

FCC TEST REPORT

REPORT NO.:	RF960522L09A
MODEL NO.:	CIVS-IPC-2500W
RECEIVED:	Nov. 08, 2007
TESTED:	Aug. 02 ~ Nov. 10, 2007
ISSUED:	Nov. 16, 2007

APPLICANT :	Cisco Systems, Inc.
ADDRESS :	170 West Tasman Drive, San Jose, CA95134, United States
ISSUED BY :	Advance Data Technology Corporation

- LAB ADDRESS : No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang 244, Taipei Hsien, Taiwan, R.O.C.
- **TEST LOCATION :** No. 19, Hwa Ya 2nd Rd., Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 53 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF, A2LA or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

1	CERTIFICATION	4
2	SUMMARY OF TEST RESULTS	5
2.1	MEASUREMENT UNCERTAINTY	5
3	GENERAL INFORMATION	6
3.1	GENERAL DESCRIPTION OF EUT	6
3.2	DESCRIPTION OF TEST MODES	7
3.2.1	CONFIGURATION OF SYSTEM UNDER TEST	
3.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	8
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	9
3.4	DESCRIPTION OF SUPPORT UNITS	.10
4	TEST TYPES AND RESULTS	
4.1	RADIATED EMISSION MEASUREMENT	
4.1.1	LIMITS OF RADIATED EMISSION MEASUREMENT	
4.1.2	TEST INSTRUMENTS	.12
4.1.3	TEST PROCEDURES	-
4.1.4	DEVIATION FROM TEST STANDARD	.13
4.1.5	TEST SETUP	.14
4.1.6	EUT OPERATING CONDITIONS	
4.1.7	TEST RESULTS	
4.2	CONDUCTED EMISSION MEASUREMENT	
4.2.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	.22
4.2.2	TEST INSTRUMENTS	
4.2.3	TEST PROCEDURES	
4.2.4	DEVIATION FROM TEST STANDARD	
4.2.5	TEST SETUP	
4.2.6	EUT OPERATING CONDITIONS	
4.2.7	TEST RESULTS	
4.3	6dB BANDWIDTH MEASUREMENT	
4.3.1	LIMITS OF 6dB BANDWIDTH MEASUREMENT	.27
4.3.2	TEST INSTRUMENTS	.27
4.3.3	TEST PROCEDURE	
	DEVIATION FROM TEST STANDARD	
	TEST SETUP	
	EUT OPERATING CONDITIONS	
	TEST RESULTS	
4.4	MAXIMUM PEAK OUTPUT POWER	
	LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT	
4.4.2	TEST INSTRUMENTS	
	DEVIATION FROM TEST STANDARD	
4.4.6	EUT OPERATING CONDITIONS	.34

447	TEST RESULTS	25
	POWER SPECTRAL DENSITY MEASUREMENT	
4.5		
4.5.1	LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	
4.5.2	TEST INSTRUMENTS	
4.5.3	TEST PROCEDURE	.36
4.5.4	DEVIATION FROM TEST STANDARD	.36
4.5.5	TEST SETUP	.36
4.5.6	EUT OPERATING CONDITIONS	
4.5.7	TEST RESULTS	
4.6	BAND EDGES MEASUREMENT	.41
4.6.1	LIMITS OF BAND EDGES MEASUREMENT	.41
4.6.2	TEST INSTRUMENTS	
4.6.3	TEST PROCEDURE	.41
4.6.4	DEVIATION FROM TEST STANDARD	
4.6.5	EUT OPERATING CONDITION	
4.6.6	TEST RESULTS	.42
4.7	ANTENNA REQUIREMENT	
4.7.1	STANDARD APPLICABLE	.50
4.7.2	ANTENNA CONNECTED CONSTRUCTION	.50
5	PHOTOGRAPHS OF THE TEST CONFIGURATION	.51
6	INFORMATION ON THE TESTING LABORATORIES	.52
7	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES	
	TO THE EUT BY THE LAB	.53

1 CERTIFICATION

PRODUCT:IP CameraMODEL NO.:CIVS-IPC-2500WBRAND:CiscoAPPLICANT:Cisco Systems, Inc.TESTED:Aug. 02 ~ Nov. 10, 2007TEST SAMPLE:ENGINEERING SAMPLESTANDARDS:FCC Part 15, Subpart C (Section 15.247)
ANSI C63.4-2003

The above equipment (model: CIVS-IPC-2500W) has been tested by **Advance Data Technology Corporation**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY	: <u>Zimine Sang</u> Rennie Wang / Senior Specialist	,	DATE:_	Nov. 16, 2007
TECHNICAL ACCEPTANCE Responsible for RF	: Long Chen Long Cher / Senior Engineer	,	DATE:_	Nov. 16, 2007
APPROVED BY	: <u>Gay Garg</u> Gary Chang / Assistant Manager	,	DATE:_	Nov. 16, 2007

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: FCC Part 15, Subpart C							
Standard Section	Test Type and Limit	Result	Remark					
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -14.13dB at 0.150MHz.					
15.247(a)(2)	Spectrum Bandwidth of a Direct Sequence Spread Spectrum System Limit : min. 500kHz	PASS	Meet the requirement of limit.					
15.247(b)	Maximum Peak Output Power Limit: max. 30dBm	PASS	Meet the requirement of limit.					
15.247(d)	Transmitter Radiated Emissions Limit: Table 15.209	PASS	Meet the requirement of limit. Minimum passing margin is -1.03dB at 2487.90MHz.					
15.247(e)	Power Spectral Density Limit: max. 8dBm	PASS	Meet the requirement of limit.					
15.247(d)	Band Edge Measurement Limit: 20 dB less than the peak value of fundamental frequency	PASS	Meet the requirement of limit.					

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz ~ 30MHz	2.44 dB
	30MHz ~ 200MHz	2.93 dB
Radiated emissions	200MHz ~1000MHz	2.95 dB
	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	IP Camera
MODEL NO.	CIVS-IPC-2500W
FCC ID	LDKIPCS0226
POWER SUPPLY	12Vdc from adapter
MODULATION TYPE	CCK, DQPSK, DBPSK for DSSS
MODULATION TYPE	64QAM, 16QAM, QPSK, BPSK for OFDM
MODULATION TECHNOLOGY	DSSS, OFDM
TRANSFER RATE	802.11b: 11/5.5/2/1Mbps
	802.11g: 54/48/36/24/18/12/9/6Mbps
FREQUENCY RANGE	2412MHz ~ 2462MHz
NUMBER OF CHANNEL	11
MAXIMUM OUTPUT POWER	51.404mW
ANTENNA TYPE	Dipole antenna with 1.94dBi gain
DATA CABLE	NA
I/O PORTS	Refer to user's manual
ASSOCIATED DEVICES	NA

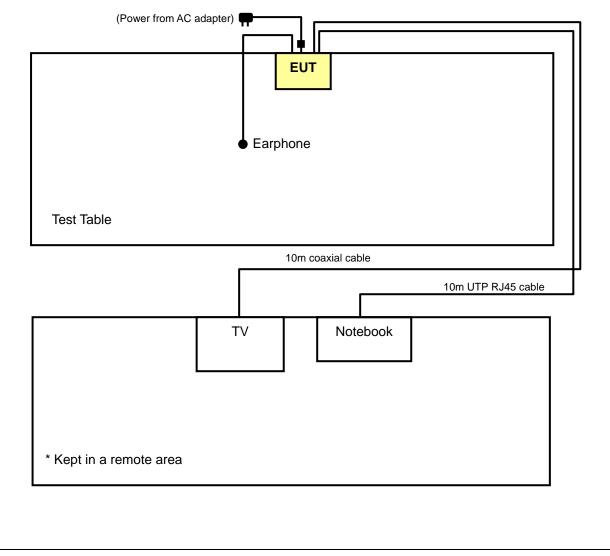
NOTE:

1. The EUT was powered by the following power adapter:

BRAND	LINKSYS
MODEL	MU12-2120100-A1
INPUT POWER	100-240Vac, 50~60Hz, 0.5A
OUTPUT POWER	12Vdc, 1.0A
POWER LINE	1.8m non-shielded cable with one core

**Adapter is for support unit only

- 2. The EUT, operates in the 2.4GHz frequency range, lets you connect IEEE 802.11g or IEEE 802.11b devices to the network. With its high-speed data transmissions of up to 54Mbps.
- 3. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.



