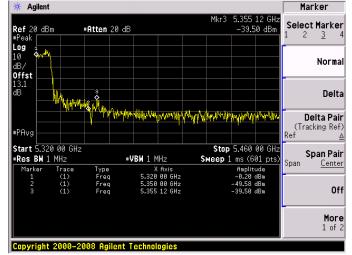

Copyright 2000-2008 Agilent Technologies

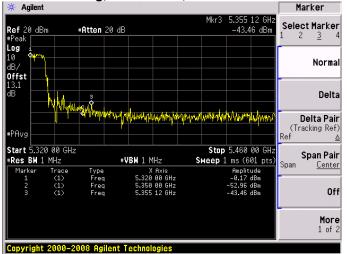
#VBN 1 MHz

Antenna D

Page No: 96 of 152

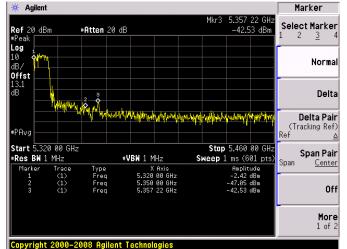
uluulu cisco

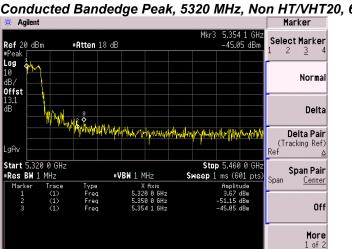



Conducted Bandedge Peak, 5300 / 5320 MHz, HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1

Page No: 97 of 152

uluulu cisco

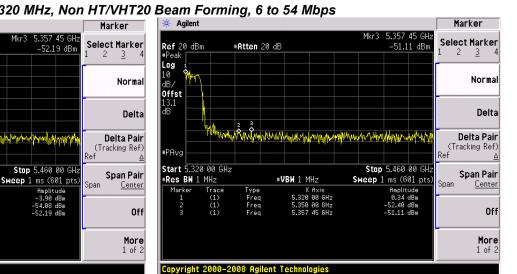

Conducted Bandedge Peak, 5300 / 5320 MHz, HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3


Antenna B

Antenna A

Antenna C

Page No: 98 of 152


Conducted Bandedge Peak, 5320 MHz, Non HT/VHT20, 6 to 54 Mbps

Copyright 2000-2004 Agilent Technologies Antenna A

Page No: 99 of 152

սիսիս cisco

wippinghamation

Conducted Bandedge Peak, 5320 MHz, Non HT/VHT20 Beam Forming, 6 to 54 Mbps 🔆 Agilent

Start 5.320 00 GHz #Res BW 1 MHz

12 Trac (1) (1) (1)

Ref 20 dBm #Peak Log 10 \$vy/v

dB

dB

Offst

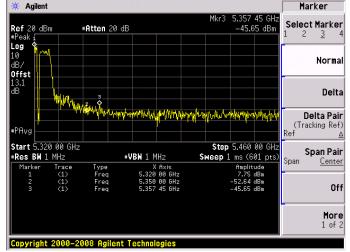
∎PAvg

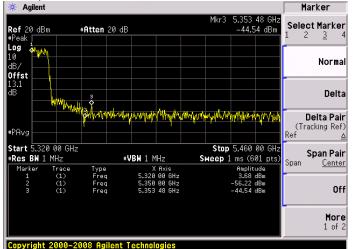
Marker

#Atten 20 dB

3 0

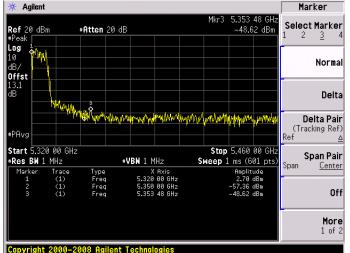
Type Freq Freq Freq


#VBW 1 MHz



Page No: 100 of 152

սիսիս **CISCO**


Conducted Bandedge Peak, 5320 MHz, HT/VHT20, M8 to M15, M0.2 to M9.2

Antenna B

Antenna A

Copyright 2000-2008 Aglient Tech

Antenna C

Page No: 101 of 152

Marker

Select Marker

3

Normal

Delta

Delta Pair

Span Pair

Center

Off

More

1 of 2

(Tracking Ref)

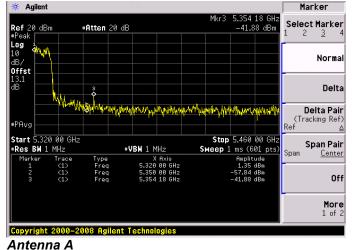
-49.43 dBm

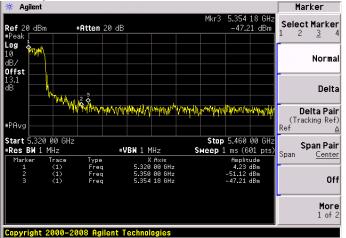
WYP

dBm dBm dBm Ref

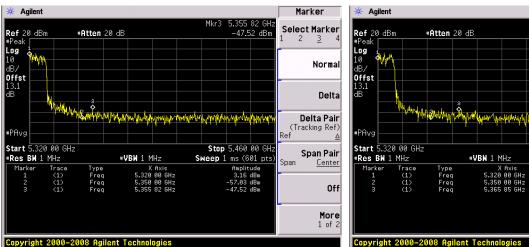
Span

a highly have a straight of the straight of the


Stop 5.460 00 GH:


56.97 40 43

Sweep 1 ms (601 pts


(APAparo)

Conducted Bandedge Peak, 5320 MHz, HT/VHT20, M16 to M23, M0.3 to M9.3

Antenna C

Antenna D

Antenna L

Page No: 102 of 152

Peak Excursion

15.407: The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

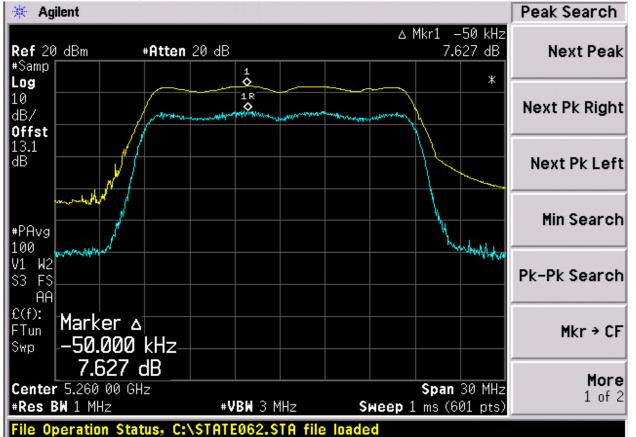
Set the spectrum analyzer span to view the entire emission bandwidth. The largest difference between the following two traces must be <= 13 dB for all frequencies across the emission bandwidth.

