Test Report

C1920AXE-x (x = A, B, N, T)

Cisco Catalyst C9120AX Series 802.11ax Access Point

2.4GHz WLAN Radio + 2dBi Antenna

FCC ID: LDKEDAC92157 IC: 2461N-EDAC92157

2400-2483.5 MHz

Against the following Specifications:

CFR47 Part 15.247 RSS-247 RSS-Gen Issue 5 LP0002 (2018-01-10)

Cisco Systems 170 West Tasman Drive

San Jose, CA 95134

Author: Chris Blair Approved By: Gez Thorpe **Tested By: Chris Blair** Title: Radio Compliance Manager Revision: See EDCS

This report replaces any previously entered test report under EDCS – **18334966**. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. Test Report Template EDCS# 11644121.

Page No: 1 of 88

SECTION 1: OVI	CRVIEW	3
SECTION 2: ASS	ESSMENT INFORMATION	4
2.1 GENERAL		4
	TING	
2.3 Report Issu	E DATE	6
	ILITIES	
	Assessed (EUT)	
2.6 EUT DESCRI	PTION	7
SECTION 3: RES	ULT SUMMARY	9
3.1 RESULTS SU	MMARY TABLE	9
SECTION 4: SAM	IPLE DETAILS	12
	AILS	
	AILS	
4.3 MODE OF OF	ERATION DETAILS	12
APPENDIX A: EN	AISSION TEST RESULTS	
CONDUCTED TE	ST SETUP DIAGRAM	13
	UM CHANNEL POWER	
	Ε	
	VIDTH (6DB BANDWIDTH)	
	ANDWIDTH	
	Conducted Output Power	
) SPURIOUS EMISSIONS	
	RECEIVER SPURIOUS EMISSIONS	
	BANDEDGE (RESTRICTED BAND)	
	BANDEDGE (NON-RESTRICTED BAND)	
APPENDIX B: RA	ADIATED AND AC CONDUCTED EMISSION TEST RESULTS	77
APPENDIX C:	LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST	
APPENDIX D:	ABBREVIATION KEY AND DEFINITIONS	79
APPENDIX E:	PHOTOGRAPHS OF TEST SETUPS	80
APPENDIX F:	SOFTWARE USED TO PERFORM TESTING	81
APPENDIX G:	TEST PROCEDURES	81
APPENDIX H:	SCOPE OF ACCREDITATION (A2LA CERTIFICATE NUMBER 1178-01)	81
APPENDIX I:	TEST ASSESSMENT PLAN	81
APPENDIX J:	UUT SOFTWARE INFO	

Page No: 2 of 88

Section 1: Overview

The samples were assessed against the tests under the requirements of the following specifications:

Emission

CFR47 Part 15.247 RSS-247 Issue 2: Feb 2017 RSS-Gen Issue 5: Apr 2018 LP0002 (2018-01-10)

Page No: 3 of 88

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

 Temperature
 15°C to 35°C (54°F to 95°F)

 Atmospheric Pressure
 860mbar to 1060mbar (25.4" to 31.3")

 Humidity
 10% to 75*%

Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB] The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss.

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Page No: 4 of 88

Measurement Uncertainty Values

voltage and power measurements	±2dB
conducted EIRP measurements	± 1.4 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7
temperature measurements	± 0.54°
humidity measurements	± 2.3%
DC and low frequency measurements	± 2.5%

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

30 MHz – 40GHz	+/- 0.38 dB
----------------	-------------

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

Page No: 5 of 88

2.2 Date of testing

10-Sep-19 - 01-Oct-19

2.3 Report Issue Date

14-Oct-19

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System. The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled.

2.4 Testing facilities

This assessment was performed by: Chris Blair & Julian Land

Testing Laboratory

Cisco Systems, Inc. 125 West Tasman Drive (Building P) San Jose, CA 95134 USA

Headquarters

Cisco Systems, Inc., 170 West Tasman Drive San Jose, CA 95134, USA

Registration Numbers for Industry Canada

Cisco System Site	Address	Site Identifier	
Building P, 10m Chamber	125 West Tasman Dr	Company #: 2461N-2	
	San Jose, CA 95134		
Building P, 5m Chamber	125 West Tasman Dr	Company #: 2461N-1	
	San Jose, CA 95134		
Building I, 5m Chamber	285 W. Tasman Drive	Company #: 2461M-1	
	San Jose, California 95134		
Building 7, 5m Chamber	425 E. Tasman Drive	Company #: 2461N-3	
	San Jose, California 95134		

Test Engineers

Chris Blair

2.5 Equipment Assessed (EUT)

C1920AXE-x

Page No: 6 of 88

2.6 EUT Description

The radio supports the following modes of operation. The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst case data for all modes. Data is recorded at the lowest supported data rate for each mode. This report covers operation on channel 1-11.

802.11b - Legacy CCK, One Antenna, 1 to 11 Mbps 802.11b - Legacy CCK, Two Antennas, 1 to 11 Mbps 802.11b - Legacy CCK, Three Antennas, 1 to 11 Mbps 802.11b - Legacy CCK, Four Antennas, 1 to 11 Mbps

802.11g - Non HT20, One Antenna, 6 to 54 Mbps, 1ss 802.11g - Non HT20, Two Antennas, 6 to 54 Mbps, 1ss 802.11g - Non HT20, Three Antennas, 6 to 54 Mbps, 1ss 802.11g - Non HT20, Four Antennas, 6 to 54 Mbps, 1ss

802.11g - Non HT20 Beam Forming, Two Antennas, 6 to 54 Mbps, 1ss 802.11g - Non HT20 Beam Forming, Three Antennas, 6 to 54 Mbps, 1ss 802.11g - Non HT20 Beam Forming, Four Antennas, 6 to 54 Mbps, 1ss

802.11n/ac - HT/VHT20, One Antenna, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Two Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20, Three Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Three Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20, Three Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20, Four Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Four Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20, Four Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20, Four Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20, Four Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20, Four Antennas, M16 to M23, 3ss

802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20 Beam Forming, Three Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Three Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20 Beam Forming, Three Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M16 to M23, 3ss

802.11n/ac - HT/VHT20 STBC, Two Antennas, M0 to M7, 2ss 802.11n/ac - HT/VHT20 STBC, Three Antennas, M0 to M7, 2ss 802.11n/ac - HT/VHT20 STBC, Four Antennas, M0 to M7, 2ss

802.11ax - HE20, One Antenna, M0 to M9 1ss 802.11ax - HE20, Two Antennas, M0 to M9 1ss 802.11ax - HE20, Two Antennas, M0 to M9 2ss

Page No: 7 of 88

802.11ax - HE20, Three Antennas, M0 to M9 1ss 802.11ax - HE20, Three Antennas, M0 to M9 2ss 802.11ax - HE20, Three Antennas, M0 to M9 3ss 802.11ax - HE20, Four Antennas, M0 to M9 1ss 802.11ax - HE20, Four Antennas, M0 to M9 2ss 802.11ax - HE20, Four Antennas, M0 to M9 3ss 802.11ax - HE20, Four Antennas, M0 to M9 4ss 802.11ax - HE20 Beam Forming, Two Antennas, M0 to M9 1ss 802.11ax - HE20 Beam Forming, Two Antennas, M0 to M9 2ss 802.11ax - HE20 Beam Forming, Three Antennas, M0 to M9 1ss 802.11ax - HE20 Beam Forming, Three Antennas, M0 to M9 2ss 802.11ax - HE20 Beam Forming, Three Antennas, M0 to M9 3ss 802.11ax - HE20 Beam Forming, Four Antennas, M0 to M9 1ss 802.11ax - HE20 Beam Forming, Four Antennas, M0 to M9 2ss 802.11ax - HE20 Beam Forming, Four Antennas, M0 to M9 3ss 802.11ax - HE20 Beam Forming, Four Antennas, M0 to M9 4ss 802.11ax - HE20 STBC, Two Antennas, M0 to M9 2ss 802.11ax - HE20 STBC, Three Antennas, M0 to M9 2ss 802.11ax - HE20 STBC, Four Antennas, M0 to M9 2ss

Antenna Gain Frequency Part Number Antenna Type (dBi) -E SKU 2.4GHz&5GHz 2.4 GHz 2 dBi/5 GHz 4 dBi Dipole Ant., 2dBi@2.4GHz Black, connectors RP-TNC 4dBi@5GHz AIR-ANT2524DB-R/= 2.4GHz&5GHz 2.4 GHz 2 dBi/5 GHz 4 dBi Dipole Ant., 2dBi@2.4GHz AIR-ANT2524DG-R/= Gray, connectors RP-TNC 4dBi@5GHz 2.4GHz&5GHz 2.4 GHz 2 dBi/5 GHz 4 dBi Dipole Ant., 2dBi@2.4GHz AIR-ANT2524DW-R/= White, connectors RP-TNC 4dBi@5GHz 2.4GHz&5GHz 2.4 GHz 3dBi/5 GHz 5 dBi Low Profile 3dBi@2.4GHz AIR-ANT2535SDW-R Antenna, White, connectors RP-TNC 5dBi@5GHz 2.4GHz&5GHz 2.4 GHz 6 dBi/5 GHz 6 dBi Directionnel 6dBi@2.4GHz AIR-ANT2566P4W-R= Ant., 4-port, connectors RP-TNC 6dBi@5GHz 2.4GHz&5GHz 2.4GHz 2 dBi/5GHz 4 dBi Ceiling Mount 2dBi@2.4GHz AIR-ANT2524V4C-R= Omni Ant., 4-port, connectors RP-TNC 4dBi@5GHz 2.4GHz&5GHz 2.4GHz 4 dBi/5GHz 4 dBi Wall Mount 4dBi@2.4GHz AIR-ANT2544V4M-R= **Omni Ant., 4-port, connectors RP-TNC** 4dBi@5GHz 2.4GHz&5GHz 2.4 GHz 6 dBi/5 GHz 6 dBi 60 Deg. Patch 6dBi@2.4GHz AIR-ANT2566D4M-R= Ant., 4-port, RP-TNC 6dBi@5GHz

The following antennas are supported by this product series. The data included in this report represent the worst case data for all antennas.

Page No: 8 of 88

Section 3: Result Summary

3.1 Results Summary Table

Conducted emissions				
Basic Standard	Technical Requirements / Details	Result		
FCC 15.247 RSS-247 LP0002:3.10.1(6.2.1)	6dB Bandwidth Systems using digital modulation techniques may operate in the 2400-2483.5MHz band. The minimum 6dB bandwidth shall be at least 500 kHz			
FCC 15.247 RSS-247				
	The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.			
FCC 15.247 RSS-247 LP0002:3.10.1(2.3)	 Output Power: 15.247 The maximum conducted output power of the intentional radiator for systems using digital modulation in the 2400-2483.5 MHz band shall not exceed 1 Watt (30dBm). If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. RSS-247 For DTSs employing digital modulation techniques operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. Except as provided in Section 5.4(e), the e.i.r.p. shall not exceed 4 W. 	Pass		
FCC 15.247 RSS-247 LP0002:3.10.1(6.2.2)	Power Spectral Density For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.	Pass		

Page No: 9 of 88

FCC 15.247 RSS-247 LP0002:3.10.1(5)/2.8	Conducted Spurious Emissions / Band-Edge : In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.	Pass
FCC 15.247 RSS-247 FCC 15.205 RSS-Gen	Restricted band : Unwanted emissions falling within the restricted bands, as defined in FCC 15.205 (a) and RSS-Gen 8.10 must also comply with the radiated emission limits specified in FCC 15.209 (a) and RSS-Gen 8.9	Pass

Page No: 10 of 88

Radiated Emissions (General requirements)			
Basic Standard	Technical Requirements / Details	Result	
FCC 15.209 RSS-Gen LP0002:3.10.1(5)/2.8	A.1(5)/2.8 TX Spurious Emissions: Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the filed strength limits table in this section. Unwanted emissions falling within the restricted bands, as defined in FCC 15.205 (a) and RSS-Gen 8.10 must also comply with the radiated emission limits specified in FCC 15.209 (a) and RSS-Gen 8.9		
RSS-Gen LP0002:3.10.1(5)2.8	 RX Spurious Emissions: RSS-Gen 8.9 Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 and Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission. RSS-Gen 8.10 Restricted Bands Unwanted emissions that fall into restricted bands of Table 6 shall comply with the limits specified in RSS-Gen; and (c) Unwanted emissions that do not fall within the restricted frequency bands of Table 6 shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen. 	Not Tested	
FCC 15.207 RSS-Gen LP0002:2.3	AC conducted Emissions: Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.	Not Tested	

Radiated Emissions (General requirements)

Page No: 11 of 88

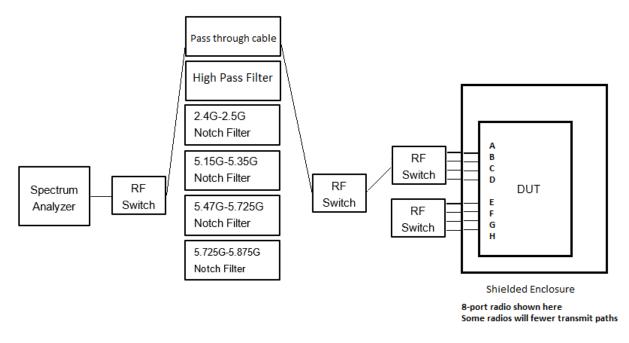
Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing.

4.1 Sample Details

Sample No.	Equipment Details	Manufacturer	Hardware Rev.	Firmware Rev.	Software Rev.	Serial Number
S01	C1920AXE-x	Foxconn	P2-2	1268.149 48.r1470 2 14702	Cisco AP Software, (ap1g7), [cheetah-build6:/san2/BUILD/ workspace/Nightly-Cheetah-a xel-bcm-mfg-c8_10_throttle] Compiled Fri Sep 6 08:06:05 PDT 2019	FOC23302F0Q

4.2 System Details


System #	Description	Samples
1	C1920AXE-x	S01

4.3 Mode of Operation Details

Mode#	Description	Comments
1	Continuously Transmitting	Constant duty cycle

Appendix A: Emission Test Results

Conducted Test Setup Diagram

Target Maximum Channel Power

The following table details the maximum supported Total Channel Power for all operating modes.

	Maximum Channel Power (dBm)		
	Fre	equency (M	Hz)
Operating Mode	2412	2437	2462
Legacy CCK, 1 to 11 Mbps	24	24	24
Non HT20, 6 to 54 Mbps	19	24	19
Non HT20 Beam Forming, 6 to 54 Mbps	16 24 17		17
HT/VHT20, M0 to M31	19	24	19
HT/VHT20 Beam Forming, M0 to M31	19	24	19
HT/VHT20 STBC, M0 to M7	19	24	19
HE20, M0 to M9	18 24 18		18
HE20 Beam Forming, M0 to M9	18 24 18		18
HE20 STBC, M0 to M9 2ss	18 24 18		

Page No: 13 of 88

A.1 Duty Cycle

Duty Cycle Test Requirement

From KDB 558074, Section 6

6.0 Duty cycle, transmission duration and maximum power control level

Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (*i.e.*, with a duty cycle of greater than or equal to 98%). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be utilized to ensure that measurements are made only during transmissions at the maximum power control level. ...

When continuous transmission cannot be achieved and sweep triggering/signal gating cannot be implemented, alternate procedures are provided that can be used to measure the average power; however, they will require an additional measurement of the transmitter duty cycle. Within this guidance document, the duty cycle refers to the fraction of time over which the transmitter is on and is transmitting at its maximum power control level. The duty cycle is considered to be constant if variations are less than ± 2 percent, otherwise the duty cycle is considered to be non-constant.

Duty Cycle Test Method

From KDB 558074, Section 6:

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \ge OBW if possible; otherwise, set RBW to the largest available value. Set VBW \ge RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span measurement method of measuring duty cycle shall not be used if T \le 16.7 microseconds.)

Duty Cycle Test Information

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
1	EUT	S01	\checkmark	
	Support			\triangleleft

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 14 of 88

Duty Cycle Data Table

Duty Cycle table and screen captures are shown below for power/psd modes.

Frequency	Mode	Data Rate	Duty Cycle correction (dB)
	CCK, 1 to 11 Mbps	11	0.2
2412	Non HT20, 6 to 54 Mbps	6	0.0
2412	HT/VHT20, M0 to M31	m0	0.1
	HE20, M0 to M9	m0h1	0.1
	CCK, 1 to 11 Mbps	11	0.2
2437	Non HT20, 6 to 54 Mbps	6	0.0
2437	HT/VHT20, M0 to M31	m0	0.1
	HE20, M0 to M9	m0h1	0.1
	CCK, 1 to 11 Mbps	11	0.2
0.400	Non HT20, 6 to 54 Mbps	6	0.0
2462	HT/VHT20, M0 to M31	m0	0.1
	HE20, M0 to M9	m0h1	0.1

Page No: 15 of 88

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

Duty Cycle Data Screenshots

and the second second		alyzer - Swept 54			totype - Limited Sale	Allowed)		00
Center F	req 2.	50 Ω DO 4120000 NFE	00 GHz	Trig: Free Run #Atten: 28 dB	Avg Typ Avg Hold	e: Log-Pwr i: 1/1	TRACE 2 3 4 5 TYPE A WWWWW DET P N N N N	Frequency
10 dB/div Log	Ref	15.00 dBr	n	-			Mkr4 149.0 µs -21.261 dBm	Auto Tune
5.00 -5.00		34		Q ²			الأنانية: على التيمية الأسلاح المسلح	Center Freq 2.412000000 GHz
-25.0 -35.0 -45.0				¢'				Start Freq 2.412000000 GHz
-55.0 -66.0 -75.0		1		W		V		Stop Freq 2.412000000 GHz
Center 2. Res BW 3	3.0 MH			W 100 kHz		Sweep 1.0	Span 0 Hz 00 ms (1001 pts)	CF Step 3.000000 MHz Auto Man
1 N 2 N 3 N	1 t 1 t 1 t		458.0 µs 472.0 µs 135.0 µs 149.0 µs	-28.523 dBm -18.324 dBm -20.498 dBm -21.261 dBm	FORCHON	NCTION MUTH		Freq Offset 0 Hz
7 8 9 10 11								Scale Type
M5G				95.67, 0.19		STATUS		

Duty Cycle, 2412 MHz, CCK, 1 to 11 Mbps

Page No: 16 of 88

A.2 DTS Bandwidth (6dB Bandwidth)

DTS Bandwidth Test Requirement

For the FCC/ LP0002:3.10.1(6.2.1):

15.247 (2)

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

For Industry Canada: RSS-247 5.2 (a)

5.2 Digital transmission systems

DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MHz and 2400-2483.5 MHz: a) The minimum 6 dB bandwidth shall be 500 kHz.

DTS Bandwidth/ 6dB Bandwidth Test Procedure

Ref. KDB 558074 D01 DTS Meas Guidance v05, Section 8.2

ANSI C63.10: 2013, Clause 11.8.2 Option 2

6 BW

Test Procedure

1. Set the radio in the continuous transmitting mode.

2. Allow the trace to stabilize.

3. Setting the x-dB bandwidth mode to -6dB within the measurement set up function.

4. Select the automatic OBW measurement function of an instrument to perform bandwidth measurement.

5. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05, Section 8.2

ANSI C63.10: 2013, Clause 11.8.2 Option 2

6 BW Test parameters

Page No: 17 of 88

One of the following procedures may be used to determine the modulated DTS bandwidth.

11.8.1 Option 1

The steps for the first option are as follows:

- a) Set RBW = 100 kHz.
- b) Set the VBW \geq [3 × RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

11.8.2 Option 2

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW \geq 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support			\checkmark

.......

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 18 of 88

DTS BW Table

Frequency (MHz)	Mode	Data Rate (Mbps)	6dB BW (MHz)	Limit (kHz)	Margin (MHz)
	CCK, 1 to 11 Mbps	11	5.6	>500	5.10
2442	Non HT20, 6 to 54 Mbps	6	16.1	>500	15.60
2412	HT/VHT20, M0 to M31	m0	16.9	>500	16.40
	HE20, M0 to M9	m0h1	18.9	>500	18.40
	CCK, 1 to 11 Mbps	11	6.2	>500	5.70
2437	Non HT20, 6 to 54 Mbps	6	16.2	>500	15.70
2437	HT/VHT20, M0 to M31	m0	17.4	>500	16.90
	HE20, M0 to M9	m0h1	18.6	>500	18.10
	CCK, 1 to 11 Mbps	11	7.0	>500	6.50
2462	Non HT20, 6 to 54 Mbps	6	16.1	>500	15.60
2402	HT/VHT20, M0 to M31	m0	17.4	>500	16.90
	HE20, M0 to M9	m0h1	18.9	>500	18.40

Page No: 19 of 88

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

DTS Bandwidth Screenshots

Keysight Spectrum Analyzer - Occupied BW		(Prototype - Limited Sale All	owed)		0 9 23
Center Freq 2.412000000 NFE	Trig: I	sense:hvi] r Freq: 2.412000000 GHz Free Run n: 20 dB	Radio Std: Radio Devi		Frequency
15 dB/div Ref 20.00 dBm	. <u> </u>				
5 00 10.0 25.0	1				Center Fred 2.412000000 GHz
40.0 55.0	ment	hum	man		
70.0 35.0 					
.115				60.000	
Center 2.412 GHz Res BW 100 kHz	#	VBW 300 kHz		n 60 MHz veep 5 s	CF Step 6.000000 MH
Occupied Bandwidt	h	Total Power	25.7 dBm	4	<u>Auto</u> Man
10	.788 MHz				Freq Offset
Transmit Freq Error x dB Bandwidth	41.287 kHz 5.598 MHz	% of OBW Power x dB	99.00 % -6.00 dB		0 Hz
sg			STATUS		

6dB Bandwidth, 2412 MHz, CCK, 1 to 11 Mbps

Page No: 20 of 88

A.3 Occupied Bandwidth

Occupied Bandwidth Test Requirement

The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW.

The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth Test Method

Ref. ANSI C63.10: 2013

Occupied Bandwidth

Test Procedure

- 1. Set the radio in the continuous transmitting mode.
- 2. Allow the trace to stabilize.
- 3. Setting the x-dB bandwidth mode to -26dB & OBW to 99% within the measurement set up function.
- 4. Select the automatic OBW measurement function of an instrument to perform bandwidth measurement.
- 5. Capture graphs and record pertinent measurement data.

Ref. ANSI C63.10: 2013 section 6.9.3

Occupied Bandwidth

Test parameters

6.9.3 Occupied bandwidth-power bandwidth (99%) measurement procedure

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Page No: 21 of 88

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support			\checkmark

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 22 of 88

Occupied Bandwidth

Frequency (MHz)	Mode	Data Rate (Mbps)	26dB BW (MHz)	99% BW (MHz)
	CCK, 1 to 11 Mbps	11	14.0	11.129
2412	Non HT20, 6 to 54 Mbps	6	21.0	16.688
2412	HT/VHT20, M0 to M31	m0	21.6	17.927
	HE20, M0 to M9	m0h1	21.3	19.058
	CCK, 1 to 11 Mbps	11	14.1	10.983
2437	Non HT20, 6 to 54 Mbps	6	21.3	16.855
2437	HT/VHT20, M0 to M31	m0	21.8	18.184
	HE20, M0 to M9	m0h1	21.6	19.185
	CCK, 1 to 11 Mbps	11	14.2	11.106
2462	Non HT20, 6 to 54 Mbps	6	21.1	16.749
	HT/VHT20, M0 to M31	m0	21.7	17.980
	HE20, M0 to M9	m0h1	21.4	19.078

Page No: 23 of 88

26dB / 99% Bandwidth, 2437 MHz, CCK, 1 to 11 Mbps

սիսիս

Page No: 24 of 88

A.4 Maximum Conducted Output Power

Maximum Conducted Output Power Test Requirement

FCC, 15.247/ LP0002:3.10.1(2.3):

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (3) For systems using digital modulation in the 902-928 MHz, **2400-2483.5 MHz**, and 5725-5850 MHz bands: **1 Watt**. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Industry Canada, RSS-247:

5.4 Transmitter output power and equivalent isotropically radiated power (e.i.r.p.) requirements d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

The maximum supported antenna gain is (GAIN_MAX_TRANSMIT_POWER)dBi. The peak correlated gain for each mode is listed in the table below.

Maximum Conducted Output Power Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05 ANSI C63.10: 2013

Maximum Conducted Output power Test Procedure

1. Set the radio in the continuous transmitting mode at full power

2. Compute power by integrating the spectrum across the EBW (or alternatively entire 99% OBW) of the signal using the instrument's band power measurement function. The integration shall be performed using the spectrum analyzer band-power measurement function with band limits set equal to the EBW or the OBW band edges. 3. Capture graphs and record pertinent measurement data.

Ref. 558074 D01 DTS Meas Guidance v05, 8.3.2.2 Measurement using a spectrum analyzer (SA) ANSI C63.10: 2013, section 11.9.2.2.4 Method AVGSA-2

Maximum Conducted Output power

Test parameters

Page No: 25 of 88

b) Set span to at least 1.5 times the OBW.

duty cycle correction. The procedure for this method is as follows:

- c) Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.
- d) Set $VBW \ge [3 \times RBW]$.

11.9.2.2.4 Method AVGSA-2

- e) Number of points in sweep ≥ [2 × span / RBW]. (This gives bin-to-bin spacing ≤ RBW / 2, so that narrowband signals are not lost between frequency bins.)
- f) Sweep time = auto.
- g) Detector = RMS (i.e., power averaging), if available. Otherwise, use the sample detector mode.
- h) Do not use sweep triggering. Allow the sweep to "free run."
- i) Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the ON and OFF periods of the transmitter.
- j) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- k) Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add $[10 \log (1/0.25)] = 6 \text{ dB}$ if the duty cycle is 25%.

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. (See ANSI C63.10 section 14.3 for Guidance)

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support			\checkmark

Tested By :	Date of testing:	
Chris Blair	10-Sep-19 - 01-Oct-19	
Test Result : PASS		

Test Equipment

See Appendix C for list of test equipment

Note: Limit is modified to ensure complying with both conducted power limit of 30dBm and eirp limit of 36 dBm

Page No: 26 of 88

Maximum Output Power

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Tx 2 Max Power (dBm)	Tx 3 Max Power (dBm)	Tx 4 Max Power (dBm)	Duty Cycle Correction (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	2	18.0				0.2	18.2	30.0	11.81
	CCK, 1 to 11 Mbps	2	2	18.0	18.5			0.2	21.5	30.0	8.54
	CCK, 1 to 11 Mbps	3	2	18.0	18.5	17.6		0.2	23.0	30.0	6.99
	CCK, 1 to 11 Mbps	4	2	18.0	18.5	17.6	18.6	0.2	24.4	30.0	5.59
	Non HT20, 6 to 54 Mbps	1	2	13.5				0.0	13.5	30.0	16.45
	Non HT20, 6 to 54 Mbps	2	2	12.2	13.0			0.0	15.7	30.0	14.33
	Non HT20, 6 to 54 Mbps	3	2	12.2	13.0	12.4		0.0	17.4	30.0	12.64
	Non HT20, 6 to 54 Mbps	4	2	12.2	13.0	12.4	13.0	0.0	18.7	30.0	11.27
	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	11.3	12.0			0.0	14.7	30.0	15.28
	Non HT20 Beam Forming, 6 to 54 Mbps	3	7	10.3	10.9	10.2		0.0	15.3	29.0	13.71
	Non HT20 Beam Forming, 6 to 54 Mbps	4	8	9.3	10.0	9.1	9.8	0.0	15.6	28.0	12.37
	HT/VHT20, M0 to M7	1	2	13.5				0.1	13.6	30.0	16.45
	HT/VHT20, M0 to M7	2	2	12.2	12.8			0.1	15.6	30.0	14.43
	HT/VHT20, M8 to M15	2	2	12.2	12.8			0.1	15.6	30.0	14.43
	HT/VHT20, M0 to M7	3	2	12.2	12.8	12.4		0.1	17.3	30.0	12.70
2412	HT/VHT20, M8 to M15	3	2	12.2	12.8	12.4		0.1	17.3	30.0	12.70
2	HT/VHT20, M16 to M23	3	2	12.2	12.8	12.4		0.1	17.3	30.0	12.70
	HT/VHT20, M0 to M7	4	2	12.2	12.8	12.4	12.9	0.1	18.7	30.0	11.34
	HT/VHT20, M8 to M15	4	2	12.2	12.8	12.4	12.9	0.1	18.7	30.0	11.34
	HT/VHT20, M16 to M23	4	2	12.2	12.8	12.4	12.9	0.1	18.7	30.0	11.34
	HT/VHT20, M24 to M31	4	2	12.2	12.8	12.4	12.9	0.1	18.7	30.0	11.34
	HT/VHT20 Beam Forming, M0 to M7	2	5	11.4	12.0			0.1	14.8	30.0	15.23
	HT/VHT20 Beam Forming, M8 to M15	2	2	12.2	12.8			0.1	15.6	30.0	14.43
	HT/VHT20 Beam Forming, M0 to M7	3	7	10.1	10.8	10.2		0.1	15.2	29.0	13.80
	HT/VHT20 Beam Forming, M8 to M15	3	4	11.4	12.0	11.2		0.1	16.4	30.0	13.63
	HT/VHT20 Beam Forming, M16 to M23	3	2	12.2	12.8	12.4		0.1	17.3	30.0	12.70
	HT/VHT20 Beam Forming, M0 to M7	4	8	9.2	10.0	9.2	9.8	0.1	15.6	28.0	12.36
	HT/VHT20 Beam Forming, M8 to M15	4	5	11.4	12.0	11.2	11.9	0.1	17.7	30.0	12.29
	HT/VHT20 Beam Forming, M16 to M23	4	3	11.4	12.0	11.2	11.9	0.1	17.7	30.0	12.29
	HT/VHT20 Beam Forming, M24 to M31	4	2	12.2	12.8	12.4	12.9	0.1	18.7	30.0	11.34
	HT/VHT20 STBC, M0 to M7	2	2	12.2	12.8			0.1	15.6	30.0	14.43

Page No: 27 of 88

$ \mathbf{u} $	աիս
CI	sco

	HT/VHT20 STBC, M0 to M7	3	2	12.2	12.8	12.4		0.1	17.3	30.0	12.70
	HT/VHT20 STBC, M0 to M7	4	2	12.2	12.8	12.4	12.9	0.1	18.7	30.0	11.34
	HE20, M0 to M9 1ss	1	2	12.4				0.1	12.5	30.0	17.53
	HE20, M0 to M9 1ss	2	2	12.4	13.2			0.1	15.9	30.0	14.11
	HE20, M0 to M9 2ss	2	2	12.4	13.2			0.1	15.9	30.0	14.11
	HE20, M0 to M9 1ss	3	2	12.4	13.2	12.5		0.1	17.6	30.0	12.45
	HE20, M0 to M9 2ss	3	2	12.4	13.2	12.5		0.1	17.6	30.0	12.45
	HE20, M0 to M9 3ss	3	2	12.4	13.2	12.5		0.1	17.6	30.0	12.45
	HE20, M0 to M9 1ss	4	2	11.6	12.2	11.6	12.0	0.1	17.9	30.0	12.06
	HE20, M0 to M9 2ss	4	2	11.6	12.2	11.6	12.0	0.1	17.9	30.0	12.06
	HE20, M0 to M9 3ss	4	2	11.6	12.2	11.6	12.0	0.1	17.9	30.0	12.06
	HE20, M0 to M9 4ss	4	2	11.6	12.2	11.6	12.0	0.1	17.9	30.0	12.06
	HE20 Beam Forming, M0 to M9 1ss	2	5	11.6	12.2			0.1	15.0	30.0	15.01
	HE20 Beam Forming, M0 to M9 2ss	2	2	12.4	13.2			0.1	15.9	30.0	14.11
	HE20 Beam Forming, M0 to M9 1ss	3	7	9.3	10.1	9.4		0.1	14.5	29.0	14.55
	HE20 Beam Forming, M0 to M9 2ss	3	4	11.6	12.2	11.6		0.1	16.6	30.0	13.35
	HE20 Beam Forming, M0 to M9 3ss	3	2	12.4	13.2	12.5		0.1	17.6	30.0	12.45
	HE20 Beam Forming, M0 to M9 1ss	4	8	8.4	9.2	8.3	8.9	0.1	14.8	28.0	13.20
	HE20 Beam Forming, M0 to M9 2ss	4	5	10.5	11.1	10.3	10.9	0.1	16.8	30.0	13.20
	HE20 Beam Forming, M0 to M9 3ss	4	3	11.6	12.2	11.6	12.0	0.1	17.9	30.0	12.06
	HE20 Beam Forming, M0 to M9 4ss	4	2	11.6	12.2	11.6	12.0	0.1	17.9	30.0	12.06
	HE20 STBC, M0 to M9 2ss	2	2	12.4	13.2			0.1	15.9	30.0	14.11
	HE20 STBC, M0 to M9 2ss	3	2	12.4	13.2	12.5		0.1	17.6	30.0	12.45
	HE20 STBC, M0 to M9 2ss	4	2	11.6	12.2	11.6	12.0	0.1	17.9	30.0	12.06
	CCK, 1 to 11 Mbps	1	2	17.8				0.2	18.0	30.0	12.01
	CCK, 1 to 11 Mbps	2	2	17.8	18.9			0.2	21.6	30.0	8.41
	CCK, 1 to 11 Mbps	3	2	17.8	18.9	17.4		0.2	23.0	30.0	6.96
	CCK, 1 to 11 Mbps	4	2	17.8	18.9	17.4	18.8	0.2	24.5	30.0	5.52
	Non HT20, 6 to 54 Mbps	1	2	17.3				0.0	17.3	30.0	12.65
	Non HT20, 6 to 54 Mbps	2	2	17.3	18.3			0.0	20.9	30.0	9.12
	Non HT20, 6 to 54 Mbps	3	2	17.3	18.3	17.0		0.0	22.4	30.0	7.61
	Non HT20, 6 to 54 Mbps	4	2	17.3	18.3	17.0	18.1	0.0	23.8	30.0	6.23
2	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	17.3	18.3			0.0	20.9	30.0	9.12
2437	Non HT20 Beam Forming, 6 to 54 Mbps	3	7	17.3	18.3	17.0		0.0	22.4	29.0	6.61
	Non HT20 Beam Forming, 6 to 54 Mbps	4	8	17.3	18.3	17.0	18.1	0.0	23.8	28.0	4.23
	HT/VHT20, M0 to M7	1	2	17.3				0.1	17.4	30.0	12.65
	HT/VHT20, M0 to M7	2	2	17.3	18.1			0.1	20.8	30.0	9.22
	HT/VHT20, M8 to M15	2	2	17.3	18.1			0.1	20.8	30.0	9.22
	HT/VHT20, M0 to M7	3	2	17.3	18.1	17.2		0.1	22.4	30.0	7.62
	HT/VHT20, M8 to M15	3	2	17.3	18.1	17.2		0.1	22.4	30.0	7.62
	HT/VHT20, M16 to M23	3	2	17.3	18.1	17.2		0.1	22.4	30.0	7.62
	HT/VHT20, M0 to M7	4	2	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
		Ŧ	-	11.0	10.1	11.2	10.1	0.1	20.0	00.0	0.20

Page No: 28 of 88

$ \mathbf{u} $	աիս
CI	sco

HT/VHT20, M8 to M15	4	2	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20, M16 to M23	4	2	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20, M24 to M31	4	2	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20 Beam Forming, M0 to M7	2	5	17.3	18.1			0.1	20.8	30.0	9.22
HT/VHT20 Beam Forming, M8 to M15	2	2	17.3	18.1			0.1	20.8	30.0	9.22
HT/VHT20 Beam Forming, M0 to M7	3	7	17.3	18.1	17.2		0.1	22.4	29.0	6.62
HT/VHT20 Beam Forming, M8 to M15	3	4	17.3	18.1	17.2		0.1	22.4	30.0	7.62
HT/VHT20 Beam Forming, M16 to M23	3	2	17.3	18.1	17.2		0.1	22.4	30.0	7.62
HT/VHT20 Beam Forming, M0 to M7	4	8	17.3	18.1	17.2	18.1	0.1	23.8	28.0	4.23
HT/VHT20 Beam Forming, M8 to M15	4	5	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20 Beam Forming, M16 to M23	4	3	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20 Beam Forming, M24 to M31	4	2	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20 STBC, M0 to M7	2	2	17.3	18.1			0.1	20.8	30.0	9.22
HT/VHT20 STBC, M0 to M7	3	2	17.3	18.1	17.2		0.1	22.4	30.0	7.62
HT/VHT20 STBC, M0 to M7	4	2	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HE20, M0 to M9 1ss	1	2	17.3				0.1	17.4	30.0	12.63
HE20, M0 to M9 1ss	2	2	17.3	18.2			0.1	20.8	30.0	9.15
HE20, M0 to M9 2ss	2	2	17.3	18.2			0.1	20.8	30.0	9.15
HE20, M0 to M9 1ss	3	2	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20, M0 to M9 2ss	3	2	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20, M0 to M9 3ss	3	2	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20, M0 to M9 1ss	4	2	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20, M0 to M9 2ss	4	2	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20, M0 to M9 3ss	4	2	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20, M0 to M9 4ss	4	2	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20 Beam Forming, M0 to M9 1ss	2	5	17.3	18.2			0.1	20.8	30.0	9.15
HE20 Beam Forming, M0 to M9 2ss	2	2	17.3	18.2			0.1	20.8	30.0	9.15
HE20 Beam Forming, M0 to M9 1ss	3	7	17.3	18.2	17.3		0.1	22.5	29.0	6.54
HE20 Beam Forming, M0 to M9 2ss	3	4	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20 Beam Forming, M0 to M9 3ss	3	2	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20 Beam Forming, M0 to M9 1ss	4	8	17.3	18.2	17.3	18.3	0.1	23.9	28.0	4.11
HE20 Beam Forming, M0 to M9 2ss	4	5	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20 Beam Forming, M0 to M9 3ss	4	3	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20 Beam Forming, M0 to M9 4ss	4	2	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20 STBC, M0 to M9 2ss	2	2	17.3	18.2			0.1	20.8	30.0	9.15
HE20 STBC, M0 to M9 2ss	3	2	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20 STBC, M0 to M9 2ss	4	2	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11

Page No: 29 of 88

$ \mathbf{u} $	ы	h
C	ISC	0

	CCK, 1 to 11 Mbps	1	2	47.0							
			2	17.6				0.2	17.8	30.0	12.21
	CCK, 1 to 11 Mbps	2	2	17.6	18.5			0.2	21.3	30.0	8.72
	CCK, 1 to 11 Mbps	3	2	17.6	18.5	17.4		0.2	22.8	30.0	7.18
	CCK, 1 to 11 Mbps	4	2	17.6	18.5	17.4	18.7	0.2	24.3	30.0	5.70
	Non HT20, 6 to 54 Mbps	1	2	13.0				0.0	13.0	30.0	16.95
	Non HT20, 6 to 54 Mbps	2	2	13.0	13.8			0.0	16.5	30.0	13.53
	Non HT20, 6 to 54 Mbps	3	2	13.0	13.8	13.3		0.0	18.2	30.0	11.80
	Non HT20, 6 to 54 Mbps	4	2	12.1	12.9	12.3	13.0	0.0	18.7	30.0	11.34
	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	12.1	12.9			0.0	15.6	30.0	14.43
	Non HT20 Beam Forming, 6 to 54 Mbps	3	7	11.0	12.0	11.2		0.0	16.2	29.0	12.76
	Non HT20 Beam Forming, 6 to 54 Mbps	4	8	10.0	10.8	10.2	10.9	0.0	16.6	28.0	11.44
	HT/VHT20, M0 to M7	1	2	13.2				0.1	13.3	30.0	16.75
	HT/VHT20, M0 to M7	2	2	12.1	12.9			0.1	15.6	30.0	14.42
	HT/VHT20, M8 to M15	2	2	12.1	12.9			0.1	15.6	30.0	14.42
	HT/VHT20, M0 to M7	3	2	12.1	12.9	12.2		0.1	17.2	30.0	12.76
	HT/VHT20, M8 to M15	3	2	12.1	12.9	12.2		0.1	17.2	30.0	12.76
	HT/VHT20, M16 to M23	3	2	12.1	12.9	12.2		0.1	17.2	30.0	12.76
	HT/VHT20, M0 to M7	4	2	12.1	12.9	12.2	13.0	0.1	18.6	30.0	11.36
	HT/VHT20, M8 to M15	4	2	12.1	12.9	12.2	13.0	0.1	18.6	30.0	11.36
	HT/VHT20, M16 to M23	4	2	12.1	12.9	12.2	13.0	0.1	18.6	30.0	11.36
~ [HT/VHT20, M24 to M31	4	2	12.1	12.9	12.2	13.0	0.1	18.6	30.0	11.36
2462	HT/VHT20 Beam Forming, M0 to M7	2	5	12.1	12.9			0.1	15.6	30.0	14.42
\sim	HT/VHT20 Beam Forming, M8 to M15	2	2	12.1	12.9			0.1	15.6	30.0	14.42
	HT/VHT20 Beam Forming, M0 to M7	3	7	11.1	11.8	11.2		0.1	16.2	29.0	12.80
	HT/VHT20 Beam Forming, M8 to M15	3	4	12.1	12.9	12.2		0.1	17.2	30.0	12.76
	HT/VHT20 Beam Forming, M16 to M23	3	2	12.1	12.9	12.2		0.1	17.2	30.0	12.76
	HT/VHT20 Beam Forming, M0 to M7	4	8	9.9	10.8	10.2	10.8	0.1	16.5	28.0	11.48
	HT/VHT20 Beam Forming, M8 to M15	4	5	11.1	11.8	11.2	12.0	0.1	17.6	30.0	12.39
	HT/VHT20 Beam Forming, M16 to M23	4	3	12.1	12.9	12.2	13.0	0.1	18.6	30.0	11.36
	HT/VHT20 Beam Forming, M24 to M31	4	2	12.1	12.9	12.2	13.0	0.1	18.6	30.0	11.36
	HT/VHT20 STBC, M0 to M7	2	2	12.1	12.9			0.1	15.6	30.0	14.42
	HT/VHT20 STBC, M0 to M7	3	2	12.1	12.9	12.2		0.1	17.2	30.0	12.76
	HT/VHT20 STBC, M0 to M7	4	2	12.1	12.9	12.2	13.0	0.1	18.6	30.0	11.36
	HE20, M0 to M9 1ss	1	2	12.3				0.1	12.4	30.0	17.63
	HE20, M0 to M9 1ss	2	2	12.3	13.3			0.1	15.9	30.0	14.10
	HE20, M0 to M9 2ss	2	2	12.3	13.3			0.1	15.9	30.0	14.10
	HE20, M0 to M9 1ss	3	2	12.3	13.3	12.6		0.1	17.6	30.0	12.41
	HE20, M0 to M9 2ss	3	2	12.3	13.3	12.6		0.1	17.6	30.0	12.41
	HE20, M0 to M9 3ss	3	2	12.3	13.3	12.6		0.1	17.6	30.0	12.41
	HE20, M0 to M9 1ss	4	2	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
	HE20, M0 to M9 2ss	4	2	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
	HE20, M0 to M9 3ss	4	2	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
	HE20, M0 to M9 4ss	4	2	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07


Page No: 30 of 88

HE20 Beam Forming, M0 to M9 1ss	2	5	11.2	12.4			0.1	14.9	30.0	15.08
HE20 Beam Forming, M0 to M9 2ss	2	2	12.3	13.3			0.1	15.9	30.0	14.10
HE20 Beam Forming, M0 to M9 1ss	3	7	10.1	11.2	10.4		0.1	15.4	29.0	13.57
HE20 Beam Forming, M0 to M9 2ss	3	4	11.2	12.4	11.7		0.1	16.6	30.0	13.37
HE20 Beam Forming, M0 to M9 3ss	3	2	12.3	13.3	12.6		0.1	17.6	30.0	12.41
HE20 Beam Forming, M0 to M9 1ss	4	8	10.1	11.2	10.4	11.0	0.1	16.8	28.0	11.22
HE20 Beam Forming, M0 to M9 2ss	4	5	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
HE20 Beam Forming, M0 to M9 3ss	4	3	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
HE20 Beam Forming, M0 to M9 4ss	4	2	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
HE20 STBC, M0 to M9 2ss	2	2	12.3	13.3			0.1	15.9	30.0	14.10
HE20 STBC, M0 to M9 2ss	3	2	12.3	13.3	12.6		0.1	17.6	30.0	12.41
HE20 STBC, M0 to M9 2ss	4	2	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07

Page No: 31 of 88


Maximum Transmit Output Power, 2437 MHz, HE20 Beam Forming, M0 to M9 1ss

Antenna B

սիսիս

cisco

Antenna D

Antenna C

Antenna A

Page No: 32 of 88

A.5 Power Spectral Density

Power Spectral Density Test Requirement

15.247 (e) / RSS-247 5.2 (b) / LP0002:3.10.1(6.2.2)

5.2 Digital transmission systems

DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MHz and 2400-2483.5 MHz:

b) The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

Power Spectral Density Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05

ANSI C63.10: 2013
Power Spectral Density
Test Procedure
1. Set the radio in the continuous transmitting mode at full power
2.Configure Spectrum analyzer as per test parameters below and Peak search marker
3. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05, section 8.4 DTS maximum power spectral density level in the fundamental emission

ANSI C63.10: 2013, section 11.10.5 Average PSD

Power Spectral Density Test parameters

11.10.5 Method AVGPSD-2

Method AVGPSD-2 uses trace averaging across ON and OFF times of the EUT transmissions, followed by duty cycle correction.