3.2 DESCRIPTION OF TEST MODES

Eleven channels are provided to this EUT.

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
1	2412 MHz	7	2442 MHz
2	2417 MHz	8	2447 MHz
3	2422 MHz	9	2452 MHz
4	2427 MHz	10	2457 MHz
5	2432 MHz	11	2462 MHz
6	2437 MHz		

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Configure Mode	Applicable to				Description	
	RE≥1G	RE<1G	PLC	APCM	Descrip	Juon
-	\checkmark	\checkmark	\checkmark	√ -		
RE≥1G: F		ion above BOVE 1	1GHz GHz):	APCM: Antenn	ted Emission below a Port Conducted N	Measurement
oetween availa architecture).	ible modulati	ons, data	a rates,	and antenna p	e mode from al ports (if EUT wit t as listed below	h antenna dive
Mode	Available Channel		sted Innel	Modulation Technology	Modulation Type	Data Rate (Mbps)
802.11b	1 to 11	1,6	6, 11	DSSS	DBPSK	1
I						
Pre-Scan has t between availa architecture).	been conduction ble modulation	ELOW 1 ted to de ons, data	etermine a rates,	and antenna p	BPSK se mode from al ports (if EUT wit t as listed below	h antenna dive
ATED EMISSIC Pre-Scan has b between availa architecture).	ON TEST (B been conduc ble modulation	ELOW 1 ted to de ons, data	GHz): etermine a rates, lected fo	the worst-cas and antenna p	se mode from al ports (if EUT wit	l possible com h antenna dive
ATED EMISSIC Pre-Scan has to between availa architecture). Following chan	ON TEST (B been conduc ible modulation inel(s) was (v Available	ELOW 1 ted to de ons, data were) sel	GHz): etermine a rates, lected fo ted nnel	the worst-cas and antenna p or the final test Modulation	e mode from al ports (if EUT wit t as listed below Modulation	l possible com h antenna dive /. Data Rate
IATED EMISSIC Pre-Scan has b between availa architecture). Following chan Mode 802.11b VER LINE CONI Pre-Scan has b between availa architecture).	ON TEST (B Deen conduct able modulation anel(s) was (w Available Channel 1 to 11 DUCTED EN Deen conduct able modulation	ELOW 1 ted to de ons, data were) sel Tes Cha Cha ted to de ons, data were) sel	GHz): etermine a rates, lected for ted nnel s TEST: etermine a rates a	the worst-cas and antenna p or the final test Modulation Technology DSSS the worst-cas and antenna p	e mode from al ports (if EUT wit t as listed below Modulation Type DBPSK Be mode from al orts (if EUT with t as listed below Modulation	l possible com h antenna dive /. Data Rate (Mbps) 1 1 possible com h antenna dive

BANDEDGE MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
802.11b	1 to 11	1, 11	DSSS	DBPSK	1
802.11g	1 to 11	1, 11	OFDM	BPSK	6

ANTENNA PORT CONDUCTED MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	DBPSK	1
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) ANSI C63.4-2003

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	NOTEBOOK COMPUTER	DELL	PP05L	12130898320	E2K24CLNS
2	TV MONITOR	HACE	CT14A	35111411001753	VERIFICATION
3	EARPHONE	NA	NA	NA	NA

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS					
1	10m RJ45 cable					
2	10m coaxial cable					
3	1.6m non-shielded cable without core					

NOTE:

1. All power cords of the above support units are non shielded (1.8m).

2. Item 1-2 acted as communication partners to transfer data.

3. Item 3 was provided by Client.

4 TEST TYPES AND RESULTS

4.1 RADIATED EMISSION MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Test Receiver ROHDE & SCHWARZ	ESCI	100424	Jul. 27, 2008
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100269	Aug. 05, 2008
BILOG Antenna SCHWARZBECK	VULB9168	9168-153	Jan. 04, 2008
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-563	Jul. 30, 2008
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170242	Jan. 16, 2008
Preamplifier Agilent	8449B	3008A01910	Sep. 19, 2008
Preamplifier Agilent	8447D	2944A10638	Dec. 20, 2007
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	274039/223650	Nov. 07, 2008
RF signal cable Worken	8D-FB	Cable-HYCH9-01	Aug. 09, 2008
Software	ADT_Radiated_V7.6	NA	NA
Antenna Tower EMCO	2070/2080	512.835.4684	NA
Turn Table EMCO	2087-2.03	NA	NA
Antenna Tower &Turn Table Controller EMCO	2090	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

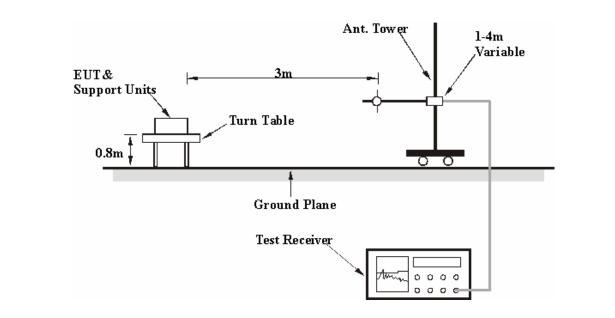
2. The test was performed in HwaYa Chamber 9.

- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The IC Site Registration No. is IC3789B-9.

4.1.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak method or average method as specified and then reported in data sheet.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT OPERATING CONDITIONS

- a. Connected the EUT with earphone and placed on the testing table.
- b. Prepared a notebook and TV to act as a communication partners and placed them outside of testing area.
- c. The notebook run a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency.
- d. The necessary accessories enable the system in full functions.

4.1.7 TEST RESULTS

802.11b DSSS MODULATION

EUT TEST CONDITIC	N	MEASUREMENT DETAIL		
CHANNEL	Channel 1	FREQUENCY RANGE	1 ~ 25GHz	
MODULATION TYPE	DBPSK	DETECTOR FUNCTION	Peak(PK) Average (AV)	
TRANSFER RATE	1Mbps	ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH, 1006hPa	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	TESTED BY	Morgan Chen	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 m							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2386.00	52.36 PK	74.00	-21.64	1.15 H	156	20.15	32.21
2	2386.00	43.55 AV	54.00	-10.45	1.15 H	156	11.34	32.21
3	*2412.00	98.95 PK			1.18 H	163	66.63	32.32
4	*2412.00	94.71 AV			1.18 H	163	62.39	32.32
5	4824.00	48.61 PK	74.00	-25.39	1.00 H	3	10.12	38.49
6	4824.00	41.85 AV	54.00	-12.15	1.00 H	3	3.36	38.49