Set the spectrum analyzer span to view the entire emission bandwidth. The largest difference between the following two traces must be <= 13 dB for all frequencies across the emission bandwidth.

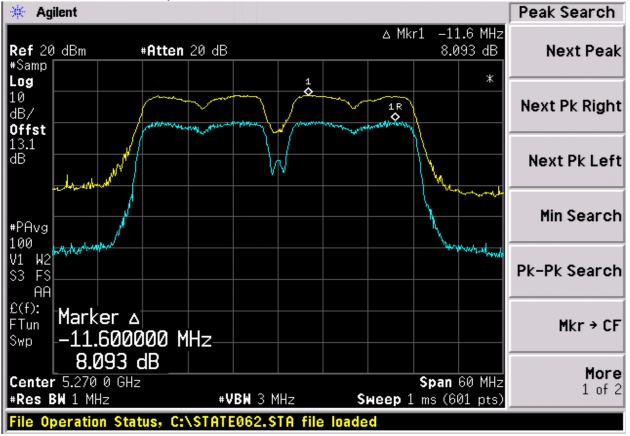

```
1st Trace: (Peak)
         Set Span to encompass the entire emission bandwidth of the signal.
         RBW = 1 MHz, VBW = 3 MHz
         Detector = Peak
         Sweep = 10 \text{ s}
         Trace 1 = Max-hold
         Ref Level Offset = correct for attenuator and cable loss
         Ref Level = 20dBm
         Atten = 10dBm
2nd Trace: (Average)
         Trace 2 = clear right
         Detector = Sample
         Avg/VBW type = Pwr(RMS)
         Average = 100
         Sweep = single
Set marker Deltas
         Trace 1 & Peak search
         Marker Delta
         Trace 2 & Peak search
```

Record the difference between the Peak and Average Markers

Page No: 103 of 152


Frequency (MHz)	Mode	Peak Excursion (dB)	Limit (dBm)	Margin (dB)
5260	Non HT/VHT20, 6 to 54 Mbps	8.146	13	4.85
5260	HT/VHT20, M0 to M7, M0.1 to M9.1	7.627	13	5.37
5270	Non HT/VHT40, 6 to 54 Mbps	8.093	13	4.91
5270	HT/VHT40, M0 to M7	7.519	13	5.48
5290	Non HT/VHT80, 6 to 54 Mbps	7.593	13	5.41
5290	HT/VHT80, M0 to M7, M0.1 to M9.1	8.512	13	4.49
5310	Non HT/VHT40, 6 to 54 Mbps	8.166	13	4.83
5310	HT/VHT40, M0 to M7, M0.1 to M9.1	7.651	13	5.35
5320	Non HT/VHT20, 6 to 54 Mbps	8.151	13	4.85
5320	HT/VHT20, M0 to M7, M0.1 to M9.1	7.958	13	5.04