The following procedure is applicable when the EUT cannot be configured to transmit continuously (i.e., $D \le 98\%$), when sweep triggering/signal gating cannot be used to measure only when the EUT is transmitting at its maximum power control level, and when the transmission duty cycle is constant (i.e., duty cycle variations are less than ±2%):

- a) Measure the duty cycle (D) of the transmitter output signal as described in 11.6.
- b) Set instrument center frequency to DTS channel center frequency.
- c) Set span to at least 1.5 times the OBW.
- d) Set RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}.$
- e) Set VBW ≥ [3 × RBW].
- f) Detector = power averaging (rms) or sample detector (when rms not available).
- g) Ensure that the number of measurement points in the sweep ≥ [2 × span / RBW].
- h) Sweep time = auto couple.
- i) Do not use sweep triggering; allow sweep to "free run."
- j) Employ trace averaging (rms) mode over a minimum of 100 traces.
- k) Use the peak marker function to determine the maximum amplitude level.
- Add [10 log (1 / D)], where D is the duty cycle measured in step a), to the measured PSD to compute the average PSD during the actual transmission time.
- m) If measured value exceeds requirement specified by regulatory agency, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

Page No: 33 of 88

The "Measure and add 10 log(N) dB technique", where N is the number of outputs, is used for measuring in-band Power Spectral Density. (See ANSI C63.10 section 14.3.2.3)

սիսիս

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support			\checkmark

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 34 of 88

Power Spectral Density

Frequency (MHz)	Mode		Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/3kHz)	Tx 2 PSD (dBm/3kHz)	Tx 3 PSD (dBm/3kHz)	Tx 4 PSD (dBm/3kHz)	Duty Cycle Correction (dB)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Margin (dB)
	CCK, 1 to 11 Mbps	1	2	0.1				0.2	0.3	8.0	7.71
	CCK, 1 to 11 Mbps		5	0.1	-5.2			0.2	1.4	8.0	6.58
	CCK, 1 to 11 Mbps		7	0.1	-5.2	-5.1		0.2	2.3	7.0	4.67
	CCK, 1 to 11 Mbps		8	0.1	-5.2	-5.1	-4.7	0.2	3.1	6.0	2.86
	Non HT20, 6 to 54 Mbps		2	-2.5				0.0	-2.5	8.0	10.45
	Non HT20, 6 to 54 Mbps		5	-3.7	-9.0			0.0	-2.5	8.0	10.53
	Non HT20, 6 to 54 Mbps		7	-3.7	-9.0	-15.5		0.0	-2.3	7.0	9.32
	Non HT20, 6 to 54 Mbps		8	-3.7	-9.0	-15.5	-10.3	0.0	-1.7	6.0	7.67
	Non HT20 Beam Forming, 6 to 54 Mbps		5	-4.6	-9.1			0.0	-3.2	8.0	11.24
	Non HT20 Beam Forming, 6 to 54 Mbps		7	-5.3	-11.4	-17.2		0.0	-4.1	7.0	11.08
	Non HT20 Beam Forming, 6 to 54 Mbps		8	-6.8	-12.4	-19.2	-13.2	0.0	-4.8	6.0	10.82
	HT/VHT20, M0 to M7	1	2	-2.8				0.1	-2.7	8.0	10.75
	HT/VHT20, M0 to M7	2	5	-3.5	-9.3			0.1	-2.4	8.0	10.43
	HT/VHT20, M8 to M15	2	2	-3.5	-9.3			0.1	-2.4	8.0	10.43
	HT/VHT20, M0 to M7	3	7	-3.5	-9.3	-14.7		0.1	-2.2	7.0	9.18
2412	HT/VHT20, M8 to M15	3	4	-3.5	-9.3	-14.7		0.1	-2.2	8.0	10.18
2	HT/VHT20, M16 to M23	3	2	-3.5	-9.3	-14.7		0.1	-2.2	8.0	10.18
	HT/VHT20, M0 to M7	4	8	-3.5	-9.3	-14.7	-10.0	0.1	-1.5	6.0	7.51
	HT/VHT20, M8 to M15	4	5	-3.5	-9.3	-14.7	-10.0	0.1	-1.5	8.0	9.51
	HT/VHT20, M16 to M23	4	3	-3.5	-9.3	-14.7	-10.0	0.1	-1.5	8.0	9.51
	HT/VHT20, M24 to M31	4	2	-3.5	-9.3	-14.7	-10.0	0.1	-1.5	8.0	9.51
	HT/VHT20 Beam Forming, M0 to M7	2	5	-5.1	-9.9			0.1	-3.8	8.0	11.81
	HT/VHT20 Beam Forming, M8 to M15	2	2	-3.5	-9.3			0.1	-2.4	8.0	10.43
	HT/VHT20 Beam Forming, M0 to M7	3	7	-6.0	-11.0	-16.4		0.1	-4.5	7.0	11.46
	HT/VHT20 Beam Forming, M8 to M15	3	4	-5.1	-9.9	-15.5		0.1	-3.5	8.0	11.52
	HT/VHT20 Beam Forming, M16 to M23	3	2	-3.5	-9.3	-14.7		0.1	-2.2	8.0	10.18
	HT/VHT20 Beam Forming, M0 to M7	4	8	-6.8	-11.6	-17.8	-12.5	0.1	-4.5	6.0	10.50
	HT/VHT20 Beam Forming, M8 to M15	4	5	-5.1	-9.9	-15.5	-10.5	0.1	-2.7	8.0	10.72
	HT/VHT20 Beam Forming, M16 to M23	4	3	-5.1	-9.9	-15.5	-10.5	0.1	-2.7	8.0	10.72
	HT/VHT20 Beam Forming, M24 to M31	4	2	-3.5	-9.3	-14.7	-10.0	0.1	-1.5	8.0	9.51
	HT/VHT20 STBC, M0 to M7	2	2	-3.5	-9.3			0.1	-2.4	8.0	10.43

Page No: 35 of 88

	l					l	
(C	5	5	C	D		

	HT/VHT20 STBC, M0 to M7	3	4	-3.5	-9.3	-14.7		0.1	-2.2	8.0	10.18
	HT/VHT20 STBC, M0 to M7	4	5	-3.5	-9.3	-14.7	-10.0	0.1	-1.5	8.0	9.51
	HE20, M0 to M9 1ss		2	-3.7	0.0	14.7	10.0	0.1	-3.6	8.0	11.63
	HE20, M0 to M9 1ss		5	-3.7	-9.1			0.1	-2.5	8.0	10.53
	HE20, M0 to M9 2ss		2	-3.7	-9.1			0.1	-2.5	8.0	10.53
	HE20, M0 to M9 1ss		7	-3.7	-9.1	-14.3		0.1	-2.3	7.0	9.25
	HE20, M0 to M9 2ss		4	-3.7	-9.1	-14.3		0.1	-2.3	8.0	10.25
	HE20, M0 to M9 255		2	-3.7	-9.1	-14.3		0.1	-2.3	8.0	10.25
	HE20, M0 to M9 1ss	3 4	8	-5.0	-9.4	-14.1	-10.9	0.1	-2.5	6.0	8.52
	HE20, M0 to M9 2ss	4	5	-5.0	-9.4	-14.1	-10.9	0.1	-2.5	8.0	10.52
	HE20, M0 to M9 3ss		3	-5.0	-9.4	-14.1	-10.9	0.1	-2.5	8.0	10.52
	HE20, M0 to M9 4ss		2	-5.0	-9.4	-14.1	-10.9	0.1	-2.5	8.0	10.52
	HE20 Beam Forming, M0 to M9 1ss		5	-5.0	-9.4			0.1	-3.6	8.0	11.59
	HE20 Beam Forming, M0 to M9 2ss		2	-3.7	-9.1			0.1	-2.5	8.0	10.53
	HE20 Beam Forming, M0 to M9 1ss		7	-7.1	-12.3	-16.4		0.1	-5.5	7.0	12.51
	HE20 Beam Forming, M0 to M9 2ss		4	-5.0	-9.4	-14.1		0.1	-3.2	8.0	11.21
	HE20 Beam Forming, M0 to M9 3ss		2	-3.7	-9.1	-14.3		0.1	-2.3	8.0	10.25
	HE20 Beam Forming, M0 to M9 1ss		8	-7.6	-12.7	-17.3	-14.9	0.1	-5.5	6.0	11.49
	HE20 Beam Forming, M0 to M9 2ss		5	-6.2	-10.9	-16.4	-12.8	0.1	-4.0	8.0	11.95
	HE20 Beam Forming, M0 to M9 3ss		3	-5.0	-9.4	-14.1	-10.9	0.1	-2.5	8.0	10.52
	HE20 Beam Forming, M0 to M9 4ss		2	-5.0	-9.4	-14.1	-10.9	0.1	-2.5	8.0	10.52
	HE20 STBC, M0 to M9 2ss		2	-3.7	-9.1			0.1	-2.5	8.0	10.53
	HE20 STBC, M0 to M9 2ss	3	4	-3.7	-9.1	-14.3		0.1	-2.3	8.0	10.25
	HE20 STBC, M0 to M9 2ss	4	5	-5.0	-9.4	-14.1	-10.9	0.1	-2.5	8.0	10.52
	CCK, 1 to 11 Mbps	1	2	-0.2				0.2	0.0	8.0	8.01
	CCK, 1 to 11 Mbps		5	-0.2	-4.5			0.2	1.4	8.0	6.64
	CCK, 1 to 11 Mbps		7	-0.2	-4.5	-5.1		0.2	2.3	7.0	4.72
	CCK, 1 to 11 Mbps		8	-0.2	-4.5	-5.1	-2.4	0.2	3.6	6.0	2.39
2437	Non HT20, 6 to 54 Mbps		2	0.7				0.0	0.7	8.0	7.25
	Non HT20, 6 to 54 Mbps		5	0.7	-4.0			0.0	2.0	8.0	5.99
	Non HT20, 6 to 54 Mbps		7	0.7	-4.0	-10.5		0.0	2.3	7.0	4.75
	Non HT20, 6 to 54 Mbps		8	0.7	-4.0	-10.5	-5.0	0.0	3.0	6.0	2.99
	Non HT20 Beam Forming, 6 to 54 Mbps		5	0.7	-4.0			0.0	2.0	8.0	5.99
	Non HT20 Beam Forming, 6 to 54 Mbps	3	7	0.7	-4.0	-10.5		0.0	2.3	7.0	4.75
	Non HT20 Beam Forming, 6 to 54 Mbps	4 1	8	0.7	-4.0	-10.5	-5.0	0.0	3.0	6.0	2.99
	HT/VHT20, M0 to M7		2	0.6				0.1	0.7	8.0	7.35
	HT/VHT20, M0 to M7	2	5	0.6	-4.0			0.1	1.9	8.0	6.05
	HT/VHT20, M8 to M15	2 3	2	0.6	-4.0			0.1	1.9	8.0	6.05
	HT/VHT20, M0 to M7		7	0.6	-4.0	-9.8		0.1	2.2	7.0	4.77
	HT/VHT20, M8 to M15		4	0.6	-4.0	-9.8		0.1	2.2	8.0	5.77
	HT/VHT20, M16 to M23		2	0.6	-4.0	-9.8		0.1	2.2	8.0	5.77
	HT/VHT20, M0 to M7	4	8	0.6	-4.0	-9.8	-5.0	0.1	3.0	6.0	3.01

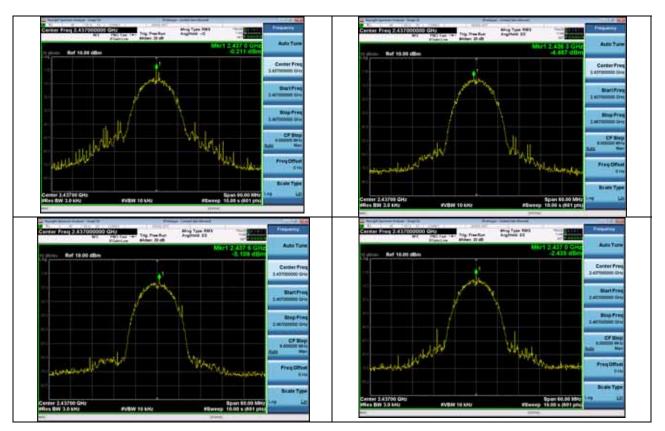
Page No: 36 of 88

	đ		աիս	
_	C	l	sco	

HT/VHT20, M8 to M15	4	5	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HT/VHT20, M16 to M23	4	3	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HT/VHT20, M24 to M31	4	2	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HT/VHT20 Beam Forming, M0 to M7	2	5	0.6	-4.0			0.1	1.9	8.0	6.05
HT/VHT20 Beam Forming, M8 to M15	2	2	0.6	-4.0			0.1	1.9	8.0	6.05
HT/VHT20 Beam Forming, M0 to M7	3	7	0.6	-4.0	-9.8		0.1	2.2	7.0	4.77
HT/VHT20 Beam Forming, M8 to M15	3	4	0.6	-4.0	-9.8		0.1	2.2	8.0	5.77
HT/VHT20 Beam Forming, M16 to M23	3	2	0.6	-4.0	-9.8		0.1	2.2	8.0	5.77
HT/VHT20 Beam Forming, M0 to M7	4	8	0.6	-4.0	-9.8	-5.0	0.1	3.0	6.0	3.01
HT/VHT20 Beam Forming, M8 to M15	4	5	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HT/VHT20 Beam Forming, M16 to M23	4	3	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HT/VHT20 Beam Forming, M24 to M31	4	2	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HT/VHT20 STBC, M0 to M7	2	2	0.6	-4.0			0.1	1.9	8.0	6.05
HT/VHT20 STBC, M0 to M7	3	4	0.6	-4.0	-9.8		0.1	2.2	8.0	5.77
HT/VHT20 STBC, M0 to M7	4	5	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HE20, M0 to M9 1ss	1	2	0.5				0.1	0.6	8.0	7.43
HE20, M0 to M9 1ss	2	5	0.5	-4.5			0.1	1.8	8.0	6.24
HE20, M0 to M9 2ss	2	2	0.5	-4.5			0.1	1.8	8.0	6.24
HE20, M0 to M9 1ss	3	7	0.5	-4.5	-10.0		0.1	2.0	7.0	4.96
HE20, M0 to M9 2ss	3	4	0.5	-4.5	-10.0		0.1	2.0	8.0	5.96
HE20, M0 to M9 3ss	3	2	0.5	-4.5	-10.0		0.1	2.0	8.0	5.96
HE20, M0 to M9 1ss	4	8	0.5	-4.5	-10.0	-5.8	0.1	2.7	6.0	3.29
HE20, M0 to M9 2ss	4	5	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29
HE20, M0 to M9 3ss	4	3	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29
HE20, M0 to M9 4ss	4	2	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29
HE20 Beam Forming, M0 to M9 1ss	2	5	0.5	-4.5			0.1	1.8	8.0	6.24
HE20 Beam Forming, M0 to M9 2ss	2	2	0.5	-4.5			0.1	1.8	8.0	6.24
HE20 Beam Forming, M0 to M9 1ss	3	7	0.5	-4.5	-10.0		0.1	2.0	7.0	4.96
HE20 Beam Forming, M0 to M9 2ss	3	4	0.5	-4.5	-10.0		0.1	2.0	8.0	5.96
HE20 Beam Forming, M0 to M9 3ss	3	2	0.5	-4.5	-10.0		0.1	2.0	8.0	5.96
HE20 Beam Forming, M0 to M9 1ss	4	8	0.5	-4.5	-10.0	-5.8	0.1	2.7	6.0	3.29
HE20 Beam Forming, M0 to M9 2ss	4	5	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29
HE20 Beam Forming, M0 to M9 3ss	4	3	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29
HE20 Beam Forming, M0 to M9 4ss	4	2	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29
HE20 STBC, M0 to M9 2ss	2	2	0.5	-4.5			0.1	1.8	8.0	6.24
HE20 STBC, M0 to M9 2ss	3	4	0.5	-4.5	-10.0		0.1	2.0	8.0	5.96
HE20 STBC, M0 to M9 2ss	4	5	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29

Page No: 37 of 88

		•								0.04
CCK, 1 to 11 Mbps	1	2	-1.0	4.0			0.2	-0.8	8.0	8.81
CCK, 1 to 11 Mbps	2	5	-1.0	-4.9	0.0		0.2	0.7	8.0	7.32
CCK, 1 to 11 Mbps	3	7	-1.0	-4.9	-6.3	0.4	0.2	1.5	7.0	5.50
CCK, 1 to 11 Mbps	4	8	-1.0	-4.9	-6.3	-2.1	0.2	3.1	6.0	2.87
Non HT20, 6 to 54 Mbps	1	2	-3.4	0.1			0.0	-3.4	8.0	11.35
Non HT20, 6 to 54 Mbps	2	5	-3.4	-9.1			0.0	-2.3	8.0	10.32
Non HT20, 6 to 54 Mbps	3	7	-3.4	-9.1	-14.6	10.0	0.0	-2.1	7.0	9.07
Non HT20, 6 to 54 Mbps	4	8	-4.0	-9.3	-16.3	-10.3	0.0	-1.9	6.0	7.94
Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-4.0	-9.3			0.0	-2.8	8.0	10.83
Non HT20 Beam Forming, 6 to 54 Mbps	3	7	-4.9	-9.8	-16.8		0.0	-3.4	7.0	10.43
Non HT20 Beam Forming, 6 to 54 Mbps	4	8	-6.7	-10.9	-18.2	-11.6	0.0	-4.2	6.0	10.16
HT/VHT20, M0 to M7	1	2	-3.5				0.1	-3.4	8.0	11.45
HT/VHT20, M0 to M7	2	5	-4.3	-9.0			0.1	-3.0	8.0	10.98
HT/VHT20, M8 to M15	2	2	-4.3	-9.0			0.1	-3.0	8.0	10.98
HT/VHT20, M0 to M7	3	7	-4.3	-9.0	-14.5		0.1	-2.7	7.0	9.68
HT/VHT20, M8 to M15	3	4	-4.3	-9.0	-14.5		0.1	-2.7	8.0	10.68
HT/VHT20, M16 to M23	3	2	-4.3	-9.0	-14.5		0.1	-2.7	8.0	10.68
HT/VHT20, M0 to M7	4	8	-4.3	-9.0	-14.5	-10.6	0.1	-2.0	6.0	8.02
HT/VHT20, M8 to M15	4	5	-4.3	-9.0	-14.5	-10.6	0.1	-2.0	8.0	10.02
HT/VHT20, M16 to M23	4	3	-4.3	-9.0	-14.5	-10.6	0.1	-2.0	8.0	10.02
HT/VHT20, M24 to M31	4	2	-4.3	-9.0	-14.5	-10.6	0.1	-2.0	8.0	10.02
HT/VHT20 Beam Forming, M0 to M7	2	5	-4.3	-9.0			0.1	-3.0	8.0	10.98
HT/VHT20 Beam Forming, M8 to M15	2	2	-4.3	-9.0			0.1	-3.0	8.0	10.98
HT/VHT20 Beam Forming, M0 to M7	3	7	-5.9	-10.2	-15.7		0.1	-4.2	7.0	11.16
HT/VHT20 Beam Forming, M8 to M15	3	4	-4.3	-9.0	-14.5		0.1	-2.7	8.0	10.68
HT/VHT20 Beam Forming, M16 to M23	3	2	-4.3	-9.0	-14.5		0.1	-2.7	8.0	10.68
HT/VHT20 Beam Forming, M0 to M7	4	8	-6.4	-10.3	-16.9	-12.4	0.1	-3.9	6.0	9.92
HT/VHT20 Beam Forming, M8 to M15	4	5	-5.9	-10.2	-15.7	-11.7	0.1	-3.4	8.0	11.44
HT/VHT20 Beam Forming, M16 to M23	4	3	-4.3	-9.0	-14.5	-10.6	0.1	-2.0	8.0	10.02
HT/VHT20 Beam Forming, M24 to M31	4	2	-4.3	-9.0	-14.5	-10.6	0.1	-2.0	8.0	10.02
HT/VHT20 STBC, M0 to M7	2	2	-4.3	-9.0			0.1	-3.0	8.0	10.98
HT/VHT20 STBC, M0 to M7	3	4	-4.3	-9.0	-14.5		0.1	-2.7	8.0	10.68
HT/VHT20 STBC, M0 to M7	4	5	-4.3	-9.0	-14.5	-10.6	0.1	-2.0	8.0	10.02
HE20, M0 to M9 1ss	1	2	-4.5				0.1	-4.4	8.0	12.43
HE20, M0 to M9 1ss	2	5	-4.5	-9.6			0.1	-3.3	8.0	11.27
HE20, M0 to M9 2ss	2	2	-4.5	-9.6			0.1	-3.3	8.0	11.27
HE20, M0 to M9 1ss	3	7	-4.5	-9.6	-12.8		0.1	-2.8	7.0	9.80
HE20, M0 to M9 2ss	3	4	-4.5	-9.6	-12.8		0.1	-2.8	8.0	10.80
HE20, M0 to M9 3ss	3	2	-4.5	-9.6	-12.8		0.1	-2.8	8.0	10.80
HE20, M0 to M9 1ss	4	8	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	6.0	8.99
HE20, M0 to M9 2ss	4	5	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99
HE20, M0 to M9 3ss	4	3	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99
HE20, M0 to M9 4ss	4	2	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99


Page No: 38 of 88

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

2462

HE20 Beam Forming, M0 to M9 1ss	2	5	-5.5	-9.6			0.1	-4.0	8.0	12.01
HE20 Beam Forming, M0 to M9 2ss	2	2	-4.5	-9.6			0.1	-3.3	8.0	11.27
HE20 Beam Forming, M0 to M9 1ss	3	7	-6.9	-10.9	-15.0		0.1	-4.9	7.0	11.92
HE20 Beam Forming, M0 to M9 2ss	3	4	-5.5	-9.6	-14.6		0.1	-3.6	8.0	11.64
HE20 Beam Forming, M0 to M9 3ss	3	2	-4.5	-9.6	-12.8		0.1	-2.8	8.0	10.80
HE20 Beam Forming, M0 to M9 1ss	4	8	-6.9	-10.9	-15.0	-13.0	0.1	-4.3	6.0	10.29
HE20 Beam Forming, M0 to M9 2ss	4	5	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99
HE20 Beam Forming, M0 to M9 3ss	4	3	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99
HE20 Beam Forming, M0 to M9 4ss	4	2	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99
HE20 STBC, M0 to M9 2ss	2	2	-4.5	-9.6			0.1	-3.3	8.0	11.27
HE20 STBC, M0 to M9 2ss	3	4	-4.5	-9.6	-12.8		0.1	-2.8	8.0	10.80
HE20 STBC, M0 to M9 2ss	4	5	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99

Page No: 39 of 88

Power Spectral Density, 2437 MHz, CCK, 1 to 11 Mbps

ululu cisco

Page No: 40 of 88

A.6 Conducted Spurious Emissions

Conducted Spurious Emissions Test Requirement

15.205 / RSS-Gen / LP0002

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) and RSS-GEN section 8.10, must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)) and RSS-Gen section 8.9

RSS-Gen 8.9 Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 and Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

RSS-Gen 8.10 (b) Unwanted emissions that fall into restricted bands of Table 6 shall comply with the limits specified in RSS-Gen; and (c) Unwanted emissions that do not fall within the restricted frequency bands of Table 6 shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.

Use formula below to substitute conducted measurements in place of radiated measurements

 $E[dB\mu V/m] = EIRP[dBm] - 20 \log(d[meters]) + 104.77$, where E = field strength and d = 3 meter

1) Average Plot, Limit= -41.25 dBm eirp

2) Peak plot, Limit = -21.25 dBm eirp

Conducted Spurious Emissions Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05 ANSI C63.10: 2013

Conducted Spurious Emissions Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Use the peak marker function to determine the maximum spurs amplitude level.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded. (see ANSI C63.10 2013 section 14.3.2.2)

6. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05, section 8.1 c) 3, section 8.6 DTS emissions in restricted frequency bands

ANSI C63.10: 2013 section 11.12.2.4 (Peak) & 11.12.2.5.2 (Average)

Conducted Spurious Emissions Test parameters	
Peak	Average
Span = 30MHz to 26.5GHz / 26.5GHz to 40GHz	Span = 30MHz to 26.5GHz / 26.5GHz to 40GHz
RBW = 1 MHz	RBW = 1 MHz

```
Page No: 41 of 88
```

$VBW \ge 3 MHz$	$VBW \ge 3 MHz$
Sweep = Auto	Sweep = Auto
Detector = Peak	Detector = RMS
Trace = Max Hold.	Power Averaging

ANSI C63.10: 2013 section 11.12.2.2 c) add the max antenna gain + ground reflection factor (4.7 dB for frequencies between 30 MHz and 1000 MHz, and 0 dB for frequencies > 1000 MHz).

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support			\checkmark

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 42 of 88

Conducted Spurs Average Upper, 2412 MHz, Non HT20, 6 to 54 Mbps

սիսիս

Conducted Spurs Peak Upper, 2412 MHz, Non HT20, 6 to 54 Mbps

and the second second lives as		and the second sec	and the second se
erter Freg 18.0000000	The fact of the fact	Assessed tractory contractory	Tingstory
ner -20.00 dam		Mir4 23,732 0 -59 675 d	Auto Tur
			Center Printer Printer
-		warman and a share and a start	Bart Pro
			Bing-Fy 34.00000000 G
Res DIV 1.0 MPL	eveni 3.4 MHz	Stop 26,000 Sweep 23,23 ms (1001	pitte v Annocente G
3 PARTICIPATION OF THE OWNER	17 886 049 -72 553 dila 12 72 049 049 -72 553 dila 12 72 049 049 049 049 049 049 049 049 049 049	Auron Auronalda Auronau	FreqUits
			Boale Typ
	_		- LAL - L

Page No: 43 of 88

Conducted Spurious Average Table

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Tx 3 Spur Power (dBm)	Tx 4 Spur Power (dBm)	Duty Cycle Correction (dB)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	2	-73.9				0.2	-71.7	-41.25	30.46
	CCK, 1 to 11 Mbps	2	2	-73.9	-72.8			0.2	-68.1	-41.25	26.86
	CCK, 1 to 11 Mbps	3	2	-73.9	-72.8	-72.5		0.2	-66.1	-41.25	24.81
	CCK, 1 to 11 Mbps	4	2	-73.9	-72.8	-72.5	-73.5	0.2	-64.9	-41.25	23.68
	Non HT20, 6 to 54 Mbps	1	2	-75.1				0.0	-73.1	-41.25	31.80
	Non HT20, 6 to 54 Mbps	2	2	-75.1	-74.6			0.0	-69.8	-41.25	28.54
	Non HT20, 6 to 54 Mbps	3	2	-75.1	-74.6	-74.5		0.0	-67.9	-41.25	26.66
	Non HT20, 6 to 54 Mbps	4	2	-75.1	-74.6	-74.5	-75.4	0.0	-66.8	-41.25	25.57
	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-75.5	-74.9			0.0	-67.1	-41.25	25.88
	Non HT20 Beam Forming, 6 to 54 Mbps	3	7	-75.8	-75.3	-75.1		0.0	-63.6	-41.25	22.32
	Non HT20 Beam Forming, 6 to 54 Mbps	4	8	-76.0	-75.6	-75.4	-77.0	0.0	-61.9	-41.25	20.64
	HT/VHT20, M0 to M7	1	2	-75.1				0.1	-73.0	-41.25	31.80
	HT/VHT20, M0 to M7	2	2	-75.4	-74.7			0.1	-70.0	-41.25	28.72
	HT/VHT20, M8 to M15	2	2	-75.4	-74.7			0.1	-70.0	-41.25	28.72
	HT/VHT20, M0 to M7	3	2	-75.4	-74.7	-74.8		0.1	-68.1	-41.25	26.88
2412	HT/VHT20, M8 to M15	3	2	-75.4	-74.7	-74.8		0.1	-68.1	-41.25	26.88
2	HT/VHT20, M16 to M23	3	2	-75.4	-74.7	-74.8		0.1	-68.1	-41.25	26.88
	HT/VHT20, M0 to M7	4	2	-75.4	-74.7	-74.8	-75.6	0.1	-67.0	-41.25	25.79
	HT/VHT20, M8 to M15	4	2	-75.4	-74.7	-74.8	-75.6	0.1	-67.0	-41.25	25.79
	HT/VHT20, M16 to M23	4	2	-75.4	-74.7	-74.8	-75.6	0.1	-67.0	-41.25	25.79
	HT/VHT20, M24 to M31	4	2	-75.4	-74.7	-74.8	-75.6	0.1	-67.0	-41.25	25.79
	HT/VHT20 Beam Forming, M0 to M7	2	5	-75.5	-75.2			0.1	-67.3	-41.25	26.03
	HT/VHT20 Beam Forming, M8 to M15	2	2	-75.4	-74.7			0.1	-70.0	-41.25	28.72
	HT/VHT20 Beam Forming, M0 to M7	3	7	-75.9	-75.4	-75.1		0.1	-63.6	-41.25	22.38
	HT/VHT20 Beam Forming, M8 to M15	3	4	-75.5	-75.2	-74.8		0.1	-66.3	-41.25	25.08
	HT/VHT20 Beam Forming, M16 to M23	3	2	-75.4	-74.7	-74.8		0.1	-68.1	-41.25	26.88
	HT/VHT20 Beam Forming, M0 to M7	4	8	-76.2	-75.8	-75.6	-77.2	0.1	-62.1	-41.25	20.83
	HT/VHT20 Beam Forming, M8 to M15	4	5	-75.5	-75.2	-74.8	-76.2	0.1	-64.3	-41.25	23.07
	HT/VHT20 Beam Forming, M16 to M23	4	3	-75.5	-75.2	-74.8	-76.2	0.1	-66.3	-41.25	25.07
	HT/VHT20 Beam Forming, M24 to M31	4	2	-75.4	-74.7	-74.8	-75.6	0.1	-67.0	-41.25	25.79
	HT/VHT20 STBC, M0 to M7	2	2	-75.4	-74.7			0.1	-70.0	-41.25	28.72
			Page	No: 44 c	of 88						

$ \mathbf{u} $	աիս
CI	sco

		2	0	75 4	747	74.0		0.1	CO 4	44.05	20,00
	HT/VHT20 STBC, M0 to M7	3	2 2	-75.4	-74.7	-74.8	75.0	0.1	-68.1	-41.25	26.88
	HT/VHT20 STBC, M0 to M7	4		-75.4	-74.7	-74.8	-75.6	0.1	-67.0	-41.25	25.79
	HE20, M0 to M9 1ss	1	2	-75.3	74.0			0.1	-73.2	-41.25	31.98
	HE20, M0 to M9 1ss	2	2	-75.3	-74.9			0.1	-70.0	-41.25	28.77
	HE20, M0 to M9 2ss	2	2	-75.3	-74.9	747		0.1	-70.0	-41.25	28.77
	HE20, M0 to M9 1ss	3	2	-75.3	-74.9	-74.7		0.1	-68.1	-41.25	26.87
	HE20, M0 to M9 2ss	3	2	-75.3	-74.9	-74.7		0.1	-68.1	-41.25	26.87
	HE20, M0 to M9 3ss	3	2	-75.3	-74.9	-74.7		0.1	-68.1	-41.25	26.87
	HE20, M0 to M9 1ss	4	2	-75.7	-75.3	-74.9	-76.1	0.1	-67.4	-41.25	26.14
	HE20, M0 to M9 2ss	4	2	-75.7	-75.3	-74.9	-76.1	0.1	-67.4	-41.25	26.14
	HE20, M0 to M9 3ss	4	2	-75.7	-75.3	-74.9	-76.1	0.1	-67.4	-41.25	26.14
,	HE20, M0 to M9 4ss	4	2	-75.7	-75.3	-74.9	-76.1	0.1	-67.4	-41.25	26.14
	HE20 Beam Forming, M0 to M9 1ss	2	5	-75.7	-75.3			0.1	-67.4	-41.25	26.17
	HE20 Beam Forming, M0 to M9 2ss	2	2	-75.3	-74.9			0.1	-70.0	-41.25	28.77
	HE20 Beam Forming, M0 to M9 1ss	3	7	-76.4	-75.7	-75.4		0.1	-64.0	-41.25	22.73
	HE20 Beam Forming, M0 to M9 2ss	3	4	-75.7	-75.3	-74.9		0.1	-66.5	-41.25	25.20
	HE20 Beam Forming, M0 to M9 3ss	3	2	-75.3	-74.9	-74.7		0.1	-68.1	-41.25	26.87
	HE20 Beam Forming, M0 to M9 1ss	4	8	-76.7	-76.2	-75.7	-77.5	0.1	-62.4	-41.25	21.14
	HE20 Beam Forming, M0 to M9 2ss	4	5	-76.0	-75.5	-75.3	-76.6	0.1	-64.7	-41.25	23.49
	HE20 Beam Forming, M0 to M9 3ss	4	3	-75.7	-75.3	-74.9	-76.1	0.1	-66.4	-41.25	25.14
	HE20 Beam Forming, M0 to M9 4ss	4	2	-75.7	-75.3	-74.9	-76.1	0.1	-67.4	-41.25	26.14
	HE20 STBC, M0 to M9 2ss	2	2	-75.3	-74.9			0.1	-70.0	-41.25	28.77
	HE20 STBC, M0 to M9 2ss	3	2	-75.3	-74.9	-74.7		0.1	-68.1	-41.25	26.87
	HE20 STBC, M0 to M9 2ss	4	2	-75.7	-75.3	-74.9	-76.1	0.1	-67.4	-41.25	26.14
	CCK, 1 to 11 Mbps	1	2	-74.9				0.2	-72.7	-41.25	31.46
	CCK, 1 to 11 Mbps	2	2	-74.9	-72.5			0.2	-68.3	-41.25	27.08
	CCK, 1 to 11 Mbps	3	2	-74.9	-72.5	-72.6		0.2	-66.2	-41.25	24.99
	CCK, 1 to 11 Mbps	4	2	-74.9	-72.5	-72.6	-72.9	0.2	-64.9	-41.25	23.66
	Non HT20, 6 to 54 Mbps	1	2	-75.2				0.0	-73.2	-41.25	31.90
	Non HT20, 6 to 54 Mbps	2	2	-75.2	-73.0			0.0	-68.9	-41.25	27.66
	Non HT20, 6 to 54 Mbps	3	2	-75.2	-73.0	-72.7		0.0	-66.7	-41.25	25.43
	Non HT20, 6 to 54 Mbps	4	2	-75.2	-73.0	-72.7	-74.6	0.0	-65.7	-41.25	24.43
37	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-75.2	-73.0			0.0	-65.9	-41.25	24.66
2437	Non HT20 Beam Forming, 6 to 54 Mbps	3	7	-75.2	-73.0	-72.7		0.0	-61.7	-41.25	20.43
	Non HT20 Beam Forming, 6 to 54 Mbps	4	8	-75.2	-73.0	-72.7	-74.6	0.0	-59.7	-41.25	18.43
	HT/VHT20, M0 to M7	1	2	-75.1				0.1	-73.0	-41.25	31.80
	HT/VHT20, M0 to M7	2	2	-75.1	-73.1			0.1	-68.9	-41.25	27.67
	HT/VHT20, M8 to M15	2	2	-75.1	-73.1			0.1	-68.9	-41.25	27.67
	HT/VHT20, M0 to M7	3	2	-75.1	-73.1	-73.0		0.1	-66.8	-41.25	25.56
	HT/VHT20, M8 to M15	3	2	-75.1	-73.1	-73.0		0.1	-66.8	-41.25	25.56
	HT/VHT20, M16 to M23	3	2	-75.1	-73.1	-73.0		0.1	-66.8	-41.25	25.56
	HT/VHT20, M0 to M7	4	2	-75.1	-73.1	-73.0	-74.6	0.1	-65.8	-41.25	24.53

Page No: 45 of 88

cisco

HT/VHT20, M8 to M15	4	2	-75.1	-73.1	-73.0	-74.6	0.1	-65.8	-41.25	24.53
HT/VHT20, M16 to M23	4	2	-75.1	-73.1	-73.0	-74.6	0.1	-65.8	-41.25	24.53
HT/VHT20, M24 to M31	4	2	-75.1	-73.1	-73.0	-74.6	0.1	-65.8	-41.25	24.53
HT/VHT20 Beam Forming, M0 to M7	2	5	-75.1	-73.1			0.1	-65.9	-41.25	24.67
HT/VHT20 Beam Forming, M8 to M15	2	2	-75.1	-73.1			0.1	-68.9	-41.25	27.67
HT/VHT20 Beam Forming, M0 to M7	3	7	-75.1	-73.1	-73.0		0.1	-61.8	-41.25	20.56
HT/VHT20 Beam Forming, M8 to M15	3	4	-75.1	-73.1	-73.0		0.1	-64.8	-41.25	23.56
HT/VHT20 Beam Forming, M16 to M23	3	2	-75.1	-73.1	-73.0		0.1	-66.8	-41.25	25.56
HT/VHT20 Beam Forming, M0 to M7	4	8	-75.1	-73.1	-73.0	-74.6	0.1	-59.8	-41.25	18.53
HT/VHT20 Beam Forming, M8 to M15	4	5	-75.1	-73.1	-73.0	-74.6	0.1	-62.8	-41.25	21.53
HT/VHT20 Beam Forming, M16 to M23	4	3	-75.1	-73.1	-73.0	-74.6	0.1	-64.8	-41.25	23.53
HT/VHT20 Beam Forming, M24 to M31	4	2	-75.1	-73.1	-73.0	-74.6	0.1	-65.8	-41.25	24.53
HT/VHT20 STBC, M0 to M7	2	2	-75.1	-73.1			0.1	-68.9	-41.25	27.67
HT/VHT20 STBC, M0 to M7	3	2	-75.1	-73.1	-73.0		0.1	-66.8	-41.25	25.56
HT/VHT20 STBC, M0 to M7	4	2	-75.1	-73.1	-73.0	-74.6	0.1	-65.8	-41.25	24.53
HE20, M0 to M9 1ss	1	2	-74.8				0.1	-72.7	-41.25	31.48
HE20, M0 to M9 1ss	2	2	-74.8	-73.0			0.1	-68.7	-41.25	27.48
HE20, M0 to M9 2ss	2	2	-74.8	-73.0			0.1	-68.7	-41.25	27.48
HE20, M0 to M9 1ss	3	2	-74.8	-73.0	-73.1		0.1	-66.7	-41.25	25.47
HE20, M0 to M9 2ss	3	2	-74.8	-73.0	-73.1		0.1	-66.7	-41.25	25.47
HE20, M0 to M9 3ss	3	2	-74.8	-73.0	-73.1		0.1	-66.7	-41.25	25.47
HE20, M0 to M9 1ss	4	2	-74.8	-73.0	-73.1	-74.5	0.1	-65.7	-41.25	24.44
HE20, M0 to M9 2ss	4	2	-74.8	-73.0	-73.1	-74.5	0.1	-65.7	-41.25	24.44
HE20, M0 to M9 3ss	4	2	-74.8	-73.0	-73.1	-74.5	0.1	-65.7	-41.25	24.44
HE20, M0 to M9 4ss	4	2	-74.8	-73.0	-73.1	-74.5	0.1	-65.7	-41.25	24.44
HE20 Beam Forming, M0 to M9 1ss	2	5	-74.8	-73.0			0.1	-65.7	-41.25	24.48
HE20 Beam Forming, M0 to M9 2ss	2	2	-74.8	-73.0			0.1	-68.7	-41.25	27.48
HE20 Beam Forming, M0 to M9 1ss	3	7	-74.8	-73.0	-73.1		0.1	-61.7	-41.25	20.47
HE20 Beam Forming, M0 to M9 2ss	3	4	-74.8	-73.0	-73.1		0.1	-64.7	-41.25	23.47
HE20 Beam Forming, M0 to M9 3ss	3	2	-74.8	-73.0	-73.1		0.1	-66.7	-41.25	25.47
HE20 Beam Forming, M0 to M9 1ss	4	8	-74.8	-73.0	-73.1	-74.5	0.1	-59.7	-41.25	18.44
HE20 Beam Forming, M0 to M9 2ss	4	5	-74.8	-73.0	-73.1	-74.5	0.1	-62.7	-41.25	21.44
HE20 Beam Forming, M0 to M9 3ss	4	3	-74.8	-73.0	-73.1	-74.5	0.1	-64.7	-41.25	23.44
HE20 Beam Forming, M0 to M9 4ss	4	2	-74.8	-73.0	-73.1	-74.5	0.1	-65.7	-41.25	24.44
HE20 STBC, M0 to M9 2ss	2	2	-74.8	-73.0			0.1	-68.7	-41.25	27.48
HE20 STBC, M0 to M9 2ss	3	2	-74.8	-73.0	-73.1		0.1	-66.7	-41.25	25.47
HE20 STBC, M0 to M9 2ss	4	2	-74.8	-73.0	-73.1	-74.5	0.1	-65.7	-41.25	24.44

Page No: 46 of 88

	CCK, 1 to 11 Mbps	1	2	-76.1				0.2	-73.9	-41.25	32.66
	CCK, 1 to 11 Mbps	2	2	-76.1	-74.0			0.2	-69.7	-41.25	28.47
	CCK, 1 to 11 Mbps	3	2	-76.1	-74.0	-73.2		0.2	-67.3	-41.25	26.06
	CCK, 1 to 11 Mbps	4	2	-76.1	-74.0	-73.2	-69.3	0.2	-64.2	-41.25	22.95
	Non HT20, 6 to 54 Mbps	1	2	-77.4				0.0	-75.4	-41.25	34.10
	Non HT20, 6 to 54 Mbps	2	2	-77.4	-74.8			0.0	-70.9	-41.25	29.60
	Non HT20, 6 to 54 Mbps	3	2	-77.4	-74.8	-74.5		0.0	-68.6	-41.25	27.32
	Non HT20, 6 to 54 Mbps	4	2	-77.7	-75.0	-74.6	-75.8	0.0	-67.6	-41.25	26.31
	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-77.7	-75.0			0.0	-68.1	-41.25	26.84
	Non HT20 Beam Forming, 6 to 54 Mbps	3	7	-77.9	-75.5	-75.1		0.0	-64.2	-41.25	22.94
	Non HT20 Beam Forming, 6 to 54 Mbps	4	8	-78.3	-75.8	-75.5	-76.8	0.0	-62.4	-41.25	21.15
	HT/VHT20, M0 to M7	1	2	-77.4				0.1	-75.3	-41.25	34.10
	HT/VHT20, M0 to M7	2	2	-77.8	-75.1			0.1	-71.2	-41.25	29.93
	HT/VHT20, M8 to M15	2	2	-77.8	-75.1			0.1	-71.2	-41.25	29.93
	HT/VHT20, M0 to M7	3	2	-77.8	-75.1	-74.8		0.1	-68.9	-41.25	27.63
	HT/VHT20, M8 to M15	3	2	-77.8	-75.1	-74.8		0.1	-68.9	-41.25	27.63
	HT/VHT20, M16 to M23	3	2	-77.8	-75.1	-74.8		0.1	-68.9	-41.25	27.63
	HT/VHT20, M0 to M7	4	2	-77.8	-75.1	-74.8	-76.0	0.1	-67.7	-41.25	26.46
	HT/VHT20, M8 to M15	4	2	-77.8	-75.1	-74.8	-76.0	0.1	-67.7	-41.25	26.46
	HT/VHT20, M16 to M23	4	2	-77.8	-75.1	-74.8	-76.0	0.1	-67.7	-41.25	26.46
2	HT/VHT20, M24 to M31	4	2	-77.8	-75.1	-74.8	-76.0	0.1	-67.7	-41.25	26.46
2462	HT/VHT20 Beam Forming, M0 to M7	2	5	-77.8	-75.1			0.1	-68.2	-41.25	26.93
	HT/VHT20 Beam Forming, M8 to M15	2	2	-77.8	-75.1			0.1	-71.2	-41.25	29.93
	HT/VHT20 Beam Forming, M0 to M7	3	7	-78.3	-75.5	-75.0		0.1	-64.2	-41.25	22.97
	HT/VHT20 Beam Forming, M8 to M15	3	4	-77.8	-75.1	-74.8		0.1	-66.9	-41.25	25.63
	HT/VHT20 Beam Forming, M16 to M23	3	2	-77.8	-75.1	-74.8		0.1	-68.9	-41.25	27.63
	HT/VHT20 Beam Forming, M0 to M7	4	8	-78.5	-75.8	-75.3	-76.9	0.1	-62.4	-41.25	21.14
	HT/VHT20 Beam Forming, M8 to M15	4	5	-78.3	-75.5	-75.0	-76.5	0.1	-65.1	-41.25	23.83
	HT/VHT20 Beam Forming, M16 to M23	4	3	-77.8	-75.1	-74.8	-76.0	0.1	-66.7	-41.25	25.46
	HT/VHT20 Beam Forming, M24 to M31	4	2	-77.8	-75.1	-74.8	-76.0	0.1	-67.7	-41.25	26.46
	HT/VHT20 STBC, M0 to M7	2	2	-77.8	-75.1			0.1	-71.2	-41.25	29.93
	HT/VHT20 STBC, M0 to M7	3	2	-77.8	-75.1	-74.8		0.1	-68.9	-41.25	27.63
	HT/VHT20 STBC, M0 to M7	4	2	-77.8	-75.1	-74.8	-76.0	0.1	-67.7	-41.25	26.46
	HE20, M0 to M9 1ss	1	2	-77.7				0.1	-75.6	-41.25	34.38
	HE20, M0 to M9 1ss	2	2	-77.7	-75.1			0.1	-71.1	-41.25	29.88
	HE20, M0 to M9 2ss	2	2	-77.7	-75.1			0.1	-71.1	-41.25	29.88
	HE20, M0 to M9 1ss	3	2	-77.7	-75.1	-74.4		0.1	-68.7	-41.25	27.43
	HE20, M0 to M9 2ss	3	2	-77.7	-75.1	-74.4		0.1	-68.7	-41.25	27.43
	HE20, M0 to M9 3ss	3	2	-77.7	-75.1	-74.4		0.1	-68.7	-41.25	27.43
	HE20, M0 to M9 1ss	4	2	-78.0	-75.2	-75.0	-76.2	0.1	-67.9	-41.25	26.61
	HE20, M0 to M9 2ss	4	2	-78.0	-75.2	-75.0	-76.2	0.1	-67.9	-41.25	26.61
	HE20, M0 to M9 3ss	4	2	-78.0	-75.2	-75.0	-76.2	0.1	-67.9	-41.25	26.61
	HE20, M0 to M9 4ss	4	2	-78.0	-75.2	-75.0	-76.2	0.1	-67.9	-41.25	26.61