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	2386.00	61.77 PK	74.00	-12.23	1.54 V	284	29.56	32.21	
2	2386.00	52.25 AV	54.00	-1.75	1.54 V	284	20.04	32.21	
3	*2412.00	109.91 PK			1.01 V	228	77.59	32.32	
4	*2412.00	105.69 AV			1.01 V	228	73.37	32.32	
5	4824.00	50.58 PK	74.00	-23.42	1.00 V	360	12.09	38.49	
6	4824.00	43.76 AV	54.00	-10.24	1.00 V	360	5.27	38.49	

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

EUT TEST CONDITIC	N	MEASUREMENT DETAIL		
CHANNEL	Channel 6	FREQUENCY RANGE	1 ~ 25GHz	
MODULATION TYPE	DBPSK	DETECTOR FUNCTION	Peak(PK) Average (AV)	
TRANSFER RATE	1Mbps	ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH, 1006hPa	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	TESTED BY	Morgan Chen	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2437.00	100.30 PK			1.15 H	158	67.89	32.41	
2	*2437.00	96.02 AV			1.15 H	158	63.61	32.41	
3	4874.00	47.15 PK	74.00	-26.85	1.00 H	345	8.46	38.69	
4	4874.00	41.23 AV	54.00	-12.77	1.00 H	345	2.54	38.69	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2437.00	111.43 PK			1.01 V	225	79.02	32.41	
2	*2437.00	107.12 AV			1.01 V	225	74.71	32.41	
3	4874.00	49.24 PK	74.00	-24.76	1.00 V	172	10.55	38.69	
4	4874.00	43.02 AV	54.00	-10.98	1.00 V	172	4.33	38.69	

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

EUT TEST CONDITIC	N	MEASUREMENT DETAIL		
CHANNEL	Channel 11	FREQUENCY RANGE	1 ~ 25GHz	
MODULATION TYPE	DBPSK	DETECTOR FUNCTION	Peak(PK) Average (AV)	
TRANSFER RATE	1Mbps	ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH, 1006hPa	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	TESTED BY	Morgan Chen	

	A	NTENNA F	OLARITY 8	TEST DIS	TANCE: HO	RIZONTAL	AT 3 m	
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2462.00	96.89 PK			1.19 H	158	64.38	32.51
2	*2462.00	92.68 AV			1.19 H	158	60.17	32.51
3	2487.90	52.46 PK	74.00	-21.54	1.18 H	165	19.86	32.60
4	2487.90	43.62 AV	54.00	-10.38	1.18 H	165	11.02	32.60
5	4924.00	47.05 PK	74.00	-26.95	1.00 H	352	8.20	38.85
6	4924.00	40.23 AV	54.00	-13.77	1.00 H	352	1.38	38.85

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2462.00	107.76 PK			1.00 V	228	75.25	32.51		
2	*2462.00	103.62 AV			1.00 V	228	71.11	32.51		
3	2487.90	63.74 PK	74.00	-10.26	1.00 V	228	31.14	32.60		
4	2487.90	52.97 AV	54.00	-1.03	1.00 V	228	20.37	32.60		
5	4924.00	48.36 PK	74.00	-25.64	1.00 V	231	9.51	38.85		
6	4924.00	41.85 AV	54.00	-12.15	1.00 V	231	3.00	38.85		

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m) **REMARKS**:

Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

802.11g OFDM MODULATION

EUT TEST CONDITIC	N	MEASUREMENT DETAIL		
CHANNEL Channel 1		FREQUENCY RANGE	1 ~ 25GHz	
MODULATION TYPE	BPSK	DETECTOR FUNCTION	Peak(PK) Average (AV)	
TRANSFER RATE	6Mbps	ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH, 1006hPa	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	TESTED BY	Morgan Chen	

	ŀ	ANTENNA F	OLARITY 8		TANCE: HC	RIZONTAL	AT 3 m	
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	57.25 PK	74.00	-16.75	1.00 H	209	25.02	32.23
2	2390.00	46.39 AV	54.00	-7.61	1.00 H	209	14.16	32.23
3	*2412.00	99.09 PK			1.00 H	301	66.77	32.32
4	*2412.00	88.69 AV			1.00 H	301	56.37	32.32
5	4824.00	48.05 PK	74.00	-25.95	1.00 H	336	9.56	38.49
6	4824.00	36.32 AV	54.00	-17.68	1.00 H	336	-2.17	38.49

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2390.00	62.73 PK	74.00	-11.27	1.03 V	225	30.50	32.23		
2	2390.00	49.56 AV	54.00	-4.44	1.03 V	225	17.33	32.23		
3	*2412.00	107.78 PK			1.03 V	225	75.46	32.32		
4	*2412.00	96.94 AV			1.03 V	225	64.62	32.32		
5	4824.00	49.24 PK	74.00	-24.76	1.08 V	352	10.75	38.49		
6	4824.00	37.61 AV	54.00	-16.39	1.08 V	352	-0.88	38.49		

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

EUT TEST CONDITIC	N	MEASUREMENT DETAIL		
CHANNEL	Channel 6	FREQUENCY RANGE	1 ~ 25GHz	
MODULATION TYPE	BPSK	DETECTOR FUNCTION	Peak(PK) Average (AV)	
TRANSFER RATE	6Mbps	ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH, 1006hPa	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	TESTED BY	Morgan Chen	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2437.00	99.20 PK			1.00 H	253	66.79	32.41		
2	*2437.00	88.79 AV			1.00 H	253	56.38	32.41		
3	4874.00	48.09 PK	74.00	-25.91	1.00 H	336	9.40	38.69		
4	4874.00	36.48 AV	54.00	-17.52	1.00 H	336	-2.21	38.69		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2437.00	107.71 PK			1.03 V	222	75.30	32.41		
2	*2437.00	96.92 AV			1.03 V	222	64.51	32.41		
3	4874.00	49.68 PK	74.00	-24.32	1.05 V	232	10.99	38.69		
4	4874.00	37.82 AV	54.00	-16.18	1.05 V	232	-0.87	38.69		

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

EUT TEST CONDITIC	N	MEASUREMENT DETAIL		
CHANNEL Channel 11		FREQUENCY RANGE	1 ~ 25GHz	
MODULATION TYPE	BPSK	DETECTOR FUNCTION	Peak(PK) Average (AV)	
TRANSFER RATE	6Mbps	ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH, 1006hPa	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	TESTED BY	Morgan Chen	

	A	NTENNA F	OLARITY 8	TEST DIS	TANCE: HO	RIZONTAL	AT 3 m	
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2462.00	99.26 PK			1.00 H	211	66.75	32.51
2	*2462.00	88.82 AV			1.00 H	211	56.31	32.51
3	2483.50	57.77 PK	74.00	-16.23	1.00 H	212	25.18	32.59
4	2483.50	46.55 AV	54.00	-7.45	1.00 H	212	13.96	32.59
5	4924.00	48.15 PK	74.00	-25.85	1.00 H	349	9.30	38.85
6	4924.00	36.56 AV	54.00	-17.44	1.00 H	349	-2.29	38.85

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2462.00	107.63 PK			1.02 V	227	75.12	32.51		
2	*2462.00	96.89 AV			1.02 V	227	64.38	32.51		
3	2483.50	65.93 PK	74.00	-8.07	1.02 V	227	33.34	32.59		
4	2483.50	51.91 AV	54.00	-2.09	1.02 V	227	19.32	32.59		
5	4924.00	49.58 PK	74.00	-24.42	1.03 V	228	10.73	38.85		
6	4924.00	37.77 AV	54.00	-16.23	1.03 V	228	-1.08	38.85		