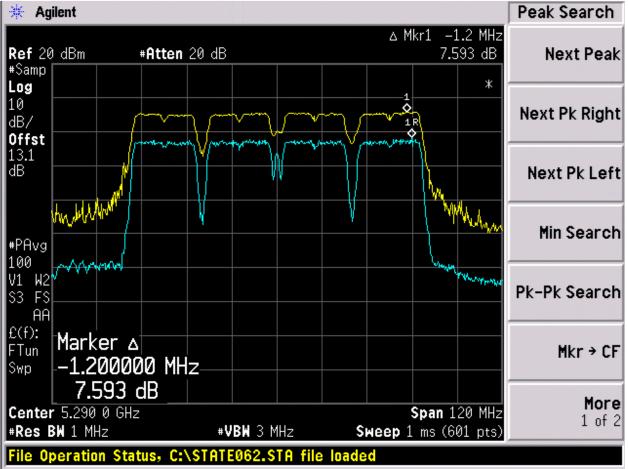
Page No: 104 of 152


Peak Excursion Non HT/VHT20, 6 to 54 Mbps

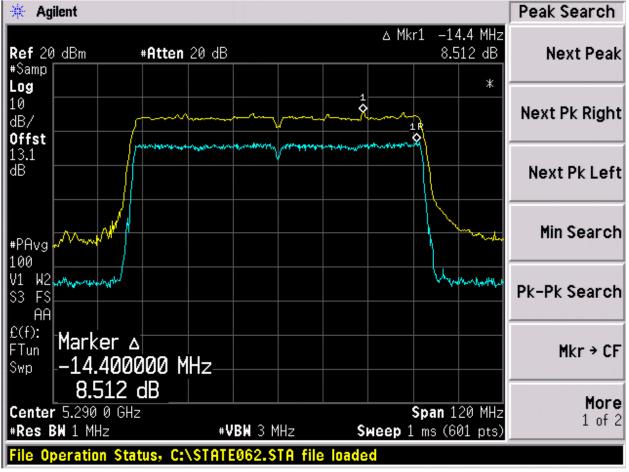
Page No: 105 of 152


HT/VHT20, M0 to M23, M0.1 to M9.3

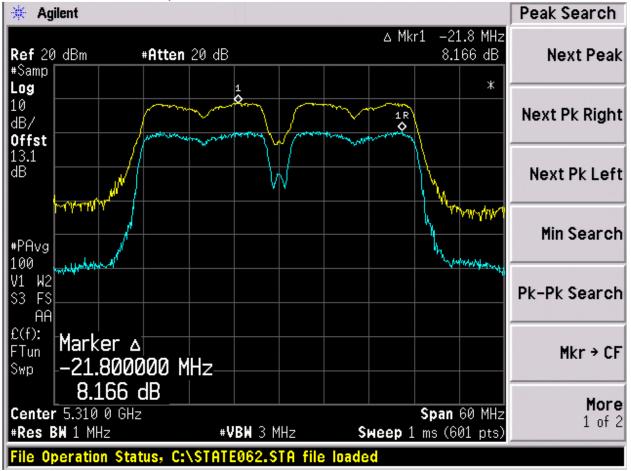
Page No: 106 of 152


Non HT/VHT40, 6 to 54 Mbps

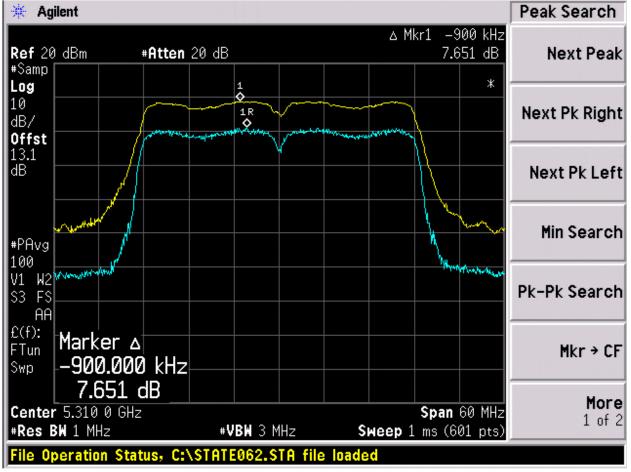
Page No: 107 of 152


HT/VHT40, M0 to M23, M0.1 to M9.3

Page No: 108 of 152

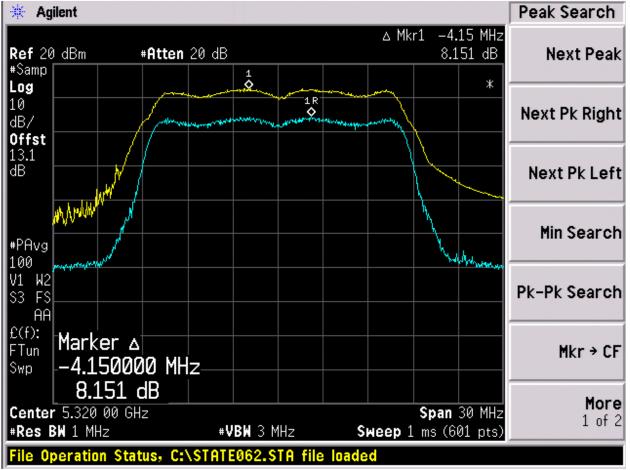

Non HT/VHT80, 6 to 54 Mbps

Page No: 109 of 152


HT/VHT80, M0 to M23, M0.1 to M9.3

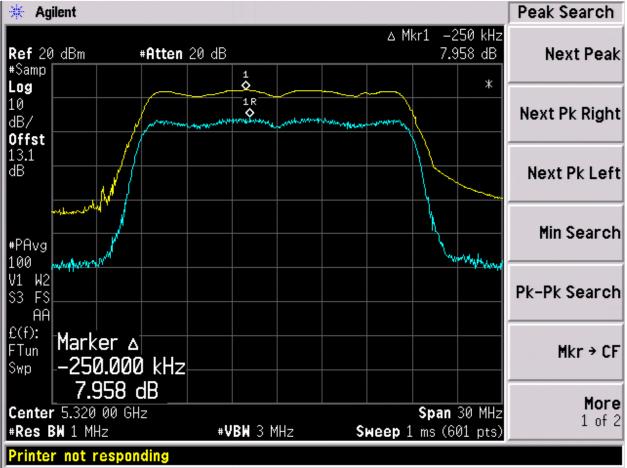
Page No: 110 of 152

Non HT/VHT40, 6 to 54 Mbps


Page No: 111 of 152

HT/VHT40, M0 to M23, M0.1 to M9.3

Page No: 112 of 152


cisco

Non HT/VHT20, 6 to 54 Mbps

Page No: 113 of 152

cisco

HT/VHT20, M0 to M23, M0.1 to M9.3

Page No: 114 of 152

Radiated Spurious Emissions

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span:	1GHz – 15 GHz
Reference Level:	80 dBuV
Attenuation:	10 dB
Sweep Time:	Coupled
Resolution Bandwidth:	1MHz
Video Bandwidth:	1 MHz for peak, 10 Hz for average
Detector:	Peak

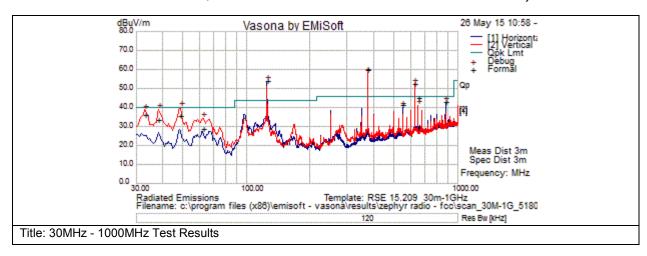
Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

Save 2 plots:1) Average Plot (Vertical and Horizontal), Limit= 54dBuV @3m2) Peak plot (Vertical and Horizontal), Limit = 74dBuV @3m

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

This report represents the worst case data for all supported operating modes and antennas.

Please note that scans were performed to verify that duty cycle did not have a significant impact on the test results. Also, scans with reduced RBW and VBW settings were performed to verify that no significant emissions were present under the noise floor.


Page No: 115 of 152

Graphical Test Results: 30MHz – 1000MHz (Transmitter on)

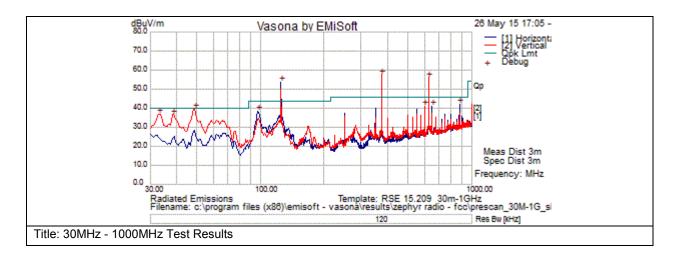
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

1111111

Please note that the high emissions at 375MHz, 125MHz, and 625MHz are digital emissions. These will be covered in the EMC test report. A comparison measurement was made with the radio transmitter turned off. The emissions were still observed when the radio was off, so it can be concluded that the emissions are not caused by the radio.

Test Results Table

Fo	rmal Data												
No	Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1	375.007	43.0	1.8	15.1	60.0	Quasi Max	V	141	195	46.0	14.0	Fail	
2	125.006	39.3	1.1	14.0	54.4	Quasi Max	Н	199	192	43.5	10.9	Fail	
3	625.010	30.9	2.4	19.4	52.7	Quasi Max	V	104	294	46.0	6.7	Fail	
4	48.369	26.4	.6	8.6	35.6	Quasi Max	V	138	78	40.0	-4.4	Pass	wideband
5	38.187	18.2	.5	15.0	33.8	Quasi Max	V	114	334	40.0	-6.2	Pass	wideband
6	33.179	17.1	.5	18.7	36.3	Quasi Max	V	127	86	40.0	-3.7	Pass	wideband
7	875.024	18.3	2.8	22.1	43.2	Quasi Max	Н	107	315	46.0	-2.8	Pass	
8	650.007	22.9	2.4	19.9	45.2	Quasi Max	Н	140	313	46.0	8	Pass	
9	62.131	20.6	.7	7.7	29.0	Quasi Max	V	120	71	40.0	-11.0	Pass	wide band
10	550.006	21.2	2.2	18.3	41.7	Quasi Max	Н	177	125	46.0	-4.3	Pass	


Page No: 116 of 152

Graphical Test Results: 30MHz – 1000MHz (Transmitter Off – EMC emission for comparison)

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

վերին

Please note that the high emissions at 375MHz, 125MHz, and 625MHz are digital emissions. These will be covered in the EMC test report. A comparison measurement was made with the radio transmitter turned off. The emissions were still observed when the radio was off, so it can be concluded that the emissions are not caused by the radio.