Page No: 47 of 88

HE20 Beam Forming, M0 to M9 1ss	2	5	-78.0	-75.2			0.1	-68.3	-41.25	27.05
HE20 Beam Forming, M0 to M9 2ss	2	2	-77.7	-75.1			0.1	-71.1	-41.25	29.88
HE20 Beam Forming, M0 to M9 1ss	3	7	-78.6	-75.7	-75.3		0.1	-64.5	-41.25	23.22
HE20 Beam Forming, M0 to M9 2ss	3	4	-78.0	-75.2	-75.0		0.1	-67.0	-41.25	25.78
HE20 Beam Forming, M0 to M9 3ss	3	2	-77.7	-75.1	-74.4		0.1	-68.7	-41.25	27.43
HE20 Beam Forming, M0 to M9 1ss	4	8	-78.6	-75.7	-75.3	-76.7	0.1	-62.3	-41.25	21.07
HE20 Beam Forming, M0 to M9 2ss	4	5	-78.0	-75.2	-75.0	-76.2	0.1	-64.9	-41.25	23.61
HE20 Beam Forming, M0 to M9 3ss	4	3	-78.0	-75.2	-75.0	-76.2	0.1	-66.9	-41.25	25.61
HE20 Beam Forming, M0 to M9 4ss	4	2	-78.0	-75.2	-75.0	-76.2	0.1	-67.9	-41.25	26.61
HE20 STBC, M0 to M9 2ss	2	2	-77.7	-75.1			0.1	-71.1	-41.25	29.88
HE20 STBC, M0 to M9 2ss	3	2	-77.7	-75.1	-74.4		0.1	-68.7	-41.25	27.43
HE20 STBC, M0 to M9 2ss	4	2	-78.0	-75.2	-75.0	-76.2	0.1	-67.9	-41.25	26.61
	HE20 Beam Forming, M0 to M9 2ssHE20 Beam Forming, M0 to M9 1ssHE20 Beam Forming, M0 to M9 2ssHE20 Beam Forming, M0 to M9 3ssHE20 Beam Forming, M0 to M9 1ssHE20 Beam Forming, M0 to M9 2ssHE20 Beam Forming, M0 to M9 2ssHE20 Beam Forming, M0 to M9 3ssHE20 STBC, M0 to M9 2ssHE20 STBC, M0 to M9 2ss	HE20 Beam Forming, M0 to M9 2ss2HE20 Beam Forming, M0 to M9 1ss3HE20 Beam Forming, M0 to M9 2ss3HE20 Beam Forming, M0 to M9 3ss3HE20 Beam Forming, M0 to M9 1ss4HE20 Beam Forming, M0 to M9 2ss4HE20 Beam Forming, M0 to M9 3ss4HE20 STBC, M0 to M9 2ss2HE20 STBC, M0 to M9 2ss3	HE20 Beam Forming, M0 to M9 2ss22HE20 Beam Forming, M0 to M9 1ss37HE20 Beam Forming, M0 to M9 2ss34HE20 Beam Forming, M0 to M9 3ss32HE20 Beam Forming, M0 to M9 1ss48HE20 Beam Forming, M0 to M9 1ss45HE20 Beam Forming, M0 to M9 2ss45HE20 Beam Forming, M0 to M9 3ss43HE20 Beam Forming, M0 to M9 3ss42HE20 Beam Forming, M0 to M9 3ss42HE20 STBC, M0 to M9 2ss22HE20 STBC, M0 to M9 2ss32	HE20 Beam Forming, M0 to M9 2ss22-77.7HE20 Beam Forming, M0 to M9 1ss37-78.6HE20 Beam Forming, M0 to M9 2ss34-78.0HE20 Beam Forming, M0 to M9 3ss32-77.7HE20 Beam Forming, M0 to M9 1ss48-78.6HE20 Beam Forming, M0 to M9 1ss45-78.0HE20 Beam Forming, M0 to M9 2ss45-78.0HE20 Beam Forming, M0 to M9 3ss43-78.0HE20 Beam Forming, M0 to M9 3ss42-78.0HE20 Beam Forming, M0 to M9 4ss42-78.0HE20 STBC, M0 to M9 2ss22-77.7HE20 STBC, M0 to M9 2ss32-77.7	HE20 Beam Forming, M0 to M9 2ss22-77.7-75.1HE20 Beam Forming, M0 to M9 1ss37-78.6-75.7HE20 Beam Forming, M0 to M9 2ss34-78.0-75.2HE20 Beam Forming, M0 to M9 3ss32-77.7-75.1HE20 Beam Forming, M0 to M9 1ss48-78.6-75.7HE20 Beam Forming, M0 to M9 1ss45-78.0-75.2HE20 Beam Forming, M0 to M9 2ss45-78.0-75.2HE20 Beam Forming, M0 to M9 3ss43-78.0-75.2HE20 Beam Forming, M0 to M9 4ss42-78.0-75.2HE20 STBC, M0 to M9 2ss22-77.7-75.1HE20 STBC, M0 to M9 2ss32-77.7-75.1	HE20 Beam Forming, M0 to M9 2ss22-77.7-75.1HE20 Beam Forming, M0 to M9 1ss37-78.6-75.7-75.3HE20 Beam Forming, M0 to M9 2ss34-78.0-75.2-75.0HE20 Beam Forming, M0 to M9 3ss32-77.7-75.1-74.4HE20 Beam Forming, M0 to M9 1ss48-78.6-75.7-75.3HE20 Beam Forming, M0 to M9 1ss45-78.0-75.2-75.0HE20 Beam Forming, M0 to M9 2ss45-78.0-75.2-75.0HE20 Beam Forming, M0 to M9 3ss43-78.0-75.2-75.0HE20 Beam Forming, M0 to M9 4ss42-78.0-75.2-75.0HE20 STBC, M0 to M9 2ss22-77.7-75.1-74.4HE20 STBC, M0 to M9 2ss32-77.7-75.1-74.4	HE20 Beam Forming, M0 to M9 2ss22-77.7-75.1Image: Model M 1 set M	HE20 Beam Forming, M0 to M9 2ss22-77.7-75.10.1HE20 Beam Forming, M0 to M9 1ss37-78.6-75.7-75.30.1HE20 Beam Forming, M0 to M9 2ss34-78.0-75.2-75.00.1HE20 Beam Forming, M0 to M9 3ss32-77.7-75.1-74.40.1HE20 Beam Forming, M0 to M9 1ss48-78.6-75.7-75.3-76.70.1HE20 Beam Forming, M0 to M9 1ss45-78.0-75.2-75.0-76.20.1HE20 Beam Forming, M0 to M9 2ss45-78.0-75.2-75.0-76.20.1HE20 Beam Forming, M0 to M9 3ss43-78.0-75.2-75.0-76.20.1HE20 Beam Forming, M0 to M9 3ss42-78.0-75.2-75.0-76.20.1HE20 Beam Forming, M0 to M9 3ss42-78.0-75.2-75.0-76.20.1HE20 STBC, M0 to M9 2ss22-77.7-75.1-74.40.1HE20 STBC, M0 to M9 2ss32-77.7-75.1-74.40.1	HE20 Beam Forming, M0 to M9 2ss22-77.7-75.10.1-71.1HE20 Beam Forming, M0 to M9 1ss37-78.6-75.7-75.30.1-64.5HE20 Beam Forming, M0 to M9 2ss34-78.0-75.2-75.00.1-67.0HE20 Beam Forming, M0 to M9 3ss32-77.7-75.1-74.40.1-68.7HE20 Beam Forming, M0 to M9 1ss48-78.6-75.7-75.3-76.70.1-62.3HE20 Beam Forming, M0 to M9 1ss45-78.0-75.2-75.0-76.20.1-64.9HE20 Beam Forming, M0 to M9 2ss45-78.0-75.2-75.0-76.20.1-64.9HE20 Beam Forming, M0 to M9 2ss43-78.0-75.2-75.0-76.20.1-64.9HE20 Beam Forming, M0 to M9 2ss43-78.0-75.2-75.0-76.20.1-66.9HE20 Beam Forming, M0 to M9 4ss42-78.0-75.2-75.0-76.20.1-67.9HE20 STBC, M0 to M9 2ss22-77.7-75.1-74.40.1-71.1HE20 STBC, M0 to M9 2ss32-77.7-75.1-74.40.1-68.7	HE20 Beam Forming, M0 to M9 2ss2277.7775.1-0.171.1-41.25HE20 Beam Forming, M0 to M9 1ss3778.675.775.30.1-64.5-41.25HE20 Beam Forming, M0 to M9 2ss3478.075.275.00.1-67.0-41.25HE20 Beam Forming, M0 to M9 3ss3277.775.1-74.40.1-68.7-41.25HE20 Beam Forming, M0 to M9 3ss3277.775.1-74.40.1-68.7-41.25HE20 Beam Forming, M0 to M9 3ss48-78.6-75.7-75.3-76.70.1-62.3-41.25HE20 Beam Forming, M0 to M9 3ss45-78.0-75.2-75.0-76.20.1-64.9-41.25HE20 Beam Forming, M0 to M9 2ss43-78.0-75.2-75.0-76.20.1-64.9-41.25HE20 Beam Forming, M0 to M9 3ss43-78.0-75.2-75.0-76.20.1-66.9-41.25HE20 Beam Forming, M0 to M9 4ss42-78.0-75.2-75.0-76.20.1-67.9-41.25HE20 STBC, M0 to M9 2ss22-77.7-75.1-74.40.1-61.7-41.25HE20 STBC, M0 to M9 2ss32-77.7-75.1-74.40.1-68.7-41.25

Page No: 48 of 88

Conducted Spurs Average, 2437 MHz, Non HT20 Beam Forming, 6 to 54 Mbps

Antenna B

սիսիս

cisco

Antenna D

Antenna C

Page No: 49 of 88

Conducted Spurious Peak

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Tx 3 Spur Power (dBm)	Tx 4 Spur Power (dBm)	Duty Cycle Correction (dB)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	2	-59.0				0.2	-56.8	-21.25	35.56
	CCK, 1 to 11 Mbps	2	2	-59.0	-60.4			0.2	-54.4	-21.25	33.19
	CCK, 1 to 11 Mbps	3	2	-59.0	-60.4	-68.1		0.2	-54.1	-21.25	32.89
	CCK, 1 to 11 Mbps	4	2	-59.0	-60.4	-68.1	-64.7	0.2	-53.6	-21.25	32.30
	Non HT20, 6 to 54 Mbps	1	2	-63.8				0.0	-61.8	-21.25	40.50
	Non HT20, 6 to 54 Mbps	2	2	-63.7	-69.2			0.0	-60.6	-21.25	39.33
	Non HT20, 6 to 54 Mbps	3	2	-63.7	-69.2	-67.3		0.0	-59.3	-21.25	38.05
	Non HT20, 6 to 54 Mbps	4	2	-63.7	-69.2	-67.3	-69.3	0.0	-58.7	-21.25	37.41
	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-64.3	-69.1			0.0	-58.0	-21.25	36.76
	Non HT20 Beam Forming, 6 to 54 Mbps	3	7	-64.2	-68.6	-68.0		0.0	-54.7	-21.25	33.40
	Non HT20 Beam Forming, 6 to 54 Mbps	4	8	-64.7	-67.7	-68.0	-68.2	0.0	-52.8	-21.25	31.57
	HT/VHT20, M0 to M7	1	2	-64.2				0.1	-62.1	-21.25	40.90
	HT/VHT20, M0 to M7	2	2	-64.3	-68.4			0.1	-60.8	-21.25	39.57
	HT/VHT20, M8 to M15	2	2	-64.3	-68.4			0.1	-60.8	-21.25	39.57
12	HT/VHT20, M0 to M7	3	2	-64.3	-68.4	-67.6		0.1	-59.6	-21.25	38.31
2412	HT/VHT20, M8 to M15	3	2	-64.3	-68.4	-67.6		0.1	-59.6	-21.25	38.31
	HT/VHT20, M16 to M23	3	2	-64.3	-68.4	-67.6		0.1	-59.6	-21.25	38.31
	HT/VHT20, M0 to M7	4	2	-64.3	-68.4	-67.6	-68.8	0.1	-58.8	-21.25	37.55
	HT/VHT20, M8 to M15	4	2	-64.3	-68.4	-67.6	-68.8	0.1	-58.8	-21.25	37.55
	HT/VHT20, M16 to M23	4	2	-64.3	-68.4	-67.6	-68.8	0.1	-58.8	-21.25	37.55
	HT/VHT20, M24 to M31	4	2	-64.3	-68.4	-67.6	-68.8	0.1	-58.8	-21.25	37.55
	HT/VHT20 Beam Forming, M0 to M7	2	5	-63.8	-69.7			0.1	-57.8	-21.25	36.50
	HT/VHT20 Beam Forming, M8 to M15	2	2	-64.3	-68.4			0.1	-60.8	-21.25	39.57
	HT/VHT20 Beam Forming, M0 to M7	3	7	-65.1	-69.2	-68.8		0.1	-55.5	-21.25	34.21
	HT/VHT20 Beam Forming, M8 to M15	3	4	-63.8	-69.7	-68.5		0.1	-57.7	-21.25	36.47
	HT/VHT20 Beam Forming, M16 to M23	3	2	-64.3	-68.4	-67.6		0.1	-59.6	-21.25	38.31
	HT/VHT20 Beam Forming, M0 to M7	4	8	-64.0	-68.6	-68.5	-68.2	0.1	-52.8	-21.25	31.51
	HT/VHT20 Beam Forming, M8 to M15	4	5	-63.8	-69.7	-68.5	-68.0	0.1	-55.8	-21.25	34.54
	HT/VHT20 Beam Forming, M16 to M23	4	3	-63.8	-69.7	-68.5	-68.0	0.1	-57.8	-21.25	36.54
	HT/VHT20 Beam Forming, M24 to M31	4	2	-64.3	-68.4	-67.6	-68.8	0.1	-58.8	-21.25	37.55

Page No: 50 of 88

	HT/VHT20 STBC, M0 to M7	2	2	-64.3	-68.4			0.1	-60.8	-21.25	39.57
	HT/VHT20 STBC, M0 to M7	2	2	-64.3	-68.4	-67.6		0.1	-59.6	-21.25	38.31
	HT/VHT20 STBC, M0 to M7	4	2	-64.3	-68.4	-67.6	-68.8	0.1	-58.8	-21.25	37.55
	HE20, M0 to M9 1ss	4	2	-64.7	-00.4	-07.0	-00.0	0.1	-62.6	-21.25	41.38
	HE20, M0 to M9 1ss	2	2	-64.7	-68.5			0.1	-61.1	-21.25	39.87
	HE20, M0 to M9 2ss	2	2	-64.7	-68.5			0.1	-61.1	-21.25	39.87
	HE20, M0 to M9 1ss	2	2	-64.7	-68.5	-68.5		0.1	-60.0	-21.25	38.75
	HE20, M0 to M9 2ss	3	2	-64.7	-68.5	-68.5		0.1	-60.0	-21.25	38.75
	HE20, M0 to M9 3ss	3	2	-64.7	-68.5	-68.5		0.1	-60.0	-21.25	38.75
	HE20, M0 to M9 1ss	4	2	-64.2	-68.5	-68.4	-68.2	0.1	-58.8	-21.25	37.56
	HE20, M0 to M9 2ss	4	2	-64.2	-68.5	-68.4	-68.2	0.1	-58.8	-21.25	37.56
	HE20, M0 to M9 3ss	4	2	-64.2	-68.5	-68.4	-68.2	0.1	-58.8	-21.25	37.56
	HE20, M0 to M9 4ss	4	2	-64.2	-68.5	-68.4	-68.2	0.1	-58.8	-21.25	37.56
	HE20, M0 to M9 455 HE20 Beam Forming, M0 to M9 1ss	4	 5	-64.2	-68.5	-00.4	-00.2	0.1	-56.6	-21.25	36.51
	HE20 Beam Forming, M0 to M9 1ss HE20 Beam Forming, M0 to M9 2ss	2	2	-64.2	-68.5			0.1	-61.1	-21.25	39.87
		2	2 7	-65.2	-69.5	-69.1		0.1	-55.6	-21.25	34.38
	HE20 Beam Forming, M0 to M9 1ss HE20 Beam Forming, M0 to M9 2ss	3	4	-64.2	-69.5	-69.1		0.1	-55.6	-21.25	36.45
	HE20 Beam Forming, M0 to M9 2ss HE20 Beam Forming, M0 to M9 3ss	3 3	2	-64.2	-68.5	-68.5		0.1	-60.0	-21.25	38.75
			2				-66.7				30.75
	HE20 Beam Forming, M0 to M9 1ss	4	0 5	-65.6	-68.5	-68.9		0.1	-53.1	-21.25	34.83
	HE20 Beam Forming, M0 to M9 2ss	4	5 3	-65.0	-68.7 -68.5	-68.1 -68.4	-67.9	0.1	-56.1	-21.25	36.56
	HE20 Beam Forming, M0 to M9 3ss	-	2	-64.2			-68.2	0.1	-57.8	-21.25	
	HE20 Beam Forming, M0 to M9 4ss	4	2	-64.2	-68.5	-68.4	-68.2	0.1 0.1	-58.8	-21.25	37.56
	HE20 STBC, M0 to M9 2ss	_	2	-64.7	-68.5	C0 5			-61.1	-21.25	39.87
	HE20 STBC, M0 to M9 2ss	3		-64.7	-68.5	-68.5	<u> </u>	0.1	-60.0	-21.25	38.75
	HE20 STBC, M0 to M9 2ss	4	2	-64.2	-68.5	-68.4	-68.2	0.1	-58.8	-21.25	37.56
	CCV 1 to 11 Mbps	1	2	-63.0				0.2	-60.8	-21.25	39.56
	CCK, 1 to 11 Mbps CCK, 1 to 11 Mbps	-	2	-63.0	<u> </u>						
	· · · · · · · · · · · · · · · · · · ·	2 3	2	-63.0 -63.0	-60.2	-66.8		0.2 0.2	-56.2	-21.25 -21.25	34.93 34.34
	CCK, 1 to 11 Mbps	_			-60.2		<u> </u>		-55.6		
	CCK, 1 to 11 Mbps	4	2	-63.0	-60.2	-66.8	-68.1	0.2	-55.2	-21.25	33.96
	Non HT20, 6 to 54 Mbps	1	2	-67.1	<u> </u>			0.0	-65.1	-21.25	
	Non HT20, 6 to 54 Mbps	2	2	-67.1	-63.8	00.0		0.0	-60.1	-21.25	38.84
	Non HT20, 6 to 54 Mbps	3	2	-67.1	-63.8	-66.0	00.0	0.0	-58.6	-21.25	37.34
37	Non HT20, 6 to 54 Mbps	4	2	-67.1	-63.8	-66.0	-68.0	0.0	-57.9	-21.25	36.61
2437	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-67.1	-63.8	00.0		0.0	-57.1	-21.25	35.84
	Non HT20 Beam Forming, 6 to 54 Mbps	3	7	-67.1	-63.8	-66.0		0.0	-53.6	-21.25	32.34
	Non HT20 Beam Forming, 6 to 54 Mbps	4	8	-67.1	-63.8	-66.0	-68.0	0.0	-51.9	-21.25	30.61
	HT/VHT20, M0 to M7	1	2	-66.4	04.4			0.1	-64.3	-21.25	43.10
	HT/VHT20, M0 to M7	2	2	-66.4	-64.1			0.1	-60.0	-21.25	38.79
	HT/VHT20, M8 to M15	2	2	-66.4	-64.1	00.7		0.1	-60.0	-21.25	38.79
	HT/VHT20, M0 to M7	3	2	-66.4	-64.1	-68.7		0.1	-59.2	-21.25	37.93
	HT/VHT20, M8 to M15	3	2	-66.4	-64.1	-68.7		0.1	-59.2	-21.25	37.93
	HT/VHT20, M16 to M23	3	2	-66.4	-64.1	-68.7		0.1	-59.2	-21.25	37.93

Page No: 51 of 88

HT/VHT20, M0 to M7	4	2	-66.4	-64.1	-68.7	-67.6	0.1	-58.3	-21.25	37.03
HT/VHT20, M8 to M15	4	2	-66.4	-64.1	-68.7	-67.6	0.1	-58.3	-21.25	37.03
HT/VHT20, M16 to M23	4	2	-66.4	-64.1	-68.7	-67.6	0.1	-58.3	-21.25	37.03
HT/VHT20, M24 to M31	4	2	-66.4	-64.1	-68.7	-67.6	0.1	-58.3	-21.25	37.03
HT/VHT20 Beam Forming, M0 to M7	2	5	-66.4	-64.1			0.1	-57.0	-21.25	35.79
HT/VHT20 Beam Forming, M8 to M15	2	2	-66.4	-64.1			0.1	-60.0	-21.25	38.79
HT/VHT20 Beam Forming, M0 to M7	3	7	-66.4	-64.1	-68.7		0.1	-54.2	-21.25	32.93
HT/VHT20 Beam Forming, M8 to M15	3	4	-66.4	-64.1	-68.7		0.1	-57.2	-21.25	35.93
HT/VHT20 Beam Forming, M16 to M23	3	2	-66.4	-64.1	-68.7		0.1	-59.2	-21.25	37.93
HT/VHT20 Beam Forming, M0 to M7	4	8	-66.4	-64.1	-68.7	-67.6	0.1	-52.3	-21.25	31.03
HT/VHT20 Beam Forming, M8 to M15	4	5	-66.4	-64.1	-68.7	-67.6	0.1	-55.3	-21.25	34.03
HT/VHT20 Beam Forming, M16 to M23	4	3	-66.4	-64.1	-68.7	-67.6	0.1	-57.3	-21.25	36.03
HT/VHT20 Beam Forming, M24 to M31	4	2	-66.4	-64.1	-68.7	-67.6	0.1	-58.3	-21.25	37.03
HT/VHT20 STBC, M0 to M7	2	2	-66.4	-64.1			0.1	-60.0	-21.25	38.79
HT/VHT20 STBC, M0 to M7	3	2	-66.4	-64.1	-68.7		0.1	-59.2	-21.25	37.93
HT/VHT20 STBC, M0 to M7	4	2	-66.4	-64.1	-68.7	-67.6	0.1	-58.3	-21.25	37.03
HE20, M0 to M9 1ss	1	2	-67.6				0.1	-65.5	-21.25	44.28
HE20, M0 to M9 1ss	2	2	-67.6	-64.1			0.1	-60.4	-21.25	39.18
HE20, M0 to M9 2ss	2	2	-67.6	-64.1			0.1	-60.4	-21.25	39.18
HE20, M0 to M9 1ss	3	2	-67.6	-64.1	-67.8		0.1	-59.3	-21.25	38.06
HE20, M0 to M9 2ss	3	2	-67.6	-64.1	-67.8		0.1	-59.3	-21.25	38.06
HE20, M0 to M9 3ss	3	2	-67.6	-64.1	-67.8		0.1	-59.3	-21.25	38.06
HE20, M0 to M9 1ss	4	2	-67.6	-64.1	-67.8	-67.0	0.1	-58.3	-21.25	37.01
HE20, M0 to M9 2ss	4	2	-67.6	-64.1	-67.8	-67.0	0.1	-58.3	-21.25	37.01
HE20, M0 to M9 3ss	4	2	-67.6	-64.1	-67.8	-67.0	0.1	-58.3	-21.25	37.01
HE20, M0 to M9 4ss	4	2	-67.6	-64.1	-67.8	-67.0	0.1	-58.3	-21.25	37.01
HE20 Beam Forming, M0 to M9 1ss	2	5	-67.6	-64.1			0.1	-57.4	-21.25	36.18
HE20 Beam Forming, M0 to M9 2ss	2	2	-67.6	-64.1			0.1	-60.4	-21.25	39.18
HE20 Beam Forming, M0 to M9 1ss	3	7	-67.6	-64.1	-67.8		0.1	-54.3	-21.25	33.06
HE20 Beam Forming, M0 to M9 2ss	3	4	-67.6	-64.1	-67.8		0.1	-57.3	-21.25	36.06
HE20 Beam Forming, M0 to M9 3ss	3	2	-67.6	-64.1	-67.8		0.1	-59.3	-21.25	38.06
HE20 Beam Forming, M0 to M9 1ss	4	8	-67.6	-64.1	-67.8	-67.0	0.1	-52.3	-21.25	31.01
HE20 Beam Forming, M0 to M9 2ss	4	5	-67.6	-64.1	-67.8	-67.0	0.1	-55.3	-21.25	34.01
HE20 Beam Forming, M0 to M9 3ss	4	3	-67.6	-64.1	-67.8	-67.0	0.1	-57.3	-21.25	36.01
HE20 Beam Forming, M0 to M9 4ss	4	2	-67.6	-64.1	-67.8	-67.0	0.1	-58.3	-21.25	37.01
HE20 STBC, M0 to M9 2ss	2	2	-67.6	-64.1			0.1	-60.4	-21.25	39.18
HE20 STBC, M0 to M9 2ss	3	2	-67.6	-64.1	-67.8		0.1	-59.3	-21.25	38.06
HE20 STBC, M0 to M9 2ss	4	2	-67.6	-64.1	-67.8	-67.0	0.1	-58.3	-21.25	37.01

Page No: 52 of 88

		4	0	00.0				0.0	04.0	04.05	10.00
	CCK, 1 to 11 Mbps	1	2	-63.8	07.7			0.2	-61.6	-21.25	40.36
	CCK, 1 to 11 Mbps	2	2	-63.8	-67.7	00.0		0.2	-60.1	-21.25	38.87
	CCK, 1 to 11 Mbps	3	2	-63.8	-67.7	-68.3	07.0	0.2	-59.1	-21.25	37.90
	CCK, 1 to 11 Mbps	4	2	-63.8	-67.7	-68.3	-67.3	0.2	-58.2	-21.25	36.92
	Non HT20, 6 to 54 Mbps	1	2	-68.1				0.0	-66.1	-21.25	44.80
	Non HT20, 6 to 54 Mbps	2	2	-68.1	-69.1			0.0	-63.5	-21.25	42.27
	Non HT20, 6 to 54 Mbps	3	2	-68.1	-69.1	-68.6		0.0	-61.8	-21.25	40.51
	Non HT20, 6 to 54 Mbps	4	2	-68.2	-68.8	-68.8	-68.9	0.0	-60.6	-21.25	39.35
	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-68.2	-68.8			0.0	-60.4	-21.25	39.18
	Non HT20 Beam Forming, 6 to 54 Mbps	3	7	-67.3	-68.1	-67.9		0.0	-55.9	-21.25	34.69
	Non HT20 Beam Forming, 6 to 54 Mbps	4	8	-68.8	-69.7	-67.5	-66.4	0.0	-53.9	-21.25	32.60
	HT/VHT20, M0 to M7	1	2	-68.5				0.1	-66.4	-21.25	45.20
	HT/VHT20, M0 to M7	2	2	-67.3	-69.2			0.1	-63.1	-21.25	41.83
	HT/VHT20, M8 to M15	2	2	-67.3	-69.2			0.1	-63.1	-21.25	41.83
	HT/VHT20, M0 to M7	3	2	-67.3	-69.2	-67.5		0.1	-61.1	-21.25	39.85
	HT/VHT20, M8 to M15	3	2	-67.3	-69.2	-67.5		0.1	-61.1	-21.25	39.85
	HT/VHT20, M16 to M23	3	2	-67.3	-69.2	-67.5		0.1	-61.1	-21.25	39.85
	HT/VHT20, M0 to M7	4	2	-67.3	-69.2	-67.5	-67.3	0.1	-59.7	-21.25	38.43
	HT/VHT20, M8 to M15	4	2	-67.3	-69.2	-67.5	-67.3	0.1	-59.7	-21.25	38.43
	HT/VHT20, M16 to M23	4	2	-67.3	-69.2	-67.5	-67.3	0.1	-59.7	-21.25	38.43
2	HT/VHT20, M24 to M31	4	2	-67.3	-69.2	-67.5	-67.3	0.1	-59.7	-21.25	38.43
2462	HT/VHT20 Beam Forming, M0 to M7	2	5	-67.3	-69.2			0.1	-60.1	-21.25	38.83
	HT/VHT20 Beam Forming, M8 to M15	2	2	-67.3	-69.2			0.1	-63.1	-21.25	41.83
	HT/VHT20 Beam Forming, M0 to M7	3	7	-68.0	-68.7	-69.3		0.1	-56.8	-21.25	35.56
	HT/VHT20 Beam Forming, M8 to M15	3	4	-67.3	-69.2	-67.5		0.1	-59.1	-21.25	37.85
	HT/VHT20 Beam Forming, M16 to M23	3	2	-67.3	-69.2	-67.5		0.1	-61.1	-21.25	39.85
	HT/VHT20 Beam Forming, M0 to M7	4	8	-68.9	-67.1	-68.6	-67.5	0.1	-53.9	-21.25	32.64
	HT/VHT20 Beam Forming, M8 to M15	4	5	-68.0	-68.7	-69.3	-69.1	0.1	-57.7	-21.25	36.42
	HT/VHT20 Beam Forming, M16 to M23	4	3	-67.3	-69.2	-67.5	-67.3	0.1	-58.7	-21.25	37.43
	HT/VHT20 Beam Forming, M24 to M31	4	2	-67.3	-69.2	-67.5	-67.3	0.1	-59.7	-21.25	38.43
	HT/VHT20 STBC, M0 to M7	2	2	-67.3	-69.2			0.1	-63.1	-21.25	41.83
	HT/VHT20 STBC, M0 to M7	3	2	-67.3	-69.2	-67.5		0.1	-61.1	-21.25	39.85
	HT/VHT20 STBC, M0 to M7	4	2	-67.3	-69.2	-67.5	-67.3	0.1	-59.7	-21.25	38.43
	HE20, M0 to M9 1ss	1	2	-68.4				0.1	-66.3	-21.25	45.08
	HE20, M0 to M9 1ss	2	2	-68.4	-68.4			0.1	-63.3	-21.25	42.07
	HE20, M0 to M9 2ss	2	2	-68.4	-68.4			0.1	-63.3	-21.25	42.07
	HE20, M0 to M9 1ss	3	2	-68.4	-68.4	-68.8		0.1	-61.7	-21.25	40.44
	HE20, M0 to M9 2ss	3	2	-68.4	-68.4	-68.8		0.1	-61.7	-21.25	40.44
	HE20, M0 to M9 3ss	3	2	-68.4	-68.4	-68.8		0.1	-61.7	-21.25	40.44
	HE20, M0 to M9 1ss	4	2	-68.7	-68.9	-68.0	-69.1	0.1	-60.6	-21.25	39.32
	HE20, M0 to M9 2ss	4	2	-68.7	-68.9	-68.0	-69.1	0.1	-60.6	-21.25	39.32
	HE20, M0 to M9 3ss	4	2	-68.7	-68.9	-68.0	-69.1	0.1	-60.6	-21.25	39.32
	HE20, M0 to M9 4ss	4	2	-68.7	-68.9	-68.0	-69.1	0.1	-60.6	-21.25	39.32

Page No: 53 of 88

HE20 Beam Forming, M0 to M9 1ss	2	5	-68.7	-68.9			0.1	-60.7	-21.25	39.47
HE20 Beam Forming, M0 to M9 2ss	2	2	-68.4	-68.4			0.1	-63.3	-21.25	42.07
HE20 Beam Forming, M0 to M9 1ss	3	7	-68.8	-69.2	-68.6		0.1	-57.0	-21.25	35.77
HE20 Beam Forming, M0 to M9 2ss	3	4	-68.7	-68.9	-68.0		0.1	-59.7	-21.25	38.43
HE20 Beam Forming, M0 to M9 3ss	3	2	-68.4	-68.4	-68.8		0.1	-61.7	-21.25	40.44
HE20 Beam Forming, M0 to M9 1ss	4	8	-68.8	-69.2	-68.6	-68.4	0.1	-54.7	-21.25	33.40
HE20 Beam Forming, M0 to M9 2ss	4	5	-68.7	-68.9	-68.0	-69.1	0.1	-57.6	-21.25	36.32
HE20 Beam Forming, M0 to M9 3ss	4	3	-68.7	-68.9	-68.0	-69.1	0.1	-59.6	-21.25	38.32
HE20 Beam Forming, M0 to M9 4ss	4	2	-68.7	-68.9	-68.0	-69.1	0.1	-60.6	-21.25	39.32
HE20 STBC, M0 to M9 2ss	2	2	-68.4	-68.4			0.1	-63.3	-21.25	42.07
HE20 STBC, M0 to M9 2ss	3	2	-68.4	-68.4	-68.8		0.1	-61.7	-21.25	40.44
HE20 STBC, M0 to M9 2ss	4	2	-68.7	-68.9	-68.0	-69.1	0.1	-60.6	-21.25	39.32

Page No: 54 of 88


Center Freq 5.01500000 GHz Ref 20.09 GHz Center Freq 5.01500000 GHz Ref 20.09 GHz Center Freq Center Fre

Antenna A



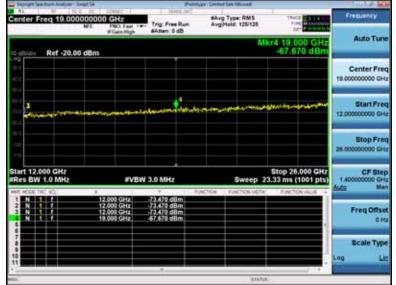
Antenna C

Conducted Spurs Peak, 2437 MHz, Non HT20 Beam Forming, 6 to 54 Mbps

Antenna B

Antenna D

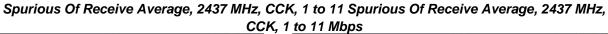
idindin cisco

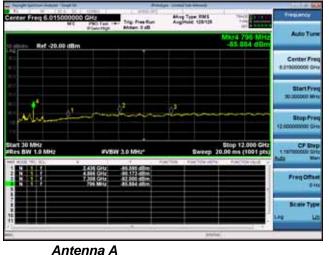

Page No: 55 of 88

A.7 Conducted Receiver Spurious Emissions

#Avg Type: RMS Avg Hold: 125/125 Trig: Free Ru Auto Tu Ref -20.00 dBm Center Freq 19.00000000 GH Start Fred 120 Stop Free Stop 26.000 GHz ep 23.33 ms (1001 pts rt 12.000 GHz CF St S BW 1.0 MH FVBW 3.0 MHz 1.400 Freq Offse Scale Typ

Spurious Of Receive Average Upp, 2412 MHz, Non HT20, 6 to 54 Mbps


Spurious Of Receive Peak Upper, 2412 MHz, Non HT20, 6 to 54 Mbps



Page No: 56 of 88

Conducted Receiver Spurious Average

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Rx 1 Spur Power (dBm)	Rx 2 Spur Power (dBm)	Rx 3 Spur Power (dBm)	Rx 4 Spur Power (dBm)	Duty Cycle Correction (dB)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	4	2	-87.7	-89.3	-88.9	-88.8	0.2	-80.4	-41.25	39.17
2412	Non HT20, 6 to 54 Mbps	4	2	-86.3	-89.1	-88.8	-88.9	0.0	-80.0	-41.25	38.79
24	HT/VHT20, M0 to M7	4	2	-86.5	-89.2	-88.8	-88.7	0.1	-80.1	-41.25	38.84
	HE20, M0 to M9 1ss	4	2	-86.9	-89.6	-88.9	-89.1	0.1	-80.4	-41.25	39.16
	CCK, 1 to 11 Mbps	4	2	-85.9	-89.4	-88.8	-89.0	0.2	-79.8	-41.25	38.57
2437	Non HT20, 6 to 54 Mbps	4	2	-86.9	-88.9	-88.8	-89.0	0.0	-80.2	-41.25	38.99
24	HT/VHT20, M0 to M7	4	2	-87.3	-89.7	-88.8	-89.2	0.1	-80.6	-41.25	39.33
	HE20, M0 to M9 1ss	4	2	-86.7	-89.9	-89.0	-89.0	0.1	-80.4	-41.25	39.14
	CCK, 1 to 11 Mbps	4	2	-86.8	-89.9	-89.0	-89.3	0.2	-80.4	-41.25	39.12
2462	Non HT20, 6 to 54 Mbps	4	2	-86.7	-89.6	-88.8	-89.0	0.0	-80.3	-41.25	39.06
24	HT/VHT20, M0 to M7	4	2	-86.9	-89.6	-88.6	-89.1	0.1	-80.4	-41.25	39.10
	HE20, M0 to M9 1ss	4	2	-87.1	-89.3	-88.5	-88.8	0.1	-80.3	-41.25	39.01

Center Freq 6.015000000 CH22 Mill 2001 Fail to State 1 d0 Mint 40 and 10 and

Antenna B

Antenna C

Antenna D

սիսիս

cisco

Page No: 58 of 88

Conducted Receiver Spurious Peak

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Rx 1 Spur Power (dBm)	Rx 2 Spur Power (dBm)	Rx 3 Spur Power (dBm)	Rx 4 Spur Power (dBm)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	4	2	-69.0	-70.6	-70.5	-69.4	-61.6	-21.25	40.36
2412	Non HT20, 6 to 54 Mbps	4	2	-70.4	-70.0	-70.1	-68.9	-61.7	-21.25	40.50
24	HT/VHT20, M0 to M7	4	2	-68.7	-69.9	-69.1	-69.6	-61.2	-21.25	39.98
	HE20, M0 to M9 1ss	4	2	-69.1	-70.2	-69.2	-68.9	-61.2	-21.25	39.99
	CCK, 1 to 11 Mbps	4	2	-69.7	-69.7	-69.8	-69.1	-61.4	-21.25	40.10
2437	Non HT20, 6 to 54 Mbps	4	2	-70.0	-70.6	-69.7	-70.2	-62.0	-21.25	40.80
24	HT/VHT20, M0 to M7	4	2	-68.5	-70.3	-69.9	-69.0	-61.3	-21.25	40.04
	HE20, M0 to M9 1ss	4	2	-70.7	-70.5	-69.9	-69.9	-62.1	-21.25	40.90
	CCK, 1 to 11 Mbps	4	2	-70.6	-70.5	-68.8	-68.2	-61.2	-21.25	39.94
2462	Non HT20, 6 to 54 Mbps	4	2	-69.7	-69.9	-68.6	-68.7	-61.1	-21.25	39.87
24	HT/VHT20, M0 to M7	4	2	-69.1	-70.7	-69.2	-68.9	-61.3	-21.25	40.10
	HE20, M0 to M9 1ss	4	2	-69.9	-69.1	-68.2	-70.3	-61.2	-21.25	39.96

Page No: 59 of 88

Spurious Of Receive Peak, 2462 MHz, Non HT20, 6 to 54 Mbps

Antenna B

Antenna C

Antenna D

dinihi cisco

Page No: 60 of 88

A.8 Conducted Bandedge (Restricted Band)

Conducted Band Edge Test Requirement

15.247 / LP0002:3.10.1(5) & 2.8

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RSS-247

5.5 Unwanted emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

15.205 / RSS-Gen

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), and RSS-Gen 8.10 must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)) and RSS-Gen 8.9.

Conducted Bandedge Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05

ANSI C63.10: 2013

Conducted Band edge

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode. Use the procedures in KDB 558074 D01 DTS Meas Guidance v04 to substitute conducted measurements in place of radiated measurements.

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded.

6. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands

7. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05, section 8.1 c) 3, section 8.6 DTS emissions in restricted frequency bands

ANSI C63.10: 2013 section 11.12.2.4 (Peak) & 11.12.2.5.2 (Average)

Page No: 61 of 88

Conducted Spurious Emissions Test parameters	
Peak	Average
RBW = 1 MHz	RBW = 1 MHz
$VBW \ge 3 MHz$	$VBW \ge 3 MHz$
Sweep = Auto	Sweep = Auto
Detector = Peak	Detector = RMS
Trace = Max Hold.	Power Averaging

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support			\checkmark

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 62 of 88

Restricted Band

Conducted Bandedge Average Table

CCK, 1 to 11 Mbps 1 2 -49.9 0 0.2 -47.7 -41.25 CCK, 1 to 11 Mbps 2 2 -49.9 -53.6 0.2 -46.2 -41.25 CCK, 1 to 11 Mbps 3 2 -49.9 -53.6 -56.6 0.2 -45.6 -41.25 CCK, 1 to 11 Mbps 4 2 -49.9 -53.6 -56.6 0.2 -45.0 -41.25 CCK, 1 to 11 Mbps 4 2 -49.9 -53.6 -56.6 0.0 0.0 -42.1 -41.25 Non HT20, 6 to 54 Mbps 1 2 -44.1 0.0 -43.7 -41.25 Non HT20, 6 to 54 Mbps 2 2 -47.0 -51.8 -54.5 0.0 -43.2 -41.25 Non HT20, 6 to 54 Mbps 4 2 -47.0 -51.8 -54.5 -52.4 0.0 -43.2 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 3 7 -51.9 -57.2 -59.7 0.0 -43.2 -41.25	6.46 4.91 4.31 3.70
CCK, 1 to 11 Mbps 3 2 -49.9 -53.6 -56.6 0.2 -45.6 -41.25 CCK, 1 to 11 Mbps 4 2 -49.9 -53.6 -56.6 -56.0 0.2 -45.0 -41.25 Non HT20, 6 to 54 Mbps 1 2 -44.1 0 0.0 -42.1 -41.25 Non HT20, 6 to 54 Mbps 2 2 -47.0 -51.8 0.0 -43.7 -41.25 Non HT20, 6 to 54 Mbps 3 2 -47.0 -51.8 0.0 -43.2 -41.25 Non HT20, 6 to 54 Mbps 3 2 -47.0 -51.8 -54.5 0.0 -43.2 -41.25 Non HT20, 6 to 54 Mbps 4 2 -47.0 -51.8 -54.5 -52.4 0.0 -42.4 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 2 5 -49.9 -55.0 0.0 -43.2 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 3 7 -51.9 -57.2 -59.7 0.0 -43.2	4.31
CCK, 1 to 11 Mbps 4 2 -49.9 -53.6 -56.6 -56.0 0.2 -45.0 -41.25 Non HT20, 6 to 54 Mbps 1 2 -44.1 0 0.0 -42.1 -41.25 Non HT20, 6 to 54 Mbps 2 2 -47.0 -51.8 0.0 -43.7 -41.25 Non HT20, 6 to 54 Mbps 3 2 -47.0 -51.8 -54.5 0.0 -43.2 -41.25 Non HT20, 6 to 54 Mbps 4 2 -47.0 -51.8 -54.5 0.0 -43.2 -41.25 Non HT20, 6 to 54 Mbps 4 2 -47.0 -51.8 -54.5 -52.4 0.0 -42.4 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 2 5 -49.9 -55.0 0.0 -43.2 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 3 7 -51.9 -57.2 -59.7 0.0 -43.2 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 4 8 -54.0 -58.4 -61.4 <	
Non HT20, 6 to 54 Mbps 1 2 -44.1 0.0 -42.1 -41.25 Non HT20, 6 to 54 Mbps 2 2 -47.0 -51.8 0.0 -43.7 -41.25 Non HT20, 6 to 54 Mbps 3 2 -47.0 -51.8 -54.5 0.0 -43.7 -41.25 Non HT20, 6 to 54 Mbps 4 2 -47.0 -51.8 -54.5 0.0 -43.2 -41.25 Non HT20, 6 to 54 Mbps 4 2 -47.0 -51.8 -54.5 -52.4 0.0 -42.4 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 2 5 -49.9 -55.0 0.0 -43.2 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 3 7 -51.9 -57.2 -59.7 0.0 -43.2 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 4 8 -54.0 -58.4 -61.4 -58.9 0.0 -43.2 -41.25 HT/VHT20, M0 to M7 1 2 -43.4 0.1 -41.3 -41.25 <	3.70
Non HT20, 6 to 54 Mbps 2 2 -47.0 -51.8 0.0 -43.7 -41.25 Non HT20, 6 to 54 Mbps 3 2 -47.0 -51.8 -54.5 0.0 -43.2 -41.25 Non HT20, 6 to 54 Mbps 4 2 -47.0 -51.8 -54.5 0.0 -43.2 -41.25 Non HT20, 6 to 54 Mbps 4 2 -47.0 -51.8 -54.5 -52.4 0.0 -43.2 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 2 5 -49.9 -55.0 0.0 -43.2 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 3 7 -51.9 -57.2 -59.7 0.0 -43.2 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 4 8 -54.0 -58.4 -61.4 -58.9 0.0 -43.2 -41.25 HT/VHT20, M0 to M7 1 2 -43.4 0.1 -41.3 -41.25 HT/VHT20, M0 to M7 2 2 -46.6 -51.1 0.1 -43.2 <t< td=""><td></td></t<>	
Non HT20, 6 to 54 Mbps 3 2 -47.0 -51.8 -54.5 0.0 -43.2 -41.25 Non HT20, 6 to 54 Mbps 4 2 -47.0 -51.8 -54.5 -52.4 0.0 -43.2 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 2 5 -49.9 -55.0 0.0 -43.7 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 3 7 -51.9 -57.2 -59.7 0.0 -43.2 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 3 7 -51.9 -57.2 -59.7 0.0 -43.2 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 4 8 -54.0 -58.4 -61.4 -58.9 0.0 -43.2 -41.25 HT/VHT20, M0 to M7 1 2 -43.4 0.1 -41.3 -41.25 HT/VHT20, M0 to M7 2 2 -46.6 -51.1 0.1 -43.2 -41.25 HT/VHT20, M8 to M15 2 2 -46.6 -51.1 -53.6 0.1	0.80
Non HT20, 6 to 54 Mbps 4 2 -47.0 -51.8 -54.5 -52.4 0.0 -42.4 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 2 5 -49.9 -55.0 0.0 -43.7 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 3 7 -51.9 -57.2 -59.7 0.0 -43.2 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 4 8 -54.0 -58.4 -61.4 -58.9 0.0 -43.2 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 4 8 -54.0 -58.4 -61.4 -58.9 0.0 -43.2 -41.25 HT/VHT20, M0 to M7 1 2 -43.4 0.1 -41.3 -41.25 HT/VHT20, M0 to M7 2 2 -46.6 -51.1 0.1 -43.2 -41.25 HT/VHT20, M8 to M15 2 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25 HT/VHT20, M8 to M15 3 2 -46.6 -51.1	2.46
Non HT20 Beam Forming, 6 to 54 Mbps 2 5 -49.9 -55.0 0.0 -43.7 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 3 7 -51.9 -57.2 -59.7 0.0 -43.2 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 4 8 -54.0 -58.4 -61.4 -58.9 0.0 -43.2 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 4 8 -54.0 -58.4 -61.4 -58.9 0.0 -43.2 -41.25 HT/VHT20, M0 to M7 1 2 -43.4 0.1 -41.3 -41.25 HT/VHT20, M0 to M7 2 2 -46.6 -51.1 0.1 -43.2 -41.25 HT/VHT20, M8 to M15 2 2 -46.6 -51.1 0.1 -43.2 -41.25 HT/VHT20, M0 to M7 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25 HT/VHT20, M8 to M15 3 2 -46.6 -51.1 -53.6 0.1 -42.6	1.92
Non HT20 Beam Forming, 6 to 54 Mbps 3 7 -51.9 -57.2 -59.7 0.0 -43.2 -41.25 Non HT20 Beam Forming, 6 to 54 Mbps 4 8 -54.0 -58.4 -61.4 -58.9 0.0 -43.2 -41.25 HT/VHT20, M0 to M7 1 2 -43.4 0.1 -41.3 -41.25 HT/VHT20, M0 to M7 2 2 -46.6 -51.1 0.1 -43.2 -41.25 HT/VHT20, M0 to M7 2 2 -46.6 -51.1 0.1 -43.2 -41.25 HT/VHT20, M8 to M15 2 2 -46.6 -51.1 0.1 -43.2 -41.25 HT/VHT20, M8 to M15 3 2 -46.6 -51.1 0.1 -43.2 -41.25 HT/VHT20, M8 to M15 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25 HT/VHT20, M16 to M23 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25	1.16
Non HT20 Beam Forming, 6 to 54 Mbps 4 8 -54.0 -58.4 -61.4 -58.9 0.0 -43.2 -41.25 HT/VHT20, M0 to M7 1 2 -43.4 0.1 -41.3 -41.25 HT/VHT20, M0 to M7 2 2 -46.6 -51.1 0.1 -43.2 -41.25 HT/VHT20, M0 to M7 2 2 -46.6 -51.1 0.1 -43.2 -41.25 HT/VHT20, M8 to M15 2 2 -46.6 -51.1 0.1 -43.2 -41.25 HT/VHT20, M0 to M7 3 2 -46.6 -51.1 0.1 -43.2 -41.25 HT/VHT20, M0 to M7 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25 HT/VHT20, M8 to M15 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25 HT/VHT20, M16 to M23 3 2 -46.6 -51.1 -53.6 0.1 -42.6	2.44
HT/VHT20, M0 to M7 1 2 -43.4 0.1 -41.3 -41.25 HT/VHT20, M0 to M7 2 2 -46.6 -51.1 0.1 -43.2 -41.25 HT/VHT20, M0 to M7 2 2 -46.6 -51.1 0.1 -43.2 -41.25 HT/VHT20, M8 to M15 2 2 -46.6 -51.1 0.1 -43.2 -41.25 HT/VHT20, M8 to M15 2 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25 HT/VHT20, M8 to M15 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25 HT/VHT20, M8 to M15 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25 HT/VHT20, M16 to M23 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25	1.96
HT/VHT20, M0 to M7 2 2 -46.6 -51.1 0.1 -43.2 -41.25 HT/VHT20, M8 to M15 2 2 -46.6 -51.1 0.1 -43.2 -41.25 HT/VHT20, M8 to M15 2 2 -46.6 -51.1 0.1 -43.2 -41.25 HT/VHT20, M0 to M7 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25 HT/VHT20, M8 to M15 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25 HT/VHT20, M16 to M23 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25	1.99
HT/VHT20, M8 to M15 2 2 -46.6 -51.1 0.1 -43.2 -41.25 HT/VHT20, M0 to M7 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25 HT/VHT20, M8 to M15 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25 HT/VHT20, M8 to M15 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25 HT/VHT20, M16 to M23 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25	0.10
No. HT/VHT20, M0 to M7 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25 HT/VHT20, M8 to M15 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25 HT/VHT20, M8 to M15 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25 HT/VHT20, M16 to M23 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25	1.98
HT/VHT20, M8 to M15 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25 HT/VHT20, M16 to M23 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25	1.98
HT/VHT20, M16 to M23 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25	1.38
	1.38
	1.38
	0.37
HT/VHT20, M8 to M15 4 2 -46.6 -51.1 -53.6 -50.5 0.1 -41.6 -41.25	0.37
HT/VHT20, M16 to M23 4 2 -46.6 -51.1 -53.6 -50.5 0.1 -41.6 -41.25	0.37
HT/VHT20, M24 to M31 4 2 -46.6 -51.1 -53.6 -50.5 0.1 -41.6 -41.25	0.37
HT/VHT20 Beam Forming, M0 to M7 2 5 -49.4 -54.2 0.1 -43.1 -41.25	1.86
HT/VHT20 Beam Forming, M8 to M15 2 2 -46.6 -51.1 0.1 -43.2 -41.25	1.98
HT/VHT20 Beam Forming, M0 to M7 3 7 -50.9 -57.1 -58.1 0.1 -42.3 -41.25	1.04
HT/VHT20 Beam Forming, M8 to M15 3 4 -49.4 -54.2 -56.1 0.1 -43.5 -41.25	2.21
HT/VHT20 Beam Forming, M16 to M23 3 2 -46.6 -51.1 -53.6 0.1 -42.6 -41.25	1.38
HT/VHT20 Beam Forming, M0 to M7 4 8 -53.3 -57.9 -59.9 -56.8 0.1 -42.2 -41.25	
HT/VHT20 Beam Forming, M8 to M15 4 5 -49.4 -54.2 -56.1 -53.1 0.1 -41.4 -41.25	0.96