REMARKS: 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

BELOW 1GHz WORST-CASE DATA

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 6	FREQUENCY RANGE	Below 1000MHz	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Quasi-Peak	
ENVIRONMENTAL CONDITIONS	24deg. C, 64%RH 987hPa	TESTED BY	Match Tsui	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	175.72	37.86 QP	43.50	-5.64	1.50 H	139	25.53	12.33	
2	364.32	38.21 QP	46.00	-7.79	1.00 H	142	23.32	14.89	
3	552.91	38.68 QP	46.00	-7.32	1.25 H	250	18.68	20.00	
4	652.07	43.84 QP	46.00	-2.16	1.50 H	163	22.28	21.57	
5	675.40	40.00 QP	46.00	-6.00	1.00 H	265	18.22	21.77	
6	700.68	39.03 QP	46.00	-6.97	1.00 H	265	17.02	22.01	
7	725.96	39.61 QP	46.00	-6.39	1.00 H	88	17.00	22.62	
8	873.72	38.00 QP	46.00	-8.00	1.50 H	76	12.93	25.07	
9	897.05	40.93 QP	46.00	-5.07	1.50 H	79	15.64	25.29	
10	922.33	38.14 QP	46.00	-7.86	1.50 H	73	12.64	25.50	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	652.07	40.30 QP	46.00	-5.70	1.25 V	247	18.73	21.57		
2	725.96	39.76 QP	46.00	-6.24	1.50 V	79	17.14	22.62		
3	799.84	38.74 QP	46.00	-7.26	1.00 V	220	14.37	24.36		
4	873.72	42.55 QP	46.00	-3.45	1.00 V	232	17.48	25.07		
5	897.05	41.94 QP	46.00	-4.06	1.50 V	208	16.65	25.29		
6	922.33	40.88 QP	46.00	-5.12	1.50 V	208	15.38	25.50		
7	947.60	42.08 QP	46.00	-3.92	1.00 V	226	16.38	25.71		

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) 3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

4.2 CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)		
	Quasi-peak	Average	
0.15 ~ 0.5 0.5 ~ 5 5 ~ 30	66 to 56 56 60	56 to 46 46 50	

4.2.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.2.2 TEST INSTRUMENTS

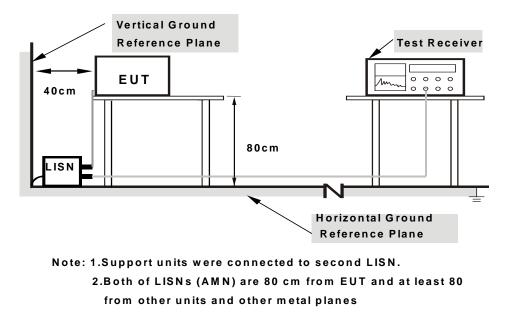
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Test Receiver ROHDE & SCHWARZ	ESCS30	100288	Sep. 21, 2008
RF signal cable Woken	5D-FB	Cable-HYCO3-01	Jan. 06, 2008
LISN ROHDE & SCHWARZ	ESH2-Z5	100100	Jan. 08, 2008
LISN ROHDE & SCHWARZ	ESH3-Z5	100311	Jan. 16, 2008
Software ADT	ADT_Cond_V3	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 2.

3. The VCCI Site Registration No. is C-2047.

4.2.3 TEST PROCEDURES


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation.

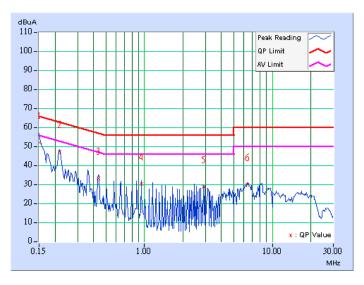
4.2.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT OPERATING CONDITIONS

Same as item 4.1.6.

4.2.7 TEST RESULTS

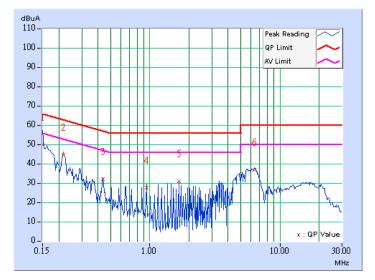

CONDUCTED WORST-CASE DATA

EUT TEST CONDITION	N	MEASUREMENT DETAIL		
CHANNEL	Channel 6	PHASE	Line 1	
MODULATION TYPE	DBPSK	6dB BANDWIDTH	9 kHz	
TRANSFER RATE	1Mbps	ENVIRONMENTAL CONDITIONS	20deg. C, 60%RH, 999hPa	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	TESTED BY	Match Tsui	

No	Freq.	Corr.	Readin	g Value	Emis Le	sion vel	Lir	nit	Mar	gin
		Factor	[dB ((uV)]	[dB ((uV)]	[dB ((uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.150	0.10	51.77	-	51.87	-	66.00	56.00	-14.13	-
2	0.216	0.10	46.94	-	47.04	-	62.96	52.96	-15.92	-
3	0.435	0.10	33.13	-	33.23	-	57.15	47.15	-23.92	-
4	0.943	0.11	30.12	-	30.23	-	56.00	46.00	-25.77	-
5	2.898	0.25	28.72	-	28.97	-	56.00	46.00	-27.03	-
6	6.375	0.30	29.87	-	30.17	-	60.00	50.00	-29.83	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and
 - measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



EUT TEST CONDITIO	N	MEASUREMENT DETAIL		
CHANNEL	Channel 6	PHASE	Line 2	
MODULATION TYPE	DBPSK	6dB BANDWIDTH	9 kHz	
TRANSFER RATE	1Mbps	ENVIRONMENTAL CONDITIONS	20deg. C, 60%RH, 999hPa	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	TESTED BY	Match Tsui	

No	Freq.	Corr.	Reading	g Value	Emis Lev		Lir	nit	Mar	gin
		Factor	[dB ((uV)]	[dB ((uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.150	0.10	49.84	-	49.94	-	66.00	56.00	-16.06	-
2	0.216	0.10	44.61	-	44.71	-	62.96	52.96	-18.25	-
3	0.435	0.11	31.82	-	31.93	-	57.15	47.15	-25.23	-
4	0.943	0.20	27.62	-	27.82	-	56.00	46.00	-28.18	-
5	1.668	0.22	30.66	-	30.88	-	56.00	46.00	-25.12	-
6	6.375	0.34	36.69	-	37.03	-	60.00	50.00	-22.97	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

4.3 6dB BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF 6dB BANDWIDTH MEASUREMENT

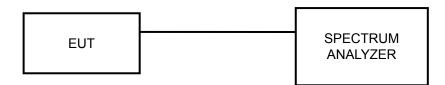
The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
SPECTRUM ANALYZER	FSP 40	100040	Jun. 28, 2008

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.3.3 TEST PROCEDURE


The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 kHz RBW and 100kHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

4.3.4 DEVIATION FROM TEST STANDARD

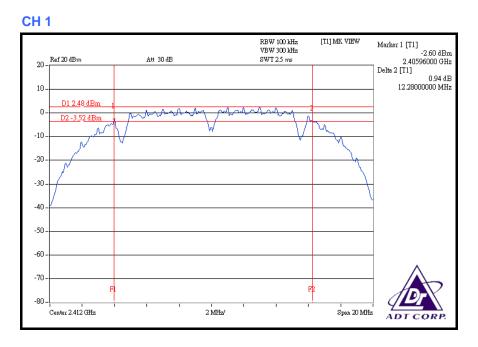
No deviation.