Test Results Table

Fo	rmal Data												
No	Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1	374.956	40.8	1.8	15.1	57.7	Peak [Scan]	V	100	0	46.0	11.7	Fail	
2	125.181	38.6	1.1	14.0	53.6	Peak [Scan]	Н	200	0	43.5	10.1	Fail	
3	624.731	34.4	2.4	19.4	56.1	Peak [Scan]	V	100	0	46.0	10.1	Fail	
4	48.794	30.9	.6	8.4	39.8	Peak [Scan]	V	100	0	40.0	2	Pass	
5	33.031	17.4	.5	18.9	36.8	Peak [Scan]	V	100	0	40.0	-3.2	Pass	
6	38.488	21.2	.5	14.8	36.5	Peak [Scan]	V	100	0	40.0	-3.5	Pass	
7	875.113	17.1	2.8	22.1	42.0	Peak [Scan]	Н	200	0	46.0	-4.0	Pass	
8	650.194	18.9	2.4	19.9	41.2	Peak [Scan]	Н	300	0	46.0	-4.8	Pass	
9	599.875	20.4	2.3	18.4	41.2	Peak [Scan]	V	100	0	46.0	-4.8	Pass	
10	97.294	28.0	.9	9.6	38.5	Peak [Scan]	Н	200	0	43.5	-5.0	Pass	

Page No: 117 of 152

Graphical Test Results 802.11a: 1 – 18GHz (5260MHz – Average)

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Page No: 118 of 152

Graphical Test Results 802.11a: 1 – 18GHz (5260MHz – Peak)

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Page No: 119 of 152

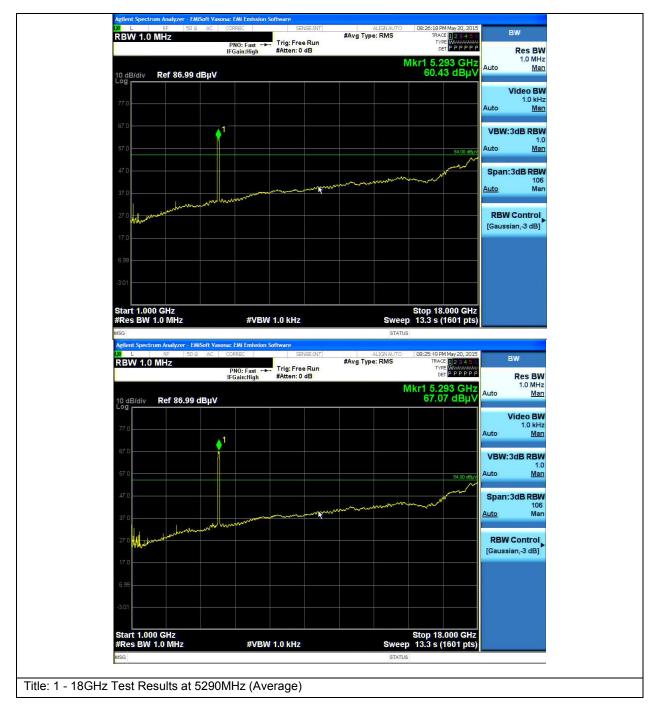
Graphical Test Results 802.11n 40MHz: 1 – 18GHz (5270MHz – Average)

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Page No: 120 of 152

Graphical Test Results 802.11n 40MHz: 1 – 18GHz (5270MHz – Peak)

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Page No: 121 of 152

Graphical Test Results 802.11ac 80MHz: 1 – 18GHz (5290MHz – Average)

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Page No: 122 of 152

Graphical Test Results 802.11ac 80MHz: 1 – 18GHz (5290MHz – Peak)

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Page No: 123 of 152

Graphical Test Results 802.11a 20MHz: 1 – 18GHz (5280MHz – Average)

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Page No: 124 of 152

Graphical Test Results 802.11a 20MHz: 1 – 18GHz (5280MHz – Peak)

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Page No: 125 of 152

Graphical Test Results 802.11a 20MHz: 1 – 18GHz (5320MHz – Average)

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

.111.111

Page No: 126 of 152

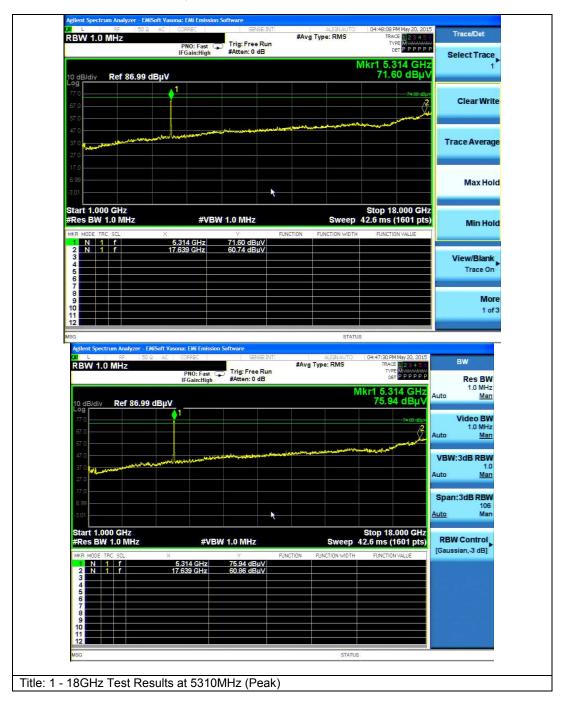
Graphical Test Results 802.11a 20MHz: 1 – 18GHz (5320MHz – Peak)

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

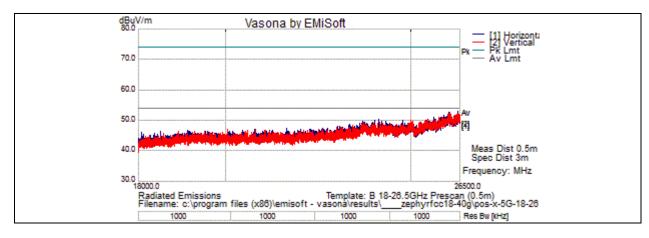
Page No: 127 of 152

Graphical Test Results 802.11n 40MHz: 1 – 18GHz (5310MHz – Average)