Page No: 63 of 88

j,	l							
1	C	l	S	1	C	¢)	

			•	10.1	- 4 - 0	= 0 4	=0.4	<u> </u>	10.1	44.05	o (=
	HT/VHT20 Beam Forming, M16 to M23	4	3	-49.4	-54.2	-56.1	-53.1	0.1	-43.4	-41.25	2.15
	HT/VHT20 Beam Forming, M24 to M31	4	2	-46.6	-51.1	-53.6	-50.5	0.1	-41.6	-41.25	0.37
	HT/VHT20 STBC, M0 to M7	2	2	-46.6	-51.1			0.1	-43.2	-41.25	1.98
	HT/VHT20 STBC, M0 to M7	3	2	-46.6	-51.1	-53.6		0.1	-42.6	-41.25	1.38
	HT/VHT20 STBC, M0 to M7	4	2	-46.6	-51.1	-53.6	-50.5	0.1	-41.6	-41.25	0.37
	HE20, M0 to M9 1ss	1	2	-45.5				0.1	-43.4	-41.25	2.18
	HE20, M0 to M9 1ss	2	2	-45.5	-51.0			0.1	-42.4	-41.25	1.11
	HE20, M0 to M9 2ss	2	2	-45.5	-51.0			0.1	-42.4	-41.25	1.11
	HE20, M0 to M9 1ss	3	2	-45.5	-51.0	-52.8		0.1	-41.8	-41.25	0.52
	HE20, M0 to M9 2ss	3	2	-45.5	-51.0	-52.8		0.1	-41.8	-41.25	0.52
	HE20, M0 to M9 3ss	3	2	-45.5	-51.0	-52.8		0.1	-41.8	-41.25	0.52
	HE20, M0 to M9 1ss	4	2	-47.8	-53.2	-54.5	-51.3	0.1	-42.8	-41.25	1.59
	HE20, M0 to M9 2ss	4	2	-47.8	-53.2	-54.5	-51.3	0.1	-42.8	-41.25	1.59
	HE20, M0 to M9 3ss	4	2	-47.8	-53.2	-54.5	-51.3	0.1	-42.8	-41.25	1.59
	HE20, M0 to M9 4ss	4	2	-47.8	-53.2	-54.5	-51.3	0.1	-42.8	-41.25	1.59
	HE20 Beam Forming, M0 to M9 1ss	2	5	-47.8	-53.2			0.1	-41.6	-41.25	0.38
	HE20 Beam Forming, M0 to M9 2ss	2	2	-45.5	-51.0			0.1	-42.4	-41.25	1.11
	HE20 Beam Forming, M0 to M9 1ss	3	7	-51.2	-57.6	-58.4		0.1	-42.6	-41.25	1.36
	HE20 Beam Forming, M0 to M9 2ss	3	4	-47.8	-53.2	-54.5		0.1	-42.0	-41.25	0.72
	HE20 Beam Forming, M0 to M9 3ss	3	2	-45.5	-51.0	-52.8		0.1	-41.8	-41.25	0.52
	HE20 Beam Forming, M0 to M9 1ss	4	8	-52.7	-59.0	-59.9	-57.4	0.1	-42.2	-41.25	0.92
	HE20 Beam Forming, M0 to M9 2ss	4	5	-49.7	-56.2	-56.7	-53.2	0.1	-41.9	-41.25	0.67
	HE20 Beam Forming, M0 to M9 3ss	4	3	-47.8	-53.2	-54.5	-51.3	0.1	-41.8	-41.25	0.59
	HE20 Beam Forming, M0 to M9 4ss	4	2	-47.8	-53.2	-54.5	-51.3	0.1	-42.8	-41.25	1.59
	HE20 STBC, M0 to M9 2ss	2	2	-45.5	-51.0			0.1	-42.4	-41.25	1.11
	HE20 STBC, M0 to M9 2ss	3	2	-45.5	-51.0	-52.8		0.1	-41.8	-41.25	0.52
	HE20 STBC, M0 to M9 2ss	4	2	-47.8	-53.2	-54.5	-51.3	0.1	-42.8	-41.25	1.59
	CCK, 1 to 11 Mbps	1	2	-50.2				0.2	-48.0	-41.25	6.76
	CCK, 1 to 11 Mbps	2	2	-50.2	-53.9			0.2	-46.5	-41.25	5.21
	CCK, 1 to 11 Mbps	3	2	-50.2	-53.9	-53.9		0.2	-45.3	-41.25	
	CCK, 1 to 11 Mbps	4	2	-50.2	-53.9	-53.9	-54.6	0.2	-44.6	-41.25	3.30
	Non HT20, 6 to 54 Mbps	1	2	-45.1			0.10	0.0	-43.1	-41.25	1.80
	Non HT20, 6 to 54 Mbps	2	2	-45.1	-50.9			0.0	-42.0	-41.25	0.79
	Non HT20, 6 to 54 Mbps	3	2	-45.1	-50.9	-53.1		0.0	-41.5	-41.25	0.28
2462	Non HT20, 6 to 54 Mbps	4	2	-48.6	-55.4	-55.8	-53.1	0.0	-44.1	-41.25	2.86
24	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-48.6	-55.4	00.0	00.1	0.0	-42.7	-41.25	1.48
	Non HT20 Beam Forming, 6 to 54 Mbps	2 3	7	-40.0	-58.3	-57.9		0.0	-43.3	-41.25	2.04
	Non HT20 Beam Forming, 6 to 54 Mbps	4	8	-52.1	-59.4	-57.9	-57.7	0.0	-43.6	-41.25	2.04
	HT/VHT20, M0 to M7	4	0 2	-55.6	-09.4	-09.2	-37.7		-43.6		
		-	2		-54.2			0.1		-41.25	0.40
	HT/VHT20, M0 to M7	2		-47.2				0.1	-44.4	-41.25	3.11
	HT/VHT20, M8 to M15	2	2	-47.2	-54.2	FF0		0.1	-44.4	-41.25	3.11
	HT/VHT20, M0 to M7	3	2	-47.2	-54.2	-55.6		0.1	-43.9	-41.25	2.61

Page No: 64 of 88

HT/VHT20, M8 to M15	3	2	-47.2	-54.2	-55.6		0.1	-43.9	-41.25	2.61
HT/VHT20, M16 to M13	3	2	-47.2	-54.2	-55.6		0.1	-43.9	-41.25	2.61
HT/VHT20, M0 to M7	4	2	-47.2	-54.2	-55.6	-53.6	0.1	-43.2	-41.25	1.93
HT/VHT20, M8 to M15	4	2	-47.2	-54.2	-55.6	-53.6	0.1	-43.2	-41.25	1.93
HT/VHT20, M16 to M13	4	2	-47.2	-54.2	-55.6	-53.6	0.1	-43.2	-41.25	1.93
HT/VHT20, M24 to M31	4	2	-47.2	-54.2	-55.6	-53.6	0.1	-43.2	-41.25	1.93
HT/VHT20 Beam Forming, M0 to M7	2	5	-47.2	-54.2	-33.0	-00.0	0.1	-41.4	-41.25	0.11
HT/VHT20 Beam Forming, M8 to M15	2	2	-47.2	-54.2			0.1	-44.4	-41.25	3.11
HT/VHT20 Beam Forming, M0 to M7	3	7	-50.5	-57.1	-58.1		0.1	-42.0	-41.25	0.76
HT/VHT20 Beam Forming, M8 to M15	3	4	-47.2	-54.2	-55.6		0.1	-41.9	-41.25	0.61
HT/VHT20 Beam Forming, Mill to M13	3	2	-47.2	-54.2	-55.6		0.1	-43.9	-41.25	2.61
HT/VHT20 Beam Forming, M0 to M25	4	8	-53.9	-59.8	-59.4	-58.0	0.1	-43.0	-41.25	1.75
HT/VHT20 Beam Forming, M8 to M15	4	5	-50.5	-57.1	-58.1	-55.2	0.1	-43.1	-41.25	1.81
HT/VHT20 Beam Forming, M16 to M13	4	3	-47.2	-54.2	-55.6	-53.6	0.1	-43.1	-41.25	0.93
HT/VHT20 Beam Forming, M24 to M31	4	2	-47.2	-54.2	-55.6	-53.6	0.1	-43.2	-41.25	1.93
HT/VHT20 STBC, M0 to M7	2	2	-47.2	-54.2	-33.0	-00.0	0.1	-44.4	-41.25	3.11
HT/VHT20 STBC, M0 to M7	3	2	-47.2	-54.2	-55.6		0.1	-43.9	-41.25	2.61
HT/VHT20 STBC, M0 to M7	4	2	-47.2	-54.2	-55.6	-53.6	0.1	-43.2	-41.25	1.93
HE20, M0 to M9 1ss	1	2	-45.5	04.2	00.0	00.0	0.1	-43.4	-41.25	2.18
HE20, M0 to M9 1ss	2	2	-45.5	-52.1			0.1	-42.6	-41.25	1.33
HE20, M0 to M9 2ss	2	2	-45.5	-52.1			0.1	-42.6	-41.25	1.33
HE20, M0 to M9 1ss	3	2	-45.5	-52.1	-54.2		0.1	-42.1	-41.25	0.87
HE20, M0 to M9 2ss	3	2	-45.5	-52.1	-54.2		0.1	-42.1	-41.25	0.87
HE20, M0 to M9 3ss	3	2	-45.5	-52.1	-54.2		0.1	-42.1	-41.25	0.87
HE20, M0 to M9 1ss	4	2	-50.2	-54.9	-56.7	-55.3	0.1	-45.4	-41.25	4.16
HE20, M0 to M9 2ss	4	2	-50.2	-54.9	-56.7	-55.3	0.1	-45.4	-41.25	4.16
HE20, M0 to M9 3ss	4	2	-50.2	-54.9	-56.7	-55.3	0.1	-45.4	-41.25	4.16
HE20, M0 to M9 4ss	4	2	-50.2	-54.9	-56.7	-55.3	0.1	-45.4	-41.25	4.16
HE20 Beam Forming, M0 to M9 1ss	2	5	-50.2	-54.9			0.1	-43.9	-41.25	2.62
HE20 Beam Forming, M0 to M9 2ss	2	2	-45.5	-52.1			0.1	-42.6	-41.25	1.33
HE20 Beam Forming, M0 to M9 1ss	3	7	-52.2	-57.9	-58.9		0.1	-43.4	-41.25	2.17
HE20 Beam Forming, M0 to M9 2ss	3	4	-50.2	-54.9	-56.7		0.1	-44.2	-41.25	2.95
HE20 Beam Forming, M0 to M9 3ss	3	2	-45.5	-52.1	-54.2		0.1	-42.1	-41.25	0.87
HE20 Beam Forming, M0 to M9 1ss	4	8	-52.2	-57.9	-58.9	-57.1	0.1	-41.6	-41.25	0.32
HE20 Beam Forming, M0 to M9 2ss	4	5	-50.2	-54.9	-56.7	-55.3	0.1	-42.4	-41.25	1.16
HE20 Beam Forming, M0 to M9 3ss	4	3	-50.2	-54.9	-56.7	-55.3	0.1	-44.4	-41.25	3.16
HE20 Beam Forming, M0 to M9 4ss	4	2	-50.2	-54.9	-56.7	-55.3	0.1	-45.4	-41.25	4.16
HE20 STBC, M0 to M9 2ss	2	2	-45.5	-52.1			0.1	-42.6	-41.25	1.33
HE20 STBC, M0 to M9 2ss	3	2	-45.5	-52.1	-54.2		0.1	-42.1	-41.25	0.87
HE20 STBC, M0 to M9 2ss	4	2	-50.2	-54.9	-56.7	-55.3	0.1	-45.4	-41.25	4.16

Page No: 65 of 88

Conducted Bandedge Average, 2412 MHz, HT/VHT20, M0 to M7

սիսիս

cisco

Antenna A

Page No: 66 of 88

սիսիս

cisco

Conducted Bandedge Average, 2462 MHz, HT/VHT20 Beam Forming, M0 to M7

Page No: 67 of 88

Conducted Bandedge Peak Table

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Tx 3 Bandedge Level (dBm)	Tx 4 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	2	-37.1				-34.9	-21.25	13.66
	CCK, 1 to 11 Mbps	2	2	-37.1	-41.5			-33.6	-21.25	12.31
	CCK, 1 to 11 Mbps	3	2	-37.1	-41.5	-44.9		-33.1	-21.25	11.81
	CCK, 1 to 11 Mbps	4	2	-37.1	-41.5	-44.9	-39.3	-31.6	-21.25	10.37
	Non HT20, 6 to 54 Mbps	1	2	-32.2				-30.2	-21.25	8.90
	Non HT20, 6 to 54 Mbps	2	2	-36.6	-38.7			-32.5	-21.25	11.22
	Non HT20, 6 to 54 Mbps	3	2	-36.6	-38.7	-42.5		-31.8	-21.25	10.58
	Non HT20, 6 to 54 Mbps	4	2	-36.6	-38.7	-42.5	-38.1	-30.4	-21.25	9.19
	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-37.9	-44.4			-32.0	-21.25	10.73
	Non HT20 Beam Forming, 6 to 54 Mbps	3	7	-41.9	-45.9	-49.4		-32.9	-21.25	11.63
	Non HT20 Beam Forming, 6 to 54 Mbps	4	8	-43.2	-48.1	-50.6	-48.6	-32.6	-21.25	11.37
	HT/VHT20, M0 to M7	1	2	-28.5				-26.4	-21.25	5.20
	HT/VHT20, M0 to M7	2	2	-33.5	-37.0			-29.8	-21.25	8.59
	HT/VHT20, M8 to M15	2	2	-33.5	-37.0			-29.8	-21.25	8.59
2412	HT/VHT20, M0 to M7	3	2	-33.5	-37.0	-40.0		-29.2	-21.25	7.97
2	HT/VHT20, M8 to M15	3	2	-33.5	-37.0	-40.0		-29.2	-21.25	7.97
	HT/VHT20, M16 to M23	3	2	-33.5	-37.0	-40.0		-29.2	-21.25	7.97
	HT/VHT20, M0 to M7	4	2	-33.5	-37.0	-40.0	-37.0	-28.2	-21.25	6.94
	HT/VHT20, M8 to M15	4	2	-33.5	-37.0	-40.0	-37.0	-28.2	-21.25	6.94
	HT/VHT20, M16 to M23	4	2	-33.5	-37.0	-40.0	-37.0	-28.2	-21.25	6.94
	HT/VHT20, M24 to M31	4	2	-33.5	-37.0	-40.0	-37.0	-28.2	-21.25	6.94
	HT/VHT20 Beam Forming, M0 to M7	2	5	-35.5	-40.9			-29.3	-21.25	8.10
	HT/VHT20 Beam Forming, M8 to M15	2	2	-33.5	-37.0			-29.8	-21.25	8.59
	HT/VHT20 Beam Forming, M0 to M7	3	7	-40.1	-45.4	-48.0		-31.4	-21.25	10.16
	HT/VHT20 Beam Forming, M8 to M15	3	4	-35.5	-40.9	-46.0		-30.1	-21.25	8.81
	HT/VHT20 Beam Forming, M16 to M23	3	2	-33.5	-37.0	-40.0		-29.2	-21.25	7.97
	HT/VHT20 Beam Forming, M0 to M7	4	8	-42.4	-45.5	-48.5	-47.2	-31.2	-21.25	9.95
	HT/VHT20 Beam Forming, M8 to M15	4	5	-35.5	-40.9	-46.0	-38.2	-27.6	-21.25	6.38
	HT/VHT20 Beam Forming, M16 to M23	4	3	-35.5	-40.9	-46.0	-38.2	-29.6	-21.25	8.38

Page No: 68 of 88

cisco

			-		07.0	10.0	07.0			0.04
	HT/VHT20 Beam Forming, M24 to M31	4	2	-33.5	-37.0	-40.0	-37.0	-28.2	-21.25	6.94
	HT/VHT20 STBC, M0 to M7	2	2	-33.5	-37.0	10.0		-29.8	-21.25	8.59
	HT/VHT20 STBC, M0 to M7	3	2	-33.5	-37.0	-40.0		-29.2	-21.25	7.97
	HT/VHT20 STBC, M0 to M7	4	2	-33.5	-37.0	-40.0	-37.0	-28.2	-21.25	6.94
	HE20, M0 to M9 1ss	1	2	-27.8				-25.7	-21.25	4.48
	HE20, M0 to M9 1ss	2	2	-27.8	-33.1			-24.6	-21.25	3.36
	HE20, M0 to M9 2ss	2	2	-27.8	-33.1			-24.6	-21.25	3.36
	HE20, M0 to M9 1ss	3	2	-27.8	-33.1	-39.8		-24.4	-21.25	3.16
	HE20, M0 to M9 2ss	3	2	-27.8	-33.1	-39.8		-24.4	-21.25	3.16
	HE20, M0 to M9 3ss	3	2	-27.8	-33.1	-39.8		-24.4	-21.25	3.16
	HE20, M0 to M9 1ss	4	2	-31.7	-36.6	-41.4	-36.1	-27.1	-21.25	5.85
	HE20, M0 to M9 2ss	4	2	-31.7	-36.6	-41.4	-36.1	-27.1	-21.25	5.85
	HE20, M0 to M9 3ss	4	2	-31.7	-36.6	-41.4	-36.1	-27.1	-21.25	5.85
	HE20, M0 to M9 4ss	4	2	-31.7	-36.6	-41.4	-36.1	-27.1	-21.25	5.85
	HE20 Beam Forming, M0 to M9 1ss	2	5	-31.7	-36.6			-25.4	-21.25	4.17
	HE20 Beam Forming, M0 to M9 2ss	2	2	-27.8	-33.1			-24.6	-21.25	3.36
	HE20 Beam Forming, M0 to M9 1ss	3	7	-42.0	-46.0	-49.1		-32.9	-21.25	11.66
	HE20 Beam Forming, M0 to M9 2ss	3	4	-31.7	-36.6	-41.4		-26.1	-21.25	4.83
	HE20 Beam Forming, M0 to M9 3ss	3	2	-27.8	-33.1	-39.8		-24.4	-21.25	3.16
	HE20 Beam Forming, M0 to M9 1ss	4	8	-43.4	-48.1	-50.2	-47.5	-32.5	-21.25	11.21
	HE20 Beam Forming, M0 to M9 2ss	4	5	-35.9	-42.2	-46.8	-41.0	-28.7	-21.25	7.48
	HE20 Beam Forming, M0 to M9 3ss	4	3	-31.7	-36.6	-41.4	-36.1	-26.1	-21.25	4.85
	HE20 Beam Forming, M0 to M9 4ss	4	2	-31.7	-36.6	-41.4	-36.1	-27.1	-21.25	5.85
	HE20 STBC, M0 to M9 2ss	2	2	-27.8	-33.1			-24.6	-21.25	3.36
	HE20 STBC, M0 to M9 2ss	3	2	-27.8	-33.1	-39.8		-24.4	-21.25	3.16
	HE20 STBC, M0 to M9 2ss	4	2	-31.7	-36.6	-41.4	-36.1	-27.1	-21.25	5.85
	CCK, 1 to 11 Mbps	1	2	-38.2				-36.0	-21.25	14.76
	CCK, 1 to 11 Mbps	2	2	-38.2	-39.7			-33.7	-21.25	12.43
	CCK, 1 to 11 Mbps	3	2	-38.2	-39.7	-42.4		-32.8	-21.25	11.56
	CCK, 1 to 11 Mbps	4	2	-38.2	-39.7	-42.4	-41.7	-32.0	-21.25	10.72
	Non HT20, 6 to 54 Mbps	1	2	-30.2				-28.2	-21.25	6.90
	Non HT20, 6 to 54 Mbps	2	2	-30.2	-33.5			-26.5	-21.25	5.24
	Non HT20, 6 to 54 Mbps	3	2	-30.2	-33.5	-38.2		-26.0	-21.25	4.79
62	Non HT20, 6 to 54 Mbps	4	2	-31.0	-36.4	-41.9	-35.8	-26.6	-21.25	5.40
2462	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-31.0	-36.4			-24.9	-21.25	3.60
	Non HT20 Beam Forming, 6 to 54 Mbps	3	7	-35.1	-44.8	-46.0		-27.3	-21.25	6.05
	Non HT20 Beam Forming, 6 to 54 Mbps	4	8	-40.6	-47.4	-48.2	-44.9	-30.1	-21.25	8.86
	HT/VHT20, M0 to M7	1	2	-25.9				-23.8	-21.25	2.60
	HT/VHT20, M0 to M7	2	2	-30.2	-35.6			-27.0	-21.25	5.80
	HT/VHT20, M8 to M15	2	2	-30.2	-35.6			-27.0	-21.25	5.80
	HT/VHT20, M0 to M7	3	2	-30.2	-35.6	-39.6		-26.7	-21.25	5.43
	HT/VHT20, M8 to M15	3	2	-30.2	-35.6	-39.6		-26.7	-21.25	5.43
					5010	3010			v	

Page No: 69 of 88

cisco

HT/VHT20, M16 to M23	3	2	-30.2	-35.6	-39.6		-26.7	-21.25	5.43
HT/VHT20, M0 to M7	4	2	-30.2	-35.6	-39.6	-31.3	-24.8	-21.25	3.51
HT/VHT20, M8 to M15	4	2	-30.2	-35.6	-39.6	-31.3	-24.8	-21.25	3.51
HT/VHT20, M16 to M23	4	2	-30.2	-35.6	-39.6	-31.3	-24.8	-21.25	3.51
HT/VHT20, M24 to M31	4	2	-30.2	-35.6	-39.6	-31.3	-24.8	-21.25	3.51
HT/VHT20 Beam Forming, M0 to M7	2	5	-30.2	-35.6			-24.0	-21.25	2.80
HT/VHT20 Beam Forming, M8 to M15	2	2	-30.2	-35.6			-27.0	-21.25	5.80
HT/VHT20 Beam Forming, M0 to M7	3	7	-33.9	-40.6	-43.6		-25.6	-21.25	4.39
HT/VHT20 Beam Forming, M8 to M15	3	4	-30.2	-35.6	-39.6		-24.7	-21.25	3.43
HT/VHT20 Beam Forming, M16 to M23	3	2	-30.2	-35.6	-39.6		-26.7	-21.25	5.43
HT/VHT20 Beam Forming, M0 to M7	4	8	-37.0	-46.3	-46.2	-44.1	-27.4	-21.25	6.14
HT/VHT20 Beam Forming, M8 to M15	4	5	-33.9	-40.6	-43.6	-36.0	-26.0	-21.25	4.73
HT/VHT20 Beam Forming, M16 to M23	4	3	-30.2	-35.6	-39.6	-31.3	-23.8	-21.25	2.51
HT/VHT20 Beam Forming, M24 to M31	4	2	-30.2	-35.6	-39.6	-31.3	-24.8	-21.25	3.51
HT/VHT20 STBC, M0 to M7	2	2	-30.2	-35.6			-27.0	-21.25	5.80
HT/VHT20 STBC, M0 to M7	3	2	-30.2	-35.6	-39.6		-26.7	-21.25	5.43
HT/VHT20 STBC, M0 to M7	4	2	-30.2	-35.6	-39.6	-31.3	-24.8	-21.25	3.51
HE20, M0 to M9 1ss	1	2	-24.5				-22.4	-21.25	1.18
HE20, M0 to M9 1ss	2	2	-24.5	-32.5			-21.8	-21.25	0.55
HE20, M0 to M9 2ss	2	2	-24.5	-32.5			-21.8	-21.25	0.55
HE20, M0 to M9 1ss	3	2	-24.5	-32.5	-34.9		-21.5	-21.25	0.22
HE20, M0 to M9 2ss	3	2	-24.5	-32.5	-34.9		-21.5	-21.25	0.22
HE20, M0 to M9 3ss	3	2	-24.5	-32.5	-34.9		-21.5	-21.25	0.22
HE20, M0 to M9 1ss	4	2	-30.6	-35.9	-39.0	-36.5	-26.2	-21.25	4.99
HE20, M0 to M9 2ss	4	2	-30.6	-35.9	-39.0	-36.5	-26.2	-21.25	4.99
HE20, M0 to M9 3ss	4	2	-30.6	-35.9	-39.0	-36.5	-26.2	-21.25	4.99
HE20, M0 to M9 4ss	4	2	-30.6	-35.9	-39.0	-36.5	-26.2	-21.25	4.99
HE20 Beam Forming, M0 to M9 1ss	2	5	-30.6	-35.9			-24.4	-21.25	3.16
HE20 Beam Forming, M0 to M9 2ss	2	2	-24.5	-32.5			-21.8	-21.25	0.55
HE20 Beam Forming, M0 to M9 1ss	3	7	-35.9	-42.2	-46.3		-27.6	-21.25	6.36
HE20 Beam Forming, M0 to M9 2ss	3	4	-30.6	-35.9	-39.0		-25.0	-21.25	3.70
HE20 Beam Forming, M0 to M9 3ss	3	2	-24.5	-32.5	-34.9		-21.5	-21.25	0.22
HE20 Beam Forming, M0 to M9 1ss	4	8	-35.9	-42.2	-46.3	-39.8	-25.4	-21.25	4.20
HE20 Beam Forming, M0 to M9 2ss	4	5	-30.6	-35.9	-39.0	-36.5	-23.2	-21.25	1.99
HE20 Beam Forming, M0 to M9 3ss	4	3	-30.6	-35.9	-39.0	-36.5	-25.2	-21.25	3.99
HE20 Beam Forming, M0 to M9 4ss	4	2	-30.6	-35.9	-39.0	-36.5	-26.2	-21.25	4.99
HE20 STBC, M0 to M9 2ss	2	2	-24.5	-32.5			-21.8	-21.25	0.55
HE20 STBC, M0 to M9 2ss	3	2	-24.5	-32.5	-34.9		-21.5	-21.25	0.22
HE20 STBC, M0 to M9 2ss	4	2	-30.6	-35.9	-39.0	-36.5	-26.2	-21.25	4.99

Page No: 70 of 88

Conducted Bandedge Peak, 2412 MHz, HE20, M0 to M9 1ss

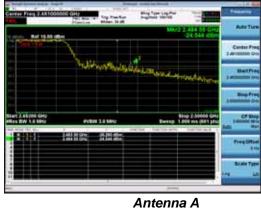
Antenna B

սիսիս

cisco

Antenna C

Page No: 71 of 88



Antenna B

սիսիս

cisco

Conducted Bandedge Peak, 2462 MHz, HE20, M0 to M9 1ss

Antenna C

Page No: 72 of 88

A.9 Conducted Bandedge (Non-Restricted Band)

Emissions in non-restricted frequency bands - Test Requirement

15.247 / LP0002:3.10.1(5) & 2.8

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RSS-Gen 8.9 Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 and Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

RSS-Gen 8.10 (b) Unwanted emissions that fall into restricted bands of Table 6 shall comply with the limits specified in RSS-Gen; and (c) Unwanted emissions that do not fall within the restricted frequency bands of Table 6 shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.

Emissions in non-restricted frequency bands - Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05

Emissions in non-restricted frequency bands - Conducted

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Use the marker function to determine the maximum spurs amplitude level.

5. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05 section, 8.5 DTS emissions in non-restricted frequency bands, 8.7 DTS band-edge measurements

ANSI C63.10: 2013 section 11.11.2, 11.11.3

Emissions in non-restricted frequency bands - Conducted	
Test parameters	
 11.11.2 Reference Level measurement Establish a reference level by using the following procedure: a) Set instrument center frequency to DTS channel center frequency. b) Set the span to ≥ 1.5 x DTS bandwidth. c) Set the RBW = 100 kHz. d) Set the VBW ≥ 3 x RBW. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. 	 11.11.3 Emission Level Measurement a) Set the center frequency and span to encompass frequency range to be measured. b) Set the RBW = 100 kHz. c) Set the VBW ≥ 3 x RBW. d) Detector = peak. e) Sweep time = auto couple. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use the peak marker function to determine the
i) Use the peak marker function to determine the maximum PSD level.	maximum amplitude level.

Page No: 73 of 88

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support			\checkmark

Tested By :	Date of testing:	
Chris Blair	10-Sep-19 - 01-Oct-19	
Test Result · PASS		

Test Equipment See Appendix C for list of test equipment

Page No: 74 of 88

Non-Restricted Band

Frequency (MHz)	Mode	Data Rate (Mbps)	Conducted Bandedge Delta (dB)	Limit (dBc)	Duty Cycle Correction (dB)	Margin (dB)
	CCK, 1 to 11 Mbps	11	44.7	>30	0.2	14.51
2412	Non HT20, 6 to 54 Mbps	6	40.1	>30	0.0	10.05
24	HT/VHT20, M0 to M31	m0	33.4	>30	0.1	3.35
	HE20, M0 to M9	m0h1	38.4	>30	0.1	8.33
	CCK, 1 to 11 Mbps	11	59.9	>30	0.2	29.71
2462	Non HT20, 6 to 54 Mbps	6	44.9	>30	0.0	14.85
24	HT/VHT20, M0 to M31	m0	41.5	>30	0.1	11.45
	HE20, M0 to M9	m0h1	45.8	>30	0.1	15.73

Page No: 75 of 88

Report Spectrum Analysis - Dodgt SA		Ayer-Livenst Sale Allowed		1614
enter Freq 2.40600000	D GH2 PNO: Wide C+ If Gain Low Atten: 20 dB	Avg Type: Log-Pwr	THESE PERSONNEL	Frequency
alliaiv Ref 10.00 dBm		Mkr2 2	399 184 GHz -31.03 dBm	Auto Ture
	and the second	tan ing a hada a ha	ananda 2342	Center Free 2.406000000 GH
annonina anna da	Let a second sec			Start Fre 2.39000000 GH
				Stop Fre 2.42200000 GH
tart 2.39000 GHz Res BW 100 kHz		St Sweep 1.00	op 2.42200 GHz 10 ms (1001 pts) Factor wat	CF Ste 3.200000 MH ods Ma
	00 000 GHz -36.37 dBm 99 184 GHz -31.03 dBm 20 288 MHz (Δ) - 33.39 dB			Freq Offse O H
				Scale Typ
·				ag Li

Conducted Bandedge Delta, 2412 MHz, HT/VHT20, M0 to M7

սիսիս

Page No: 76 of 88

Appendix B: Radiated and AC Conducted Emission Test Results

Testing done by outside laboratory, not included in the scope of this report.

Page No: 77 of 88

Appendix C: List of Test Equipment Used to perform the test

Manufacturer/ Model	Description	Last Cal	Next Due	Test Item
Cisco	Automation Test Insertion Loss	NA	NA	A1-A9
Keysight N9030A-550	PXA Signal Analyzer, 3Hz to 50GHz	16 Jul 2019	16 Jul 2020	A1-A9
NI PXI-1042	CHASSIS, PXI	NA	NA	A1-A9
NI PXI-8115	Embedded Controller	NA	NA	A1-A9
NI PXI-2796	40 GHz Dual 6x1 Multiplexer (SP6T)	NA	NA	A1-A9
NI PXI-2799	Switch 1x1	NA	NA	A1-A9
NI PXI-2796	40 GHz Dual 6x1 Multiplexer (SP6T)	NA	NA	A1-A9
Omega CT485B	Chart recorder	18 Feb 2019	18 Feb 2020	A1-A9
Pasternack PE5019-1	Torque wrench	14 Feb 2019	14 Feb 2020	A1-A9
Pasternack PE5019-1	Torque wrench	28 Feb 2019	28 Feb 2020	A1-A9
Pasternack PE5019-1	Torque wrench	28 Feb 2019	28 Feb 2020	A1-A9
	Cisco Keysight N9030A-550 NI PXI-1042 NI PXI-8115 NI PXI-2796 NI PXI-2796 NI PXI-2796 Omega CT485B Pasternack PE5019-1 Pasternack PE5019-1	CiscoAutomation Test Insertion LossKeysight N9030A-550PXA Signal Analyzer, 3Hz to 50GHzNI PXI-1042CHASSIS, PXINI PXI-8115Embedded ControllerNI PXI-279640 GHz Dual 6x1 Multiplexer (SP6T)NI PXI-2799Switch 1x1NI PXI-279640 GHz Dual 6x1 Multiplexer (SP6T)Omega CT485BChart recorderPasternack PE5019-1Torque wrenchPasternack PE5019-1Torque wrench	CiscoAutomation Test Insertion LossNAKeysight N9030A-550PXA Signal Analyzer, 3Hz to 50GHz16 Jul 2019NI PXI-1042CHASSIS, PXINANI PXI-8115Embedded ControllerNANI PXI-279640 GHz Dual 6x1 Multiplexer (SP6T)NANI PXI-2799Switch 1x1NANI PXI-279640 GHz Dual 6x1 Multiplexer (SP6T)NANI PXI-2796Chart recorder18 Feb 2019Omega CT485BChart recorder14 Feb 2019Pasternack PE5019-1Torque wrench28 Feb 2019Pasternack PE5019-1Torque wrench28 Feb 2019	CiscoAutomation Test Insertion LossNANAKeysight N9030A-550PXA Signal Analyzer, 3Hz to 50GHz16 Jul 201916 Jul 2020NI PXI-1042CHASSIS, PXINANANI PXI-8115Embedded ControllerNANANI PXI-279640 GHz Dual 6x1 Multiplexer (SP6T)NANANI PXI-2799Switch 1x1NANANI PXI-279640 GHz Dual 6x1 Multiplexer (SP6T)NANANI PXI-2796Chart recorder18 Feb 201918 Feb 2020Omega CT485BChart recorder14 Feb 20192020Pasternack PE5019-1Torque wrench28 Feb 201928 Feb 2020Pasternack PE5019-1Torque wrench28 Feb 201928 Feb 2020

Page No: 78 of 88

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	°C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
ТАР	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control System	Qp	Quasi Peak
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak
Cal	Calibration	kHz	Kilohertz (1x10 ³)
EN	European Norm	MHz	MegaHertz (1x10 ⁶)
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)
CISPR	International Special Committee on Radio Interference	н	Horizontal
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization Network	dB	decibel
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³)
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)
L2	Line2	А	Amp
L3	Line 3	μA	Micro Amp (1x10 ⁻⁶)
DC	Direct Current	mS	Milli Second (1x10 ⁻³)
RAW	Uncorrected measurement value, as indicated by the measuring device	μS	Micro Second (1x10 ⁻⁶)
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)
SLCE	Signal Line Conducted Emissions	m	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
Ν	Neutral Line	R	Return
S	Supply	AC	Alternating Current

սիսիս

The following table defines abbreviations used within this test report.

Page No: 79 of 88

Appendix E: Photographs of Test Setups

Please refer to the attachment

Page No: 80 of 88

Appendix F: Software Used to Perform Testing

Cisco Internal LabView Radio Test Automation Software rev57

Appendix G:Test Procedures

Measurements were made in accordance with

- KDB 558074 D01 DTS Meas Guidance v05
- KDB 662911 MIMO
- ANSI C63.4 2014 Unintentional Radiators
- ANSI C63.10 2013 Intentional Radiators

Test procedures are summarized below

FCC 2.4GHz Test Procedures	EDCS # 1445042
FCC 2.4GHz RSE Test Procedures	EDCS # 1480386

Appendix H: Scope of Accreditation (A2LA certificate number 1178-01)

The scope of accreditation of Cisco Systems, Inc. can be found on the A2LA web page at:

http://www.a2la.org/scopepdf/1178-01.pdf

Appendix I: Test Assessment Plan

Target Power Tables EDCS# 18087112

Page No: 81 of 88

Appendix J: UUT Software Info

APA453.0E7B.CCD0# APA453.0E7B.CCD0#test watchdog monitoring off APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0#show ver Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR sec. 52.227-19 and subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS sec. 252.227-7013.

Cisco Systems, Inc. 170 West Tasman Drive San Jose, California 95134-1706

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

This product contains some software licensed under the "GNU General Public License, version 2" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU General Public License, version 2", available here: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

This product contains some software licensed under the "GNU Library General Public License, version 2" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU Library General Public License, version 2", available here: http://www.gnu.org/licenses/old-licenses/lgpl-2.0.html

Page No: 82 of 88

This product contains some software licensed under the "GNU Lesser General Public License, version 2.1" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU Lesser General Public License, version 2.1", available here: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

This product contains some software licensed under the "GNU General Public License, version 3" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU General Public License, Version 3", available here: http://www.gnu.org/licenses/gpl.html.

This product contains some software licensed under the "GNU Affero General Public License, version 3" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU Affero General Public License, version 3", available here: http://www.gnu.org/licenses/agpl-3.0.html.

Cisco AP Software, (ap1g7), [cheetah-build6:/san2/BUILD/workspace/Nightly-Cheetah-axel-bcm-mfg-c8_10_throttle] Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2019 by Cisco Systems, Inc. Compiled Fri Sep 6 08:06:05 PDT 2019

ROM: Bootstrap program is U-Boot boot loader BOOTLDR: U-Boot boot loader Version

APA453.0E7B.CCD0 uptime is 0 days, 0 hours, 4 minutes Last reload time : Fri Sep 6 08:22:50 UTC 2019 Last reload reason : unknown

cisco C9120AXE-B with 1809824/1062468K bytes of memory. Processor board ID 0 AP Running Image : 8.8.1.10 Primary Boot Image : 0.0.0.0 Primary Boot Image Hash: Backup Boot Image Hash: 1 Gigabit Ethernet interfaces 2 802.11 Radios Radio Driver version : 17.10 RC77.13 Radio FW version : 1268.14948.r14702 14702 NSS FW version : NA

Base ethernet MAC Address: A4:53:0E:7B:CC:D0Part Number: 0-000000-00PCA Assembly Number: 800-105708-01PCA Revision Number: 09PCB Serial Number: FOC23302F0Q

Page No: 83 of 88

Top Assembly Part Number	: 800-105708-01
Top Assembly Serial Number	: 0
Top Revision Number	: 09
Product/Model Number	: C9120AXE-B

APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# Read timed out

User Access Verification Username: Cisco Password: Lock out for 4 seconds in release image

% Authentication failed

User Access Verification Username: Cisco Password: APA453.0E7B.CCD0>en Password: APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# EXITING CISCO SHELL. PLEASE EXECUTE EXIT IN DEVSHELL TO GET BACK TO CISCO SHELL. մինին

BusyBox v1.29.3 () built-in shell (ash)

Welcome to Cisco.

Usage of this device is governed by Cisco's End User License Agreement, available at: http://www.cisco.com/c/en/us/td/docs/general/warranty/English/EU1KEN_.html.

Page No: 84 of 88

mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# echo 0 > /meraki_gpio/RF_2G_ble mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# cat MERAKI_BUILD.extra Fri Sep 6 08:06:05 PDT 2019 cheetah-build6 /san2/BUILD/workspace/Nightly-Cheetah-axel-bcm-mfg-c8_10_throttle

* (HEAD detached at fb31ca5b6a)

syn base: fb31ca5b6ab1468794221acdd081bea192921139 commit: fb31ca5b6ab1468794221acdd081bea192921139 tree 9933345a372cf5493649162765b52efdf4ff9219 mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# show_cookie Part Number : 0-000000-00 : 00 Board Revision PCB Serial Number : FOC23302F0Q PCB Fab Part Number : 0-000000-00 Deviation Number :0 MAC Address : A4:53:0E:7B:CC:D0 MAC Address Block Size :4 Radio 0 MAC Address : D4:AD:BD:A2:16:80 Radio 0 MAC Address Block Size : 16 Radio 1 MAC Address : D4:AD:BD:A2:16:90 Radio 1 MAC Address Block Size :16 PCA Assembly Number : 800-105708-01 PCA Revision Number : 09 Product/Model Number : C9120AXE-B Top Assembly Part Number : 800-105708-01 Top Revision Number : 09 Top Assembly Serial Number : 0 RMA Test History :00 **RMA History** :00 **RMA Number** :00-00-00-00 Device Type : 4C Max Association Allowed :2 Radio(2.4G) Carrier Set : 0000 Radio(2.4G) Max Transmit Power Level : 100 Radio(2.4G) Antenna Diversity Support: 01 Radio(2.4G) Encryption Ability : 0002 :0029 Radio(5G) Carrier Set Radio(5G) Max Transmit Power Level : 100

Page No: 85 of 88

Radio(5G) Antenna Diversity Support : 01 Radio(5G) Encryption Ability : 0002 Radio(802.11g) Radio Mode : 255 PEP Product Identifier (PID) : C9120AXE-B PEP Version Identifier (VID) : V01 System Flags : 00 :0000 Controller Type Host Controller Type :0000 Mfr Service Date : 2019.08.03-47:59:59 Radio(49) Carrier Set : 0000 Radio(49) Max Transmit Power Level : 0 Radio(49) Antenna Diversity Support : 00 Radio(49) Encryption Ability : 0000 Radio(58) Carrier Set :0029 Radio(58) Max Transmit Power Level : 100 Radio(58) Antenna Diversity Support : 01 Radio(58) Encryption Ability : 0002 ACT2 ID : C9120 Static AP Mode :0 mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# cat /storage/rxtx_mode tx mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# cd /usr/bin/bcm/mfg mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# ./init_config.sh broardcast_ssids show_carrier_cookies | grep -o '..\$' 41 wl-i apr1v0 country US wl -i apr0v0 country US Chanspec set to 0x1001 [*09/06/2019 08:42:38.7040] wlc_ucode_download: wl1: Loading 129 MU ucode Chanspec set to 0xd024 [*09/06/2019 08:42:38.7870] wlc_ucode_download: wl0: Loading 129 MU ucode mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# ./dfstool.lua

Vanc dfstool BOARD: Axel BCM !!!!!!

Page No: 86 of 88

Display config: wl -i apr0v0 status | head -3 "Not associated. Last associated with SSID: """

Display config: wl -i apr1v0 status | head -3 "Not associated. Last associated with SSID: """

show_carrier_cookies | grep -o '..\$' rc:result="41"

wl -i apr1v0 country US wl -i apr0v0 country US > line=""

>do0 stop line="do0 stop"

DEBUG: compliance stop command matched. INFO: subcommand="compliance off".

execution section for compliance stop command. line="do0 stop" interface="0" stop_option="stop" wl -i apr0v0 pkteng_status | awk -F'[,]' '{print \$3}' main:result="0"

1601792112 (0x5f796870)

> line="" >do1 stop line="do1 stop"

DEBUG: compliance stop command matched. INFO: subcommand="compliance off".

execution section for compliance stop command. line="do1 stop" interface="1" stop_option="stop" wl -i apr1v0 pkteng_status | awk -F'[,]' '{print \$3}' main:result="0"

1601792112 (0x5f796870)

Page No: 87 of 88

cisco

> line="" >do4 stop line="do4 stop"

DEBUG: compliance stop command matched. INFO: subcommand="compliance off".

execution section for compliance stop command. line="do4 stop" interface="4" stop_option="stop" [09/06/2019 08:44:03.9220] NXP-RHL-Driver 0001:01:00.0: xcvr[0], swcmd 0x23 done [09/06/2019 08:44:04.1030] NXP-RHL-Driver 0001:01:00.0: xcvr[0], swcmd 0x4 done [09/06/2019 08:44:04.1870] NXP-RHL-Driver 0001:01:00.0: VSPA FW :: FN = dcr.eld > line=""

>

Page No: 88 of 88

Test Report

C1920AXE-x (x = A, B, N, T)

Cisco Catalyst C9120AX Series 802.11ax Access Point

2.4GHz WLAN Radio + 3dBi Antenna

FCC ID: LDKEDAC92157 IC: 2461N-EDAC92157

2400-2483.5 MHz

Against the following Specifications:

CFR47 Part 15.247 RSS-247 RSS-Gen Issue 5 LP0002 (2018-01-10)

Cisco Systems 170 West Tasman Drive

San Jose, CA 95134

Author: Chris Blair Approved By: Gez Thorpe **Tested By: Chris Blair** Title: Radio Compliance Manager Revision: See EDCS

This report replaces any previously entered test report under EDCS – **18334963**. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. Test Report Template EDCS# 11644121.