4.3.5 TEST SETUP

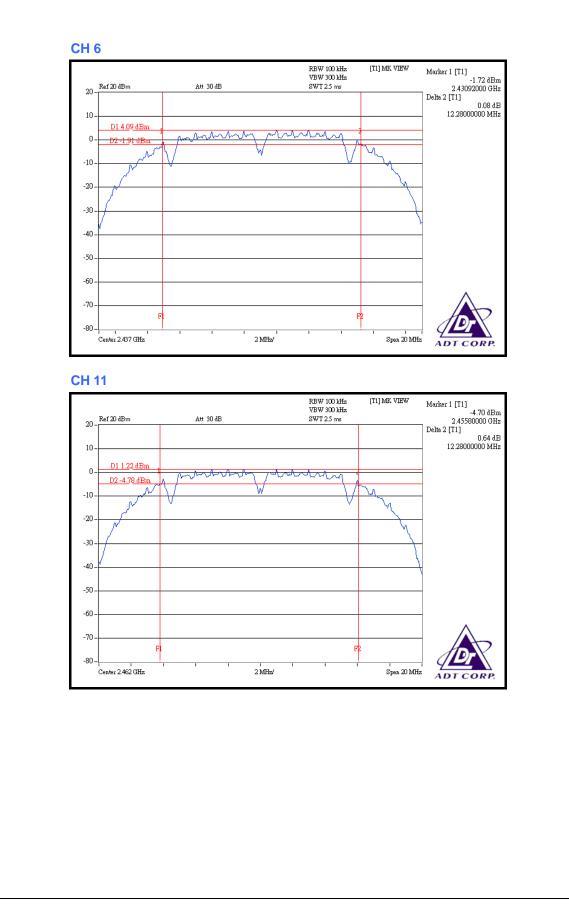
For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration.

4.3.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

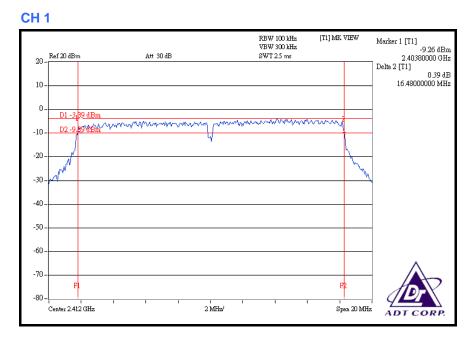


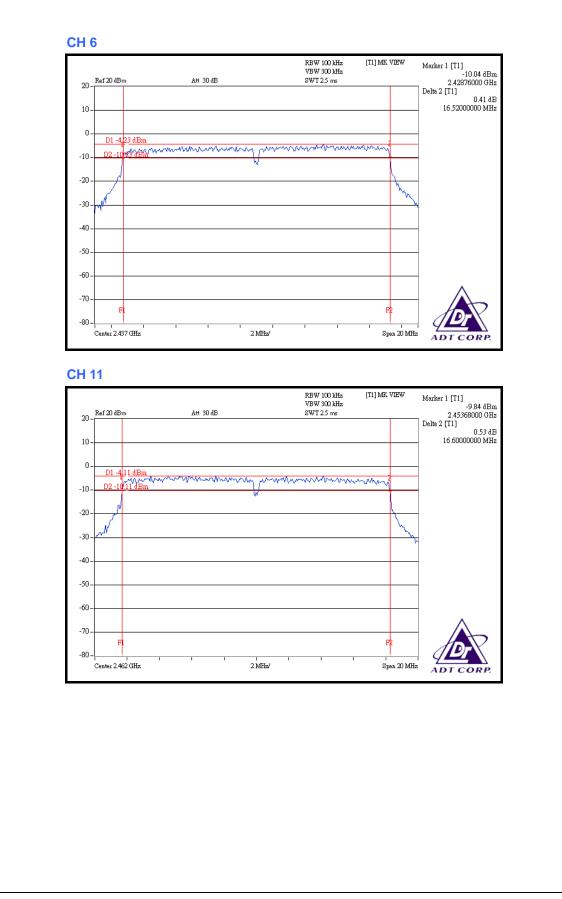
4.3.7 TEST RESULTS


802.11b DSSS MODULATION

MODULATION TYPE	DBPSK	TRANSFER RATE	1Mbps
INPUT POWER (SYSTEM)		ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH, 1005hPa
TESTED BY	Morgan Chen		

CHANNEL	CHANNEL FREQUENCY (MHz)	6dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS/FAIL
1	2412	12.28	0.5	PASS
6	2437	12.28	0.5	PASS
11	2462	12.28	0.5	PASS




802.11g OFDM MODULATION

MODULATION TYPE	BPSK	TRANSFER RATE	6Mbps
INPUT POWER (SYSTEM)	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH, 1005hPa
TESTED BY	Morgan Chen		

CHANNEL	CHANNEL FREQUENCY (MHz)	6dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS/FAIL
1	2412	16.48	0.5	PASS
6	2437	16.52	0.5	PASS
11	2462	16.60	0.5	PASS

4.4 MAXIMUM PEAK OUTPUT POWER

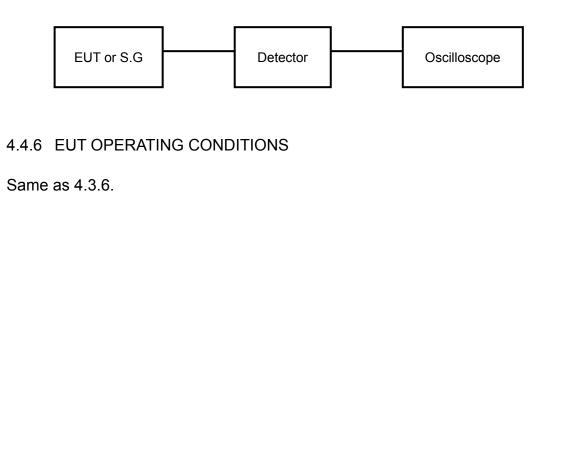
4.4.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

The Maximum Peak Output Power Measurement is 30dBm.

4.4.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
R&S SPECTRUM ANALYZER	FSP40	100040	Jun. 28, 2008
AGILENT SIGNAL GENERATOR	E8257C	MY43320668	Dec. 28, 2007
TEKTRONIX OSCILLOSCOPE	TDS1012	C037299	Nov. 27, 2007
NARDA DETECTOR	4503A	FSCM99899	NA

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


4.4.3 TEST PROCEDURES

- a. A detector was used on the output port of the EUT. An oscilloscope was used to peak the response of the detector.
- b. Replaced the EUT by the signal generator. The center frequency of the S.G was adjusted to the center frequency of the measured channel.
- c. Adjusted the power to have the same peak reading on oscilloscope. Record the power level.

4.4.4 DEVIATION FROM TEST STANDARD

No deviation.

4.4.5 TEST SETUP

4.4.7 TEST RESULTS

802.11b DSSS MODULATION

MODULATION TYPE	DBPSK	TRANSFER RATE	1Mbps
INPUT POWER (SYSTEM)	120Vac 60 Hz	ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH, 1005hPa
TESTED BY	Morgan Chen		

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (mW)	PEAK POWER OUTPUT (dBm)	PEAK POWER LIMIT (dBm)	PASS/FAIL
1	2412	35.481	15.50	30	PASS
6	2437	51.404	17.11	30	PASS
11	2462	22.751	13.57	30	PASS

802.11g OFDM MODULATION

MODULATION TYPE	BPSK	TRANSFER RATE	6Mbps
INPUT POWER (SYSTEM)	120Vac 60 Hz	ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH, 1005hPa
TESTED BY	Morgan Chen		

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (mW)	PEAK POWER OUTPUT (dBm)	PEAK POWER LIMIT (dBm)	PASS/FAIL
1	2412	32.285	15.09	30	PASS
6	2437	32.137	15.07	30	PASS
11	2462	32.137	15.07	30	PASS

4.5 POWER SPECTRAL DENSITY MEASUREMENT

4.5.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

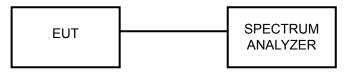
The Maximum of Power Spectral Density Measurement is 8dBm.