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

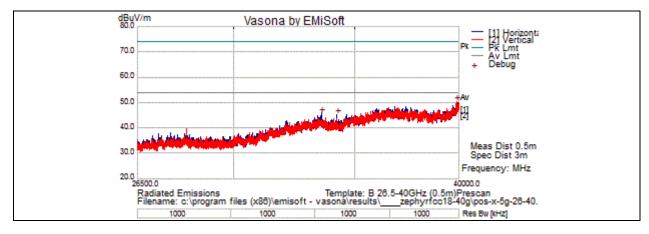


Page No: 128 of 152


Graphical Test Results 802.11n 40MHz: 1 – 18GHz (5310MHz – Peak)

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Page No: 129 of 152

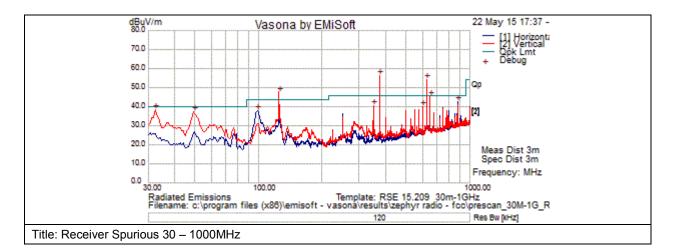

Graphical Test Results: 18 - 26GHz

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Graphical Test Results: 26 - 40GHz

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Page No: 130 of 152


Radiated Receiver Spurious Measurements

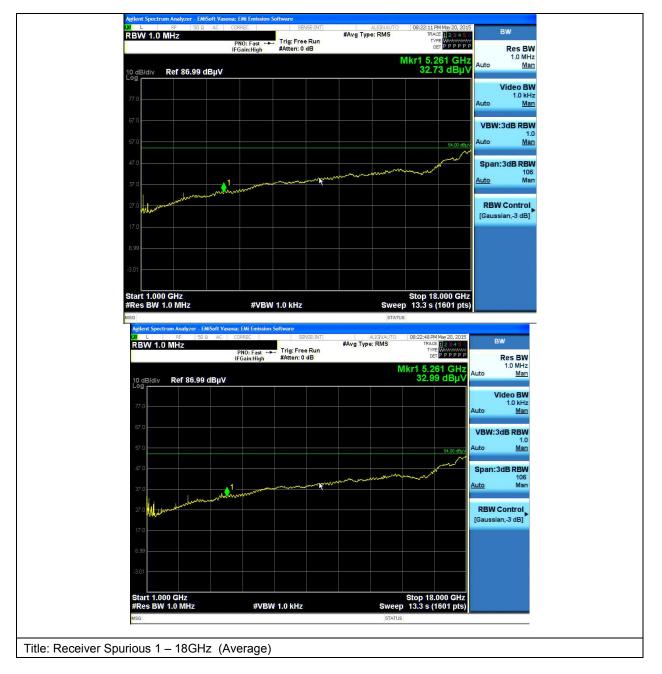
Please note that scans were performed to verify that duty cycle did not have a significant impact on the test results. Also, scans with reduced RBW and VBW settings were performed to verify that no significant emissions were present under the noise floor.

Graphical Test Results

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Please note that the high emissions at 375MHz, 125MHz, and 625MHz are digital emissions. These will be covered in the EMC test report.

Test Results Table


Pre	escan Dat	a											
No	Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1	374.956	39.6	1.8	15.1	56.5	Peak [Scan]	V	100	0	46.0	10.5	Fail	
2	624.731	32.4	2.4	19.4	54.2	Peak [Scan]	Н	200	0	46.0	8.2	Fail	
3	125.181	32.7	1.1	14.0	47.8	Peak [Scan]	V	100	0	43.5	4.3	Fail	
4	650.194	23.3	2.4	19.9	45.6	Peak [Scan]	V	100	0	46.0	4	Pass	
5	32.425	18.6	.5	19.3	38.4	Peak [Scan]	V	100	0	40.0	-1.6	Pass	
6	49.400	28.7	.6	8.1	37.3	Peak [Scan]	V	100	0	40.0	-2.7	Pass	
7	875.113	17.7	2.8	22.1	42.6	Peak [Scan]	Н	100	0	46.0	-3.4	Pass	
8	350.100	24.3	1.8	14.4	40.5	Peak [Scan]	V	200	0	46.0	-5.5	Pass	
9	99.113	27.0	.9	10.1	38.0	Peak [Scan]	Н	200	0	43.5	-5.5	Pass	
10	599.875	19.4	2.3	18.4	40.2	Peak [Scan]	V	100	0	46.0	-5.8	Pass	

Page No: 131 of 152

Graphical Test Results

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Page No: 132 of 152

Graphical Test Results

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Page No: 133 of 152

Appendix A: EUT Photos

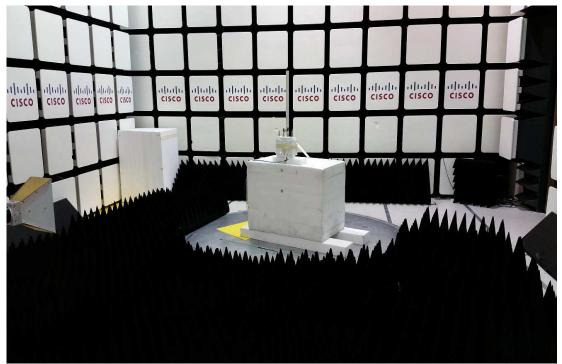
EUT

uluilu cisco

Page No: 134 of 152

Power Supply

uluulu cisco


Page No: 135 of 152

cisco

Appendix B: Physical Test Arrangement Photos:

Title: Radiated Spurious Emissions Test Configuration 30M - 1000MHz

Title: Radiated Spurious Emissions Test Configuration 1G - 18GHz

Page No: 136 of 152

cisco

Title: Radiated Spurious Emissions Test Configuration 18 – 40GHz

Title: Conducted Test Setup

Page No: 137 of 152

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due
05050	MICRO-COAX/	Coaxial Cable, 84.0 in.		
25658	UFB311A-1-0840-504504	to 18GHz	13-Feb-15	13-Feb-16
	MICRO-COAX/			
21117	UFB311A-0-2484-520520	Coaxial Cable-18Ghz	25 Aug 14	25 Aug 15
			25-Aug-14	25-Aug-15
49563	HUBER + SUHNER/ Sucoflex 106A	Coaxial Cable, 8m	25-Aug-14	25-Aug-15
5004		PREAMPLIFIER		
5691	MITEQ/ NSP1800-25-S1	PREAMPLIFIER	29-Jan-15	29-Jan-16
4882	EMCO/ 3115	HORN ANTENNA	30-Jul-14	24-Jul-15
		1GHz Cispr Site		2100110
40597	CISCO/ Above 1GHz Site Cal	Verification	28-May-14	28-May-15
47300	Keysight (Agilent/HP) / N9038A	EMI Receiver	13-Jan-15	13-Jan-16
	Reysignt (Agilentini) / Notook	40GHz Cable K	10-0411-10	10-5411-10
47285	HUBER + SUHNER / Sucoflex 102E	Connector	06 Jun 2014	06 Jun 2015
4000			Cal Not	Cal Not
4883	EMCO/ 3115	HORN ANTENNA	Required	Required
24075		Reference Spectrum	Cal Not	Cal Not
34075	SCHAFFNER / RSG 2000	Generator, 1-18GHz	Required	Required
	Keysight (Agilent/HP) / 8491B Opt			
8166	010	ATTENUATOR	02 Feb 2015	02 Feb 2016
47294	FAIRVIEW MICROWAVE / ST6S-10	SMA Termination 6GHz	12-Aug-14	12-Aug-15
47000			12700911	127 (ag 10
47293	FAIRVIEW MICROWAVE / ST6S-10	SMA Termination 6GHz	12-Aug-14	12-Aug-15
49504		SMA Female 50 Ohm		
	JFW / 50T-039 SMA-F	Termination	27-Mar-15	27-Mar-16
40.500		CMA Famala 50 Ohm		
49503	JFW / 50T-039 SMA-F	SMA Female 50 Ohm Termination	27-Mar-15	27-Mar-16
		PRESET TORQUE	27-10101-13	27-10181-10
20490		WRENCH 3.5 mm 12		
	Keysight (Agilent/HP) / 8710-1765	in/lbs	4-Feb-15	4-Feb-16
54000		5 inch Temp/RH/Press		
54230	Newport / iBTHP-5-DB9	Sensor w/20ft cable	1-Feb-15	1-Feb-16
40503	Keysight (Agilent/HP) / E4440A	Spectrum Analyzer	6-Jun-14	6-Jun-15
		40GHz Cable K		
54014	HUBER + SUHNER / Sucoflex 102E	Connector	27-Mar-15	27-Mar-16
49527	Keysight (Agilent/HP) / N8990K-A38	2x4 Switch Matrix	27-Mar-15	27-Mar-16

Appendix C: Test Equipment and Software Used to Perform Testing

Page No: 138 of 152

cisco

E 4047		RF Cable 2.4mm - N		
54017	HUBER + SUHNER / Sucoflex 102	Type 18GHz	27-Mar-15	27-Mar-16
E4040		RF Cable 2.4mm - N		
54018	HUBER + SUHNER / Sucoflex 102	Type 18GHz	27-Mar-15	27-Mar-16
54016		RF Cable 2.4mm - N		
54016	HUBER + SUHNER / Sucoflex 102	Type 18GHz	27-Mar-15	27-Mar-16
E404E		RF Cable 2.4mm - N		
54015	HUBER + SUHNER / Sucoflex 102	Type 18GHz	27-Mar-15	27-Mar-16
00000		SPECTRUM		
33988	Keysight (Agilent/HP) / E4446A	ANALYZER, 44Ghz	9-Dec-14	9-Dec-15
30654		Combination Antenna,		
30654	Sunol Sciences / JB1	30MHz-2GHz	12-Dec-14	12-Dec-15
8448				
0440	CISCO/ NSA 5m Chamber	NSA 5m Chamber	7-Oct-14	7-Oct-15
27233		COMPARISON NOISE	Cal Not	Cal Not
27200	York / CNE V	EMITTER	Required	Required
		18-40GHz EMI Test		
41979		Head/Verification		
	Cisco / 1840	Fixture	9-Jul-14	9-Jul-15
38392		PSG ANALOG SIGNAL		
00002	Keysight (Agilent/HP) / E8257D	GENERATOR	19-Aug-14	19-Aug-15
49516				
10010	Keysight (Agilent/HP) / N9030A	PXA Signal Analyzer	12-Nov-14	12-Nov-15
54237		PRESET TORQUE		
0.201	Pasternack / PE5011-1	WRENCH, 8 IN/LBS	04 Feb 2015	04 Feb 2016
37236			Cal Not	Cal Not
07200	JFW / 50CB-015	Control Box, GPIB	Required	Required

Software Used to Perform Testing:

EMIsoft Vasona, version 6.024

Page No: 139 of 152

Measurements were made in accordance with

- KDB Publication No. 789033 D01 General UNII Test Procedures Old Rules v01r04
- Measurement method of spurious emission tolerance to the International Telecommunication Union (ITU) Recommendation SM329.
- ANSI C63.4 2009
- ANSI C63.10 2009

Test procedures are summarized below

FCC Test Procedures 5GHz EDCS # - 1445048

Appendix E: Test Assessment Plan

Compliance Test Plan (Excel) EDCS# 1237091 Target Power Tables EDCS# 1501962

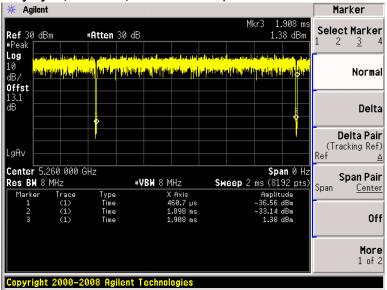
Appendix F: Worst Case Justification

IW3702 is based upon the AIR-CAP3702P-A-K9. Test results for AIR-CAP3702P-A-K9 were reviewed. Worst case modes were selected by lowest margins. A representative sample of modulation types, bit-rates, and bandwidths were selected. The AIR-CAP3702P-A-K9 report can be found here EDCS# 1278285.