Page No: 1 of 88

SECTION 1: OVI	CRVIEW	3
SECTION 2: ASS	ESSMENT INFORMATION	4
2.1 GENERAL		4
2.2 DATE OF TES	TING	6
	E DATE	
	ILITIES	
	Assessed (EUT)	
	PTION	
	ULT SUMMARY	
3.1 RESULTS SU	MMARY TABLE	9
SECTION 4: SAM	IPLE DETAILS	12
	AILS	
	AILS	
	ERATION DETAILS	
APPENDIX A: EN	AISSION TEST RESULTS	13
CONDUCTED TE	ST SETUP DIAGRAM	13
	UM CHANNEL POWER	
	Ε	
	VIDTH (6DB BANDWIDTH)	
	andwidth Conducted Output Power	
	CITAL DENSITY	
	SPURIOUS EMISSIONS	
	RECEIVER SPURIOUS EMISSIONS	
	BANDEDGE (RESTRICTED BAND)	
	BANDEDGE (NON-RESTRICTED BAND)	
APPENDIX B: R A	ADIATED AND AC CONDUCTED EMISSION TEST RESULTS	77
APPENDIX C:	LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST	78
APPENDIX D:	ABBREVIATION KEY AND DEFINITIONS	79
APPENDIX E:	PHOTOGRAPHS OF TEST SETUPS	80
APPENDIX F:	SOFTWARE USED TO PERFORM TESTING	81
APPENDIX G:	TEST PROCEDURES	81
APPENDIX H:	SCOPE OF ACCREDITATION (A2LA CERTIFICATE NUMBER 1178-01)	81
APPENDIX I:	TEST ASSESSMENT PLAN	81
APPENDIX J:	UUT SOFTWARE INFO	82

Section 1: Overview

The samples were assessed against the tests under the requirements of the following specifications:

Emission

CFR47 Part 15.247 RSS-247 Issue 2: Feb 2017 RSS-Gen Issue 5: Apr 2018 LP0002 (2018-01-10)

Page No: 3 of 88

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

 Temperature
 15°C to 35°C (54°F to 95°F)

 Atmospheric Pressure
 860mbar to 1060mbar (25.4" to 31.3")

 Humidity
 10% to 75*%

Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB] The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss.

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Page No: 4 of 88

Measurement Uncertainty Values

voltage and power measurements	±2dB
conducted EIRP measurements	± 1.4 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7
temperature measurements	± 0.54°
humidity measurements	± 2.3%
DC and low frequency measurements	± 2.5%

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

30 MHz – 40GHz	+/- 0.38 dB
----------------	-------------

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

Page No: 5 of 88

2.2 Date of testing

10-Sep-19 - 01-Oct-19

2.3 Report Issue Date

14-Oct-19

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System. The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled.

2.4 Testing facilities

This assessment was performed by: Chris Blair & Julian Land

Testing Laboratory

Cisco Systems, Inc. 125 West Tasman Drive (Building P) San Jose, CA 95134 USA

Headquarters

Cisco Systems, Inc., 170 West Tasman Drive San Jose, CA 95134, USA

Registration Numbers for Industry Canada

Cisco System Site	Address	Site Identifier
Building P, 10m Chamber	125 West Tasman Dr	Company #: 2461N-2
	San Jose, CA 95134	
Building P, 5m Chamber	125 West Tasman Dr	Company #: 2461N-1
	San Jose, CA 95134	
Building I, 5m Chamber	285 W. Tasman Drive	Company #: 2461M-1
	San Jose, California 95134	
Building 7, 5m Chamber	425 E. Tasman Drive	Company #: 2461N-3
	San Jose, California 95134	

Test Engineers

Chris Blair

2.5 Equipment Assessed (EUT)

C1920AXE-x

Page No: 6 of 88

2.6 EUT Description

The radio supports the following modes of operation. The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst case data for all modes. Data is recorded at the lowest supported data rate for each mode. This report covers operation on channel 1-11.

802.11b - Legacy CCK, One Antenna, 1 to 11 Mbps 802.11b - Legacy CCK, Two Antennas, 1 to 11 Mbps 802.11b - Legacy CCK, Three Antennas, 1 to 11 Mbps 802.11b - Legacy CCK, Four Antennas, 1 to 11 Mbps

802.11g - Non HT20, One Antenna, 6 to 54 Mbps, 1ss 802.11g - Non HT20, Two Antennas, 6 to 54 Mbps, 1ss 802.11g - Non HT20, Three Antennas, 6 to 54 Mbps, 1ss 802.11g - Non HT20, Four Antennas, 6 to 54 Mbps, 1ss

802.11g - Non HT20 Beam Forming, Two Antennas, 6 to 54 Mbps, 1ss 802.11g - Non HT20 Beam Forming, Three Antennas, 6 to 54 Mbps, 1ss 802.11g - Non HT20 Beam Forming, Four Antennas, 6 to 54 Mbps, 1ss

802.11n/ac - HT/VHT20, One Antenna, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Two Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20, Three Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Three Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20, Three Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20, Four Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Four Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20, Four Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20, Four Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20, Four Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20, Four Antennas, M16 to M23, 3ss

802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20 Beam Forming, Three Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Three Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20 Beam Forming, Three Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M16 to M23, 3ss

802.11n/ac - HT/VHT20 STBC, Two Antennas, M0 to M7, 2ss 802.11n/ac - HT/VHT20 STBC, Three Antennas, M0 to M7, 2ss 802.11n/ac - HT/VHT20 STBC, Four Antennas, M0 to M7, 2ss

802.11ax - HE20, One Antenna, M0 to M9 1ss 802.11ax - HE20, Two Antennas, M0 to M9 1ss 802.11ax - HE20, Two Antennas, M0 to M9 2ss

Page No: 7 of 88

802.11ax - HE20, Three Antennas, M0 to M9 1ss 802.11ax - HE20. Three Antennas. M0 to M9 2ss 802.11ax - HE20, Three Antennas, M0 to M9 3ss 802.11ax - HE20, Four Antennas, M0 to M9 1ss 802.11ax - HE20, Four Antennas, M0 to M9 2ss 802.11ax - HE20, Four Antennas, M0 to M9 3ss 802.11ax - HE20, Four Antennas, M0 to M9 4ss 802.11ax - HE20 Beam Forming, Two Antennas, M0 to M9 1ss 802.11ax - HE20 Beam Forming, Two Antennas, M0 to M9 2ss 802.11ax - HE20 Beam Forming, Three Antennas, M0 to M9 1ss 802.11ax - HE20 Beam Forming, Three Antennas, M0 to M9 2ss 802.11ax - HE20 Beam Forming, Three Antennas, M0 to M9 3ss 802.11ax - HE20 Beam Forming, Four Antennas, M0 to M9 1ss 802.11ax - HE20 Beam Forming, Four Antennas, M0 to M9 2ss 802.11ax - HE20 Beam Forming, Four Antennas, M0 to M9 3ss 802.11ax - HE20 Beam Forming, Four Antennas, M0 to M9 4ss 802.11ax - HE20 STBC, Two Antennas, M0 to M9 2ss 802.11ax - HE20 STBC, Three Antennas, M0 to M9 2ss 802.11ax - HE20 STBC, Four Antennas, M0 to M9 2ss

Antenna Gain Frequency Part Number Antenna Type (dBi) -E SKU 2.4GHz&5GHz 2.4 GHz 2 dBi/5 GHz 4 dBi Dipole Ant., 2dBi@2.4GHz Black, connectors RP-TNC 4dBi@5GHz AIR-ANT2524DB-R/= 2.4GHz&5GHz 2.4 GHz 2 dBi/5 GHz 4 dBi Dipole Ant., 2dBi@2.4GHz AIR-ANT2524DG-R/= Gray, connectors RP-TNC 4dBi@5GHz 2.4GHz&5GHz 2.4 GHz 2 dBi/5 GHz 4 dBi Dipole Ant., 2dBi@2.4GHz AIR-ANT2524DW-R/= White, connectors RP-TNC 4dBi@5GHz 2.4GHz&5GHz 2.4 GHz 3dBi/5 GHz 5 dBi Low Profile 3dBi@2.4GHz AIR-ANT2535SDW-R Antenna, White, connectors RP-TNC 5dBi@5GHz 2.4GHz&5GHz 2.4 GHz 6 dBi/5 GHz 6 dBi Directionnel 6dBi@2.4GHz AIR-ANT2566P4W-R= Ant., 4-port, connectors RP-TNC 6dBi@5GHz 2.4GHz&5GHz 2.4GHz 2 dBi/5GHz 4 dBi Ceiling Mount 2dBi@2.4GHz AIR-ANT2524V4C-R= Omni Ant., 4-port, connectors RP-TNC 4dBi@5GHz 2.4GHz&5GHz 2.4GHz 4 dBi/5GHz 4 dBi Wall Mount 4dBi@2.4GHz AIR-ANT2544V4M-R= **Omni Ant., 4-port, connectors RP-TNC** 4dBi@5GHz 2.4GHz&5GHz 2.4 GHz 6 dBi/5 GHz 6 dBi 60 Deg. Patch 6dBi@2.4GHz AIR-ANT2566D4M-R= Ant., 4-port, RP-TNC 6dBi@5GHz

The following antennas are supported by this product series. The data included in this report represent the worst case data for all antennas.

Page No: 8 of 88

Section 3: Result Summary

3.1 Results Summary Table

Conducted emission		
Basic Standard	Technical Requirements / Details	Result
FCC 15.247 RSS-247 LP0002:3.10.1(6.2.1)	6dB Bandwidth Systems using digital modulation techniques may operate in the 2400-2483.5MHz band. The minimum 6dB bandwidth shall be at least 500 kHz	Pass
FCC 15.247 RSS-247	 99% & 26 dB Bandwidth: The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW. The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission. 	Pass
FCC 15.247 RSS-247 LP0002:3.10.1(2.3)	 Output Power: 15.247 The maximum conducted output power of the intentional radiator for systems using digital modulation in the 2400-2483.5 MHz band shall not exceed 1 Watt (30dBm). If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. RSS-247 For DTSs employing digital modulation techniques operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. Except as provided in Section 5.4(e), the e.i.r.p. shall not exceed 4 W. 	Pass
FCC 15.247 RSS-247 LP0002:3.10.1(6.2.2)	Power Spectral Density For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.	Pass

Page No: 9 of 88

FCC 15.247 RSS-247 LP0002:3.10.1(5)/2.8	Conducted Spurious Emissions / Band-Edge : In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.	Pass
FCC 15.247 RSS-247 FCC 15.205 RSS-Gen	Restricted band : Unwanted emissions falling within the restricted bands, as defined in FCC 15.205 (a) and RSS-Gen 8.10 must also comply with the radiated emission limits specified in FCC 15.209 (a) and RSS-Gen 8.9	Pass

Page No: 10 of 88

Radiated Emissions	General requirements)	1
Basic Standard	Technical Requirements / Details	Result
FCC 15.209 RSS-Gen LP0002:3.10.1(5)/2.8	TX Spurious Emissions: Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the filed strength limits table in this section. Unwanted emissions falling within the restricted bands, as defined in FCC 15.205 (a) and RSS-Gen 8.10 must also comply with the radiated emission limits specified in FCC 15.209 (a) and RSS-Gen 8.9	Not Tested
RSS-Gen LP0002:3.10.1(5)2.8	 RX Spurious Emissions: RSS-Gen 8.9 Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 and Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission. RSS-Gen 8.10 Restricted Bands Unwanted emissions that fall into restricted bands of Table 6 shall comply with the limits specified in RSS-Gen; and (c) Unwanted emissions that do not fall within the restricted frequency bands of Table 6 shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen. 	Not Tested
FCC 15.207 RSS-Gen LP0002:2.3	AC conducted Emissions: Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.	Not Tested

Radiated Emissions (General requirements)

Page No: 11 of 88

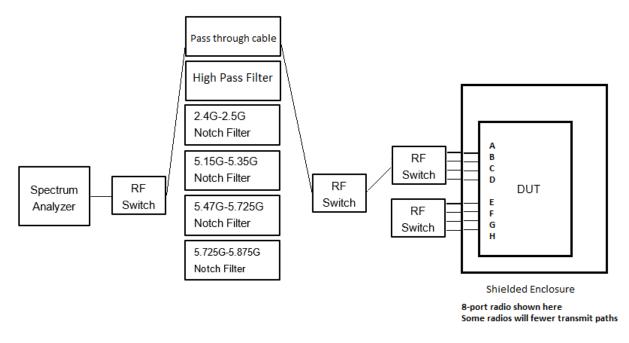
Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing.

4.1 Sample Details

Sample No.	Equipment Details	Manufacturer	Hardware Rev.	Firmware Rev.	Software Rev.	Serial Number
S01	C1920AXE-x	Foxconn	P2-2	1268.149 48.r1470 2 14702	Cisco AP Software, (ap1g7), [cheetah-build6:/san2/BUILD/ workspace/Nightly-Cheetah-a xel-bcm-mfg-c8_10_throttle] Compiled Fri Sep 6 08:06:05 PDT 2019	FOC23302F0Q

4.2 System Details


System #	Description	Samples
1	C1920AXE-x	S01

4.3 Mode of Operation Details

Mode#	Description	Comments
1	Continuously Transmitting	Constant duty cycle

Appendix A: Emission Test Results

Conducted Test Setup Diagram

Target Maximum Channel Power

The following table details the maximum supported Total Channel Power for all operating modes.

	Maximum Channel Power (dBm)		
	Fre	quency (M	Hz)
Operating Mode	2412	2437	2462
Legacy CCK, 1 to 11 Mbps	24	24	24
Non HT20, 6 to 54 Mbps	19	24	19
Non HT20 Beam Forming, 6 to 54 Mbps	16	24	17
HT/VHT20, M0 to M31	18	24	19
HT/VHT20 Beam Forming, M0 to M31	18	24	19
HT/VHT20 STBC, M0 to M7	18	24	19
HE20, M0 to M9	18	24	18
HE20 Beam Forming, M0 to M9	18	24	18
HE20 STBC, M0 to M9 2ss	18	24	18

A.1 Duty Cycle

Duty Cycle Test Requirement

From KDB 558074, Section 6

6.0 Duty cycle, transmission duration and maximum power control level

Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (*i.e.*, with a duty cycle of greater than or equal to 98%). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be utilized to ensure that measurements are made only during transmissions at the maximum power control level. ...

When continuous transmission cannot be achieved and sweep triggering/signal gating cannot be implemented, alternate procedures are provided that can be used to measure the average power; however, they will require an additional measurement of the transmitter duty cycle. Within this guidance document, the duty cycle refers to the fraction of time over which the transmitter is on and is transmitting at its maximum power control level. The duty cycle is considered to be constant if variations are less than ± 2 percent, otherwise the duty cycle is considered to be non-constant.

Duty Cycle Test Method

From KDB 558074, Section 6:

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \ge OBW if possible; otherwise, set RBW to the largest available value. Set VBW \ge RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span measurement method of measuring duty cycle shall not be used if T \le 16.7 microseconds.)

Duty Cycle Test Information

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support			V

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 14 of 88

Duty Cycle Data Table

Duty Cycle table and screen captures are shown below for power/psd modes.

Frequency	Mode	Data Rate	Duty Cycle correction (dB)			
2412	CCK, 1 to 11 Mbps	11	0.2			
	Non HT20, 6 to 54 Mbps	6	0.0			
	HT/VHT20, M0 to M31	m0	0.1			
	HE20, M0 to M9	m0h1	0.1			
2437	CCK, 1 to 11 Mbps	11	0.2			
	Non HT20, 6 to 54 Mbps	6	0.0			
	HT/VHT20, M0 to M31	m0	0.1			
	HE20, M0 to M9	m0h1	0.1			
2462	CCK, 1 to 11 Mbps	11	0.2			
	Non HT20, 6 to 54 Mbps	6	0.0			
	HT/VHT20, M0 to M31	m0	0.1			
	HE20, M0 to M9	m0h1	0.1			

Page No: 15 of 88

Duty Cycle Data Screenshots

Keysight Spectrum Analyzer - 5	22.27 (1991)		pe - Limited Sale Allowed)		0
Center Freq 2.4120	Ω DC CORREC 000000 GHz NFE PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 28 dB	Avg Type: Log-Pwr Avg Hold: 1/1	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET P N N N N N	Frequency
10 dB/div Ref 15.00		Automation and a state		lkr4 149.0 µs -21.261 dBm	Auto Tune
5.00 5.00 15.0		Q ²			Center Free 2.412000000 GH
25.0 35.0 45.0		•°			Start Free 2.412000000 GH
65.0		N.	V.		Stop Free 2.412000000 GH
Center 2.412000000 Res BW 3.0 MHz	#VBV	V 100 kHz	Sweep 1.00	Span 0 Hz 10 ms (1001 pts) FUNCTION VALUE	CF Step 3.000000 MH Auto Ma
1 N 1 t 2 N 1 t 3 N 1 t 4 N 1 t 5	458.0 µs 472.0 µs 135.0 µs 149.0 µs	-28.523 dBm -18.324 dBm -20.498 dBm -21.261 dBm		E STATISTICS	Freq Offse 0 H
7 8 9 10 11				-	Scale Type
sa		95.67, 0.19	STATUS		

Duty Cycle, 2412 MHz, CCK, 1 to 11 Mbps

Page No: 16 of 88

A.2 DTS Bandwidth (6dB Bandwidth)

DTS Bandwidth Test Requirement

For the FCC/ LP0002:3.10.1(6.2.1):

15.247 (2)

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

For Industry Canada: RSS-247 5.2 (a)

5.2 Digital transmission systems

DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MHz and 2400-2483.5 MHz: a) The minimum 6 dB bandwidth shall be 500 kHz.

DTS Bandwidth/ 6dB Bandwidth Test Procedure

Ref. KDB 558074 D01 DTS Meas Guidance v05, Section 8.2

ANSI C63.10: 2013, Clause 11.8.2 Option 2

6 BW

Test Procedure

1. Set the radio in the continuous transmitting mode.

2. Allow the trace to stabilize.

3. Setting the x-dB bandwidth mode to -6dB within the measurement set up function.

4. Select the automatic OBW measurement function of an instrument to perform bandwidth measurement.

5. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05, Section 8.2

ANSI C63.10: 2013, Clause 11.8.2 Option 2

6 BW

Test parameters

Page No: 17 of 88

One of the following procedures may be used to determine the modulated DTS bandwidth.

11.8.1 Option 1

The steps for the first option are as follows:

- a) Set RBW = 100 kHz.
- b) Set the $VBW \ge [3 \times RBW]$.
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

11.8.2 Option 2

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW \geq 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	$\mathbf{\nabla}$	
1	Support			\checkmark

111111

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 18 of 88

DTS BW Table

Frequency (MHz)	Mode	Data Rate (Mbps)	6dB BW (MHz)	Limit (kHz)	Margin (MHz)
	CCK, 1 to 11 Mbps	11	5.6	>500	5.10
2442	Non HT20, 6 to 54 Mbps	6	16.1	>500	15.60
2412	HT/VHT20, M0 to M31	m0	16.9	>500	16.40
	HE20, M0 to M9	m0h1	18.9	>500	18.40
	CCK, 1 to 11 Mbps	11	6.2	>500	5.70
2437	Non HT20, 6 to 54 Mbps	6	16.2	>500	15.70
2437	HT/VHT20, M0 to M31	m0	17.4	>500	16.90
	HE20, M0 to M9	m0h1	18.6	>500	18.10
2462	CCK, 1 to 11 Mbps	11	7.0	>500	6.50
	Non HT20, 6 to 54 Mbps	6	16.1	>500	15.60
2402	HT/VHT20, M0 to M31	m0	17.4	>500	16.90
	HE20, M0 to M9	m0h1	18.9	>500	18.40

Page No: 19 of 88

DTS Bandwidth Screenshots

Kaysight Spectrum Analyzer - Occupied BW	AM 83.142 123	Prototype - Londed Sale 20	kiwed)		1018 BIRL 14
Center Freq 2.412000000 NFE	-++- (rig:)	sense swi] r Freq: 2.412000000 GHz Free Run 1; 20 dB	Radio Std: Radio Devi		Frequency
15 dBidiv Ref 20.00 dBm				10	
500 101 250	1				Center Freq 2.412000000 GHz
40.11 (5.0)	mul	June	- marine	Carrie Al Advances	
500					
:116					
Center 2.412 GHz #Res BW 100 kHz	#	VBW 300 kHz	spar #Sv	n 60 MHz weep 5 s	CF Step 6.000000 MHz
Occupied Bandwidth 10	788 MHz	Total Power	25.7 dBm	A	rto Man Freq Offset
Transmit Freq Error x dB Bandwidth	41.287 kHz 5.598 MHz	% of OBW Power x dB	99.00 % -6.00 dB		0 Hz
86			STATUS	-	

6dB Bandwidth, 2412 MHz, CCK, 1 to 11 Mbps

Page No: 20 of 88

A.3 Occupied Bandwidth

Occupied Bandwidth Test Requirement

The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW.

The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth Test Method

Ref. ANSI C63.10: 2013

Occupied Bandwidth

Test Procedure

- 1. Set the radio in the continuous transmitting mode.
- 2. Allow the trace to stabilize.
- 3. Setting the x-dB bandwidth mode to -26dB & OBW to 99% within the measurement set up function.
- 4. Select the automatic OBW measurement function of an instrument to perform bandwidth measurement.
- 5. Capture graphs and record pertinent measurement data.

Ref. ANSI C63.10: 2013 section 6.9.3

Occupied Bandwidth

Test parameters

6.9.3 Occupied bandwidth-power bandwidth (99%) measurement procedure

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency spin for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 41.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Page No: 21 of 88

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support			\checkmark

Tested By :	Date of testing:	
Chris Blair	10-Sep-19 - 01-Oct-19	
Test Result : PASS		

Test Equipment

See Appendix C for list of test equipment

Page No: 22 of 88

Occupied Bandwidth

Frequency (MHz)	Mode	Data Rate (Mbps)	26dB BW (MHz)	99% BW (MHz)
	CCK, 1 to 11 Mbps	11	14.0	11.129
2412	Non HT20, 6 to 54 Mbps	6	21.0	16.688
2412	HT/VHT20, M0 to M31	m0	21.6	17.927
	HE20, M0 to M9	m0h1	21.3	19.055
	CCK, 1 to 11 Mbps	11	14.1	10.983
2437	Non HT20, 6 to 54 Mbps	6	21.3	16.855
2437	HT/VHT20, M0 to M31	m0	21.8	18.184
	HE20, M0 to M9	m0h1	21.6	19.185
	CCK, 1 to 11 Mbps	11	14.2	11.106
2462	Non HT20, 6 to 54 Mbps	6	21.1	16.749
2402	HT/VHT20, M0 to M31	m0	21.7	17.980
	HE20, M0 to M9	m0h1	21.3	19.079

Page No: 23 of 88

26dB / 99% Bandwidth, 2437 MHz, CCK, 1 to 11 Mbps

սիսիս

Page No: 24 of 88

A.4 Maximum Conducted Output Power

Maximum Conducted Output Power Test Requirement

FCC, 15.247/ LP0002:3.10.1(2.3):

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (3) For systems using digital modulation in the 902-928 MHz, **2400-2483.5 MHz**, and 5725-5850 MHz bands: **1 Watt**. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Industry Canada, RSS-247:

5.4 Transmitter output power and equivalent isotropically radiated power (e.i.r.p.) requirements d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

The maximum supported antenna gain is (GAIN_MAX_TRANSMIT_POWER)dBi. The peak correlated gain for each mode is listed in the table below.

Maximum Conducted Output Power Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05 ANSI C63.10: 2013

Maximum Conducted Output power Test Procedure

1. Set the radio in the continuous transmitting mode at full power

Compute power by integrating the spectrum across the EBW (or alternatively entire 99% OBW) of the signal using the instrument's band power measurement function. The integration shall be performed using the spectrum analyzer band-power measurement function with band limits set equal to the EBW or the OBW band edges.
 Capture graphs and record pertinent measurement data.

Ref. 558074 D01 DTS Meas Guidance v05, 8.3.2.2 Measurement using a spectrum analyzer (SA) ANSI C63.10: 2013, section 11.9.2.2.4 Method AVGSA-2

Maximum Conducted Output power

Test parameters

Page No: 25 of 88

11.9.2.2.4 Method AVGSA-2

Method AVGSA-2 uses trace averaging across ON and OFF times of the EUT transmissions, followed by duty cycle correction. The procedure for this method is as follows:

- a) Measure the duty cycle D of the transmitter output signal as described in 11.6.
- b) Set span to at least 1.5 times the OBW.
- c) Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.
- d) Set $VBW \ge [3 \times RBW]$.
- e) Number of points in sweep ≥ [2 × span / RBW]. (This gives bin-to-bin spacing ≤ RBW / 2, so that narrowband signals are not lost between frequency bins.)
- f) Sweep time = auto.
- g) Detector = RMS (i.e., power averaging), if available. Otherwise, use the sample detector mode.
- h) Do not use sweep triggering. Allow the sweep to "free run."
- Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the ON and OFF periods of the transmitter.
- j) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- k) Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%.

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. (See ANSI C63.10 section 14.3 for Guidance)

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	$\mathbf{\nabla}$	
1	Support			\checkmark

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Note: Limit is modified to ensure complying with both conducted power limit of 30dBm and eirp limit of 36 dBm

Page No: 26 of 88

Maximum Output Power

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Tx 2 Max Power (dBm)	Tx 3 Max Power (dBm)	Tx 4 Max Power (dBm)	Duty Cycle Correction (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	3	18.0				0.2	18.2	30.0	11.81
	CCK, 1 to 11 Mbps	2	3	18.0	18.5			0.2	21.5	30.0	8.54
	CCK, 1 to 11 Mbps	3	3	18.0	18.5	17.6		0.2	23.0	30.0	6.99
	CCK, 1 to 11 Mbps	4	3	18.0	18.5	17.6	18.6	0.2	24.4	30.0	5.59
	Non HT20, 6 to 54 Mbps	1	3	12.2				0.0	12.2	30.0	17.75
	Non HT20, 6 to 54 Mbps	2	3	12.2	13.0			0.0	15.7	30.0	14.33
	Non HT20, 6 to 54 Mbps	3	3	12.2	13.0	12.4		0.0	17.4	30.0	12.64
	Non HT20, 6 to 54 Mbps	4	3	12.2	13.0	12.4	13.0	0.0	18.7	30.0	11.27
	Non HT20 Beam Forming, 6 to 54 Mbps	2	6	11.3	12.0			0.0	14.7	30.0	15.28
	Non HT20 Beam Forming, 6 to 54 Mbps	3	8	10.3	10.9	10.2		0.0	15.3	28.0	12.71
	Non HT20 Beam Forming, 6 to 54 Mbps	4	9	9.3	10.0	9.1	9.8	0.0	15.6	27.0	11.37
	HT/VHT20, M0 to M7	1	3	12.2				0.1	12.3	30.0	17.75
	HT/VHT20, M0 to M7	2	3	12.2	12.8			0.1	15.6	30.0	14.43
	HT/VHT20, M8 to M15	2	3	12.2	12.8			0.1	15.6	30.0	14.43
	HT/VHT20, M0 to M7	3	3	12.2	12.8	12.4		0.1	17.3	30.0	12.70
2412	HT/VHT20, M8 to M15	3	3	12.2	12.8	12.4		0.1	17.3	30.0	12.70
2	HT/VHT20, M16 to M23	3	3	12.2	12.8	12.4		0.1	17.3	30.0	12.70
	HT/VHT20, M0 to M7	4	3	11.4	12.0	11.2	11.9	0.1	17.7	30.0	12.29
	HT/VHT20, M8 to M15	4	3	11.4	12.0	11.2	11.9	0.1	17.7	30.0	12.29
	HT/VHT20, M16 to M23	4	3	11.4	12.0	11.2	11.9	0.1	17.7	30.0	12.29
	HT/VHT20, M24 to M31	4	3	11.4	12.0	11.2	11.9	0.1	17.7	30.0	12.29
	HT/VHT20 Beam Forming, M0 to M7	2	6	11.4	12.0			0.1	14.8	30.0	15.23
	HT/VHT20 Beam Forming, M8 to M15	2	3	12.2	12.8			0.1	15.6	30.0	14.43
	HT/VHT20 Beam Forming, M0 to M7	3	8	10.1	10.8	10.2		0.1	15.2	28.0	12.80
	HT/VHT20 Beam Forming, M8 to M15	3	5	11.4	12.0	11.2		0.1	16.4	30.0	13.63
	HT/VHT20 Beam Forming, M16 to M23	3	3	12.2	12.8	12.4		0.1	17.3	30.0	12.70
	HT/VHT20 Beam Forming, M0 to M7	4	9	8.2	9.0	8.2	8.7	0.1	14.6	27.0	12.39
	HT/VHT20 Beam Forming, M8 to M15	4	6	10.1	10.8	10.2	10.7	0.1	16.5	30.0	13.47
	HT/VHT20 Beam Forming, M16 to M23	4	4	11.4	12.0	11.2	11.9	0.1	17.7	30.0	12.29
	HT/VHT20 Beam Forming, M24 to M31	4	3	11.4	12.0	11.2	11.9	0.1	17.7	30.0	12.29
	HT/VHT20 STBC, M0 to M7	2	3	12.2	12.8			0.1	15.6	30.0	14.43

Page No: 27 of 88

i I		l	l			
C	5	5	C	¢)	

	HT/VHT20 STBC, M0 to M7	3	3	12.2	12.8	12.4		0.1	17.3	30.0	12.70
ŀ	HT/VHT20 STBC, M0 to M7	4	3	11.4	12.0	11.2	11.9	0.1	17.7	30.0	12.29
ŀ	HE20, M0 to M9 1ss	- 1	3	12.4	12.0	11.2	11.5	0.1	12.5	30.0	17.53
	HE20, M0 to M9 1ss	2	3	12.4	13.2			0.1	15.9	30.0	14.11
-	HE20, M0 to M9 2ss	2	3	12.4	13.2			0.1	15.9	30.0	14.11
ŀ	HE20, M0 to M9 1ss	3	3	11.6	12.2	11.6		0.1	16.6	30.0	13.35
F	HE20, M0 to M9 2ss	3	3	11.6	12.2	11.6		0.1	16.6	30.0	13.35
	HE20, M0 to M9 3ss	3	3	11.6	12.2	11.6		0.1	16.6	30.0	13.35
	HE20, M0 to M9 1ss	4	3	11.6	12.2	11.6	12.0	0.1	17.9	30.0	12.06
	HE20, M0 to M9 2ss	4	3	11.6	12.2	11.6	12.0	0.1	17.9	30.0	12.06
	HE20, M0 to M9 3ss	4	3	11.6	12.2	11.6	12.0	0.1	17.9	30.0	12.06
	HE20, M0 to M9 4ss	4	3	11.6	12.2	11.6	12.0	0.1	17.9	30.0	12.06
	HE20 Beam Forming, M0 to M9 1ss	2	6	10.5	11.1			0.1	13.9	30.0	16.11
	HE20 Beam Forming, M0 to M9 2ss	2	3	12.4	13.2			0.1	15.9	30.0	14.11
	HE20 Beam Forming, M0 to M9 1ss	3	8	9.3	10.1	9.4		0.1	14.5	28.0	13.55
	HE20 Beam Forming, M0 to M9 2ss	3	5	10.5	11.1	10.3		0.1	15.5	30.0	14.52
	HE20 Beam Forming, M0 to M9 3ss	3	3	11.6	12.2	11.6		0.1	16.6	30.0	13.35
	HE20 Beam Forming, M0 to M9 1ss	4	9	7.2	8.0	7.5	8.1	0.1	13.8	27.0	13.20
	HE20 Beam Forming, M0 to M9 2ss	4	6	9.3	10.1	9.4	9.9	0.1	15.8	30.0	14.23
	HE20 Beam Forming, M0 to M9 3ss	4	4	10.5	11.1	10.3	10.9	0.1	16.8	30.0	13.20
	HE20 Beam Forming, M0 to M9 4ss	4	3	11.6	12.2	11.6	12.0	0.1	17.9	30.0	12.06
	HE20 STBC, M0 to M9 2ss	2	3	12.4	13.2			0.1	15.9	30.0	14.11
	HE20 STBC, M0 to M9 2ss	3	3	11.6	12.2	11.6		0.1	16.6	30.0	13.35
	HE20 STBC, M0 to M9 2ss	4	3	11.6	12.2	11.6	12.0	0.1	17.9	30.0	12.06
	CCK, 1 to 11 Mbps	1	3	17.8				0.2	18.0	30.0	12.01
	CCK, 1 to 11 Mbps	2	3	17.8	18.9			0.2	21.6	30.0	8.41
	CCK, 1 to 11 Mbps	3	3	17.8	18.9	17.4		0.2	23.0	30.0	6.96
	CCK, 1 to 11 Mbps	4	3	17.8	18.9	17.4	18.8	0.2	24.5	30.0	5.52
	Non HT20, 6 to 54 Mbps	1	3	17.3				0.0	17.3	30.0	12.65
	Non HT20, 6 to 54 Mbps	2	3	17.3	18.3			0.0	20.9	30.0	9.12
	Non HT20, 6 to 54 Mbps	3	3	17.3	18.3	17.0		0.0	22.4	30.0	7.61
	Non HT20, 6 to 54 Mbps	4	3	17.3	18.3	17.0	18.1	0.0	23.8	30.0	6.23
2437	Non HT20 Beam Forming, 6 to 54 Mbps	2	6	17.3	18.3			0.0	20.9	30.0	9.12
24	Non HT20 Beam Forming, 6 to 54 Mbps	3	8	17.3	18.3	17.0		0.0	22.4	28.0	5.61
	Non HT20 Beam Forming, 6 to 54 Mbps	4	9	17.3	18.3	17.0	18.1	0.0	23.8	27.0	3.23
	HT/VHT20, M0 to M7	1	3	17.3				0.1	17.4	30.0	12.65
	HT/VHT20, M0 to M7	2	3	17.3	18.1			0.1	20.8	30.0	9.22
	HT/VHT20, M8 to M15	2	3	17.3	18.1			0.1	20.8	30.0	9.22
	HT/VHT20, M0 to M7	3	3	17.3	18.1	17.2		0.1	22.4	30.0	7.62
	HT/VHT20, M8 to M15	3	3	17.3	18.1	17.2		0.1	22.4	30.0	7.62
	HT/VHT20, M16 to M23	3	3	17.3	18.1	17.2		0.1	22.4	30.0	7.62
	HT/VHT20, M0 to M7	4	3	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23

Page No: 28 of 88

ы	աիս	
CI	sco	

HT/VHT20, M8 to M15	4	3	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20, M16 to M23	4	3	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20, M24 to M31	4	3	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20 Beam Forming, M0 to M7	2	6	17.3	18.1			0.1	20.8	30.0	9.22
HT/VHT20 Beam Forming, M8 to M15	2	3	17.3	18.1			0.1	20.8	30.0	9.22
HT/VHT20 Beam Forming, M0 to M7	3	8	17.3	18.1	17.2		0.1	22.4	28.0	5.62
HT/VHT20 Beam Forming, M8 to M15	3	5	17.3	18.1	17.2		0.1	22.4	30.0	7.62
HT/VHT20 Beam Forming, M16 to M23	3	3	17.3	18.1	17.2		0.1	22.4	30.0	7.62
HT/VHT20 Beam Forming, M0 to M7	4	9	17.3	18.1	17.2	18.1	0.1	23.8	27.0	3.23
HT/VHT20 Beam Forming, M8 to M15	4	6	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20 Beam Forming, M16 to M23	4	4	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20 Beam Forming, M24 to M31	4	3	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20 STBC, M0 to M7	2	3	17.3	18.1			0.1	20.8	30.0	9.22
HT/VHT20 STBC, M0 to M7	3	3	17.3	18.1	17.2		0.1	22.4	30.0	7.62
HT/VHT20 STBC, M0 to M7	4	3	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HE20, M0 to M9 1ss	1	3	17.3				0.1	17.4	30.0	12.63
HE20, M0 to M9 1ss	2	3	17.3	18.2			0.1	20.8	30.0	9.15
HE20, M0 to M9 2ss	2	3	17.3	18.2			0.1	20.8	30.0	9.15
HE20, M0 to M9 1ss	3	3	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20, M0 to M9 2ss	3	3	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20, M0 to M9 3ss	3	3	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20, M0 to M9 1ss	4	3	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20, M0 to M9 2ss	4	3	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20, M0 to M9 3ss	4	3	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20, M0 to M9 4ss	4	3	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20 Beam Forming, M0 to M9 1ss	2	6	17.3	18.2			0.1	20.8	30.0	9.15
HE20 Beam Forming, M0 to M9 2ss	2	3	17.3	18.2			0.1	20.8	30.0	9.15
HE20 Beam Forming, M0 to M9 1ss	3	8	17.3	18.2	17.3		0.1	22.5	28.0	5.54
HE20 Beam Forming, M0 to M9 2ss	3	5	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20 Beam Forming, M0 to M9 3ss	3	3	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20 Beam Forming, M0 to M9 1ss	4	9	17.3	18.2	17.3	18.3	0.1	23.9	27.0	3.11
HE20 Beam Forming, M0 to M9 2ss	4	6	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20 Beam Forming, M0 to M9 3ss	4	4	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20 Beam Forming, M0 to M9 4ss	4	3	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20 STBC, M0 to M9 2ss	2	3	17.3	18.2			0.1	20.8	30.0	9.15
HE20 STBC, M0 to M9 2ss	3	3	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20 STBC, M0 to M9 2ss	4	3	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11

Page No: 29 of 88

$ \mathbf{u} $	ախ	
CI	sco	

		4	0	47.0				0.0	47.0	00.0	40.04
	CCK, 1 to 11 Mbps	1 2	3 3	17.6 17.6	18.5			0.2 0.2	17.8 21.3	30.0 30.0	12.21 8.72
	CCK, 1 to 11 Mbps	2 3	3 3	17.6	18.5	17.4		0.2	21.3	30.0	7.18
	CCK, 1 to 11 Mbps						10.7				
	CCK, 1 to 11 Mbps	4	3 3	17.6	18.5	17.4	18.7	0.2 0.0	24.3	30.0	5.70 16.95
	Non HT20, 6 to 54 Mbps	1		13.0	10.0				13.0	30.0	
	Non HT20, 6 to 54 Mbps	2	3	12.1	12.9	40.0		0.0	15.6	30.0	14.43
	Non HT20, 6 to 54 Mbps	3	3 3	12.1	12.9	12.3	10.0	0.0	17.3	30.0	12.74
	Non HT20, 6 to 54 Mbps	4		12.1	12.9	12.3	13.0	0.0	18.7	30.0	11.34
	Non HT20 Beam Forming, 6 to 54 Mbps	2	6	12.1	12.9	44.0		0.0	15.6	30.0	14.43
	Non HT20 Beam Forming, 6 to 54 Mbps	3	8	11.0	12.0	11.2	40.0	0.0	16.2	28.0	11.76
	Non HT20 Beam Forming, 6 to 54 Mbps	4	9	10.0	10.8	10.2	10.9	0.0	16.6	27.0	10.44
	HT/VHT20, M0 to M7	1	3	12.1	10.0			0.1	12.2	30.0	17.85
	HT/VHT20, M0 to M7	2	3	12.1	12.9			0.1	15.6	30.0	14.42
	HT/VHT20, M8 to M15	2	3	12.1	12.9	10.0		0.1	15.6	30.0	14.42
	HT/VHT20, M0 to M7	3	3	12.1	12.9	12.2		0.1	17.2	30.0	12.76
	HT/VHT20, M8 to M15	3	3	12.1	12.9	12.2		0.1	17.2	30.0	12.76
	HT/VHT20, M16 to M23	3	3	12.1	12.9	12.2		0.1	17.2	30.0	12.76
	HT/VHT20, M0 to M7	4	3	12.1	12.9	12.2	13.0	0.1	18.6	30.0	11.36
	HT/VHT20, M8 to M15	4	3	12.1	12.9	12.2	13.0	0.1	18.6	30.0	11.36
	HT/VHT20, M16 to M23	4	3	12.1	12.9	12.2	13.0	0.1	18.6	30.0	11.36
52	HT/VHT20, M24 to M31	4	3	12.1	12.9	12.2	13.0	0.1	18.6	30.0	11.36
2462	HT/VHT20 Beam Forming, M0 to M7	2	6	11.1	11.8			0.1	14.5	30.0	15.47
	HT/VHT20 Beam Forming, M8 to M15	2	3	12.1	12.9			0.1	15.6	30.0	14.42
	HT/VHT20 Beam Forming, M0 to M7	3	8	9.9	10.8	10.2		0.1	15.1	28.0	12.86
	HT/VHT20 Beam Forming, M8 to M15	3	5	11.1	11.8	11.2		0.1	16.2	30.0	13.80
	HT/VHT20 Beam Forming, M16 to M23	3	3	12.1	12.9	12.2		0.1	17.2	30.0	12.76
	HT/VHT20 Beam Forming, M0 to M7	4	9	9.9	10.8	10.2	10.8	0.1	16.5	27.0	10.48
	HT/VHT20 Beam Forming, M8 to M15	4	6	11.1	11.8	11.2	12.0	0.1	17.6	30.0	12.39
	HT/VHT20 Beam Forming, M16 to M23	4	4	11.1	11.8	11.2	12.0	0.1	17.6	30.0	12.39
	HT/VHT20 Beam Forming, M24 to M31	4	3	12.1	12.9	12.2	13.0	0.1	18.6	30.0	11.36
	HT/VHT20 STBC, M0 to M7	2	3	12.1	12.9			0.1	15.6	30.0	14.42
	HT/VHT20 STBC, M0 to M7	3	3	12.1	12.9	12.2		0.1	17.2	30.0	12.76
	HT/VHT20 STBC, M0 to M7	4	3	12.1	12.9	12.2	13.0	0.1	18.6	30.0	11.36
	HE20, M0 to M9 1ss	1	3	12.3				0.1	12.4	30.0	17.63
	HE20, M0 to M9 1ss	2	3	11.2	12.4			0.1	14.9	30.0	15.08
	HE20, M0 to M9 2ss	2	3	11.2	12.4			0.1	14.9	30.0	15.08
	HE20, M0 to M9 1ss	3	3	11.2	12.4	11.7		0.1	16.6	30.0	13.37
	HE20, M0 to M9 2ss	3	3	11.2	12.4	11.7		0.1	16.6	30.0	13.37
	HE20, M0 to M9 3ss	3	3	11.2	12.4	11.7		0.1	16.6	30.0	13.37
	HE20, M0 to M9 1ss	4	3	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
	HE20, M0 to M9 2ss	4	3	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
	HE20, M0 to M9 3ss	4	3	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
	HE20, M0 to M9 4ss	4	3	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
	,								-		

Page No: 30 of 88

HE20 Beam Forming, M0 to M9 1ss	2	6	11.2	12.4			0.1	14.9	30.0	15.08
HE20 Beam Forming, M0 to M9 2ss	2	3	11.2	12.4			0.1	14.9	30.0	15.08
HE20 Beam Forming, M0 to M9 1ss	3	8	10.1	11.2	10.4		0.1	15.4	28.0	12.57
HE20 Beam Forming, M0 to M9 2ss	3	5	11.2	12.4	11.7		0.1	16.6	30.0	13.37
HE20 Beam Forming, M0 to M9 3ss	3	3	11.2	12.4	11.7		0.1	16.6	30.0	13.37
HE20 Beam Forming, M0 to M9 1ss	4	9	9.0	10.2	9.5	10.0	0.1	15.8	27.0	11.21
HE20 Beam Forming, M0 to M9 2ss	4	6	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
HE20 Beam Forming, M0 to M9 3ss	4	4	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
HE20 Beam Forming, M0 to M9 4ss	4	3	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
HE20 STBC, M0 to M9 2ss	2	3	11.2	12.4			0.1	14.9	30.0	15.08
HE20 STBC, M0 to M9 2ss	3	3	11.2	12.4	11.7		0.1	16.6	30.0	13.37
HE20 STBC, M0 to M9 2ss	4	3	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07

Page No: 31 of 88

Maximum Transmit Output Power, 2437 MHz, HE20 Beam Forming, M0 to M9 1ss



Antenna B

սիսիս

Antenna D

Antenna C

Antenna A

Page No: 32 of 88

A.5 Power Spectral Density

Power Spectral Density Test Requirement

15.247 (e) / RSS-247 5.2 (b) / LP0002:3.10.1(6.2.2)

5.2 Digital transmission systems

DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MHz and 2400-2483.5 MHz:

b) The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

Power Spectral Density Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05

ANSI C63.10: 2013
Power Spectral Density
Test Procedure
1. Set the radio in the continuous transmitting mode at full power
2.Configure Spectrum analyzer as per test parameters below and Peak search marker
3. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05, section 8.4 DTS maximum power spectral density level in the fundamental emission

ANSI C63.10: 2013, section 11.10.5 Average PSD

Power Spectral Density Test parameters

11.10.5 Method AVGPSD-2

Method AVGPSD-2 uses trace averaging across on and OFF times of the EUT transmissions, followed by duty cycle correction.