4.5.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
R&S SPECTRUM ANALYZER	FSP 40	100040	Jun. 28, 2008

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.5.3 TEST PROCEDURE


The transmitter output was connected to the spectrum analyzer through an attenuator, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using 3kHz RBW and 30kHz VBW, set sweep time = span/3kHz. The power spectral density was measured and recorded.

The sweep time is allowed to be longer than span/3kHz for a full response of the mixer in the spectrum analyzer.

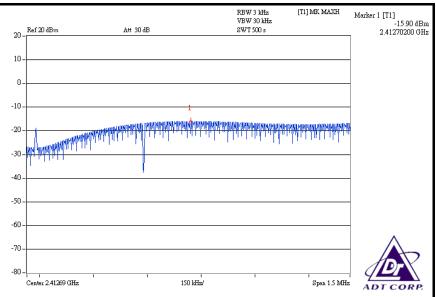
4.5.4 DEVIATION FROM TEST STANDARD

No deviation.

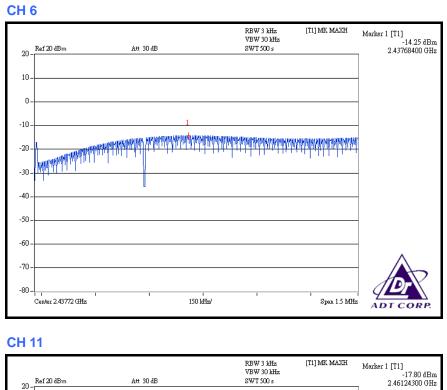
4.5.5 TEST SETUP

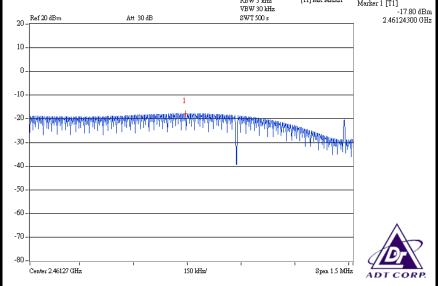
4.5.6 EUT OPERATING CONDITIONS

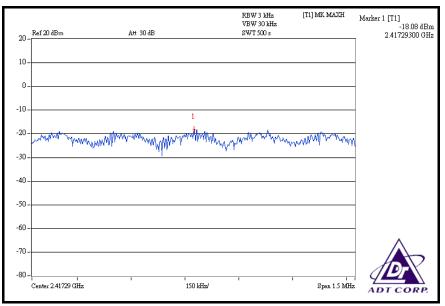
Same as 4.3.6.


4.5.7 TEST RESULTS

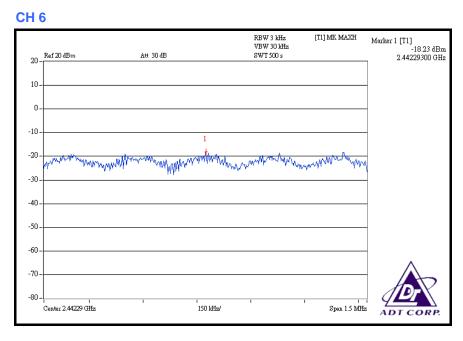
802.11b DSSS MODULATION


MODULATION TYPE	DBPSK	TRANSFER RATE	1Mbps
INPUT POWER (SYSTEM)	120Vac 60 Hz	ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH, 1005hPa
TESTED BY	Morgan Chen		

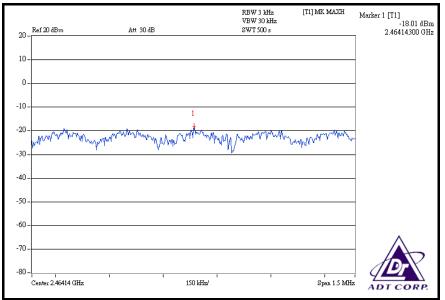

CHANNEL	CHANNEL FREQUENCY (MHz)	RF POWER LEVEL IN 3 kHz BW (dBm)	MAXIMUM LIMIT (dBm)	PASS/FAIL
1	2412	-15.90	8	PASS
6	2437	-14.25	8	PASS
11	2462	-17.80	8	PASS



802.11g OFDM MODULATION


MODULATION TYPE	BPSK	TRANSFER RATE	6Mbps
INPUT POWER (SYSTEM)	120Vac 60 Hz	ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH, 1005hPa
TESTED BY	Morgan Chen		

CHANNEL	CHANNEL FREQUENCY (MHz)	RF POWER LEVEL IN 3 kHz BW (dBm)	MAXIMUM LIMIT (dBm)	PASS/FAIL
1	2412	-18.08	8	PASS
6	2437	-18.23	8	PASS
11	2462	-18.01	8	PASS



CH 11

4.6 BAND EDGES MEASUREMENT

4.6.1 LIMITS OF BAND EDGES MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
R&S SPECTRUM ANALYZER	FSP 40	100040	Jun. 28, 2008

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.6.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100kHz with suitable frequency span including 100MHz bandwidth from band edge. The band edges was measured and recorded.

The spectrum plots (Peak RBW=100kHz, VBW=300kHz; Average RBW=1MHz, VBW= 10Hz are attached on the following pages.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation.

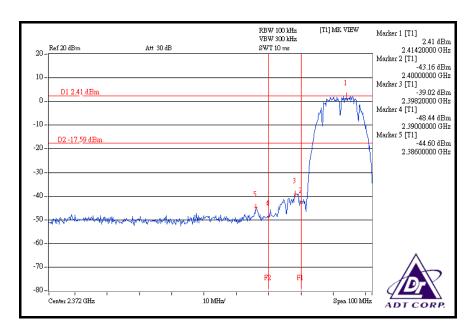
4.6.5 EUT OPERATING CONDITION

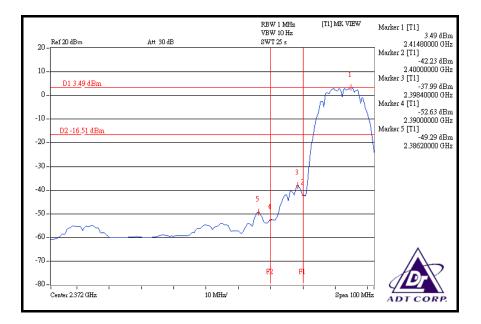
Same as 4.3.6.

4.6.6 TEST RESULTS

The spectrum plots are attached on the following 12 images. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement in part 15.247(d).

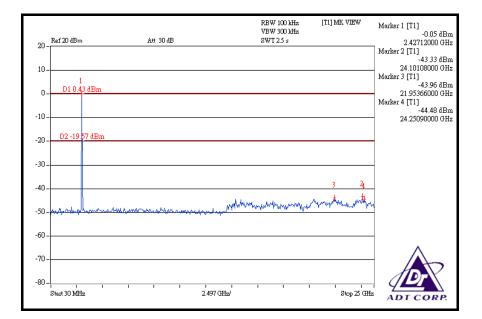
802.11b DSSS MODULATION


NOTE 1: The band edge emission plot on the next page shows 47.01dBc between carrier maximum power and local maximum emission in restrict band (2.38600GHz). The emission of carrier strength list in the test result of channel 1 at the item 4.2.7 is 109.91dBuV/m (Peak), so the maximum field strength in restrict band is 109.91 - 47.01 = 62.90dBuV/m which is under 74dBuV/m limit.