Appendix G: Scope of Accreditation

The scope of accreditation of Cisco Systems, Inc. can be found on the A2LA web page at: http://www.a2la.org/scopepdf/1178-01.pdf

Page No: 140 of 152

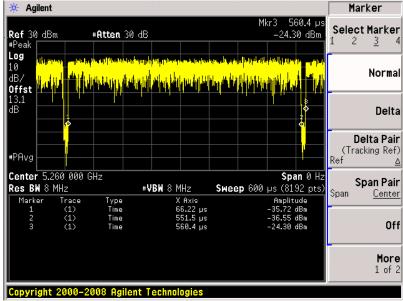

Appendix H: Duty Cycle

Duty Cycle information is shown below:

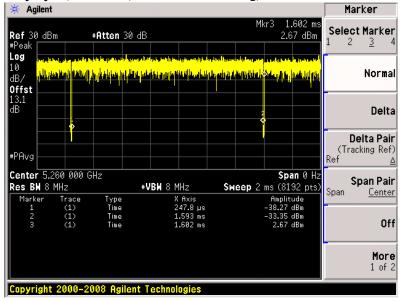
		On-time	Total Time	Duty	Correction Factor
Mode	Data Rate	(ms)	(ms)	Cycle (%)	(dB)
NonHT20	6 Mbps	1.4373	1.447	99.3	0.03
NonHT20 BF	6Mbps	1.438	1.446	99.4	0.03
HT20	M16	0.4852	0.494	98.2	0.08
HT20 BF	M0	1.346	1.355	99.3	0.03
HT20 BF Quad	M0	1.346	1.354	99.4	0.03
NonHT40 Dual	6Mbps	1.438	1.448	99.3	0.03
HT40 Triple	M8	0.358	0.368	97.3	0.12
HT40 Quad	M8	0.358	0.367	97.5	0.11
HT40 BF Triple	M16	0.261	0.271	96.3	0.16
HT40 BF Quad	M16	0.261	0.271	96.3	0.16
NonHT80 Quad	6Mbps	1.438	1.448	99.3	0.03
VHT80 Quad	m0x1	0.334	0.35	95.4	0.20
VHT80 Quad	m0x2	0.193	0.208	92.8	0.32
VHT80 BF Quad	m0x3	0.153	0.169	90.5	0.43
NonHT40 Triple	6Mbps	1.438	1.447	99.4	0.03
HT40 Quad	M8	0.357	0.367	97.3	0.12
HT40 BF Triple	M16	0.261	0.272	95.9	0.18
HT40 BF Quad	M16	0.261	0.271	96.3	0.16
NonHT20 Dual	6Mbps	1.438	1.447	99.4	0.03
NonHT20 BF Dual	6Mbps	1.437	1.447	99.3	0.03
HT20 Quad	M16	0.486	0.496	97.9	0.09
HT20 BF	M16	0.486	0.496	97.9	0.09

Page No: 141 of 152

Duty Cycle, 5260 MHz, Non HT20 6Mbps


Duty Cycle, 5260 MHz, Non HT20 Beam Forming, 6Mbps

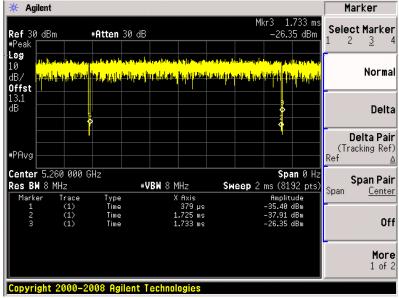
🔆 Agilent	Marker
Mkr3 1.869 Ref 30 dBm #Atten 30 dB -15.75 dB #Peak	Soloot Morkor
Log 10 dB/ Offst	
13.1 dB	Delta
#PAvg	Delta Pair (Tracking Ref) Ref <u>∆</u>
Center 5.260 000 GHz Span 0 Res BW 8 MHz #VBW 8 MHz Sweep 2 ms (8192 pt	
Marker Trace Type X Axis Amplitude 1 (1) Time 423.1 µs -35.84 dBm 2 (1) Time 1.861 ms -23.71 dBm 3 (1) Time 1.869 ms -15.75 dBm	Off
Copyright 2000-2008 Agilent Technologies	More 1 of 2


Page No: 142 of 152

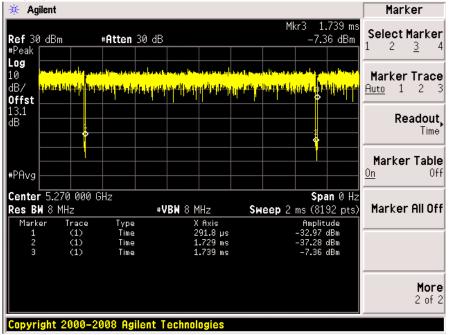
cisco

Duty Cycle, 5260 MHz, HT20, M16

Duty Cycle, 5260 MHz, HT20 Beam Forming, M0

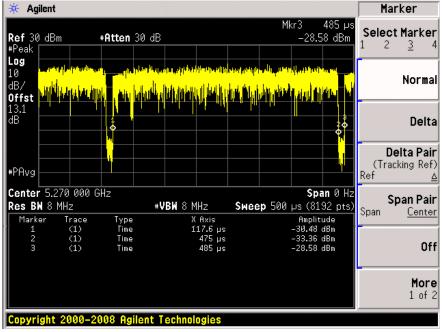


Page No: 143 of 152

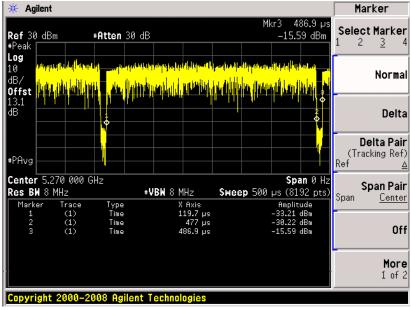

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

cisco

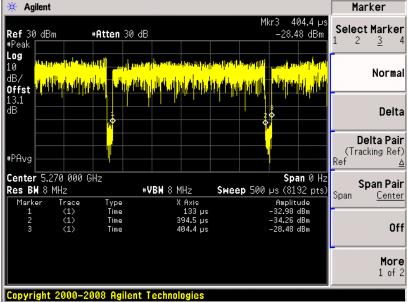
Duty Cycle, 5260 MHz, HT20 Beam Forming, M0