The following procedure is applicable when the EUT cannot be configured to transmit continuously (i.e., $D \le 98\%$), when sweep triggering/signal gating cannot be used to measure only when the EUT is transmitting at its maximum power control level, and when the transmission duty cycle is constant (i.e., duty cycle variations are less than ±2%):

- a) Measure the duty cycle (D) of the transmitter output signal as described in 11.6.
- b) Set instrument center frequency to DTS channel center frequency.
- c) Set span to at least 1.5 times the OBW.
- d) Set RBW to: 3 kHz \leq RBW \leq 100 kHz.
- e) Set $VBW \ge [3 \times RBW]$.
- f) Detector power averaging (rms) or sample detector (when rms not available).
- g) Ensure that the number of measurement points in the sweep $\geq [2 \times \text{span} / \text{RBW}]$.
- h) Sweep time = auto couple.
- i) Do not use sweep triggering; allow sweep to "free run."
- j) Employ trace averaging (rms) mode over a minimum of 100 traces.
- k) Use the peak marker function to determine the maximum amplitude level.
- Add [10 log (1 / D)], where D is the duty cycle measured in step a), to the measured PSD to compute the average PSD during the actual transmission time.
- m) If measured value exceeds requirement specified by regulatory agency, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

Page No: 33 of 88

The "Measure and add 10 log(N) dB technique", where N is the number of outputs, is used for measuring in-band Power Spectral Density. (See ANSI C63.10 section 14.3.2.3)

սիսիս

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support			\checkmark

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 34 of 88

Power Spectral Density

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/3kHz)	Tx 2 PSD (dBm/3kHz)	Tx 3 PSD (dBm/3kHz)	Tx 4 PSD (dBm/3kHz)	Duty Cycle Correction (dB)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Margin (dB)
	CCK, 1 to 11 Mbps	1	3	0.1				0.2	0.3	8.0	7.71
	CCK, 1 to 11 Mbps	2	6	0.1	-5.2			0.2	1.4	8.0	6.58
	CCK, 1 to 11 Mbps	3	8	0.1	-5.2	-5.1		0.2	2.3	6.0	3.67
	CCK, 1 to 11 Mbps	4	9	0.1	-5.2	-5.1	-4.7	0.2	3.1	5.0	1.86
	Non HT20, 6 to 54 Mbps	1	3	-3.7				0.0	-3.7	8.0	11.65
	Non HT20, 6 to 54 Mbps	2	6	-3.7	-9.0			0.0	-2.5	8.0	10.53
	Non HT20, 6 to 54 Mbps	3	8	-3.7	-9.0	-15.5		0.0	-2.3	6.0	8.32
	Non HT20, 6 to 54 Mbps	4	9	-3.7	-9.0	-15.5	-10.3	0.0	-1.7	5.0	6.67
	Non HT20 Beam Forming, 6 to 54 Mbps	2	6	-4.6	-9.1			0.0	-3.2	8.0	11.24
	Non HT20 Beam Forming, 6 to 54 Mbps	3	8	-5.3	-11.4	-17.2		0.0	-4.1	6.0	10.08
	Non HT20 Beam Forming, 6 to 54 Mbps	4	9	-6.8	-12.4	-19.2	-13.2	0.0	-4.8	5.0	9.82
	HT/VHT20, M0 to M7	1	3	-3.5				0.1	-3.4	8.0	11.45
	HT/VHT20, M0 to M7	2	6	-3.5	-9.3			0.1	-2.4	8.0	10.43
	HT/VHT20, M8 to M15	2	3	-3.5	-9.3			0.1	-2.4	8.0	10.43
	HT/VHT20, M0 to M7	3	8	-3.5	-9.3	-14.7		0.1	-2.2	6.0	8.18
2412	HT/VHT20, M8 to M15	3	5	-3.5	-9.3	-14.7		0.1	-2.2	8.0	10.18
N	HT/VHT20, M16 to M23	3	3	-3.5	-9.3	-14.7		0.1	-2.2	8.0	10.18
	HT/VHT20, M0 to M7	4	9	-5.1	-9.9	-15.5	-10.5	0.1	-2.7	5.0	7.72
	HT/VHT20, M8 to M15	4	6	-5.1	-9.9	-15.5	-10.5	0.1	-2.7	8.0	10.72
	HT/VHT20, M16 to M23	4	4	-5.1	-9.9	-15.5	-10.5	0.1	-2.7	8.0	10.72
	HT/VHT20, M24 to M31	4	3	-5.1	-9.9	-15.5	-10.5	0.1	-2.7	8.0	10.72
	HT/VHT20 Beam Forming, M0 to M7	2	6	-5.1	-9.9			0.1	-3.8	8.0	11.81
	HT/VHT20 Beam Forming, M8 to M15	2	3	-3.5	-9.3			0.1	-2.4	8.0	10.43
	HT/VHT20 Beam Forming, M0 to M7	3	8	-6.0	-11.0	-16.4		0.1	-4.5	6.0	10.46
	HT/VHT20 Beam Forming, M8 to M15	3	5	-5.1	-9.9	-15.5		0.1	-3.5	8.0	11.52
	HT/VHT20 Beam Forming, M16 to M23	3	3	-3.5	-9.3	-14.7		0.1	-2.2	8.0	10.18
	HT/VHT20 Beam Forming, M0 to M7	4	9	-8.2	-13.0	-19.0	-13.7	0.1	-5.9	5.0	10.85
	HT/VHT20 Beam Forming, M8 to M15	4	6	-6.0	-11.0	-16.4	-11.9	0.1	-3.7	8.0	11.73
	HT/VHT20 Beam Forming, M16 to M23	4	4	-5.1	-9.9	-15.5	-10.5	0.1	-2.7	8.0	10.72
	HT/VHT20 Beam Forming, M24 to M31	4	3	-5.1	-9.9	-15.5	-10.5	0.1	-2.7	8.0	10.72
	HT/VHT20 STBC, M0 to M7	2	3	-3.5	-9.3			0.1	-2.4	8.0	10.43

Page No: 35 of 88

i I		1				
C	5	5	Ċ	Ç)	

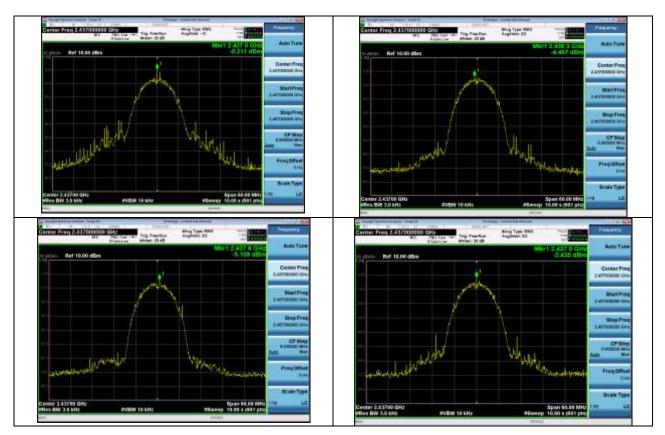
	HT/VHT20 STBC, M0 to M7	3	5	-3.5	-9.3	-14.7		0.1	-2.2	8.0	10.18
	HT/VHT20 STBC, M0 to M7	4	6	-5.1	-9.9	-15.5	-10.5	0.1	-2.7	8.0	10.72
	HE20, M0 to M9 1ss	1	3	-3.7				0.1	-3.6	8.0	11.63
	HE20, M0 to M9 1ss	2	6	-3.7	-9.1			0.1	-2.5	8.0	10.53
	HE20, M0 to M9 2ss	2	3	-3.7	-9.1			0.1	-2.5	8.0	10.53
	HE20, M0 to M9 1ss	3	8	-5.0	-9.4	-14.1		0.1	-3.2	6.0	9.21
	HE20, M0 to M9 2ss	3	5	-5.0	-9.4	-14.1		0.1	-3.2	8.0	11.21
	HE20, M0 to M9 3ss	3	3	-5.0	-9.4	-14.1		0.1	-3.2	8.0	11.21
	HE20, M0 to M9 1ss	4	9	-5.0	-9.4	-14.1	-10.9	0.1	-2.5	5.0	7.52
	HE20, M0 to M9 2ss	4	6	-5.0	-9.4	-14.1	-10.9	0.1	-2.5	8.0	10.52
	HE20, M0 to M9 3ss	4	4	-5.0	-9.4	-14.1	-10.9	0.1	-2.5	8.0	10.52
	HE20, M0 to M9 4ss	4	3	-5.0	-9.4	-14.1	-10.9	0.1	-2.5	8.0	10.52
	HE20 Beam Forming, M0 to M9 1ss	2	6	-6.2	-10.9			0.1	-4.9	8.0	12.87
	HE20 Beam Forming, M0 to M9 2ss	2	3	-3.7	-9.1			0.1	-2.5	8.0	10.53
	HE20 Beam Forming, M0 to M9 1ss	3	8	-7.1	-12.3	-16.4		0.1	-5.5	6.0	11.51
	HE20 Beam Forming, M0 to M9 2ss	3	5	-6.2	-10.9	-16.4		0.1	-4.6	8.0	12.57
	HE20 Beam Forming, M0 to M9 3ss	3	3	-5.0	-9.4	-14.1		0.1	-3.2	8.0	11.21
	HE20 Beam Forming, M0 to M9 1ss	4	9	-9.3	-13.1	-19.8	-16.4	0.1	-6.9	5.0	11.93
	HE20 Beam Forming, M0 to M9 2ss	4	6	-7.1	-12.3	-16.4	-13.2	0.1	-4.8	8.0	12.82
	HE20 Beam Forming, M0 to M9 3ss	4	4	-6.2	-10.9	-16.4	-12.8	0.1	-4.0	8.0	11.95
	HE20 Beam Forming, M0 to M9 4ss	4	3	-5.0	-9.4	-14.1	-10.9	0.1	-2.5	8.0	10.52
	HE20 STBC, M0 to M9 2ss	2	3	-3.7	-9.1			0.1	-2.5	8.0	10.53
	HE20 STBC, M0 to M9 2ss	3	5	-5.0	-9.4	-14.1		0.1	-3.2	8.0	11.21
	HE20 STBC, M0 to M9 2ss	4	6	-5.0	-9.4	-14.1	-10.9	0.1	-2.5	8.0	10.52
	CCK, 1 to 11 Mbps	1	3	-0.2				0.2	0.0	8.0	8.01
	CCK, 1 to 11 Mbps	2	6	-0.2	-4.5			0.2	1.4	8.0	6.64
	CCK, 1 to 11 Mbps	3	8	-0.2	-4.5	-5.1		0.2	2.3	6.0	3.72
	CCK, 1 to 11 Mbps	4	9	-0.2	-4.5	-5.1	-2.4	0.2	3.6	5.0	1.39
	Non HT20, 6 to 54 Mbps	1	3	0.7				0.0	0.7	8.0	7.25
	Non HT20, 6 to 54 Mbps	2	6	0.7	-4.0			0.0	2.0	8.0	5.99
	Non HT20, 6 to 54 Mbps	3	8	0.7	-4.0	-10.5		0.0	2.3	6.0	3.75
	Non HT20, 6 to 54 Mbps	4	9	0.7	-4.0	-10.5	-5.0	0.0	3.0	5.0	1.99
2437	Non HT20 Beam Forming, 6 to 54 Mbps	2	6	0.7	-4.0			0.0	2.0	8.0	5.99
24	Non HT20 Beam Forming, 6 to 54 Mbps	3	8	0.7	-4.0	-10.5		0.0	2.3	6.0	3.75
	Non HT20 Beam Forming, 6 to 54 Mbps	4	9	0.7	-4.0	-10.5	-5.0	0.0	3.0	5.0	1.99
	HT/VHT20, M0 to M7	1	3	0.6				0.1	0.7	8.0	7.35
	HT/VHT20, M0 to M7	2	6	0.6	-4.0			0.1	1.9	8.0	6.05
	HT/VHT20, M8 to M15	2	3	0.6	-4.0			0.1	1.9	8.0	6.05
	HT/VHT20, M0 to M7	3	8	0.6	-4.0	-9.8		0.1	2.2	6.0	3.77
	HT/VHT20, M8 to M15	3	5	0.6	-4.0	-9.8		0.1	2.2	8.0	5.77
	HT/VHT20, M16 to M23	3	3	0.6	-4.0	-9.8		0.1	2.2	8.0	5.77
	HT/VHT20, M0 to M7	4	9	0.6	-4.0	-9.8	-5.0	0.1	3.0	5.0	2.01

Page No: 36 of 88

1			l	1			
	C	5	5	C	(D	

HT/VHT20, M8 to M15	4	6	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HT/VHT20, M16 to M23	4	4	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HT/VHT20, M24 to M31	4	3	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HT/VHT20 Beam Forming, M0 to M7	2	6	0.6	-4.0			0.1	1.9	8.0	6.05
HT/VHT20 Beam Forming, M8 to M15	2	3	0.6	-4.0			0.1	1.9	8.0	6.05
HT/VHT20 Beam Forming, M0 to M7	3	8	0.6	-4.0	-9.8		0.1	2.2	6.0	3.77
HT/VHT20 Beam Forming, M8 to M15	3	5	0.6	-4.0	-9.8		0.1	2.2	8.0	5.77
HT/VHT20 Beam Forming, M16 to M23	3	3	0.6	-4.0	-9.8		0.1	2.2	8.0	5.77
HT/VHT20 Beam Forming, M0 to M7	4	9	0.6	-4.0	-9.8	-5.0	0.1	3.0	5.0	2.01
HT/VHT20 Beam Forming, M8 to M15	4	6	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HT/VHT20 Beam Forming, M16 to M23	4	4	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HT/VHT20 Beam Forming, M24 to M31	4	3	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HT/VHT20 STBC, M0 to M7	2	3	0.6	-4.0			0.1	1.9	8.0	6.05
HT/VHT20 STBC, M0 to M7	3	5	0.6	-4.0	-9.8		0.1	2.2	8.0	5.77
HT/VHT20 STBC, M0 to M7	4	6	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HE20, M0 to M9 1ss	1	3	0.5				0.1	0.6	8.0	7.43
HE20, M0 to M9 1ss	2	6	0.5	-4.5			0.1	1.8	8.0	6.24
HE20, M0 to M9 2ss	2	3	0.5	-4.5			0.1	1.8	8.0	6.24
HE20, M0 to M9 1ss	3	8	0.5	-4.5	-10.0		0.1	2.0	6.0	3.96
HE20, M0 to M9 2ss	3	5	0.5	-4.5	-10.0		0.1	2.0	8.0	5.96
HE20, M0 to M9 3ss	3	3	0.5	-4.5	-10.0		0.1	2.0	8.0	5.96
HE20, M0 to M9 1ss	4	9	0.5	-4.5	-10.0	-5.8	0.1	2.7	5.0	2.29
HE20, M0 to M9 2ss	4	6	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29
HE20, M0 to M9 3ss	4	4	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29
HE20, M0 to M9 4ss	4	3	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29
HE20 Beam Forming, M0 to M9 1ss	2	6	0.5	-4.5			0.1	1.8	8.0	6.24
HE20 Beam Forming, M0 to M9 2ss	2	3	0.5	-4.5			0.1	1.8	8.0	6.24
HE20 Beam Forming, M0 to M9 1ss	3	8	0.5	-4.5	-10.0		0.1	2.0	6.0	3.96
HE20 Beam Forming, M0 to M9 2ss	3	5	0.5	-4.5	-10.0		0.1	2.0	8.0	5.96
HE20 Beam Forming, M0 to M9 3ss	3	3	0.5	-4.5	-10.0		0.1	2.0	8.0	5.96
HE20 Beam Forming, M0 to M9 1ss	4	9	0.5	-4.5	-10.0	-5.8	0.1	2.7	5.0	2.29
HE20 Beam Forming, M0 to M9 2ss	4	6	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29
HE20 Beam Forming, M0 to M9 3ss	4	4	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29
HE20 Beam Forming, M0 to M9 4ss	4	3	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29
HE20 STBC, M0 to M9 2ss	2	3	0.5	-4.5			0.1	1.8	8.0	6.24
HE20 STBC, M0 to M9 2ss	3	5	0.5	-4.5	-10.0		0.1	2.0	8.0	5.96
HE20 STBC, M0 to M9 2ss	4	6	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29

Page No: 37 of 88


đ			I		
C	S	1	C	0	

	CCK, 1 to 11 Mbps	1	3	-1.0				0.2	-0.8	8.0	8.81
	CCK, 1 to 11 Mbps	2	6	-1.0	-4.9			0.2	0.7	8.0	7.32
	CCK, 1 to 11 Mbps	3	8	-1.0	-4.9	-6.3		0.2	1.5	6.0	4.50
	CCK, 1 to 11 Mbps	4	9	-1.0	-4.9	-6.3	-2.1	0.2	3.1	5.0	1.87
	Non HT20, 6 to 54 Mbps	1	3	-3.4				0.0	-3.4	8.0	11.35
	Non HT20, 6 to 54 Mbps	2	6	-4.0	-9.3			0.0	-2.8	8.0	10.83
	Non HT20, 6 to 54 Mbps	3	8	-4.0	-9.3	-16.3		0.0	-2.6	6.0	8.64
	Non HT20, 6 to 54 Mbps	4	9	-4.0	-9.3	-16.3	-10.3	0.0	-1.9	5.0	6.94
	Non HT20 Beam Forming, 6 to 54 Mbps	2	6	-4.0	-9.3			0.0	-2.8	8.0	10.83
	Non HT20 Beam Forming, 6 to 54 Mbps	3	8	-4.9	-9.8	-16.8		0.0	-3.4	6.0	9.43
	Non HT20 Beam Forming, 6 to 54 Mbps	4	9	-6.7	-10.9	-18.2	-11.6	0.0	-4.2	5.0	9.16
	HT/VHT20, M0 to M7	1	3	-4.3				0.1	-4.2	8.0	12.25
	HT/VHT20, M0 to M7	2	6	-4.3	-9.0			0.1	-3.0	8.0	10.98
	HT/VHT20, M8 to M15	2	3	-4.3	-9.0			0.1	-3.0	8.0	10.98
	HT/VHT20, M0 to M7	3	8	-4.3	-9.0	-14.5		0.1	-2.7	6.0	8.68
	HT/VHT20, M8 to M15	3	5	-4.3	-9.0	-14.5		0.1	-2.7	8.0	10.68
	HT/VHT20, M16 to M23	3	3	-4.3	-9.0	-14.5		0.1	-2.7	8.0	10.68
	HT/VHT20, M0 to M7	4	9	-4.3	-9.0	-14.5	-10.6	0.1	-2.0	5.0	7.02
	HT/VHT20, M8 to M15	4	6	-4.3	-9.0	-14.5	-10.6	0.1	-2.0	8.0	10.02
	HT/VHT20, M16 to M23	4	4	-4.3	-9.0	-14.5	-10.6	0.1	-2.0	8.0	10.02
	HT/VHT20, M24 to M31	4	3	-4.3	-9.0	-14.5	-10.6	0.1	-2.0	8.0	10.02
2462	HT/VHT20 Beam Forming, M0 to M7	2	6	-5.9	-10.2			0.1	-4.5	8.0	12.48
2	HT/VHT20 Beam Forming, M8 to M15	2	3	-4.3	-9.0			0.1	-3.0	8.0	10.98
	HT/VHT20 Beam Forming, M0 to M7	3	8	-6.4	-10.3	-16.9		0.1	-4.6	6.0	10.60
	HT/VHT20 Beam Forming, M8 to M15	3	5	-5.9	-10.2	-15.7		0.1	-4.2	8.0	12.16
	HT/VHT20 Beam Forming, M16 to M23	3	3	-4.3	-9.0	-14.5		0.1	-2.7	8.0	10.68
	HT/VHT20 Beam Forming, M0 to M7	4	9	-6.4	-10.3	-16.9	-12.4	0.1	-3.9	5.0	8.92
	HT/VHT20 Beam Forming, M8 to M15	4	6	-5.9	-10.2	-15.7	-11.7	0.1	-3.4	8.0	11.44
	HT/VHT20 Beam Forming, M16 to M23	4	4	-5.9	-10.2	-15.7	-11.7	0.1	-3.4	8.0	11.44
	HT/VHT20 Beam Forming, M24 to M31	4	3	-4.3	-9.0	-14.5	-10.6	0.1	-2.0	8.0	10.02
	HT/VHT20 STBC, M0 to M7	2	3	-4.3	-9.0			0.1	-3.0	8.0	10.98
	HT/VHT20 STBC, M0 to M7	3	5	-4.3	-9.0	-14.5		0.1	-2.7	8.0	10.68
	HT/VHT20 STBC, M0 to M7	4	6	-4.3	-9.0	-14.5	-10.6	0.1	-2.0	8.0	10.02
	HE20, M0 to M9 1ss	1	3	-4.5				0.1	-4.4	8.0	12.43
	HE20, M0 to M9 1ss	2	6	-5.5	-9.6			0.1	-4.0	8.0	12.01
	HE20, M0 to M9 2ss	2	3	-5.5	-9.6			0.1	-4.0	8.0	12.01
	HE20, M0 to M9 1ss	3	8	-5.5	-9.6	-14.6		0.1	-3.6	6.0	9.64
	HE20, M0 to M9 2ss	3	5	-5.5	-9.6	-14.6		0.1	-3.6	8.0	11.64
	HE20, M0 to M9 3ss	3	3	-5.5	-9.6	-14.6		0.1	-3.6	8.0	11.64
	HE20, M0 to M9 1ss	4	9	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	5.0	7.99
	HE20, M0 to M9 2ss	4	6	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99
	HE20, M0 to M9 3ss	4	4	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99
	HE20, M0 to M9 4ss	4	3	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99

Page No: 38 of 88

HE20 Beam Forming, M0 to M9 1ss	2	6	-5.5	-9.6			0.1	-4.0	8.0	12.01
HE20 Beam Forming, M0 to M9 2ss	2	3	-5.5	-9.6			0.1	-4.0	8.0	12.01
HE20 Beam Forming, M0 to M9 1ss	3	8	-6.9	-10.9	-15.0		0.1	-4.9	6.0	10.92
HE20 Beam Forming, M0 to M9 2ss	3	5	-5.5	-9.6	-14.6		0.1	-3.6	8.0	11.64
HE20 Beam Forming, M0 to M9 3ss	3	3	-5.5	-9.6	-14.6		0.1	-3.6	8.0	11.64
HE20 Beam Forming, M0 to M9 1ss	4	9	-8.2	-12.9	-16.9	-13.4	0.1	-5.6	5.0	10.64
HE20 Beam Forming, M0 to M9 2ss	4	6	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99
HE20 Beam Forming, M0 to M9 3ss	4	4	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99
HE20 Beam Forming, M0 to M9 4ss	4	3	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99
HE20 STBC, M0 to M9 2ss	2	3	-5.5	-9.6			0.1	-4.0	8.0	12.01
HE20 STBC, M0 to M9 2ss	3	5	-5.5	-9.6	-14.6		0.1	-3.6	8.0	11.64
HE20 STBC, M0 to M9 2ss	4	6	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99

Page No: 39 of 88

Power Spectral Density, 2437 MHz, CCK, 1 to 11 Mbps

uluulu cisco

Page No: 40 of 88

A.6 Conducted Spurious Emissions

Conducted Spurious Emissions Test Requirement

15.205 / RSS-Gen / LP0002

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) and RSS-GEN section 8.10, must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)) and RSS-Gen section 8.9

RSS-Gen 8.9 Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 and Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

RSS-Gen 8.10 (b) Unwanted emissions that fall into restricted bands of Table 6 shall comply with the limits specified in RSS-Gen; and (c) Unwanted emissions that do not fall within the restricted frequency bands of Table 6 shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.

Use formula below to substitute conducted measurements in place of radiated measurements

 $E[dB\mu V/m] = EIRP[dBm] - 20 \log(d[meters]) + 104.77$, where E = field strength and d = 3 meter

1) Average Plot, Limit= -41.25 dBm eirp

2) Peak plot, Limit = -21.25 dBm eirp

Conducted Spurious Emissions Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05 ANSI C63.10: 2013

Conducted Spurious Emissions Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Use the peak marker function to determine the maximum spurs amplitude level.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded. (see ANSI C63.10 2013 section 14.3.2.2)

6. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05, section 8.1 c) 3, section 8.6 DTS emissions in restricted frequency bands

ANSI C63.10: 2013 section 11.12.2.4 (Peak) & 11.12.2.5.2 (Average)

Conducted Spurious Emissions Test parameters	
Peak	Average
Span = 30MHz to 26.5GHz / 26.5GHz to 40GHz	Span = 30MHz to 26.5GHz / 26.5GHz to 40GHz
RBW = 1 MHz	RBW = 1 MHz

```
Page No: 41 of 88
```

$VBW \ge 3 MHz$	$VBW \ge 3 MHz$
Sweep = Auto	Sweep = Auto
Detector = Peak	Detector = RMS
Trace = Max Hold.	Power Averaging

ANSI C63.10: 2013 section 11.12.2.2 c) add the max antenna gain + ground reflection factor (4.7 dB for frequencies between 30 MHz and 1000 MHz, and 0 dB for frequencies > 1000 MHz).

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	$\mathbf{\nabla}$	
1	Support			\checkmark

Tested By :	Date of testing:	
Chris Blair	10-Sep-19 - 01-Oct-19	
Test Result : PASS		

Test Equipment

See Appendix C for list of test equipment

Page No: 42 of 88

Conducted Spurs Average Upper, 2412 MHz, Non HT20, 6 to 54 Mbps

սիսիս

Conducted Spurs Peak Upper, 2412 MHz, Non HT20, 6 to 54 Mbps

		an output an observed				-	_
Inc.etty/		Alog Tipe 1001 Augusta 120128	Tig Reefor	Here a	un icolico	er Prop	teuis
AdoTun	14 23 732 GHz -55.675 dBm	MK			f -20.00 cBm	4. R	t 44.
Center Pre-							
Dari Fre	Langert	والمالية المعاديات		منامسومت	han de la caracteria de la	-	
Biog Pre-							1 1
CF Store	8565 26.000 GH2 533766 (1881 pts)	Bweep, 22	13.4 1842	IVBA		12,000 (84V 1.0	
FreqOffic	NESTINA	arms (mathematik)	72.333.45 m 72.333.45 m 72.333.45 m 72.333.45 m	C BOA GALE C BOA GALE C BOA GALE C BOA GALE C D C C C C C C C C C C C C C C C C C C			A STATE
Scale Type							Svera S
		22.756	3				

Page No: 43 of 88

Conducted Spurious Average Table

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Tx 3 Spur Power (dBm)	Tx 4 Spur Power (dBm)	Duty Cycle Correction (dB)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	3	-73.9				0.2	-70.7	-41.25	29.46
	CCK, 1 to 11 Mbps	2	3	-73.9	-72.8			0.2	-67.1	-41.25	25.86
	CCK, 1 to 11 Mbps	3	3	-73.9	-72.8	-72.5		0.2	-65.1	-41.25	23.81
	CCK, 1 to 11 Mbps	4	3	-73.9	-72.8	-72.5	-73.5	0.2	-63.9	-41.25	22.68
	Non HT20, 6 to 54 Mbps	1	3	-75.1				0.0	-72.1	-41.25	30.80
	Non HT20, 6 to 54 Mbps	2	3	-75.1	-74.6			0.0	-68.8	-41.25	27.54
	Non HT20, 6 to 54 Mbps	3	3	-75.1	-74.6	-74.5		0.0	-66.9	-41.25	25.66
	Non HT20, 6 to 54 Mbps	4	3	-75.1	-74.6	-74.5	-75.4	0.0	-65.8	-41.25	24.57
	Non HT20 Beam Forming, 6 to 54 Mbps	2	6	-75.5	-74.9			0.0	-66.1	-41.25	24.88
	Non HT20 Beam Forming, 6 to 54 Mbps	3	8	-75.8	-75.3	-75.1		0.0	-62.6	-41.25	21.32
	Non HT20 Beam Forming, 6 to 54 Mbps	4	9	-76.0	-75.6	-75.4	-77.0	0.0	-60.9	-41.25	19.64
	HT/VHT20, M0 to M7	1	3	-75.4				0.1	-72.3	-41.25	31.10
	HT/VHT20, M0 to M7	2	3	-75.4	-74.7			0.1	-69.0	-41.25	27.72
	HT/VHT20, M8 to M15	2	3	-75.4	-74.7			0.1	-69.0	-41.25	27.72
N	HT/VHT20, M0 to M7	3	3	-75.4	-74.7	-74.8		0.1	-67.1	-41.25	25.88
2412	HT/VHT20, M8 to M15	3	3	-75.4	-74.7	-74.8		0.1	-67.1	-41.25	25.88
	HT/VHT20, M16 to M23	3	3	-75.4	-74.7	-74.8		0.1	-67.1	-41.25	25.88
	HT/VHT20, M0 to M7	4	3	-75.5	-75.2	-74.8	-76.2	0.1	-66.3	-41.25	25.07
	HT/VHT20, M8 to M15	4	3	-75.5	-75.2	-74.8	-76.2	0.1	-66.3	-41.25	25.07
	HT/VHT20, M16 to M23	4	3	-75.5	-75.2	-74.8	-76.2	0.1	-66.3	-41.25	25.07
	HT/VHT20, M24 to M31	4	3	-75.5	-75.2	-74.8	-76.2	0.1	-66.3	-41.25	25.07
	HT/VHT20 Beam Forming, M0 to M7	2	6	-75.5	-75.2			0.1	-66.3	-41.25	25.03
	HT/VHT20 Beam Forming, M8 to M15	2	3	-75.4	-74.7			0.1	-69.0	-41.25	27.72
	HT/VHT20 Beam Forming, M0 to M7	3	8	-75.9	-75.4	-75.1		0.1	-62.6	-41.25	21.38
	HT/VHT20 Beam Forming, M8 to M15	3	5	-75.5	-75.2	-74.8		0.1	-65.3	-41.25	24.08
	HT/VHT20 Beam Forming, M16 to M23	3	3	-75.4	-74.7	-74.8		0.1	-67.1	-41.25	25.88
	HT/VHT20 Beam Forming, M0 to M7	4	9	-76.6	-76.1	-75.8	-77.6	0.1	-61.4	-41.25	20.15
	HT/VHT20 Beam Forming, M8 to M15	4	6	-75.9	-75.4	-75.1	-76.7	0.1	-63.7	-41.25	22.41
	HT/VHT20 Beam Forming, M16 to M23	4	4	-75.5	-75.2	-74.8	-76.2	0.1	-65.3	-41.25	24.07
	HT/VHT20 Beam Forming, M24 to M31	4	3	-75.5	-75.2	-74.8	-76.2	0.1	-66.3	-41.25	25.07
	HT/VHT20 STBC, M0 to M7	2	3	-75.4	-74.7			0.1	-69.0	-41.25	27.72
			Page	No: 44 c	of 88						

i I			l			
C	5	5	C	ļ	D	

		2	3	-75.4	-74.7	-74.8		0.1	-67.1	-41.25	25.88
	HT/VHT20 STBC, M0 to M7 HT/VHT20 STBC, M0 to M7	3	3 3	-75.4	-74.7	-74.8	-76.2	0.1	-66.3	-41.25	25.00
			3	-75.3	-73.2	-74.0	-70.2		-72.2		
	HE20, M0 to M9 1ss	1	3 3		-74.9			0.1		-41.25	30.98
	HE20, M0 to M9 1ss	2		-75.3				0.1	-69.0	-41.25	27.77
	HE20, M0 to M9 2ss	2	3	-75.3	-74.9	74.0		0.1	-69.0	-41.25	27.77
	HE20, M0 to M9 1ss	3	3	-75.7	-75.3	-74.9		0.1	-67.5	-41.25	26.20
	HE20, M0 to M9 2ss	3	3	-75.7	-75.3	-74.9		0.1	-67.5	-41.25	26.20
	HE20, M0 to M9 3ss	3	3	-75.7	-75.3	-74.9	70.4	0.1	-67.5	-41.25	26.20
	HE20, M0 to M9 1ss	4	3	-75.7	-75.3	-74.9	-76.1	0.1	-66.4	-41.25	25.14
	HE20, M0 to M9 2ss	4	3	-75.7	-75.3	-74.9	-76.1	0.1	-66.4	-41.25	25.14
	HE20, M0 to M9 3ss	4	3	-75.7	-75.3	-74.9	-76.1	0.1	-66.4	-41.25	25.14
	HE20, M0 to M9 4ss	4	3	-75.7	-75.3	-74.9	-76.1	0.1	-66.4	-41.25	25.14
	HE20 Beam Forming, M0 to M9 1ss	2	6	-76.0	-75.5			0.1	-66.7	-41.25	25.42
	HE20 Beam Forming, M0 to M9 2ss	2	3	-75.3	-74.9	/		0.1	-69.0	-41.25	27.77
	HE20 Beam Forming, M0 to M9 1ss	3	8	-76.4	-75.7	-75.4		0.1	-63.0	-41.25	21.73
	HE20 Beam Forming, M0 to M9 2ss	3	5	-76.0	-75.5	-75.3		0.1	-65.8	-41.25	24.50
	HE20 Beam Forming, M0 to M9 3ss	3	3	-75.7	-75.3	-74.9		0.1	-67.5	-41.25	26.20
	HE20 Beam Forming, M0 to M9 1ss	4	9	-77.0	-76.1	-75.7	-77.8	0.1	-61.5	-41.25	20.24
	HE20 Beam Forming, M0 to M9 2ss	4	6	-76.4	-75.7	-75.4	-77.1	0.1	-64.0	-41.25	22.77
	HE20 Beam Forming, M0 to M9 3ss	4	4	-76.0	-75.5	-75.3	-76.6	0.1	-65.7	-41.25	24.49
	HE20 Beam Forming, M0 to M9 4ss	4	3	-75.7	-75.3	-74.9	-76.1	0.1	-66.4	-41.25	25.14
	HE20 STBC, M0 to M9 2ss	2	3	-75.3	-74.9			0.1	-69.0	-41.25	27.77
	HE20 STBC, M0 to M9 2ss	3	3	-75.7	-75.3	-74.9		0.1	-67.5	-41.25	26.20
	HE20 STBC, M0 to M9 2ss	4	3	-75.7	-75.3	-74.9	-76.1	0.1	-66.4	-41.25	25.14
	CCK, 1 to 11 Mbps	1	3	-74.9				0.2	-71.7	-41.25	30.46
	CCK, 1 to 11 Mbps	2	3	-74.9	-72.5			0.2	-67.3	-41.25	26.08
	CCK, 1 to 11 Mbps	3	3	-74.9	-72.5	-72.6		0.2	-65.2	-41.25	23.99
	CCK, 1 to 11 Mbps	4	3	-74.9	-72.5	-72.6	-72.9	0.2	-63.9	-41.25	22.66
	Non HT20, 6 to 54 Mbps	1	3	-75.2				0.0	-72.2	-41.25	30.90
	Non HT20, 6 to 54 Mbps	2	3	-75.2	-73.0			0.0	-67.9	-41.25	26.66
	Non HT20, 6 to 54 Mbps	3	3	-75.2	-73.0	-72.7		0.0	-65.7	-41.25	24.43
	Non HT20, 6 to 54 Mbps	4	3	-75.2	-73.0	-72.7	-74.6	0.0	-64.7	-41.25	23.43
2437	Non HT20 Beam Forming, 6 to 54 Mbps	2	6	-75.2	-73.0			0.0	-64.9	-41.25	23.66
27	Non HT20 Beam Forming, 6 to 54 Mbps	3	8	-75.2	-73.0	-72.7		0.0	-60.7	-41.25	19.43
	Non HT20 Beam Forming, 6 to 54 Mbps	4	9	-75.2	-73.0	-72.7	-74.6	0.0	-58.7	-41.25	17.43
	HT/VHT20, M0 to M7	1	3	-75.1				0.1	-72.0	-41.25	30.80
	HT/VHT20, M0 to M7	2	3	-75.1	-73.1			0.1	-67.9	-41.25	26.67
	HT/VHT20, M8 to M15	2	3	-75.1	-73.1			0.1	-67.9	-41.25	26.67
	HT/VHT20, M0 to M7	3	3	-75.1	-73.1	-73.0		0.1	-65.8	-41.25	24.56
	HT/VHT20, M8 to M15	3	3	-75.1	-73.1	-73.0		0.1	-65.8	-41.25	24.56
	HT/VHT20, M16 to M23	3	3	-75.1	-73.1	-73.0		0.1	-65.8	-41.25	24.56
	HT/VHT20, M0 to M7	4	3	-75.1	-73.1	-73.0	-74.6	0.1	-64.8	-41.25	23.53

Page No: 45 of 88

cisco

HT/VHT20, M8 to M15	4	3	-75.1	-73.1	-73.0	-74.6	0.1	-64.8	-41.25	23.53
HT/VHT20, M16 to M23	4	3	-75.1	-73.1	-73.0	-74.6	0.1	-64.8	-41.25	23.53
HT/VHT20, M24 to M31	4	3	-75.1	-73.1	-73.0	-74.6	0.1	-64.8	-41.25	23.53
HT/VHT20 Beam Forming, M0 to M7	2	6	-75.1	-73.1	10.0	7 1.0	0.1	-64.9	-41.25	23.67
HT/VHT20 Beam Forming, M8 to M15	2	3	-75.1	-73.1			0.1	-67.9	-41.25	26.67
HT/VHT20 Beam Forming, M0 to M7	3	8	-75.1	-73.1	-73.0		0.1	-60.8	-41.25	19.56
HT/VHT20 Beam Forming, M8 to M15	3	5	-75.1	-73.1	-73.0		0.1	-63.8	-41.25	22.56
HT/VHT20 Beam Forming, M16 to M23	3	3	-75.1	-73.1	-73.0		0.1	-65.8	-41.25	24.56
HT/VHT20 Beam Forming, M0 to M7	4	9	-75.1	-73.1	-73.0	-74.6	0.1	-58.8	-41.25	17.53
HT/VHT20 Beam Forming, M8 to M15	4	6	-75.1	-73.1	-73.0	-74.6	0.1	-61.8	-41.25	20.53
HT/VHT20 Beam Forming, M16 to M23	4	4	-75.1	-73.1	-73.0	-74.6	0.1	-63.8	-41.25	22.53
HT/VHT20 Beam Forming, M24 to M31	4	3	-75.1	-73.1	-73.0	-74.6	0.1	-64.8	-41.25	23.53
HT/VHT20 STBC, M0 to M7	2	3	-75.1	-73.1			0.1	-67.9	-41.25	26.67
HT/VHT20 STBC, M0 to M7	3	3	-75.1	-73.1	-73.0		0.1	-65.8	-41.25	24.56
HT/VHT20 STBC, M0 to M7	4	3	-75.1	-73.1	-73.0	-74.6	0.1	-64.8	-41.25	23.53
HE20, M0 to M9 1ss	1	3	-74.8				0.1	-71.7	-41.25	30.48
HE20, M0 to M9 1ss	2	3	-74.8	-73.0			0.1	-67.7	-41.25	26.48
HE20, M0 to M9 2ss	2	3	-74.8	-73.0			0.1	-67.7	-41.25	26.48
HE20, M0 to M9 1ss	3	3	-74.8	-73.0	-73.1		0.1	-65.7	-41.25	24.47
HE20, M0 to M9 2ss	3	3	-74.8	-73.0	-73.1		0.1	-65.7	-41.25	24.47
HE20, M0 to M9 3ss	3	3	-74.8	-73.0	-73.1		0.1	-65.7	-41.25	24.47
HE20, M0 to M9 1ss	4	3	-74.8	-73.0	-73.1	-74.5	0.1	-64.7	-41.25	23.44
HE20, M0 to M9 2ss	4	3	-74.8	-73.0	-73.1	-74.5	0.1	-64.7	-41.25	23.44
HE20, M0 to M9 3ss	4	3	-74.8	-73.0	-73.1	-74.5	0.1	-64.7	-41.25	23.44
HE20, M0 to M9 4ss	4	3	-74.8	-73.0	-73.1	-74.5	0.1	-64.7	-41.25	23.44
HE20 Beam Forming, M0 to M9 1ss	2	6	-74.8	-73.0			0.1	-64.7	-41.25	23.48
HE20 Beam Forming, M0 to M9 2ss	2	3	-74.8	-73.0			0.1	-67.7	-41.25	26.48
HE20 Beam Forming, M0 to M9 1ss	3	8	-74.8	-73.0	-73.1		0.1	-60.7	-41.25	19.47
HE20 Beam Forming, M0 to M9 2ss	3	5	-74.8	-73.0	-73.1		0.1	-63.7	-41.25	22.47
HE20 Beam Forming, M0 to M9 3ss	3	3	-74.8	-73.0	-73.1		0.1	-65.7	-41.25	24.47
HE20 Beam Forming, M0 to M9 1ss	4	9	-74.8	-73.0	-73.1	-74.5	0.1	-58.7	-41.25	17.44
HE20 Beam Forming, M0 to M9 2ss	4	6	-74.8	-73.0	-73.1	-74.5	0.1	-61.7	-41.25	20.44
HE20 Beam Forming, M0 to M9 3ss	4	4	-74.8	-73.0	-73.1	-74.5	0.1	-63.7	-41.25	22.44
HE20 Beam Forming, M0 to M9 4ss	4	3	-74.8	-73.0	-73.1	-74.5	0.1	-64.7	-41.25	23.44
HE20 STBC, M0 to M9 2ss	2	3	-74.8	-73.0			0.1	-67.7	-41.25	26.48
HE20 STBC, M0 to M9 2ss	3	3	-74.8	-73.0	-73.1		0.1	-65.7	-41.25	24.47
HE20 STBC, M0 to M9 2ss	4	3	-74.8	-73.0	-73.1	-74.5	0.1	-64.7	-41.25	23.44

Page No: 46 of 88

C	CCK, 1 to 11 Mbps	1	3	-76.1				0.2	-72.9	-41.25	31.66
	CCK, 1 to 11 Mbps	2	3	-76.1	-74.0			0.2	-68.7	-41.25	27.47
	CCK, 1 to 11 Mbps	3	3	-76.1	-74.0	-73.2		0.2	-66.3	-41.25	25.06
	CCK, 1 to 11 Mbps	4	3	-76.1	-74.0	-73.2	-69.3	0.2	-63.2	-41.25	21.95
	Non HT20, 6 to 54 Mbps	1	3	-77.4			0010	0.0	-74.4	-41.25	33.10
	Non HT20, 6 to 54 Mbps	2	3	-77.7	-75.0			0.0	-70.1	-41.25	28.84
	Non HT20, 6 to 54 Mbps	3	3	-77.7	-75.0	-74.6		0.0	-67.7	-41.25	26.50
	Non HT20, 6 to 54 Mbps	4	3	-77.7	-75.0	-74.6	-75.8	0.0	-66.6	-41.25	25.31
	Non HT20 Beam Forming, 6 to 54 Mbps	2	6	-77.7	-75.0			0.0	-67.1	-41.25	25.84
	Non HT20 Beam Forming, 6 to 54 Mbps	3	8	-77.9	-75.5	-75.1		0.0	-63.2	-41.25	21.94
	Non HT20 Beam Forming, 6 to 54 Mbps	4	9	-78.3	-75.8	-75.5	-76.8	0.0	-61.4	-41.25	20.15
	T/VHT20, M0 to M7	1	3	-77.8				0.1	-74.7	-41.25	33.50
	HT/VHT20, M0 to M7	2	3	-77.8	-75.1			0.1	-70.2	-41.25	28.93
	HT/VHT20, M8 to M15	2	3	-77.8	-75.1			0.1	-70.2	-41.25	28.93
	HT/VHT20, M0 to M7	3	3	-77.8	-75.1	-74.8		0.1	-67.9	-41.25	26.63
F	HT/VHT20, M8 to M15	3	3	-77.8	-75.1	-74.8		0.1	-67.9	-41.25	26.63
	HT/VHT20, M16 to M23	3	3	-77.8	-75.1	-74.8		0.1	-67.9	-41.25	26.63
F	HT/VHT20, M0 to M7	4	3	-77.8	-75.1	-74.8	-76.0	0.1	-66.7	-41.25	25.46
F	HT/VHT20, M8 to M15	4	3	-77.8	-75.1	-74.8	-76.0	0.1	-66.7	-41.25	25.46
F	HT/VHT20, M16 to M23	4	3	-77.8	-75.1	-74.8	-76.0	0.1	-66.7	-41.25	25.46
	HT/VHT20, M24 to M31	4	3	-77.8	-75.1	-74.8	-76.0	0.1	-66.7	-41.25	25.46
2462 _	HT/VHT20 Beam Forming, M0 to M7	2	6	-78.3	-75.5			0.1	-67.6	-41.25	26.37
	HT/VHT20 Beam Forming, M8 to M15	2	3	-77.8	-75.1			0.1	-70.2	-41.25	28.93
F	HT/VHT20 Beam Forming, M0 to M7	3	8	-78.5	-75.8	-75.3		0.1	-63.5	-41.25	22.25
F	HT/VHT20 Beam Forming, M8 to M15	3	5	-78.3	-75.5	-75.0		0.1	-66.2	-41.25	24.97
F	HT/VHT20 Beam Forming, M16 to M23	3	3	-77.8	-75.1	-74.8		0.1	-67.9	-41.25	26.63
F	HT/VHT20 Beam Forming, M0 to M7	4	9	-78.5	-75.8	-75.3	-76.9	0.1	-61.4	-41.25	20.14
F	HT/VHT20 Beam Forming, M8 to M15	4	6	-78.3	-75.5	-75.0	-76.5	0.1	-64.1	-41.25	22.83
F	HT/VHT20 Beam Forming, M16 to M23	4	4	-78.3	-75.5	-75.0	-76.5	0.1	-66.1	-41.25	24.83
F	HT/VHT20 Beam Forming, M24 to M31	4	3	-77.8	-75.1	-74.8	-76.0	0.1	-66.7	-41.25	25.46
F	HT/VHT20 STBC, M0 to M7	2	3	-77.8	-75.1			0.1	-70.2	-41.25	28.93
F	HT/VHT20 STBC, M0 to M7	3	3	-77.8	-75.1	-74.8		0.1	-67.9	-41.25	26.63
ŀ	HT/VHT20 STBC, M0 to M7	4	3	-77.8	-75.1	-74.8	-76.0	0.1	-66.7	-41.25	25.46
ŀ	HE20, M0 to M9 1ss	1	3	-77.7				0.1	-74.6	-41.25	33.38
ŀ	HE20, M0 to M9 1ss	2	3	-78.0	-75.2			0.1	-70.3	-41.25	29.05
ŀ	HE20, M0 to M9 2ss	2	3	-78.0	-75.2			0.1	-70.3	-41.25	29.05
ŀ	HE20, M0 to M9 1ss	3	3	-78.0	-75.2	-75.0		0.1	-68.0	-41.25	26.78
ŀ	HE20, M0 to M9 2ss	3	3	-78.0	-75.2	-75.0		0.1	-68.0	-41.25	26.78
ŀ	HE20, M0 to M9 3ss	3	3	-78.0	-75.2	-75.0		0.1	-68.0	-41.25	26.78
F	HE20, M0 to M9 1ss	4	3	-78.0	-75.2	-75.0	-76.2	0.1	-66.9	-41.25	25.61
F	HE20, M0 to M9 2ss	4	3	-78.0	-75.2	-75.0	-76.2	0.1	-66.9	-41.25	25.61
	HE20, M0 to M9 3ss	4	3	-78.0	-75.2	-75.0	-76.2	0.1	-66.9	-41.25	25.61
F	HE20, M0 to M9 4ss	4	3	-78.0	-75.2	-75.0	-76.2	0.1	-66.9	-41.25	25.61