The band edge emission plot of on the next page shows 52.78dBc between carrier maximum power and local maximum emission in restrict band (2.38620GHz). The emission of carrier strength list in the test result of channel 1 at the item 4.2.7 is 105.69dBuV/m (Average), so the maximum field strength in restrict band is 105.69 - 52.78 = 52.91dBuV/m which is under 54dBuV/m limit.

NOTE 2: The band edge emission plot on the next second page shows 47.15dBc between carrier maximum power and local maximum emission in restrict band (2.48760GHz). The emission of carrier strength list in the test result of channel 11 at the item 4.2.7 is 107.76dBuV/m (Peak), so the maximum field strength in restrict band is 107.76 - 47.15 = 60.61dBuV/m which is under 74dBuV/m limit.

The band edge emission plot on the next third page shows 52.61dBc between carrier maximum power and local maximum emission in restrict band (2.48780GHz). The emission of carrier strength list in the test result of channel 11 at the item 4.2.7 is 103.62dBuV/m (Average), so the maximum field strength in restrict band is 103.62 - 52.61 = 51.01dBuV/m which is under 54dBuV/m limit.

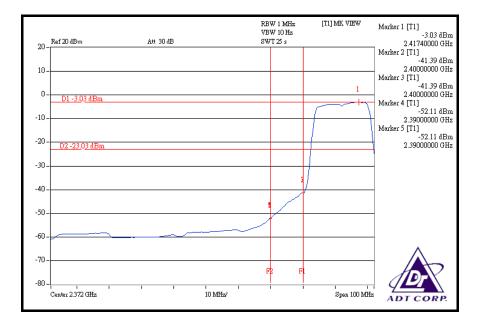


,	Ref 20 dBm	Att 30 dB		RBW 100 kHz VBW 300 kHz SWT 2.5 s	[T1] MK VIEW	Marker 1 [T1] 1.89 dBi
20 - ²	Ker 20 dbm	All JOID		6W12.JS		2.37718000 GH Marker 2 [T1] -43.78 dB
10-	1					22.00360000 GH Marker 3 [T1]
0-	D1 2.41 dBm					-44.25 dBi 20.20576000 GH
10-						Marker 4 [T1] -44.49 dB 24.30084000 GH
	D2 -17 59 dBm					24.50004000 01
20 -						
-30						-
40					3 2 4	-
·50 - 6	al Andrean and the second s	man manadamaka	up appropriate for the stand	manna	themport	
·60						
-70						
90-ļ	Start 30 MHz	1 1	1 1 1 2.497 GHz/	1	Stop 25 GH	<u> </u>
6	STRIT DU MINZ		2.497 GHZ		പ്പെട്ടും പ്രത്തിന്നും പ്രത്തിന്നും പ്രത്തിന്നും പ്രത്തിന്നും പ്രത്തിന്നും പ്രത്തിന്നും പ്രത്തിന്നും പ്രത്തിന്ന	ADT CORP.
				RBW 100 kHz	[T1] MK VIEW	Marker 1 [T1]
1	Ref 20 dBm	Att 30 dB		VBW 300 kHz SWT 10 ms		0.43 dBi
20 -				SWI IUMS		2.45900000 GH
20-				awiiums		Marker 2 [T1] -48.95 dBi
20	1			awi iums		Marker 2 [T1] -48.95 dB 2.48350000 GH Marker 3 [T1] -46.72 dB
20-				SWI IUms		Marker 2 [T1] -48.95 dB; 2.48350000 GH Marker 3 [T1] -46.72 dB; 2.48760000 GH Marker 4 [T1]
20	1			SW110ms		Marker 2 [T1] -48.95 dB, 2.48350000 GH Marker 3 [T1] -46.72 dB, 2.48760000 GH
20 10 0	1			2 W I 10 ms		Marker 2 [T1] -48.95 dB, 2.48350000 GH Marker 3 [T1] -46.72 dBi 2.48760000 GH Marker 4 [T1] -51.10 dB;
20 10 0 -10	1 D1 0.43 dBm			swilums		Marker 2 [T1] -48.95 dB, 2.48350000 GH Marker 3 [T1] -46.72 dBi 2.48760000 GH Marker 4 [T1] -51.10 dB;
20 10 -10 -20 -30	1 D1 0.43 dBm			sw i lu ms		Marker 2 [T1] -48.95 dB, 2.48350000 GH Marker 3 [T1] -46.72 dBi 2.48760000 GH Marker 4 [T1] -51.10 dB;
20 10 0 -10	1 D1 0.43 dBm	M. 4 3		sw i IU ITS		Marker 2 [T1] -48.95 dB, 2.48350000 GH Marker 3 [T1] -46.72 dBi 2.48760000 GH Marker 4 [T1] -51.10 dB;
20 10 -10 -20 -30	1 D1 0.43 dBm	Ma s		50 110 ms	want the for the strate of the	Marker 2 [T1] -48.95 dB, 2.48350000 GH Marker 3 [T1] -46.72 dBi 2.48760000 GH Marker 4 [T1] -51.10 dB;
20 10 0 10 20 30 40	1 D1 0.43 dBm				converse changes	Marker 2 [T1] -48.95 dB, 2.48350000 GH Marker 3 [T1] -46.72 dBi 2.48760000 GH Marker 4 [T1] -51.10 dB;
20 10 10 20 30 40 50	1 D1 0.43 dBm				converse durd you	Marker 2 [T1] -48.95 dB, 2.48350000 GH Marker 3 [T1] -46.72 dBi 2.48760000 GH Marker 4 [T1] -51.10 dB;
20 10 10 20 30 40 50 60 70	1 D1 0.43 dBm					Marker 2 [T1] -48.95 dB, 2.48350000 GH Marker 3 [T1] -46.72 dBi 2.48760000 GH Marker 4 [T1] -51.10 dB;
20 10 10 20 30 40 50 60 70 80	1 D1 0.43 dBm				Lawy yer by J. M. yes	Marker 2 [T1] - 48.95 dEn 2.48350000 GH Marker 3 [T1] - 46.72 dEn - 2.48760000 GH Marker 4 [T1] - 51.10 dEn 2.50000000 GH
20 10 10 20 30 40 50 60 70 80	1 D1 0.43 dBm // *** // *** / D2 -19.57 dBm				Low you of the August	Marker 2 [T1] - 48.95 dEn 2.48350000 GH Marker 3 [T1] - 46.72 dEn - 2.48760000 GH Marker 4 [T1] - 51.10 dEn 2.50000000 GH
20 10 10 20 30 40 50 60 70 80	1 D1 0.43 dBm // *** // *** / D2 -19.57 dBm				converse chard open 'spen 100 MH	Marker 2 [T1] - 48.95 dEn 2.48350000 GH Marker 3 [T1] - 46.72 dEn - 2.48760000 GH Marker 4 [T1] - 51.10 dEn 2.50000000 GH
20 10 10 20 30 40 50 60 70 80	1 D1 0.43 dBm // *** // *** / D2 -19.57 dBm				Lawy yer of the Alexandro	Marker 2 [T1] - 48.95 dEn 2.48350000 GH Marker 3 [T1] - 46.72 dEn - 2.48760000 GH Marker 4 [T1] - 51.10 dEn 2.50000000 GH
20 10 10 20 30 40 50 60 70 80	1 D1 0.43 dBm // *** // *** / D2 -19.57 dBm				compete de de de la competencia de la competenci	Marker 2 [T1] - 48.95 dEn 2.48350000 GH Marker 3 [T1] - 46.72 dEn - 2.48760000 GH Marker 4 [T1] - 51.10 dEn 2.50000000 GH

	Ref 20 dBm A	# 30 dB	RBW 1 MHz VBW 10 Hz SWT 25 s	[T1] MK VIEW	Marker 1 [T1] 1.61 dBm 2.45920000 GHz
20 10					Marker 2 [T1] -54.44 dBm 2.48350000 GHz
- 10	1 D1 1.61 dBm				Marker 3 [T1] -51.00 dBm 2.48780000 GHz
-10 -	1 h				Marker 4 [T1] -57.20 dBm 2.50000000 GHz
-20 –	D2 -18.39 dBm				2.5000000 0112
-30 –					
-40 –					
-50 –		3			
-60 –				<u> </u>	
-70 -	F	L F2			
-80 -	Center 2.502 GHz	10 MHz/	1 1 1	Span 100 MHz	ADT CORP.