Duty Cycle, 5260/5280 MHz, Non HT40, 6Mbps

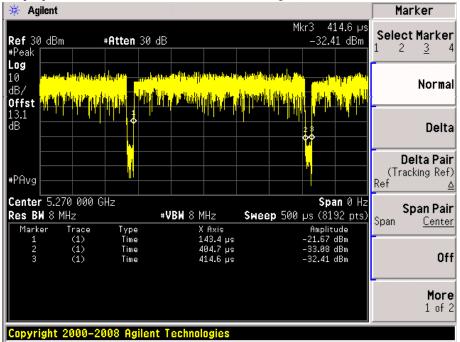

Page No: 144 of 152

Duty Cycle, 5260/5280 MHz, HT40, M8

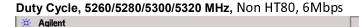


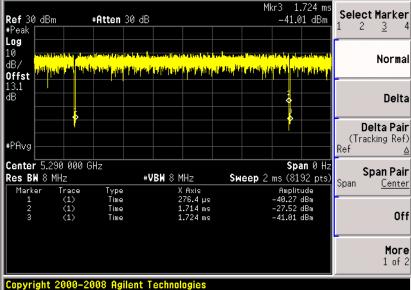
cisco

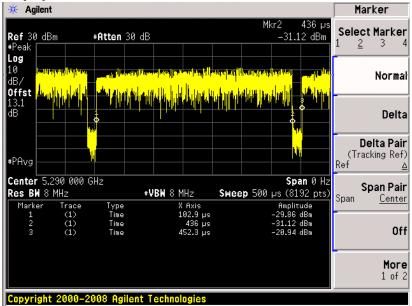
Duty Cycle, 5260/5280 MHz, HT40, M8



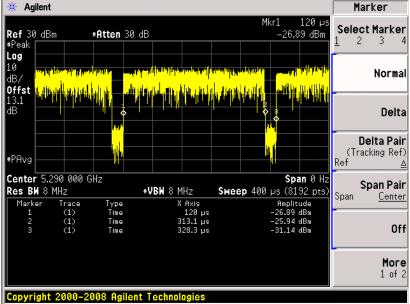
Page No: 145 of 152


Duty Cycle, 5260/5280 MHz, HT40 Beam Forming, M16

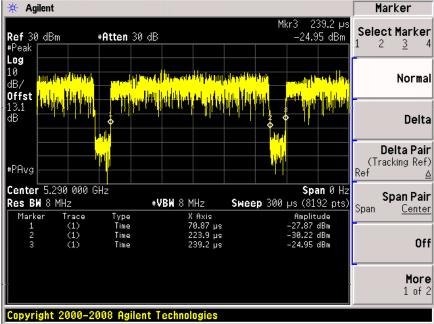

Duty Cycle, 5260/5280 MHz, HT40 Beam Forming, M16


Page No: 146 of 152

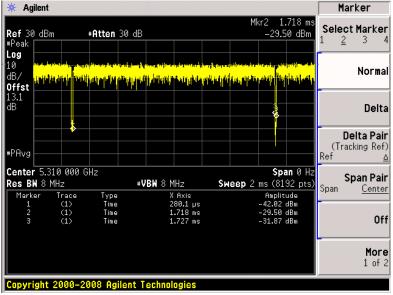
Marker 2 <u>3</u> 4



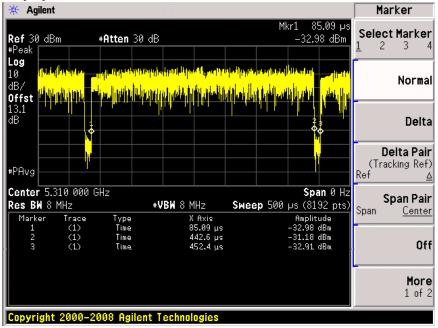
Duty Cycle, 5260/5280/5300/5320 MHz, HT/VHT80, M0.1


Page No: 147 of 152

cisco

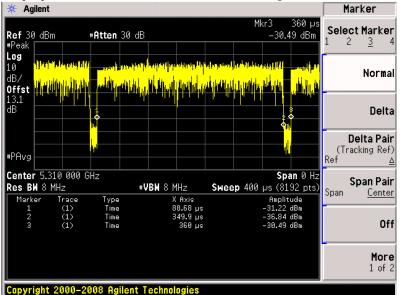

Duty Cycle, 5260/5280/5300/5320 MHz, HT/VHT80, M0.2

Duty Cycle, 5260/5280/5300/5320 MHz, HT/VHT80 Beam Forming, M0.3

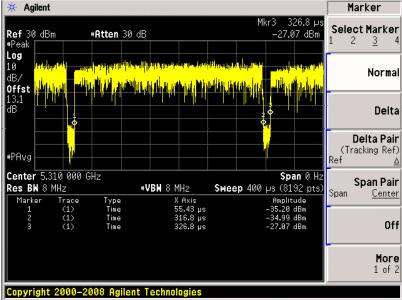


Page No: 148 of 152

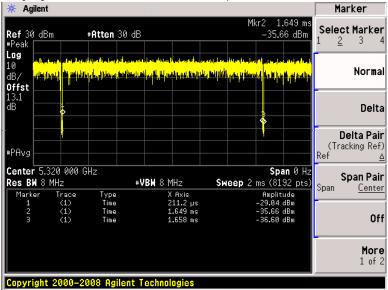
Duty Cycle, 5300/5320 MHz, Non HT40, 6Mbps


Duty Cycle, 5300/5320 MHz, HT40, M8

Page No: 149 of 152


This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

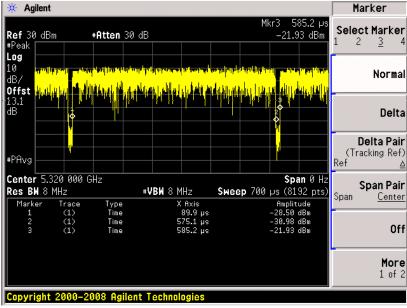
cisco


Duty Cycle, 5300/5320 MHz, HT40 Beam Forming, M16

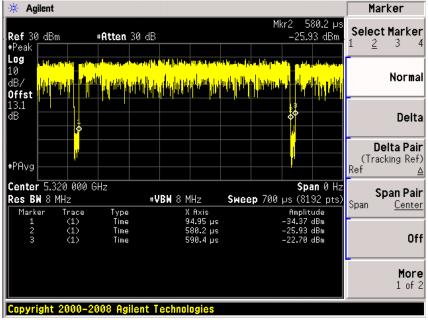
Duty Cycle, 5300/5320 MHz, HT40 Beam Forming, M16

Page No: 150 of 152

Duty Cycle, 5320 MHz, Non HT20, 6Mbps



Duty Cycle, 5320 MHz, Non HT20 Beam Forming, 6Mbps


🔆 Agilent				Marker
#Peak	#Atten 30 dB		Mkr1 176.3 µs −22.25 dBm	Select Marker <u>1</u> 2 3 4
10	A contraction of the second second		al a la basta de la desta de la la basta A porta de la Contra de la contra A contra de la contr	Normal
13.1 dB				Delta
#PAvg				Delta Pair (Tracking Ref) Ref <u>△</u>
Center 5.320 000 G Res BW 8 MHz Marker Trace	GHz #VBW Type	3 MHz Sm X Axis	Span 0 Hz Ieep 2 ms (8192 pts) Amplitude	Span Pair Span <u>Center</u>
1 (1) 2 (1) 3 (1)	Time Time Time	л Пать 176.3 µs 1.613 ms 1.623 ms	-22.25 dBm -18.50 dBm 3.61 dBm	Off
				More 1 of 2
Copyright 2000-2	008 Agilent Tech	nologies		

Page No: 151 of 152

Duty Cycle, 5320 MHz, HT20, M16

Duty Cycle, 5320 MHz, HT20 Beam Forming, M16

Page No: 152 of 152