Page No: 47 of 88

HE20 Beam Forming, M0 to M9 1ss	2	6	-78.0	-75.2			0.1	-67.3	-41.25	26.05
HE20 Beam Forming, M0 to M9 2ss	2	3	-78.0	-75.2			0.1	-70.3	-41.25	29.05
HE20 Beam Forming, M0 to M9 1ss	3	8	-78.6	-75.7	-75.3		0.1	-63.5	-41.25	22.22
HE20 Beam Forming, M0 to M9 2ss	3	5	-78.0	-75.2	-75.0		0.1	-66.0	-41.25	24.78
HE20 Beam Forming, M0 to M9 3ss	3	3	-78.0	-75.2	-75.0		0.1	-68.0	-41.25	26.78
HE20 Beam Forming, M0 to M9 1ss	4	9	-78.6	-75.8	-75.5	-77.2	0.1	-61.5	-41.25	20.27
HE20 Beam Forming, M0 to M9 2ss	4	6	-78.0	-75.2	-75.0	-76.2	0.1	-63.9	-41.25	22.61
HE20 Beam Forming, M0 to M9 3ss	4	4	-78.0	-75.2	-75.0	-76.2	0.1	-65.9	-41.25	24.61
HE20 Beam Forming, M0 to M9 4ss	4	3	-78.0	-75.2	-75.0	-76.2	0.1	-66.9	-41.25	25.61
HE20 STBC, M0 to M9 2ss	2	3	-78.0	-75.2			0.1	-70.3	-41.25	29.05
HE20 STBC, M0 to M9 2ss	3	3	-78.0	-75.2	-75.0		0.1	-68.0	-41.25	26.78
HE20 STBC, M0 to M9 2ss	4	3	-78.0	-75.2	-75.0	-76.2	0.1	-66.9	-41.25	25.61

Page No: 48 of 88


Conducted Spurs Average, 2437 MHz, Non HT20 Beam Forming, 6 to 54 Mbps

Antenna B

սիսիս

Antenna D

Antenna A

Antenna C

Page No: 49 of 88

Conducted Spurious Peak

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Tx 3 Spur Power (dBm)	Tx 4 Spur Power (dBm)	Duty Cycle Correction (dB)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	3	-59.0				0.2	-55.8	-21.25	34.56
	CCK, 1 to 11 Mbps	2	3	-59.0	-60.4			0.2	-53.4	-21.25	32.19
	CCK, 1 to 11 Mbps	3	3	-59.0	-60.4	-68.1		0.2	-53.1	-21.25	31.89
	CCK, 1 to 11 Mbps	4	3	-59.0	-60.4	-68.1	-64.7	0.2	-52.6	-21.25	31.30
	Non HT20, 6 to 54 Mbps	1	3	-63.7				0.0	-60.7	-21.25	39.40
	Non HT20, 6 to 54 Mbps	2	3	-63.7	-69.2			0.0	-59.6	-21.25	38.33
	Non HT20, 6 to 54 Mbps	3	3	-63.7	-69.2	-67.3		0.0	-58.3	-21.25	37.05
	Non HT20, 6 to 54 Mbps	4	3	-63.7	-69.2	-67.3	-69.3	0.0	-57.7	-21.25	36.41
	Non HT20 Beam Forming, 6 to 54 Mbps	2	6	-64.3	-69.1			0.0	-57.0	-21.25	35.76
	Non HT20 Beam Forming, 6 to 54 Mbps	3	8	-64.2	-68.6	-68.0		0.0	-53.7	-21.25	32.40
	Non HT20 Beam Forming, 6 to 54 Mbps	4	9	-64.7	-67.7	-68.0	-68.2	0.0	-51.8	-21.25	30.57
	HT/VHT20, M0 to M7	1	3	-64.3				0.1	-61.2	-21.25	40.00
	HT/VHT20, M0 to M7	2	3	-64.3	-68.4			0.1	-59.8	-21.25	38.57
	HT/VHT20, M8 to M15	2	3	-64.3	-68.4			0.1	-59.8	-21.25	38.57
2412	HT/VHT20, M0 to M7	3	3	-64.3	-68.4	-67.6		0.1	-58.6	-21.25	37.31
24	HT/VHT20, M8 to M15	3	3	-64.3	-68.4	-67.6		0.1	-58.6	-21.25	37.31
	HT/VHT20, M16 to M23	3	3	-64.3	-68.4	-67.6		0.1	-58.6	-21.25	37.31
	HT/VHT20, M0 to M7	4	3	-63.8	-69.7	-68.5	-68.0	0.1	-57.8	-21.25	36.54
	HT/VHT20, M8 to M15	4	3	-63.8	-69.7	-68.5	-68.0	0.1	-57.8	-21.25	36.54
	HT/VHT20, M16 to M23	4	3	-63.8	-69.7	-68.5	-68.0	0.1	-57.8	-21.25	36.54
	HT/VHT20, M24 to M31	4	3	-63.8	-69.7	-68.5	-68.0	0.1	-57.8	-21.25	36.54
	HT/VHT20 Beam Forming, M0 to M7	2	6	-63.8	-69.7			0.1	-56.8	-21.25	35.50
	HT/VHT20 Beam Forming, M8 to M15	2	3	-64.3	-68.4			0.1	-59.8	-21.25	38.57
	HT/VHT20 Beam Forming, M0 to M7	3	8	-65.1	-69.2	-68.8		0.1	-54.5	-21.25	33.21
	HT/VHT20 Beam Forming, M8 to M15	3	5	-63.8	-69.7	-68.5		0.1	-56.7	-21.25	35.47
	HT/VHT20 Beam Forming, M16 to M23	3	3	-64.3	-68.4	-67.6		0.1	-58.6	-21.25	37.31
	HT/VHT20 Beam Forming, M0 to M7	4	9	-64.0	-69.4	-69.1	-67.6	0.1	-51.9	-21.25	30.61
	HT/VHT20 Beam Forming, M8 to M15	4	6	-65.1	-69.2	-68.8	-68.0	0.1	-55.4	-21.25	34.13
	HT/VHT20 Beam Forming, M16 to M23	4	4	-63.8	-69.7	-68.5	-68.0	0.1	-56.8	-21.25	35.54
	HT/VHT20 Beam Forming, M24 to M31	4	3	-63.8	-69.7	-68.5	-68.0	0.1	-57.8	-21.25	36.54

Page No: 50 of 88

		0	0	04.0	CO 4			0.4	50.0	04.05	00.57
	HT/VHT20 STBC, M0 to M7	2	3 3	-64.3	-68.4	07.0		0.1	-59.8	-21.25	38.57
	HT/VHT20 STBC, M0 to M7	3	-	-64.3	-68.4	-67.6	00.0	0.1	-58.6	-21.25	37.31
	HT/VHT20 STBC, M0 to M7	4	3	-63.8	-69.7	-68.5	-68.0	0.1	-57.8	-21.25	36.54
	HE20, M0 to M9 1ss	1	3	-64.7				0.1	-61.6	-21.25	40.38
	HE20, M0 to M9 1ss	2	3	-64.7	-68.5			0.1	-60.1	-21.25	38.87
	HE20, M0 to M9 2ss	2	3	-64.7	-68.5			0.1	-60.1	-21.25	38.87
	HE20, M0 to M9 1ss	3	3	-64.2	-68.5	-68.4		0.1	-58.7	-21.25	37.45
	HE20, M0 to M9 2ss	3	3	-64.2	-68.5	-68.4		0.1	-58.7	-21.25	37.45
	HE20, M0 to M9 3ss	3	3	-64.2	-68.5	-68.4		0.1	-58.7	-21.25	37.45
	HE20, M0 to M9 1ss	4	3	-64.2	-68.5	-68.4	-68.2	0.1	-57.8	-21.25	36.56
	HE20, M0 to M9 2ss	4	3	-64.2	-68.5	-68.4	-68.2	0.1	-57.8	-21.25	36.56
	HE20, M0 to M9 3ss	4	3	-64.2	-68.5	-68.4	-68.2	0.1	-57.8	-21.25	36.56
	HE20, M0 to M9 4ss	4	3	-64.2	-68.5	-68.4	-68.2	0.1	-57.8	-21.25	36.56
	HE20 Beam Forming, M0 to M9 1ss	2	6	-65.0	-68.7			0.1	-57.4	-21.25	36.14
	HE20 Beam Forming, M0 to M9 2ss	2	3	-64.7	-68.5			0.1	-60.1	-21.25	38.87
	HE20 Beam Forming, M0 to M9 1ss	3	8	-65.2	-69.5	-69.1		0.1	-54.6	-21.25	33.38
	HE20 Beam Forming, M0 to M9 2ss	3	5	-65.0	-68.7	-68.1		0.1	-57.1	-21.25	35.86
	HE20 Beam Forming, M0 to M9 3ss	3	3	-64.2	-68.5	-68.4		0.1	-58.7	-21.25	37.45
	HE20 Beam Forming, M0 to M9 1ss	4	9	-65.3	-69.4	-68.9	-67.9	0.1	-52.5	-21.25	31.23
	HE20 Beam Forming, M0 to M9 2ss	4	6	-65.2	-69.5	-69.1	-68.7	0.1	-55.7	-21.25	34.41
	HE20 Beam Forming, M0 to M9 3ss	4	4	-65.0	-68.7	-68.1	-67.9	0.1	-57.1	-21.25	35.83
	HE20 Beam Forming, M0 to M9 4ss	4	3	-64.2	-68.5	-68.4	-68.2	0.1	-57.8	-21.25	36.56
	HE20 STBC, M0 to M9 2ss	2	3	-64.7	-68.5			0.1	-60.1	-21.25	38.87
	HE20 STBC, M0 to M9 2ss	3	3	-64.2	-68.5	-68.4		0.1	-58.7	-21.25	37.45
	HE20 STBC, M0 to M9 2ss	4	3	-64.2	-68.5	-68.4	-68.2	0.1	-57.8	-21.25	36.56
									•		
	CCK, 1 to 11 Mbps	1	3	-63.0				0.2	-59.8	-21.25	38.56
	CCK, 1 to 11 Mbps	2	3	-63.0	-60.2			0.2	-55.2	-21.25	33.93
	CCK, 1 to 11 Mbps	3	3	-63.0	-60.2	-66.8		0.2	-54.6	-21.25	33.34
	CCK, 1 to 11 Mbps	4	3	-63.0	-60.2	-66.8	-68.1	0.2	-54.2	-21.25	32.96
	Non HT20, 6 to 54 Mbps	1	3	-67.1				0.0	-64.1	-21.25	42.80
	Non HT20, 6 to 54 Mbps	2	3	-67.1	-63.8			0.0	-59.1	-21.25	37.84
	Non HT20, 6 to 54 Mbps	3	3	-67.1	-63.8	-66.0		0.0	-57.6	-21.25	36.34
	Non HT20, 6 to 54 Mbps	4	3	-67.1	-63.8	-66.0	-68.0	0.0	-56.9	-21.25	35.61
2437	Non HT20 Beam Forming, 6 to 54 Mbps	2	6	-67.1	-63.8			0.0	-56.1	-21.25	34.84
Ň	Non HT20 Beam Forming, 6 to 54 Mbps	3	8	-67.1	-63.8	-66.0		0.0	-52.6	-21.25	31.34
	Non HT20 Beam Forming, 6 to 54 Mbps	4	9	-67.1	-63.8	-66.0	-68.0	0.0	-50.9	-21.25	29.61
	HT/VHT20, M0 to M7		3	-66.4				0.1	-63.3	-21.25	42.10
	HT/VHT20, M0 to M7	2	3	-66.4	-64.1			0.1	-59.0	-21.25	37.79
	HT/VHT20, M8 to M15	2	3	-66.4	-64.1			0.1	-59.0	-21.25	37.79
	HT/VHT20, M0 to M7	3	3	-66.4	-64.1	-68.7		0.1	-58.2	-21.25	36.93
	HT/VHT20, M8 to M15	3	3	-66.4	-64.1	-68.7		0.1	-58.2	-21.25	36.93
	HT/VHT20, M16 to M23	3	3	-66.4	-64.1	-68.7		0.1	-58.2	-21.25	36.93
			0	JU.T	04.1	00.1		0.1	00.2	21.20	00.00

Page No: 51 of 88

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version.

Cisco Systems, Inc. Company Confidential

HT/VHT20, M0 to M7	4	3	-66.4	-64.1	-68.7	-67.6	0.1	-57.3	-21.25	36.03
HT/VHT20, M8 to M15	4	3	-66.4	-64.1	-68.7	-67.6	0.1	-57.3	-21.25	36.03
HT/VHT20, M16 to M23	4	3	-66.4	-64.1	-68.7	-67.6	0.1	-57.3	-21.25	36.03
HT/VHT20, M24 to M31	4	3	-66.4	-64.1	-68.7	-67.6	0.1	-57.3	-21.25	36.03
HT/VHT20 Beam Forming, M0 to M7	2	6	-66.4	-64.1			0.1	-56.0	-21.25	34.79
HT/VHT20 Beam Forming, M8 to M15	2	3	-66.4	-64.1			0.1	-59.0	-21.25	37.79
HT/VHT20 Beam Forming, M0 to M7	3	8	-66.4	-64.1	-68.7		0.1	-53.2	-21.25	31.93
HT/VHT20 Beam Forming, M8 to M15	3	5	-66.4	-64.1	-68.7		0.1	-56.2	-21.25	34.93
HT/VHT20 Beam Forming, M16 to M23	3	3	-66.4	-64.1	-68.7		0.1	-58.2	-21.25	36.93
HT/VHT20 Beam Forming, M0 to M7	4	9	-66.4	-64.1	-68.7	-67.6	0.1	-51.3	-21.25	30.03
HT/VHT20 Beam Forming, M8 to M15	4	6	-66.4	-64.1	-68.7	-67.6	0.1	-54.3	-21.25	33.03
HT/VHT20 Beam Forming, M16 to M23	4	4	-66.4	-64.1	-68.7	-67.6	0.1	-56.3	-21.25	35.03
HT/VHT20 Beam Forming, M24 to M31	4	3	-66.4	-64.1	-68.7	-67.6	0.1	-57.3	-21.25	36.03
HT/VHT20 STBC, M0 to M7	2	3	-66.4	-64.1			0.1	-59.0	-21.25	37.79
HT/VHT20 STBC, M0 to M7	3	3	-66.4	-64.1	-68.7		0.1	-58.2	-21.25	36.93
HT/VHT20 STBC, M0 to M7	4	3	-66.4	-64.1	-68.7	-67.6	0.1	-57.3	-21.25	36.03
HE20, M0 to M9 1ss	1	3	-67.6				0.1	-64.5	-21.25	43.28
HE20, M0 to M9 1ss	2	3	-67.6	-64.1			0.1	-59.4	-21.25	38.18
HE20, M0 to M9 2ss	2	3	-67.6	-64.1			0.1	-59.4	-21.25	38.18
HE20, M0 to M9 1ss	3	3	-67.6	-64.1	-67.8		0.1	-58.3	-21.25	37.06
HE20, M0 to M9 2ss	3	3	-67.6	-64.1	-67.8		0.1	-58.3	-21.25	37.06
HE20, M0 to M9 3ss	3	3	-67.6	-64.1	-67.8		0.1	-58.3	-21.25	37.06
HE20, M0 to M9 1ss	4	3	-67.6	-64.1	-67.8	-67.0	0.1	-57.3	-21.25	36.01
HE20, M0 to M9 2ss	4	3	-67.6	-64.1	-67.8	-67.0	0.1	-57.3	-21.25	36.01
HE20, M0 to M9 3ss	4	3	-67.6	-64.1	-67.8	-67.0	0.1	-57.3	-21.25	36.01
HE20, M0 to M9 4ss	4	3	-67.6	-64.1	-67.8	-67.0	0.1	-57.3	-21.25	36.01
HE20 Beam Forming, M0 to M9 1ss	2	6	-67.6	-64.1			0.1	-56.4	-21.25	35.18
HE20 Beam Forming, M0 to M9 2ss	2	3	-67.6	-64.1			0.1	-59.4	-21.25	38.18
HE20 Beam Forming, M0 to M9 1ss	3	8	-67.6	-64.1	-67.8		0.1	-53.3	-21.25	32.06
HE20 Beam Forming, M0 to M9 2ss	3	5	-67.6	-64.1	-67.8		0.1	-56.3	-21.25	35.06
HE20 Beam Forming, M0 to M9 3ss	3	3	-67.6	-64.1	-67.8		0.1	-58.3	-21.25	37.06
HE20 Beam Forming, M0 to M9 1ss	4	9	-67.6	-64.1	-67.8	-67.0	0.1	-51.3	-21.25	30.01
HE20 Beam Forming, M0 to M9 2ss	4	6	-67.6	-64.1	-67.8	-67.0	0.1	-54.3	-21.25	33.01
HE20 Beam Forming, M0 to M9 3ss	4	4	-67.6	-64.1	-67.8	-67.0	0.1	-56.3	-21.25	35.01
HE20 Beam Forming, M0 to M9 4ss	4	3	-67.6	-64.1	-67.8	-67.0	0.1	-57.3	-21.25	36.01
HE20 STBC, M0 to M9 2ss	2	3	-67.6	-64.1			0.1	-59.4	-21.25	38.18
HE20 STBC, M0 to M9 2ss	3	3	-67.6	-64.1	-67.8		0.1	-58.3	-21.25	37.06
HE20 STBC, M0 to M9 2ss	4	3	-67.6	-64.1	-67.8	-67.0	0.1	-57.3	-21.25	36.01

Page No: 52 of 88

			-								
	CCK, 1 to 11 Mbps	1	3 3	-63.8	07.7			0.2	-60.6	-21.25	39.36
	CCK, 1 to 11 Mbps	2	3	-63.8	-67.7	<u> </u>		0.2	-59.1	-21.25	37.87
	CCK, 1 to 11 Mbps	3		-63.8	-67.7	-68.3	07.0	0.2	-58.1	-21.25	36.90
	CCK, 1 to 11 Mbps	4	3	-63.8	-67.7	-68.3	-67.3	0.2	-57.2	-21.25	35.92
	Non HT20, 6 to 54 Mbps	1	3	-68.1				0.0	-65.1	-21.25	43.80
	Non HT20, 6 to 54 Mbps	2	3	-68.2	-68.8			0.0	-62.4	-21.25	41.18
	Non HT20, 6 to 54 Mbps	3	3	-68.2	-68.8	-68.8		0.0	-60.8	-21.25	39.52
	Non HT20, 6 to 54 Mbps	4	3	-68.2	-68.8	-68.8	-68.9	0.0	-59.6	-21.25	38.35
	Non HT20 Beam Forming, 6 to 54 Mbps	2	6	-68.2	-68.8			0.0	-59.4	-21.25	38.18
	Non HT20 Beam Forming, 6 to 54 Mbps	3	8	-67.3	-68.1	-67.9		0.0	-54.9	-21.25	33.69
	Non HT20 Beam Forming, 6 to 54 Mbps	4	9	-68.8	-69.7	-67.5	-66.4	0.0	-52.9	-21.25	31.60
	HT/VHT20, M0 to M7	1	3	-67.3				0.1	-64.2	-21.25	43.00
	HT/VHT20, M0 to M7	2	3	-67.3	-69.2			0.1	-62.1	-21.25	40.83
	HT/VHT20, M8 to M15	2	3	-67.3	-69.2			0.1	-62.1	-21.25	40.83
	HT/VHT20, M0 to M7	3	3	-67.3	-69.2	-67.5		0.1	-60.1	-21.25	38.85
	HT/VHT20, M8 to M15	3	3	-67.3	-69.2	-67.5		0.1	-60.1	-21.25	38.85
	HT/VHT20, M16 to M23	3	3	-67.3	-69.2	-67.5		0.1	-60.1	-21.25	38.85
	HT/VHT20, M0 to M7	4	3	-67.3	-69.2	-67.5	-67.3	0.1	-58.7	-21.25	37.43
	HT/VHT20, M8 to M15	4	3	-67.3	-69.2	-67.5	-67.3	0.1	-58.7	-21.25	37.43
	HT/VHT20, M16 to M23	4	3	-67.3	-69.2	-67.5	-67.3	0.1	-58.7	-21.25	37.43
5	HT/VHT20, M24 to M31	4	3	-67.3	-69.2	-67.5	-67.3	0.1	-58.7	-21.25	37.43
2462	HT/VHT20 Beam Forming, M0 to M7	2	6	-68.0	-68.7			0.1	-59.3	-21.25	38.02
	HT/VHT20 Beam Forming, M8 to M15	2	3	-67.3	-69.2			0.1	-62.1	-21.25	40.83
	HT/VHT20 Beam Forming, M0 to M7	3	8	-68.9	-67.1	-68.6		0.1	-55.3	-21.25	34.05
	HT/VHT20 Beam Forming, M8 to M15	3	5	-68.0	-68.7	-69.3		0.1	-58.8	-21.25	37.56
	HT/VHT20 Beam Forming, M16 to M23	3	3	-67.3	-69.2	-67.5		0.1	-60.1	-21.25	38.85
	HT/VHT20 Beam Forming, M0 to M7	4	9	-68.9	-67.1	-68.6	-67.5	0.1	-52.9	-21.25	31.64
	HT/VHT20 Beam Forming, M8 to M15	4	6	-68.0	-68.7	-69.3	-69.1	0.1	-56.7	-21.25	35.42
	HT/VHT20 Beam Forming, M16 to M23	4	4	-68.0	-68.7	-69.3	-69.1	0.1	-58.7	-21.25	37.42
	HT/VHT20 Beam Forming, M24 to M31	4	3	-67.3	-69.2	-67.5	-67.3	0.1	-58.7	-21.25	37.43
	HT/VHT20 STBC, M0 to M7	2	3	-67.3	-69.2			0.1	-62.1	-21.25	40.83
	HT/VHT20 STBC, M0 to M7	3	3	-67.3	-69.2	-67.5		0.1	-60.1	-21.25	38.85
	HT/VHT20 STBC, M0 to M7	4	3	-67.3	-69.2	-67.5	-67.3	0.1	-58.7	-21.25	37.43
	HE20, M0 to M9 1ss	1	3	-68.4				0.1	-65.3	-21.25	44.08
	HE20, M0 to M9 1ss	2	3	-68.7	-68.9			0.1	-62.7	-21.25	41.47
	HE20, M0 to M9 2ss	2	3	-68.7	-68.9			0.1	-62.7	-21.25	41.47
	HE20, M0 to M9 1ss	3	3	-68.7	-68.9	-68.0		0.1	-60.7	-21.25	39.43
	HE20, M0 to M9 2ss	3	3	-68.7	-68.9	-68.0		0.1	-60.7	-21.25	39.43
	HE20, M0 to M9 3ss	3	3	-68.7	-68.9	-68.0		0.1	-60.7	-21.25	39.43
	HE20, M0 to M9 1ss	4	3	-68.7	-68.9	-68.0	-69.1	0.1	-59.6	-21.25	38.32
	HE20, M0 to M9 2ss	4	3	-68.7	-68.9	-68.0	-69.1	0.1	-59.6	-21.25	38.32
	HE20, M0 to M9 3ss	4	3	-68.7	-68.9	-68.0	-69.1	0.1	-59.6	-21.25	38.32
	HE20, M0 to M9 4ss	4	3	-68.7	-68.9	-68.0	-69.1	0.1	-59.6	-21.25	38.32

Page No: 53 of 88

HE20 Beam Forming, M0 to M9 1ss	2	6	-68.7	-68.9			0.1	-59.7	-21.25	38.47
HE20 Beam Forming, M0 to M9 2ss	2	3	-68.7	-68.9			0.1	-62.7	-21.25	41.47
HE20 Beam Forming, M0 to M9 1ss	3	8	-68.8	-69.2	-68.6		0.1	-56.0	-21.25	34.77
HE20 Beam Forming, M0 to M9 2ss	3	5	-68.7	-68.9	-68.0		0.1	-58.7	-21.25	37.43
HE20 Beam Forming, M0 to M9 3ss	3	3	-68.7	-68.9	-68.0		0.1	-60.7	-21.25	39.43
HE20 Beam Forming, M0 to M9 1ss	4	9	-69.0	-68.5	-69.0	-68.4	0.1	-53.6	-21.25	32.38
HE20 Beam Forming, M0 to M9 2ss	4	6	-68.7	-68.9	-68.0	-69.1	0.1	-56.6	-21.25	35.32
HE20 Beam Forming, M0 to M9 3ss	4	4	-68.7	-68.9	-68.0	-69.1	0.1	-58.6	-21.25	37.32
HE20 Beam Forming, M0 to M9 4ss	4	3	-68.7	-68.9	-68.0	-69.1	0.1	-59.6	-21.25	38.32
HE20 STBC, M0 to M9 2ss	2	3	-68.7	-68.9			0.1	-62.7	-21.25	41.47
HE20 STBC, M0 to M9 2ss	3	3	-68.7	-68.9	-68.0		0.1	-60.7	-21.25	39.43
HE20 STBC, M0 to M9 2ss	4	3	-68.7	-68.9	-68.0	-69.1	0.1	-59.6	-21.25	38.32

Page No: 54 of 88

Antenna C

Conducted Spurs Peak, 2437 MHz, Non HT20 Beam Forming, 6 to 54 Mbps

Antenna B

Antenna D

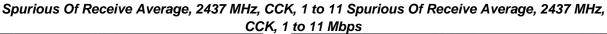
cisco

Page No: 55 of 88

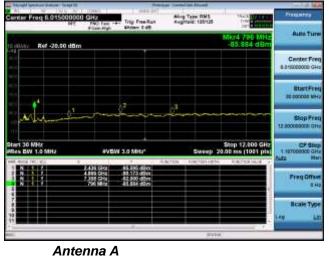
A.7 Conducted Receiver Spurious Emissions

Spurious Of Receive Average Upp, 2412 MHz, Non HT20, 6 to 54 Mbps

Spurious Of Receive Peak Upper, 2412 MHz, Non HT20, 6 to 54 Mbps



Page No: 56 of 88


Conducted Receiver Spurious Average

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Rx 1 Spur Power (dBm)	Rx 2 Spur Power (dBm)	Rx 3 Spur Power (dBm)	Rx 4 Spur Power (dBm)	Duty Cycle Correction (dB)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	4	3	-87.7	-89.3	-88.9	-88.8	0.2	-79.4	-41.25	38.17
2412	Non HT20, 6 to 54 Mbps	4	3	-86.3	-89.1	-88.8	-88.9	0.0	-79.0	-41.25	37.79
24	HT/VHT20, M0 to M7	4	3	-86.5	-89.2	-88.8	-88.7	0.1	-79.1	-41.25	37.84
	HE20, M0 to M9 1ss	4	3	-86.9	-89.6	-88.9	-89.1	0.1	-79.4	-41.25	38.16
	CCK, 1 to 11 Mbps	4	3	-85.9	-89.4	-88.8	-89.0	0.2	-78.8	-41.25	37.57
2437	Non HT20, 6 to 54 Mbps	4	3	-86.9	-88.9	-88.8	-89.0	0.0	-79.2	-41.25	37.99
24	HT/VHT20, M0 to M7	4	3	-87.3	-89.7	-88.8	-89.2	0.1	-79.6	-41.25	38.33
	HE20, M0 to M9 1ss	4	3	-86.7	-89.9	-89.0	-89.0	0.1	-79.4	-41.25	38.14
	CCK, 1 to 11 Mbps	4	3	-86.8	-89.9	-89.0	-89.3	0.2	-79.4	-41.25	38.12
2462	Non HT20, 6 to 54 Mbps	4	3	-86.7	-89.6	-88.8	-89.0	0.0	-79.3	-41.25	38.06
24	HT/VHT20, M0 to M7	4	3	-86.9	-89.6	-88.6	-89.1	0.1	-79.4	-41.25	38.10
	HE20, M0 to M9 1ss	4	3	-87.1	-89.3	-88.5	-88.8	0.1	-79.3	-41.25	38.01

Page No: 57 of 88

ar Free 8.015000000

Alvp Type RMS Augitpld: 135/128

Auto Tu

Center Fre

StartFi

FreqO

Scale Ty

Stop 12,000 Gi

Alvp Tape: RMS Available: 195/12 4.10 Ref -20.00 dBm Center Fr O MHZ Stop 12.000 G VEW 3.0 MH Frage 湖외 Scale Typ

Antenna B

Antenna C

VEW 3.0 MP

er Fren 6.0150

Ref -20.00 dB

0.004

Antenna D

սիսիս

Page No: 58 of 88

Conducted Receiver Spurious Peak

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Rx 1 Spur Power (dBm)	Rx 2 Spur Power (dBm)	Rx 3 Spur Power (dBm)	Rx 4 Spur Power (dBm)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	4	3	-69.0	-70.6	-70.5	-69.4	-60.6	-21.25	39.36
2412	Non HT20, 6 to 54 Mbps	4	3	-70.4	-70.0	-70.1	-68.9	-60.7	-21.25	39.50
24	HT/VHT20, M0 to M7	4	3	-68.7	-69.9	-69.1	-69.6	-60.2	-21.25	38.98
	HE20, M0 to M9 1ss	4	3	-69.1	-70.2	-69.2	-68.9	-60.2	-21.25	38.99
	CCK, 1 to 11 Mbps	4	3	-69.7	-69.7	-69.8	-69.1	-60.4	-21.25	39.10
2437	Non HT20, 6 to 54 Mbps	4	3	-70.0	-70.6	-69.7	-70.2	-61.0	-21.25	39.80
24	HT/VHT20, M0 to M7	4	3	-68.5	-70.3	-69.9	-69.0	-60.3	-21.25	39.04
	HE20, M0 to M9 1ss	4	3	-70.7	-70.5	-69.9	-69.9	-61.1	-21.25	39.90
	CCK, 1 to 11 Mbps	4	3	-70.6	-70.5	-68.8	-68.2	-60.2	-21.25	38.94
2462	Non HT20, 6 to 54 Mbps	4	3	-69.7	-69.9	-68.6	-68.7	-60.1	-21.25	38.87
24	HT/VHT20, M0 to M7	4	3	-69.1	-70.7	-69.2	-68.9	-60.3	-21.25	39.10
	HE20, M0 to M9 1ss	4	3	-69.9	-69.1	-68.2	-70.3	-60.2	-21.25	38.96


Page No: 59 of 88

Spurious Of Receive Peak, 2462 MHz, Non HT20, 6 to 54 Mbps

Antenna B

Antenna C

Antenna D

cisco

Page No: 60 of 88

A.8 Conducted Bandedge (Restricted Band)

Conducted Band Edge Test Requirement

15.247 / LP0002:3.10.1(5) & 2.8

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RSS-247

5.5 Unwanted emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

15.205 / RSS-Gen

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), and RSS-Gen 8.10 must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)) and RSS-Gen 8.9.

Conducted Bandedge Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05

ANSI C63.10: 2013

Conducted Band edge

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode. Use the procedures in KDB 558074 D01 DTS Meas Guidance v04 to substitute conducted measurements in place of radiated measurements.

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded.

6. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance.

Also measure any emissions in the restricted bands

7. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05, section 8.1 c) 3, section 8.6 DTS emissions in restricted frequency bands

ANSI C63.10: 2013 section 11.12.2.4 (Peak) & 11.12.2.5.2 (Average)

Page No: 61 of 88

Conducted Spurious Emissions Test parameters	
Peak	Average
RBW = 1 MHz	RBW = 1 MHz
$VBW \ge 3 MHz$	$VBW \ge 3 MHz$
Sweep = Auto	Sweep = Auto
Detector = Peak	Detector = RMS
Trace = Max Hold.	Power Averaging

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	K	
1	Support			\checkmark

Tested By :	Date of testing:	
Chris Blair	10-Sep-19 - 01-Oct-19	
Test Result : PASS		

Test Equipment

See Appendix C for list of test equipment

Page No: 62 of 88

Restricted Band

Conducted Bandedge Average Table

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Tx 3 Bandedge Level (dBm)	Tx 4 Bandedge Level (dBm)	Tx 5 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	3	-49.9				0.2	-46.7	-41.25	5.46
	CCK, 1 to 11 Mbps	2	3	-49.9	-53.6			0.2	-45.2	-41.25	3.91
	CCK, 1 to 11 Mbps	3	3	-49.9	-53.6	-56.6		0.2	-44.6	-41.25	3.31
	CCK, 1 to 11 Mbps	4	3	-49.9	-53.6	-56.6	-56.0	0.2	-44.0	-41.25	2.70
	Non HT20, 6 to 54 Mbps	1	3	-47.0				0.0	-44.0	-41.25	2.70
	Non HT20, 6 to 54 Mbps	2	3	-47.0	-51.8			0.0	-42.7	-41.25	1.46
	Non HT20, 6 to 54 Mbps	3	3	-47.0	-51.8	-54.5		0.0	-42.2	-41.25	0.92
	Non HT20, 6 to 54 Mbps	4	3	-47.0	-51.8	-54.5	-52.4	0.0	-41.4	-41.25	0.16
	Non HT20 Beam Forming, 6 to 54 Mbps	2	6	-49.9	-55.0			0.0	-42.7	-41.25	1.44
	Non HT20 Beam Forming, 6 to 54 Mbps	3	8	-51.9	-57.2	-59.7		0.0	-42.2	-41.25	0.96
	Non HT20 Beam Forming, 6 to 54 Mbps	4	9	-54.0	-58.4	-61.4	-58.9	0.0	-42.2	-41.25	0.99
	HT/VHT20, M0 to M7	1	3	-46.6				0.1	-43.5	-41.25	2.30
	HT/VHT20, M0 to M7	2	3	-46.6	-51.1			0.1	-42.2	-41.25	0.98
2412	HT/VHT20, M8 to M15	2	3	-46.6	-51.1			0.1	-42.2	-41.25	0.98
24	HT/VHT20, M0 to M7	3	3	-46.6	-51.1	-53.6		0.1	-41.6	-41.25	0.38
	HT/VHT20, M8 to M15	3	3	-46.6	-51.1	-53.6		0.1	-41.6	-41.25	0.38
	HT/VHT20, M16 to M23	3	3	-46.6	-51.1	-53.6		0.1	-41.6	-41.25	0.38
	HT/VHT20, M0 to M7	4	3	-49.4	-54.2	-56.1	-53.1	0.1	-43.4	-41.25	2.15
	HT/VHT20, M8 to M15	4	3	-49.4	-54.2	-56.1	-53.1	0.1	-43.4	-41.25	2.15
	HT/VHT20, M16 to M23	4	3	-49.4	-54.2	-56.1	-53.1	0.1	-43.4	-41.25	2.15
	HT/VHT20, M24 to M31	4	3	-49.4	-54.2	-56.1	-53.1	0.1	-43.4	-41.25	2.15
	HT/VHT20 Beam Forming, M0 to M7	2	6	-49.4	-54.2			0.1	-42.1	-41.25	0.86
	HT/VHT20 Beam Forming, M8 to M15	2	3	-46.6	-51.1			0.1	-42.2	-41.25	0.98
	HT/VHT20 Beam Forming, M0 to M7	3	8	-50.9	-57.1	-58.1		0.1	-41.3	-41.25	0.04
	HT/VHT20 Beam Forming, M8 to M15	3	5	-49.4	-54.2	-56.1		0.1	-42.5	-41.25	1.21
	HT/VHT20 Beam Forming, M16 to M23	3	3	-46.6	-51.1	-53.6		0.1	-41.6	-41.25	0.38
	HT/VHT20 Beam Forming, M0 to M7	4	9	-54.4	-60.1	-60.8	-58.8	0.1	-42.6	-41.25	1.40
	HT/VHT20 Beam Forming, M8 to M15	4	6	-50.9	-57.1	-58.1	-55.3	0.1	-42.3	-41.25	1.06
			Page	No: 63 of	88						

Page No: 63 of 88

i I	h	I	1.	
C	S	C	0	

	HT/VHT20 Beam Forming, M16 to M23	4	4	-49.4	-54.2	-56.1	-53.1	0.1	-42.4	-41.25	1.15
	HT/VHT20 Beam Forming, M24 to M31	4	3	-49.4	-54.2	-56.1	-53.1	0.1	-43.4	-41.25	2.15
	HT/VHT20 STBC, M0 to M7	2	3	-46.6	-51.1			0.1	-42.2	-41.25	0.98
	HT/VHT20 STBC, M0 to M7	3	3	-46.6	-51.1	-53.6		0.1	-41.6	-41.25	0.38
	HT/VHT20 STBC, M0 to M7	4	3	-49.4	-54.2	-56.1	-53.1	0.1	-43.4	-41.25	2.15
	HE20, M0 to M9 1ss	1	3	-45.5				0.1	-42.4	-41.25	1.18
	HE20, M0 to M9 1ss	2	3	-45.5	-51.0			0.1	-41.4	-41.25	0.11
	HE20, M0 to M9 2ss	2	3	-45.5	-51.0			0.1	-41.4	-41.25	0.11
	HE20, M0 to M9 1ss	3	3	-47.8	-53.2	-54.5		0.1	-43.0	-41.25	1.72
	HE20, M0 to M9 2ss	3	3	-47.8	-53.2	-54.5		0.1	-43.0	-41.25	1.72
	HE20, M0 to M9 3ss	3	3	-47.8	-53.2	-54.5		0.1	-43.0	-41.25	1.72
	HE20, M0 to M9 1ss	4	3	-47.8	-53.2	-54.5	-51.3	0.1	-41.8	-41.25	0.59
	HE20, M0 to M9 2ss	4	3	-47.8	-53.2	-54.5	-51.3	0.1	-41.8	-41.25	0.59
	HE20, M0 to M9 3ss	4	3	-47.8	-53.2	-54.5	-51.3	0.1	-41.8	-41.25	0.59
	HE20, M0 to M9 4ss	4	3	-47.8	-53.2	-54.5	-51.3	0.1	-41.8	-41.25	0.59
	HE20 Beam Forming, M0 to M9 1ss	2	6	-49.7	-56.2			0.1	-42.8	-41.25	1.51
	HE20 Beam Forming, M0 to M9 2ss	2	3	-45.5	-51.0			0.1	-41.4	-41.25	0.11
	HE20 Beam Forming, M0 to M9 1ss	3	8	-51.2	-57.6	-58.4		0.1	-41.6	-41.25	0.36
	HE20 Beam Forming, M0 to M9 2ss	3	5	-49.7	-56.2	-56.7		0.1	-43.1	-41.25	1.85
	HE20 Beam Forming, M0 to M9 3ss	3	3	-47.8	-53.2	-54.5		0.1	-43.0	-41.25	1.72
	HE20 Beam Forming, M0 to M9 1ss	4	9	-55.0	-60.7	-62.5	-58.7	0.1	-43.2	-41.25	1.96
	HE20 Beam Forming, M0 to M9 2ss	4	6	-51.2	-57.6	-58.4	-55.5	0.1	-42.6	-41.25	1.35
	HE20 Beam Forming, M0 to M9 3ss	4	4	-49.7	-56.2	-56.7	-53.2	0.1	-42.9	-41.25	1.67
	HE20 Beam Forming, M0 to M9 4ss	4	3	-47.8	-53.2	-54.5	-51.3	0.1	-41.8	-41.25	0.59
	HE20 STBC, M0 to M9 2ss	2	3	-45.5	-51.0			0.1	-41.4	-41.25	0.11
	HE20 STBC, M0 to M9 2ss	3	3	-47.8	-53.2	-54.5		0.1	-43.0	-41.25	1.72
	HE20 STBC, M0 to M9 2ss	4	3	-47.8	-53.2	-54.5	-51.3	0.1	-41.8	-41.25	0.59
			-	-							
	CCK, 1 to 11 Mbps	1	3	-50.2				0.2	-47.0	-41.25	5.76
	CCK, 1 to 11 Mbps	2	3	-50.2	-53.9			0.2	-45.5	-41.25	4.21
	CCK, 1 to 11 Mbps	3	3	-50.2	-53.9	-53.9		0.2	-44.3	-41.25	3.08
	CCK, 1 to 11 Mbps	4	3	-50.2	-53.9	-53.9	-54.6	0.2	-43.6	-41.25	2.30
	Non HT20, 6 to 54 Mbps	1	3	-45.1				0.0	-42.1	-41.25	0.80
	Non HT20, 6 to 54 Mbps	2	3	-48.6	-55.4			0.0	-44.7	-41.25	3.48
	Non HT20, 6 to 54 Mbps	3	3	-48.6	-55.4	-55.8		0.0	-44.1	-41.25	2.84
2462	Non HT20, 6 to 54 Mbps	4	3	-48.6	-55.4	-55.8	-53.1	0.0	-43.1	-41.25	1.86
27	Non HT20 Beam Forming, 6 to 54 Mbps	2	6	-48.6	-55.4	00.0	00.1	0.0	-41.7	-41.25	0.48
	Non HT20 Beam Forming, 6 to 54 Mbps	3	8	-52.1	-58.3	-57.9		0.0	-42.3	-41.25	1.04
	Non HT20 Beam Forming, 6 to 54 Mbps	4	9	-55.6	-59.4	-59.2	-57.7	0.0	-42.6	-41.25	1.38
	HT/VHT20, M0 to M7	4	3	-47.2	00.4	00.2	51.1	0.0	-44.1	-41.25	2.90
	HT/VHT20, M0 to M7	2	3	-47.2	-54.2			0.1	-43.4	-41.25	2.90
	HT/VHT20, M8 to M15	2	3	-47.2	-54.2			0.1	-43.4	-41.25	2.11
	HT/VHT20, M0 to M7	2 3	3	-47.2	-54.2 -54.2	-55.6		0.1	-43.4	-41.25	
		3	3	-41.2	-04.2	-00.0		0.1	-42.9	-41.20	1.61

Page No: 64 of 88

HT/VHT20, M8 to M15	3	3	-47.2	-54.2	-55.6		0.1	-42.9	-41.25	1.61
HT/VHT20, M16 to M23	3	3	-47.2	-54.2	-55.6		0.1	-42.9	-41.25	1.61
HT/VHT20, M0 to M7	4	3	-47.2	-54.2	-55.6	-53.6	0.1	-42.2	-41.25	0.93
HT/VHT20, M8 to M15	4	3	-47.2	-54.2	-55.6	-53.6	0.1	-42.2	-41.25	0.93
HT/VHT20, M16 to M23	4	3	-47.2	-54.2	-55.6	-53.6	0.1	-42.2	-41.25	0.93
HT/VHT20, M24 to M31	4	3	-47.2	-54.2	-55.6	-53.6	0.1	-42.2	-41.25	0.93
HT/VHT20 Beam Forming, M0 to M7	2	6	-50.5	-57.1			0.1	-43.6	-41.25	2.34
HT/VHT20 Beam Forming, M8 to M15	2	3	-47.2	-54.2			0.1	-43.4	-41.25	2.11
HT/VHT20 Beam Forming, M0 to M7	3	8	-53.9	-59.8	-59.4		0.1	-44.0	-41.25	2.73
HT/VHT20 Beam Forming, M8 to M15	3	5	-50.5	-57.1	-58.1		0.1	-44.0	-41.25	2.76
HT/VHT20 Beam Forming, M16 to M23	3	3	-47.2	-54.2	-55.6		0.1	-42.9	-41.25	1.61
HT/VHT20 Beam Forming, M0 to M7	4	9	-53.9	-59.8	-59.4	-58.0	0.1	-42.0	-41.25	0.75
HT/VHT20 Beam Forming, M8 to M15	4	6	-50.5	-57.1	-58.1	-55.2	0.1	-42.1	-41.25	0.81
HT/VHT20 Beam Forming, M16 to M23	4	4	-50.5	-57.1	-58.1	-55.2	0.1	-44.1	-41.25	2.81
HT/VHT20 Beam Forming, M24 to M31	4	3	-47.2	-54.2	-55.6	-53.6	0.1	-42.2	-41.25	0.93
HT/VHT20 STBC, M0 to M7	2	3	-47.2	-54.2			0.1	-43.4	-41.25	2.11
HT/VHT20 STBC, M0 to M7	3	3	-47.2	-54.2	-55.6		0.1	-42.9	-41.25	1.61
HT/VHT20 STBC, M0 to M7	4	3	-47.2	-54.2	-55.6	-53.6	0.1	-42.2	-41.25	0.93
HE20, M0 to M9 1ss	1	3	-45.5				0.1	-42.4	-41.25	1.18
HE20, M0 to M9 1ss	2	3	-50.2	-54.9			0.1	-45.9	-41.25	4.62
HE20, M0 to M9 2ss	2	3	-50.2	-54.9			0.1	-45.9	-41.25	4.62
HE20, M0 to M9 1ss	3	3	-50.2	-54.9	-56.7		0.1	-45.2	-41.25	3.95
HE20, M0 to M9 2ss	3	3	-50.2	-54.9	-56.7		0.1	-45.2	-41.25	3.95
HE20, M0 to M9 3ss	3	3	-50.2	-54.9	-56.7		0.1	-45.2	-41.25	3.95
HE20, M0 to M9 1ss	4	3	-50.2	-54.9	-56.7	-55.3	0.1	-44.4	-41.25	3.16
HE20, M0 to M9 2ss	4	3	-50.2	-54.9	-56.7	-55.3	0.1	-44.4	-41.25	3.16
HE20, M0 to M9 3ss	4	3	-50.2	-54.9	-56.7	-55.3	0.1	-44.4	-41.25	3.16
HE20, M0 to M9 4ss	4	3	-50.2	-54.9	-56.7	-55.3	0.1	-44.4	-41.25	3.16
HE20 Beam Forming, M0 to M9 1ss	2	6	-50.2	-54.9			0.1	-42.9	-41.25	1.62
HE20 Beam Forming, M0 to M9 2ss	2	3	-50.2	-54.9			0.1	-45.9	-41.25	4.62
HE20 Beam Forming, M0 to M9 1ss	3	8	-52.2	-57.9	-58.9		0.1	-42.4	-41.25	1.17
HE20 Beam Forming, M0 to M9 2ss	3	5	-50.2	-54.9	-56.7		0.1	-43.2	-41.25	1.95
HE20 Beam Forming, M0 to M9 3ss	3	3	-50.2	-54.9	-56.7		0.1	-45.2	-41.25	3.95
HE20 Beam Forming, M0 to M9 1ss	4	9	-54.1	-59.9	-60.1	-58.7	0.1	-42.3	-41.25	1.09
HE20 Beam Forming, M0 to M9 2ss	4	6	-50.2	-54.9	-56.7	-55.3	0.1	-41.4	-41.25	0.16
HE20 Beam Forming, M0 to M9 3ss	4	4	-50.2	-54.9	-56.7	-55.3	0.1	-43.4	-41.25	2.16
HE20 Beam Forming, M0 to M9 4ss	4	3	-50.2	-54.9	-56.7	-55.3	0.1	-44.4	-41.25	3.16
HE20 STBC, M0 to M9 2ss	2	3	-50.2	-54.9			0.1	-45.9	-41.25	4.62
HE20 STBC, M0 to M9 2ss	3	3	-50.2	-54.9	-56.7		0.1	-45.2	-41.25	3.95
HE20 STBC, M0 to M9 2ss	4	3	-50.2	-54.9	-56.7	-55.3	0.1	-44.4	-41.25	3.16