802.11g OFDM MODULATION

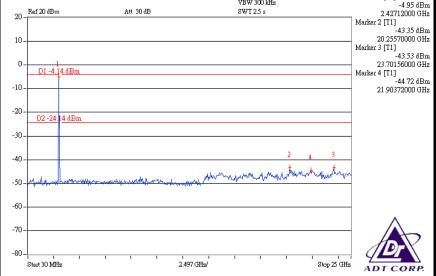
NOTE 1: The band edge emission plot on the next page shows 41.93dBc between carrier maximum power and local maximum emission in restrict band (2.38980GHz). The emission of carrier strength list in the test result of channel 1 at the item 4.2.7 is 107.78dBuV/m (Peak), so the maximum field strength in restrict band is 107.78 - 41.93 = 65.85dBuV/m which is under 74dBuV/m limit.


The band edge emission plot of on the next page shows 49.08dBc between carrier maximum power and local maximum emission in restrict band (2.39000GHz). The emission of carrier strength list in the test result of channel 1 at the item 4.2.7 is 96.94dBuV/m (Average), so the maximum field strength in restrict band is 96.94 - 49.08 = 47.86dBuV/m which is under 54dBuV/m limit.

NOTE 2: The band edge emission plot on the next second page shows 39.62dBc between carrier maximum power and local maximum emission in restrict band (2.48380GHz). The emission of carrier strength list in the test result of channel 11 at the item 4.2.7 is 107.63dBuV/m (Peak), so the maximum field strength in restrict band is 107.63 - 39.62 = 68.01dBuV/m which is under 74dBuV/m limit.

The band edge emission plot on the next third page shows 46.68dBc between carrier maximum power and local maximum emission in restrict band (2.48350GHz). The emission of carrier strength list in the test result of channel 11 at the item 4.2.7 is 96.89dBuV/m (Average), so the maximum field strength in restrict band is 96.89 - 46.68 = 50.21dBuV/m which is under 54dBuV/m limit.

		RBW 100 kHz VBW 300 kHz	[T1] MK VIEW	Marker 1 [T1] -3.91 dBm
20 - Ref 20)dBm Att 30 dB	SWT 10 ms		2.41620000 GHz
20-				Marker 2 [T1]
				-41.21 dBm
10-				2.40000000 GHz Marker 3 [T1]
				-37.84 dBm
0-			1	2.39960000 GHz
D1	1 -3.91 dBm		mound	Marker 4 [T1]
-10-			www.mut.	-45.93 dBm
-10-				2.39000000 GHz Marker 5 [T1]
				-45.84 dBm
-20 - D2	-23.91 dBm		1 1	2.38980000 GHz
	25.51 0.5.11		1	
-30 -			· · · · · · · · · · · · · · · · · · ·	
		5		
-40 -			N	
		how you have a farmer and the second		
-50	all the for any other and the second and the second states and the second states and the second states and the	hughat		-
-60 -				
-70				
-10-		F2 F		
		rg r	•	
-80 -Ļ		1	i i i	
Center:	2.372 GHz 10 MHz/		Span 100 MHz	ADT CORP.



	Ref 20 dBm	Att 30 dB		RBW 100 kHz VBW 300 kHz SWT 2.5 s	[T1] MK VIEW	Marker 1 [T1] -4.97 dBm _ 2.37718000 GHz
20 -						Marker 2 [T1] -44.14 dBm
10 -						20.25570000 GHz Marker 3 [T1]
0 -	1 D1 -3.91 dBm					-44.38 dBm 20.55534000 GHz
-10 -						- Marker 4 [T1] -44.60 dBm
						23.90132000 GHz
-20 -	D2 -23 91 dBm					-
-30 -						-
-40 -					23 4	-
-50 -		a	which is which	An man have	the work	u
-50-	······					
-60 -						•
-70 -						
-80 -						<i>ID</i>
	Start 30 MHz		2.497 GHz/	1 1 1	Stop 25 GH	ADT CORP.
				RBW 100 kHz VBW 300 kHz	[T1] MK VIEW	Marker 1 [T1] -4.14 dBm
20 -	Ref 20 dBm	Att 30 dB		SWT 10 ms		2.45740000 GHz Marker 2 [T1]
10 -						-46.34 dBm 2.48350000 GHz
0-	1					Marker 3 [T1] -43.76 dBm 2.48380000 GHz
0-	D1-4.14 dBm					2.485866666 GHz Marker 4 [T1] -49.54 dBm
-10 -						2.50000000 GHz
-20 -	D2 -24.14 dBm					-
-30 -]
		WAL				
40			4			1
-40 -		WW.				
-40 - -50 -		munu	wheter and the second	http://www.handhisongachth	hall a strategy and the	*
		- WWWWWWWW	alan an a	ht-polylar-Andrewayerth	haddynan dy rafnydd dynafo	-
-50 - -60 -		W Mange	where we are a second and the second	an para duanan t	hadiphan Air nithagin ofyrtafi	
-50 - -60 - -70 -		FL		eft ystof og staf og skiller og sk I	****************	
-50 - -60 - -70 -	Center 2.502 GHz		филан улфон фил F2 10 MHz/		МА/ын А. Жайнф А	

20 - Ref 20 dBm 10	Att 30 dB	RBW 1 MiHz VBW 10 Hz SWT 25 s	[T1] MK VIEW	Marker 1 [T1] -3.16 dBm 2.45740000 GHz Marker 2 [T1] -49.84 dBm 2.48350000 GHz Marker 3 [T1] 2.48350000 GHz Marker 4 [T1]
-10				-56.95 dBm 2.50000000 GHz
-30				
-60	PL P2			
-80 - Center 2.502 GHz) MHz/	Spen 100 MHz	ADT CORP.
		55914 (00) H	ודין אני עודעע	
20 - Ref 20 dBm 10 -	Att 30 dB	RBW 100 kHz VBW 300 kHz SWT 2.5 s	[T1] MK VIEW	Marker 1 [T1] -4.95 dBm 2.42712000 GHz Marker 2 [T1] -43.35 dBm 20.25570000 GHz Marker 3 [T1]

4.7 ANTENNA REQUIREMENT

4.7.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

4.7.2 ANTENNA CONNECTED CONSTRUCTION

The antenna used in this product is Dipole antennas with R-SMA connector. The maximum Gain of the antenna is 1.94dBi.

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6 INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA	FCC, UL, A2LA
Germany	TUV Rheinland
Japan	VCCI
Norway	NEMKO
Canada	INDUSTRY CANADA, CSA
R.O.C.	TAF, BSMI, NCC
Netherlands	Telefication
Singapore	GOST-ASIA(MOU)
Russia	CERTIS(MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab

Tel: 886-3-3183232 Fax: 886-3-3185050 Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

7 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.