Page No: 65 of 88

Antenna A

Antenna C

Startyld Spectrum Statuser 1 bit			an (Indelias Stand)		-1-2 10.0
tenter Freq 2.06510	MC PACIFIES *	Trig FreeBan	Alvg Tape RMS Avg/Told: 135125	These Distances	Productory
E MARY Ref 10.00	Witholaw .	Pyller 12 92	MK	72 1.829 7 GHz -74.031 dBm	Auto Ture
Traca 1 Pass					Center Freq 2.005403000 GHz
					BtartFreq L71800000 0Hz
2 11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				Y	Stop Pred 1.412080000 GH
tert 1.7188 GHz Res EW 1.0 MHz		W 3.0 MHz*	Sweep 1	Stop 2.4120 GHz 1.060 ms (691 pts)	CIF Brieg rs.320000 Wile Auta Hier
	2.340.0 GHz 1.826.7 GHz	67 112 dáin 24 831 dón			Prag Offsee G H2
					Bicale Type
			3747.6		

սիսիս

Antenna B

Page No: 66 of 88

Conducted Bandedge Average, 2462 MHz, HE20 Beam Forming, M0 to M9 2ss

Antenna C

սիսիւ

Start Fr

FragOff 41

Scale Typ

Stop 3.2670 G Sweep 1.000 ms (501 p

Antenna D

2.485 Sticks

AVEW 3.0 MHz

65.323 (8

art 2.4620 GH

Page No: 67 of 88

Conducted Bandedge Peak Table

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Tx 3 Bandedge Level (dBm)	Tx 4 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	3	-37.1				-33.9	-21.25	12.66
	CCK, 1 to 11 Mbps	2	3	-37.1	-41.5			-32.6	-21.25	11.31
	CCK, 1 to 11 Mbps	3	3	-37.1	-41.5	-44.9		-32.1	-21.25	10.81
	CCK, 1 to 11 Mbps	4	3	-37.1	-41.5	-44.9	-39.3	-30.6	-21.25	9.37
	Non HT20, 6 to 54 Mbps	1	3	-36.6				-33.6	-21.25	12.30
	Non HT20, 6 to 54 Mbps	2	3	-36.6	-38.7			-31.5	-21.25	10.22
	Non HT20, 6 to 54 Mbps	3	3	-36.6	-38.7	-42.5		-30.8	-21.25	9.58
	Non HT20, 6 to 54 Mbps	4	3	-36.6	-38.7	-42.5	-38.1	-29.4	-21.25	8.19
	Non HT20 Beam Forming, 6 to 54 Mbps	2	6	-37.9	-44.4			-31.0	-21.25	9.73
	Non HT20 Beam Forming, 6 to 54 Mbps	3	8	-41.9	-45.9	-49.4		-31.9	-21.25	10.63
	Non HT20 Beam Forming, 6 to 54 Mbps	4	9	-43.2	-48.1	-50.6	-48.6	-31.6	-21.25	10.37
	HT/VHT20, M0 to M7	1	3	-33.5				-30.4	-21.25	9.20
	HT/VHT20, M0 to M7	2	3	-33.5	-37.0			-28.8	-21.25	7.59
	HT/VHT20, M8 to M15	2	3	-33.5	-37.0			-28.8	-21.25	7.59
2412	HT/VHT20, M0 to M7	3	3	-33.5	-37.0	-40.0		-28.2	-21.25	6.97
	HT/VHT20, M8 to M15	3	3	-33.5	-37.0	-40.0		-28.2	-21.25	6.97
	HT/VHT20, M16 to M23	3	3	-33.5	-37.0	-40.0		-28.2	-21.25	6.97
	HT/VHT20, M0 to M7	4	3	-35.5	-40.9	-46.0	-38.2	-29.6	-21.25	8.38
	HT/VHT20, M8 to M15	4	3	-35.5	-40.9	-46.0	-38.2	-29.6	-21.25	8.38
	HT/VHT20, M16 to M23	4	3	-35.5	-40.9	-46.0	-38.2	-29.6	-21.25	8.38
	HT/VHT20, M24 to M31	4	3	-35.5	-40.9	-46.0	-38.2	-29.6	-21.25	8.38
	HT/VHT20 Beam Forming, M0 to M7	2	6	-35.5	-40.9			-28.3	-21.25	7.10
	HT/VHT20 Beam Forming, M8 to M15	2	3	-33.5	-37.0			-28.8	-21.25	7.59
	HT/VHT20 Beam Forming, M0 to M7	3	8	-40.1	-45.4	-48.0		-30.4	-21.25	9.16
	HT/VHT20 Beam Forming, M8 to M15	3	5	-35.5	-40.9	-46.0		-29.1	-21.25	7.81
	HT/VHT20 Beam Forming, M16 to M23	3	3	-33.5	-37.0	-40.0		-28.2	-21.25	6.97
	HT/VHT20 Beam Forming, M0 to M7	4	9	-43.3	-48.1	-49.4	-47.4	-31.3	-21.25	10.06
	HT/VHT20 Beam Forming, M8 to M15	4	6	-40.1	-45.4	-48.0	-45.4	-31.6	-21.25	10.36
	HT/VHT20 Beam Forming, M16 to M23	4	4	-35.5	-40.9	-46.0	-38.2	-28.6	-21.25	7.38

Page No: 68 of 88

\mathbf{d}	Ь	վե	
C	IS	CO	

			0	05.5	10.0	10.0	00.0	00.0	04.05	0.00
	HT/VHT20 Beam Forming, M24 to M31	4 2	3	-35.5	-40.9	-46.0	-38.2	-29.6	-21.25	8.38
	HT/VHT20 STBC, M0 to M7		3	-33.5	-37.0	10.0		-28.8	-21.25	7.59
	HT/VHT20 STBC, M0 to M7		3	-33.5	-37.0	-40.0		-28.2	-21.25	6.97
	HT/VHT20 STBC, M0 to M7		3	-35.5	-40.9	-46.0	-38.2	-29.6	-21.25	8.38
	HE20, M0 to M9 1ss	1	3	-27.8				-24.7	-21.25	3.48
	HE20, M0 to M9 1ss	2	3	-27.8	-33.1			-23.6	-21.25	2.36
	HE20, M0 to M9 2ss	2	3	-27.8	-33.1			-23.6	-21.25	2.36
	HE20, M0 to M9 1ss	3	3	-31.7	-36.6	-41.4		-27.1	-21.25	5.83
	HE20, M0 to M9 2ss	3	3	-31.7	-36.6	-41.4		-27.1	-21.25	5.83
	HE20, M0 to M9 3ss	3	3	-31.7	-36.6	-41.4		-27.1	-21.25	5.83
	HE20, M0 to M9 1ss	4	3	-31.7	-36.6	-41.4	-36.1	-26.1	-21.25	4.85
	HE20, M0 to M9 2ss	4	3	-31.7	-36.6	-41.4	-36.1	-26.1	-21.25	4.85
	HE20, M0 to M9 3ss	4	3	-31.7	-36.6	-41.4	-36.1	-26.1	-21.25	4.85
	HE20, M0 to M9 4ss	4	3	-31.7	-36.6	-41.4	-36.1	-26.1	-21.25	4.85
	HE20 Beam Forming, M0 to M9 1ss	2	6	-35.9	-42.2			-28.9	-21.25	7.67
	HE20 Beam Forming, M0 to M9 2ss	2	3	-27.8	-33.1			-23.6	-21.25	2.36
	HE20 Beam Forming, M0 to M9 1ss	3	8	-42.0	-46.0	-49.1		-31.9	-21.25	10.66
	HE20 Beam Forming, M0 to M9 2ss	3	5	-35.9	-42.2	-46.8		-29.6	-21.25	8.39
	HE20 Beam Forming, M0 to M9 3ss	3	3	-31.7	-36.6	-41.4		-27.1	-21.25	5.83
	HE20 Beam Forming, M0 to M9 1ss	4	9	-45.4	-50.8	-50.7	-46.1	-32.5	-21.25	11.22
	HE20 Beam Forming, M0 to M9 2ss	4	6	-42.0	-46.0	-49.1	-45.4	-32.8	-21.25	11.57
	HE20 Beam Forming, M0 to M9 3ss	4	4	-35.9	-42.2	-46.8	-41.0	-29.7	-21.25	8.48
	HE20 Beam Forming, M0 to M9 4ss	4	3	-31.7	-36.6	-41.4	-36.1	-26.1	-21.25	4.85
	HE20 STBC, M0 to M9 2ss	2	3	-27.8	-33.1			-23.6	-21.25	2.36
	HE20 STBC, M0 to M9 2ss	3	3	-31.7	-36.6	-41.4		-27.1	-21.25	5.83
	HE20 STBC, M0 to M9 2ss	4	3	-31.7	-36.6	-41.4	-36.1	-26.1	-21.25	4.85
			Ŭ	• • • •	00.0				0	
	CCK, 1 to 11 Mbps	1	3	-38.2				-35.0	-21.25	13.76
	CCK, 1 to 11 Mbps	2	3	-38.2	-39.7			-32.7	-21.25	11.43
	CCK, 1 to 11 Mbps	3	3	-38.2	-39.7	-42.4		-31.8	-21.25	10.56
	CCK, 1 to 11 Mbps	4	3	-38.2	-39.7	-42.4	-41.7	-31.0	-21.25	9.72
	Non HT20, 6 to 54 Mbps	1	3	-30.2	00.1	12.1		-27.2	-21.25	5.90
	Non HT20, 6 to 54 Mbps	2	3	-31.0	-36.4			-26.9	-21.25	5.60
	Non HT20, 6 to 54 Mbps	3	3	-31.0	-36.4	-41.9		-26.6	-21.25	5.34
2	Non HT20, 6 to 54 Mbps	4	3	-31.0	-36.4	-41.9	-35.8	-25.6	-21.25	4.40
2462	Non HT20 Beam Forming, 6 to 54 Mbps	4	6	-31.0	-36.4	-41.9	-35.6	-23.9	-21.25	2.60
	Non HT20 Beam Forming, 6 to 54 Mbps	∠ 3	8	-35.1	-44.8	-46.0			-21.25	5.05
							44.0	-26.3		
	Non HT20 Beam Forming, 6 to 54 Mbps	4	9	-40.6	-47.4	-48.2	-44.9	-29.1	-21.25	7.86
	HT/VHT20, M0 to M7	1	3	-30.2	05.0			-27.1	-21.25	5.90
	HT/VHT20, M0 to M7	2	3	-30.2	-35.6			-26.0	-21.25	4.80
	HT/VHT20, M8 to M15	2	3	-30.2	-35.6	00.0		-26.0	-21.25	4.80
	HT/VHT20, M0 to M7	3	3	-30.2	-35.6	-39.6		-25.7	-21.25	4.43
	HT/VHT20, M8 to M15	3	3	-30.2	-35.6	-39.6		-25.7	-21.25	4.43

Page No: 69 of 88

HT/VHT20, M16 to M23	3	3	-30.2	-35.6	-39.6		-25.7	-21.25	4.43
HT/VHT20, M0 to M7	4	3	-30.2	-35.6	-39.6	-31.3	-23.8	-21.25	2.51
HT/VHT20, M8 to M15	4	3	-30.2	-35.6	-39.6	-31.3	-23.8	-21.25	2.51
HT/VHT20, M16 to M23	4	3	-30.2	-35.6	-39.6	-31.3	-23.8	-21.25	2.51
HT/VHT20, M24 to M31	4	3	-30.2	-35.6	-39.6	-31.3	-23.8	-21.25	2.51
HT/VHT20 Beam Forming, M0 to M7	2	6	-33.9	-40.6	-39.0	-51.5	-23.0	-21.25	5.76
HT/VHT20 Beam Forming, M8 to M15	2	3	-30.2	-40.0			-26.0	-21.25	4.80
HT/VHT20 Beam Forming, M0 to M7	∠ 3	8	-37.0	-46.3	-46.2		-28.0	-21.25	6.77
HT/VHT20 Beam Forming, M8 to M15	3	5	-33.9	-40.5	-43.6		-27.6	-21.25	6.39
HT/VHT20 Beam Forming, M16 to M23	3	3	-30.2	-40.0	-43.0		-27.0	-21.25	4.43
	3 4	9	-30.2	-46.3	-39.0	-44.1	-25.7	-21.25	5.14
HT/VHT20 Beam Forming, M0 to M7	4	9 6		-40.5	-40.2	-44.1	-20.4	-21.25	3.73
HT/VHT20 Beam Forming, M8 to M15	4	4	-33.9						
HT/VHT20 Beam Forming, M16 to M23		4	-33.9	-40.6	-43.6	-36.0	-27.0	-21.25	5.73
HT/VHT20 Beam Forming, M24 to M31	4		-30.2	-35.6	-39.6	-31.3	-23.8	-21.25	2.51
HT/VHT20 STBC, M0 to M7	2	3	-30.2	-35.6	20.0		-26.0	-21.25	4.80
HT/VHT20 STBC, M0 to M7	3	3 3	-30.2	-35.6	-39.6	24.2	-25.7	-21.25	4.43
HT/VHT20 STBC, M0 to M7	4		-30.2	-35.6	-39.6	-31.3	-23.8	-21.25	2.51
HE20, M0 to M9 1ss	1	3	-24.5	05.0			-21.4	-21.25	0.18
HE20, M0 to M9 1ss	2	3	-30.6	-35.9			-26.4	-21.25	5.16
HE20, M0 to M9 2ss	2	3	-30.6	-35.9	00.0		-26.4	-21.25	5.16
HE20, M0 to M9 1ss	3	3	-30.6	-35.9	-39.0		-26.0	-21.25	4.70
HE20, M0 to M9 2ss	3	3	-30.6	-35.9	-39.0		-26.0	-21.25	4.70
HE20, M0 to M9 3ss	3	3	-30.6	-35.9	-39.0	00.5	-26.0	-21.25	4.70
HE20, M0 to M9 1ss	4	3	-30.6	-35.9	-39.0	-36.5	-25.2	-21.25	3.99
HE20, M0 to M9 2ss	4	3	-30.6	-35.9	-39.0	-36.5	-25.2	-21.25	3.99
HE20, M0 to M9 3ss	4	3	-30.6	-35.9	-39.0	-36.5	-25.2	-21.25	3.99
HE20, M0 to M9 4ss	4	3	-30.6	-35.9	-39.0	-36.5	-25.2	-21.25	3.99
HE20 Beam Forming, M0 to M9 1ss	2	6	-30.6	-35.9			-23.4	-21.25	2.16
HE20 Beam Forming, M0 to M9 2ss	2	3	-30.6	-35.9			-26.4	-21.25	5.16
HE20 Beam Forming, M0 to M9 1ss	3	8	-35.9	-42.2	-46.3		-26.6	-21.25	5.36
HE20 Beam Forming, M0 to M9 2ss	3	5	-30.6	-35.9	-39.0		-24.0	-21.25	2.70
HE20 Beam Forming, M0 to M9 3ss	3	3	-30.6	-35.9	-39.0		-26.0	-21.25	4.70
HE20 Beam Forming, M0 to M9 1ss	4	9	-39.6	-45.6	-48.1	-46.9	-28.6	-21.25	7.30
HE20 Beam Forming, M0 to M9 2ss	4	6	-30.6	-35.9	-39.0	-36.5	-22.2	-21.25	0.99
HE20 Beam Forming, M0 to M9 3ss	4	4	-30.6	-35.9	-39.0	-36.5	-24.2	-21.25	2.99
HE20 Beam Forming, M0 to M9 4ss	4	3	-30.6	-35.9	-39.0	-36.5	-25.2	-21.25	3.99
HE20 STBC, M0 to M9 2ss	2	3	-30.6	-35.9			-26.4	-21.25	5.16
HE20 STBC, M0 to M9 2ss	3	3	-30.6	-35.9	-39.0		-26.0	-21.25	4.70
HE20 STBC, M0 to M9 2ss	4	3	-30.6	-35.9	-39.0	-36.5	-25.2	-21.25	3.99

Page No: 70 of 88

Antenna A

Conducted Bandedge Peak, 2412 MHz, HE20, M0 to M9 1ss

Antenna B

սիսիւ

cisco

Page No: 71 of 88

enter Freq 2.481000000 GHz

Ref 10.00 dB

Res EW 1.0 MHz

Scale

Stop 2.50000 1.000 ms (801

10

սիսիւ

cisco

Conducted Bandedge Peak, 2462 MHz, HE20, M0 to M9 1ss

Trig Free Run

Seale.

WEW 3.0 MH

38,360 din 54,544 dis

2.483 50 GHz 2.484 55 GHz

Antenna A

Page No: 72 of 88

A.9 Conducted Bandedge (Non-Restricted Band)

Emissions in non-restricted frequency bands - Test Requirement

15.247 / LP0002:3.10.1(5) & 2.8

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RSS-Gen 8.9 Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 and Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

RSS-Gen 8.10 (b) Unwanted emissions that fall into restricted bands of Table 6 shall comply with the limits specified in RSS-Gen; and (c) Unwanted emissions that do not fall within the restricted frequency bands of Table 6 shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.

Emissions in non-restricted frequency bands - Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05 ANSI C63.10: 2013

Emissions in non-restricted frequency bands - Conducted

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Use the marker function to determine the maximum spurs amplitude level.

5. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05 section, 8.5 DTS emissions in non-restricted frequency bands, 8.7 DTS band-edge measurements

			0			11.11.2	.3		
•	•	•		•	1.0			0	

Emissions in non-restricted frequency bands - Conducted Test parameters	
 11.11.2 Reference Level measurement Establish a reference level by using the following procedure: a) Set instrument center frequency to DTS channel center frequency. b) Set the span to ≥ 1.5 x DTS bandwidth. c) Set the RBW = 100 kHz. d) Set the VBW ≥ 3 x RBW. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum PSD level. 	 11.11.3 Emission Level Measurement a) Set the center frequency and span to encompass frequency range to be measured. b) Set the RBW = 100 kHz. c) Set the VBW ≥ 3 x RBW. d) Detector = peak. e) Sweep time = auto couple. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use the peak marker function to determine the maximum amplitude level.

Page No: 73 of 88

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	V	
1	Support			\checkmark

Tested By :	Date of testing:		
Chris Blair	10-Sep-19 - 01-Oct-19		
Test Result : PASS			

Test Equipment See Appendix C for list of test equipment

Page No: 74 of 88

Non-Restricted Band

Frequency (MHz)	Mode	Data Rate (Mbps)	Conducted Bandedge Delta (dB)	Limit (dBc)	Duty Cycle Correction (dB)	Margin (dB)
	CCK, 1 to 11 Mbps	11	44.7	>30	0.2	14.51
2412	Non HT20, 6 to 54 Mbps	6	42.6	>30	0.0	12.55
24	HT/VHT20, M0 to M31	m0	36.9	>30	0.1	6.85
	HE20, M0 to M9	m0h1	38.4	>30	0.1	8.33
	CCK, 1 to 11 Mbps	11	59.9	>30	0.2	29.71
2462	Non HT20, 6 to 54 Mbps	6	44.9	>30	0.0	14.85
24	HT/VHT20, M0 to M31	m0	45.7	>30	0.1	15.65
	HE20, M0 to M9	m0h1	45.8	>30	0.1	15.73

Page No: 75 of 88

Repurpt Spectrum Analysis - Swept St			atype (Lemma 1 Law)	Aliande .		100-10-64
enter Freq 2.40600000	PRO Wate (Trig: Free Run #Atten: 20 dB	Avg Type	e: Log-Pwr	THACE TO A MERINA	Frequency
o dBralv Ref 10.00 dBm				Mkr2 2.	398 864 GHz -35.86 dBm	Auto Tun
		prostrantenation	den en e	(342 orthorniortoc	staint-ortoon	Center Fre 2.409000000 OH
co Marina na mana ang ang ang ang ang ang ang ang ang	, and the					Start Fre 2.39000500 GH
00						Stop Fre 2.42300000 GH
tart 2.39000 GHz Res BW 100 kHz	AVBW	300 KHz	nactor Pa	Sweep 1.00	op 2,42200 GHz 0 mis (1001 pts)	CF Ste 3.200300 Mi- Auto Ma
2 N 2 2 30	10 000 GHz 18 864 GHz 15.648 MHz (Δ)	42.09 dBm -35.85 dBm -36.85 dB				Freg Offse 0 H
9 9 0						Scale Typ
				with the	1.00	-

Conducted Bandedge Delta, 2412 MHz, HT/VHT20, M0 to M7

սիսիս

Page No: 76 of 88

Appendix B: Radiated and AC Conducted Emission Test Results

Testing done by outside laboratory, not included in the scope of this report.

Page No: 77 of 88

Appendix C: List of Test Equipment Used to perform the test

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due	Test Item
57475	Cisco	Automation Test Insertion Loss	NA	NA	A1-A9
53614	Keysight N9030A-550	PXA Signal Analyzer, 3Hz to 50GHz	16 Jul 2019	16 Jul 2020	A1-A9
55095	NI PXI-1042	CHASSIS, PXI	NA	NA	A1-A9
57236	NI PXI-8115	Embedded Controller	NA	NA	A1-A9
57242	NI PXI-2796	40 GHz Dual 6x1 Multiplexer (SP6T)	NA	NA	A1-A9
57243	NI PXI-2799	Switch 1x1	NA	NA	A1-A9
56090	NI PXI-2796	40 GHz Dual 6x1 Multiplexer (SP6T)	NA	NA	A1-A9
7329	Omega CT485B	Chart recorder	18 Feb 2019	18 Feb 2020	A1-A9
56328	Pasternack PE5019-1	Torque wrench	14 Feb 2019	14 Feb 2020	A1-A9
56329	Pasternack PE5019-1	Torque wrench	28 Feb 2019	28 Feb 2020	A1-A9
56330	Pasternack PE5019-1	Torque wrench	28 Feb 2019	28 Feb 2020	A1-A9

Page No: 78 of 88

Appendix D: Abbreviation Key and Definitions

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	°C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
ТАР	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control System	Qp	Quasi Peak
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak
Cal	Calibration	kHz	Kilohertz (1x10 ³)
EN	European Norm	MHz	MegaHertz (1x10 ⁶)
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)
CISPR	International Special Committee on Radio Interference	Н	Horizontal
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization Network	dB	decibel
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³)
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)
L2	Line2	А	Amp
L3	Line 3	μA	Micro Amp (1x10 ⁻⁶)
DC	Direct Current	mS	Milli Second (1x10 ⁻³)
RAW	Uncorrected measurement value, as indicated by the measuring device	μS	Micro Second (1x10 ⁻⁶)
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)
SLCE	Signal Line Conducted Emissions	m	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
Ν	Neutral Line	R	Return
S	Supply	AC	Alternating Current

The following table defines abbreviations used within this test report.

Page No: 79 of 88

Appendix E: Photographs of Test Setups

Please refer to the attachment

Page No: 80 of 88

Appendix F: Software Used to Perform Testing

Cisco Internal LabView Radio Test Automation Software rev57

Appendix G:Test Procedures

Measurements were made in accordance with

- KDB 558074 D01 DTS Meas Guidance v05
- KDB 662911 MIMO
- ANSI C63.4 2014 Unintentional Radiators
- ANSI C63.10 2013 Intentional Radiators

Test procedures are summarized below

FCC 2.4GHz Test Procedures	EDCS # 1445042
FCC 2.4GHz RSE Test Procedures	EDCS # 1480386

Appendix H: Scope of Accreditation (A2LA certificate number 1178-01)

The scope of accreditation of Cisco Systems, Inc. can be found on the A2LA web page at:

http://www.a2la.org/scopepdf/1178-01.pdf

Appendix I: Test Assessment Plan

Target Power Tables EDCS# 18087112

Page No: 81 of 88

Appendix J: UUT Software Info

APA453.0E7B.CCD0# APA453.0E7B.CCD0#test watchdog monitoring off APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0#show ver Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR sec. 52.227-19 and subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS sec. 252.227-7013.

Cisco Systems, Inc. 170 West Tasman Drive San Jose, California 95134-1706

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

This product contains some software licensed under the "GNU General Public License, version 2" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU General Public License, version 2", available here: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

This product contains some software licensed under the "GNU Library General Public License, version 2" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU Library General Public License, version 2", available here: http://www.gnu.org/licenses/old-licenses/lgpl-2.0.html

Page No: 82 of 88

This product contains some software licensed under the "GNU Lesser General Public License, version 2.1" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU Lesser General Public License, version 2.1", available here: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

This product contains some software licensed under the "GNU General Public License, version 3" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU General Public License, Version 3", available here: http://www.gnu.org/licenses/gpl.html.

This product contains some software licensed under the "GNU Affero General Public License, version 3" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU Affero General Public License, version 3", available here: http://www.gnu.org/licenses/agpl-3.0.html.

Cisco AP Software, (ap1g7), [cheetah-build6:/san2/BUILD/workspace/Nightly-Cheetah-axel-bcm-mfg-c8_10_throttle] Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2019 by Cisco Systems, Inc. Compiled Fri Sep 6 08:06:05 PDT 2019

ROM: Bootstrap program is U-Boot boot loader BOOTLDR: U-Boot boot loader Version

APA453.0E7B.CCD0 uptime is 0 days, 0 hours, 4 minutes Last reload time : Fri Sep 6 08:22:50 UTC 2019 Last reload reason : unknown

cisco C9120AXE-B with 1809824/1062468K bytes of memory. Processor board ID 0 AP Running Image : 8.8.1.10 Primary Boot Image : 0.0.0.0 Primary Boot Image Hash: Backup Boot Image Hash: 1 Gigabit Ethernet interfaces 2 802.11 Radios Radio Driver version : 17.10 RC77.13 Radio FW version : 1268.14948.r14702 14702 NSS FW version : NA

Base ethernet MAC Address: A4:53:0E:7B:CC:D0Part Number: 0-000000-00PCA Assembly Number: 800-105708-01PCA Revision Number: 09PCB Serial Number: FOC23302F0Q

Page No: 83 of 88

Top Assembly Part Number	: 800-105708-01
Top Assembly Serial Number	: 0
Top Revision Number	: 09
Product/Model Number	: C9120AXE-B

APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# Read timed out

User Access Verification Username: Cisco Password: Lock out for 4 seconds in release image

% Authentication failed

User Access Verification Username: Cisco Password: APA453.0E7B.CCD0>en Password: APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# EXITING CISCO SHELL. PLEASE EXECUTE EXIT IN DEVSHELL TO GET BACK TO CISCO SHELL. մինին

BusyBox v1.29.3 () built-in shell (ash)

Welcome to Cisco.

Usage of this device is governed by Cisco's End User License Agreement, available at: http://www.cisco.com/c/en/us/td/docs/general/warranty/English/EU1KEN_.html.

Page No: 84 of 88

mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# echo 0 > /meraki_gpio/RF_2G_ble mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# cat MERAKI_BUILD.extra Fri Sep 6 08:06:05 PDT 2019 cheetah-build6 /san2/BUILD/workspace/Nightly-Cheetah-axel-bcm-mfg-c8_10_throttle

* (HEAD detached at fb31ca5b6a)

syn base: fb31ca5b6ab1468794221acdd081bea192921139 commit: fb31ca5b6ab1468794221acdd081bea192921139 tree 9933345a372cf5493649162765b52efdf4ff9219 mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# show_cookie Part Number : 0-000000-00 Board Revision : 00 PCB Serial Number : FOC23302F0Q : 0-000000-00 PCB Fab Part Number Deviation Number :0 : A4:53:0E:7B:CC:D0 MAC Address MAC Address Block Size :4 Radio 0 MAC Address : D4:AD:BD:A2:16:80 Radio 0 MAC Address Block Size : 16 Radio 1 MAC Address : D4:AD:BD:A2:16:90 Radio 1 MAC Address Block Size : 16 PCA Assembly Number : 800-105708-01 PCA Revision Number : 09 Product/Model Number : C9120AXE-B Top Assembly Part Number : 800-105708-01 Top Revision Number :09 Top Assembly Serial Number : 0 RMA Test History :00 **RMA History** : 00 **RMA Number** : 00-00-00-00 Device Type : 4C Max Association Allowed :2 Radio(2.4G) Carrier Set :0000 Radio(2.4G) Max Transmit Power Level : 100 Radio(2.4G) Antenna Diversity Support: 01 Radio(2.4G) Encryption Ability : 0002 :0029 Radio(5G) Carrier Set Radio(5G) Max Transmit Power Level : 100

Page No: 85 of 88

Radio(5G) Antenna Diversity Support : 01 Radio(5G) Encryption Ability : 0002 Radio(802.11g) Radio Mode : 255 PEP Product Identifier (PID) : C9120AXE-B PEP Version Identifier (VID) : V01 :00 System Flags :0000 Controller Type Host Controller Type : 0000 Mfr Service Date : 2019.08.03-47:59:59 Radio(49) Carrier Set : 0000 Radio(49) Max Transmit Power Level : 0 Radio(49) Antenna Diversity Support : 00 Radio(49) Encryption Ability : 0000 Radio(58) Carrier Set : 0029 Radio(58) Max Transmit Power Level : 100 Radio(58) Antenna Diversity Support : 01 Radio(58) Encryption Ability : 0002 ACT2 ID : C9120 Static AP Mode :0 mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# cat /storage/rxtx_mode tx mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# cd /usr/bin/bcm/mfg mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# ./init_config.sh broardcast_ssids show_carrier_cookies | grep -o '..\$' 41 wl-i apr1v0 country US wl -i apr0v0 country US Chanspec set to 0x1001 [*09/06/2019 08:42:38.7040] wlc_ucode_download: wl1: Loading 129 MU ucode Chanspec set to 0xd024 [*09/06/2019 08:42:38.7870] wlc_ucode_download: wl0: Loading 129 MU ucode mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# ./dfstool.lua

Vanc dfstool BOARD: Axel BCM !!!!!!

Page No: 86 of 88

Display config: wl -i apr0v0 status | head -3 "Not associated. Last associated with SSID: """

Display config: wl -i apr1v0 status | head -3 "Not associated. Last associated with SSID: """

show_carrier_cookies | grep -o '..\$' rc:result="41"

wl -i apr1v0 country US wl -i apr0v0 country US > line=""

>do0 stop line="do0 stop"

DEBUG: compliance stop command matched. INFO: subcommand="compliance off".

execution section for compliance stop command. line="do0 stop" interface="0" stop_option="stop" wl -i apr0v0 pkteng_status | awk -F'[,]' '{print \$3}' main:result="0"

1601792112 (0x5f796870)

> line="" >do1 stop line="do1 stop"

DEBUG: compliance stop command matched. INFO: subcommand="compliance off".

execution section for compliance stop command. line="do1 stop" interface="1" stop_option="stop" wl -i apr1v0 pkteng_status | awk -F'[,]' '{print \$3}' main:result="0"

1601792112 (0x5f796870)

Page No: 87 of 88

cisco

> line="" >do4 stop line="do4 stop"

DEBUG: compliance stop command matched. INFO: subcommand="compliance off".

execution section for compliance stop command. line="do4 stop" interface="4" stop_option="stop" [09/06/2019 08:44:03.9220] NXP-RHL-Driver 0001:01:00.0: xcvr[0], swcmd 0x23 done [09/06/2019 08:44:04.1030] NXP-RHL-Driver 0001:01:00.0: xcvr[0], swcmd 0x4 done [09/06/2019 08:44:04.1870] NXP-RHL-Driver 0001:01:00.0: VSPA FW :: FN = dcr.eld > line=""

>

Page No: 88 of 88

Test Report

C1920AXE-x (x = A, B, N, T)

Cisco Catalyst C9120AX Series 802.11ax Access Point

2.4GHz WLAN Radio + 4dBi Antenna

FCC ID: LDKEDAC92157 IC: 2461N-EDAC92157

2400-2483.5 MHz

Against the following Specifications:

CFR47 Part 15.247 RSS-247 RSS-Gen Issue 5 LP0002 (2018-01-10)

Cisco Systems 170 West Tasman Drive

San Jose, CA 95134

Author: Chris Blair Approved By: Gez Thorpe **Tested By: Chris Blair** Title: Radio Compliance Manager Revision: See EDCS

This report replaces any previously entered test report under EDCS – **18334962**. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. Test Report Template EDCS# 11644121.

Page No: 1 of 88

SECTION 1: OVERVIEW		3
SECTION 2: ASS	ESSMENT INFORMATION	4
2.1 General		4
2.2 DATE OF TESTING		6
2.3 Report Issue Date		6
2.4 TESTING FACILITIES		
2.5 Equipment Assessed (EUT)		
2.6 EUT DESCR	IPTION	7
SECTION 3: RES	SULT SUMMARY	9
3.1 RESULTS SU	MMARY TABLE	9
SECTION 4: SAM	IPLE DETAILS	12
4.1 SAMPLE DETAILS		
4.2 System Details		
4.3 MODE OF O	PERATION DETAILS	12
APPENDIX A: E	MISSION TEST RESULTS	13
Conducted Test Setup Diagram		13
TARGET MAXIMUM CHANNEL POWER		13
A.1 DUTY CYCLE		
A.2 DTS BANDWIDTH (6DB BANDWIDTH)		
A.3 OCCUPIED BANDWIDTH		
A.4 MAXIMUM CONDUCTED OUTPUT POWER		
A.5 POWER SPECTRAL DENSITY A.6 Conducted Spurious Emissions		
A.6 CONDUCTED SPURIOUS EMISSIONS		
A.7 CONDUCTED RECEIVER SPUNIOUS EMISSIONS A.8 CONDUCTED BANDEDGE (RESTRICTED BAND)		
A.9 CONDUCTED BANDEDGE (NON-RESTRICTED BAND)		
APPENDIX B: R	ADIATED AND AC CONDUCTED EMISSION TEST RESULTS	77
APPENDIX C:	LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST	78
APPENDIX D:	ABBREVIATION KEY AND DEFINITIONS	79
APPENDIX E:	PHOTOGRAPHS OF TEST SETUPS	80
APPENDIX F:	SOFTWARE USED TO PERFORM TESTING	81
APPENDIX G:	TEST PROCEDURES	81
APPENDIX H:	SCOPE OF ACCREDITATION (A2LA CERTIFICATE NUMBER 1178-01)	81
APPENDIX I:	TEST ASSESSMENT PLAN	81
APPENDIX J:	UUT SOFTWARE INFO	82

Section 1: Overview

The samples were assessed against the tests under the requirements of the following specifications:

Emission

CFR47 Part 15.247 RSS-247 Issue 2: Feb 2017 RSS-Gen Issue 5: Apr 2018 LP0002 (2018-01-10)

Page No: 3 of 88

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

 Temperature
 15°C to 35°C (54°F to 95°F)

 Atmospheric Pressure
 860mbar to 1060mbar (25.4" to 31.3")

 Humidity
 10% to 75*%

Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB] The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss.

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Page No: 4 of 88

Measurement Uncertainty Values

voltage and power measurements	±2dB
conducted EIRP measurements	± 1.4 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7
temperature measurements	± 0.54°
humidity measurements	± 2.3%
DC and low frequency measurements	± 2.5%

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

30 10 12 = 400 12 = 7/-0.30 12	30 MHz – 40GHz	+/- 0.38 dB
-------------------------------------	----------------	-------------

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

Page No: 5 of 88

2.2 Date of testing

10-Sep-19 - 01-Oct-19

2.3 Report Issue Date

14-Oct-19

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System. The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled.

2.4 Testing facilities

This assessment was performed by: Chris Blair & Julian Land

Testing Laboratory

Cisco Systems, Inc. 125 West Tasman Drive (Building P) San Jose, CA 95134 USA

Headquarters

Cisco Systems, Inc., 170 West Tasman Drive San Jose, CA 95134, USA

Registration Numbers for Industry Canada

Cisco System Site	Address	Site Identifier
Building P, 10m Chamber	125 West Tasman Dr	Company #: 2461N-2
	San Jose, CA 95134	
Building P, 5m Chamber	125 West Tasman Dr	Company #: 2461N-1
	San Jose, CA 95134	
Building I, 5m Chamber	285 W. Tasman Drive	Company #: 2461M-1
	San Jose, California 95134	
Building 7, 5m Chamber	425 E. Tasman Drive	Company #: 2461N-3
	San Jose, California 95134	

Test Engineers

Chris Blair

2.5 Equipment Assessed (EUT)

C1920AXE-x

Page No: 6 of 88

2.6 EUT Description

The radio supports the following modes of operation. The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst case data for all modes. Data is recorded at the lowest supported data rate for each mode. This report covers operation on channel 1-11.

802.11b - Legacy CCK, One Antenna, 1 to 11 Mbps 802.11b - Legacy CCK, Two Antennas, 1 to 11 Mbps 802.11b - Legacy CCK, Three Antennas, 1 to 11 Mbps 802.11b - Legacy CCK, Four Antennas, 1 to 11 Mbps

802.11g - Non HT20, One Antenna, 6 to 54 Mbps, 1ss 802.11g - Non HT20, Two Antennas, 6 to 54 Mbps, 1ss 802.11g - Non HT20, Three Antennas, 6 to 54 Mbps, 1ss 802.11g - Non HT20, Four Antennas, 6 to 54 Mbps, 1ss

802.11g - Non HT20 Beam Forming, Two Antennas, 6 to 54 Mbps, 1ss 802.11g - Non HT20 Beam Forming, Three Antennas, 6 to 54 Mbps, 1ss 802.11g - Non HT20 Beam Forming, Four Antennas, 6 to 54 Mbps, 1ss

802.11n/ac - HT/VHT20, One Antenna, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Two Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20, Three Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Three Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20, Three Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20, Four Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Four Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20, Four Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20, Four Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20, Four Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20, Four Antennas, M16 to M23, 3ss

802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20 Beam Forming, Three Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Three Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20 Beam Forming, Three Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M16 to M23, 3ss

802.11n/ac - HT/VHT20 STBC, Two Antennas, M0 to M7, 2ss 802.11n/ac - HT/VHT20 STBC, Three Antennas, M0 to M7, 2ss 802.11n/ac - HT/VHT20 STBC, Four Antennas, M0 to M7, 2ss

802.11ax - HE20, One Antenna, M0 to M9 1ss 802.11ax - HE20, Two Antennas, M0 to M9 1ss 802.11ax - HE20, Two Antennas, M0 to M9 2ss

Page No: 7 of 88

802.11ax - HE20, Three Antennas, M0 to M9 1ss 802.11ax - HE20. Three Antennas. M0 to M9 2ss 802.11ax - HE20, Three Antennas, M0 to M9 3ss 802.11ax - HE20, Four Antennas, M0 to M9 1ss 802.11ax - HE20, Four Antennas, M0 to M9 2ss 802.11ax - HE20, Four Antennas, M0 to M9 3ss 802.11ax - HE20, Four Antennas, M0 to M9 4ss 802.11ax - HE20 Beam Forming, Two Antennas, M0 to M9 1ss 802.11ax - HE20 Beam Forming, Two Antennas, M0 to M9 2ss 802.11ax - HE20 Beam Forming, Three Antennas, M0 to M9 1ss 802.11ax - HE20 Beam Forming, Three Antennas, M0 to M9 2ss 802.11ax - HE20 Beam Forming, Three Antennas, M0 to M9 3ss 802.11ax - HE20 Beam Forming, Four Antennas, M0 to M9 1ss 802.11ax - HE20 Beam Forming, Four Antennas, M0 to M9 2ss 802.11ax - HE20 Beam Forming, Four Antennas, M0 to M9 3ss 802.11ax - HE20 Beam Forming, Four Antennas, M0 to M9 4ss 802.11ax - HE20 STBC, Two Antennas, M0 to M9 2ss 802.11ax - HE20 STBC, Three Antennas, M0 to M9 2ss 802.11ax - HE20 STBC, Four Antennas, M0 to M9 2ss

Antenna Gain Frequency Part Number Antenna Type (dBi) -E SKU 2.4GHz&5GHz 2.4 GHz 2 dBi/5 GHz 4 dBi Dipole Ant., 2dBi@2.4GHz Black, connectors RP-TNC 4dBi@5GHz AIR-ANT2524DB-R/= 2.4GHz&5GHz 2.4 GHz 2 dBi/5 GHz 4 dBi Dipole Ant., 2dBi@2.4GHz AIR-ANT2524DG-R/= Gray, connectors RP-TNC 4dBi@5GHz 2.4GHz&5GHz 2.4 GHz 2 dBi/5 GHz 4 dBi Dipole Ant., 2dBi@2.4GHz AIR-ANT2524DW-R/= White, connectors RP-TNC 4dBi@5GHz 2.4GHz&5GHz 2.4 GHz 3dBi/5 GHz 5 dBi Low Profile 3dBi@2.4GHz AIR-ANT2535SDW-R Antenna, White, connectors RP-TNC 5dBi@5GHz 2.4GHz&5GHz 2.4 GHz 6 dBi/5 GHz 6 dBi Directionnel 6dBi@2.4GHz AIR-ANT2566P4W-R= Ant., 4-port, connectors RP-TNC 6dBi@5GHz 2.4GHz&5GHz 2.4GHz 2 dBi/5GHz 4 dBi Ceiling Mount 2dBi@2.4GHz AIR-ANT2524V4C-R= Omni Ant., 4-port, connectors RP-TNC 4dBi@5GHz 2.4GHz&5GHz 2.4GHz 4 dBi/5GHz 4 dBi Wall Mount 4dBi@2.4GHz AIR-ANT2544V4M-R= **Omni Ant., 4-port, connectors RP-TNC** 4dBi@5GHz 2.4GHz&5GHz 2.4 GHz 6 dBi/5 GHz 6 dBi 60 Deg. Patch 6dBi@2.4GHz AIR-ANT2566D4M-R= Ant., 4-port, RP-TNC 6dBi@5GHz

The following antennas are supported by this product series. The data included in this report represent the worst case data for all antennas.

Page No: 8 of 88

Section 3: Result Summary

3.1 Results Summary Table

Basic Standard	Technical Requirements / Details	Result
FCC 15.247 RSS-247 LP0002:3.10.1(6.2.1)	6dB Bandwidth Systems using digital modulation techniques may operate in the 2400-2483.5MHz band. The minimum 6dB bandwidth shall be at least 500 kHz	Pass
FCC 15.247 RSS-247	 99% & 26 dB Bandwidth: The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW. The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission. 	Pass
FCC 15.247 RSS-247 LP0002:3.10.1(2.3)	 Output Power: 15.247 The maximum conducted output power of the intentional radiator for systems using digital modulation in the 2400-2483.5 MHz band shall not exceed 1 Watt (30dBm). If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. RSS-247 For DTSs employing digital modulation techniques operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. Except as provided in Section 5.4(e), the e.i.r.p. shall not exceed 4 W. 	Pass
FCC 15.247 RSS-247 LP0002:3.10.1(6.2.2)	Power Spectral Density For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.	Pass

Page No: 9 of 88

FCC 15.247 RSS-247 LP0002:3.10.1(5)/2.8	Conducted Spurious Emissions / Band-Edge : In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.	Pass
FCC 15.247 RSS-247 FCC 15.205 RSS-Gen	Restricted band : Unwanted emissions falling within the restricted bands, as defined in FCC 15.205 (a) and RSS-Gen 8.10 must also comply with the radiated emission limits specified in FCC 15.209 (a) and RSS-Gen 8.9	Pass

Page No: 10 of 88

Radiated Emissions	General requirements)	1	
Basic Standard	Technical Requirements / Details		
FCC 15.209 RSS-Gen LP0002:3.10.1(5)/2.8 TX Spurious Emissions: Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the filed strength limits table in this section. Unwanted emissions falling within the restricted bands, as defined in FCC 15.205 (a) and RSS-Gen 8.10 must also comply with the radiated emission limits specified in FCC 15.209 (a) and RSS-Gen 8.9			
RSS-Gen LP0002:3.10.1(5)2.8	 RX Spurious Emissions: RSS-Gen 8.9 Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 and Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission. RSS-Gen 8.10 Restricted Bands Unwanted emissions that fall into restricted bands of Table 6 shall comply with the limits specified in RSS-Gen; and (c) Unwanted emissions that do not fall within the restricted frequency bands of Table 6 shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen. 	Not Tested	
FCC 15.207 RSS-Gen LP0002:2.3	AC conducted Emissions: Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.	Not Tested	

Radiated Emissions (General requirements)

Page No: 11 of 88

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

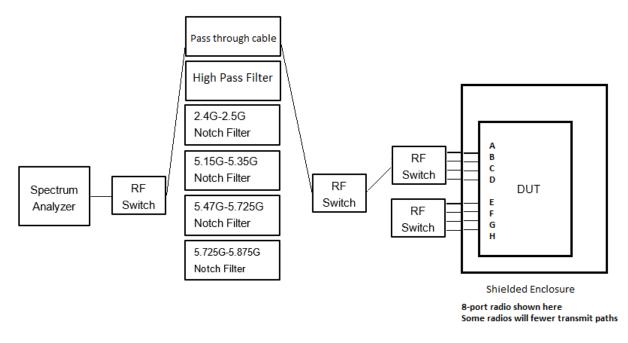
Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing.

4.1 Sample Details

Sample No.	Equipment Details	Manufacturer	Hardware Rev.	Firmware Rev.	Software Rev.	Serial Number
S01	C1920AXE-x	Foxconn	P2-2	1268.149 48.r1470 2 14702	Cisco AP Software, (ap1g7), [cheetah-build6:/san2/BUILD/ workspace/Nightly-Cheetah-a xel-bcm-mfg-c8_10_throttle] Compiled Fri Sep 6 08:06:05 PDT 2019	FOC23302F0Q

4.2 System Details


System #	Description	Samples
1	C1920AXE-x	S01

4.3 Mode of Operation Details

Mode#	Description	Comments
1	Continuously Transmitting	Constant duty cycle

Appendix A: Emission Test Results

Conducted Test Setup Diagram

Target Maximum Channel Power

The following table details the maximum supported Total Channel Power for all operating modes.

	Maximum Channel Power (dBm)		
	Frequency (MHz)		Hz)
Operating Mode	2412	2437	2462
Legacy CCK, 1 to 11 Mbps	24	24	24
Non HT20, 6 to 54 Mbps	18	24	19
Non HT20 Beam Forming, 6 to 54 Mbps	15	24	17
HT/VHT20, M0 to M31	18	24	18
HT/VHT20 Beam Forming, M0 to M31	18	24	18
HT/VHT20 STBC, M0 to M7	18	24	18
HE20, M0 to M9	17	24	18
HE20 Beam Forming, M0 to M9	17	24	18
HE20 STBC, M0 to M9 2ss	17	24	18

A.1 Duty Cycle

Duty Cycle Test Requirement

From KDB 558074, Section 6

6.0 Duty cycle, transmission duration and maximum power control level

Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (*i.e.*, with a duty cycle of greater than or equal to 98%). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be utilized to ensure that measurements are made only during transmissions at the maximum power control level. ...

When continuous transmission cannot be achieved and sweep triggering/signal gating cannot be implemented, alternate procedures are provided that can be used to measure the average power; however, they will require an additional measurement of the transmitter duty cycle. Within this guidance document, the duty cycle refers to the fraction of time over which the transmitter is on and is transmitting at its maximum power control level. The duty cycle is considered to be constant if variations are less than ± 2 percent, otherwise the duty cycle is considered to be non-constant.

Duty Cycle Test Method

From KDB 558074, Section 6:

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \ge OBW if possible; otherwise, set RBW to the largest available value. Set VBW \ge RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span measurement method of measuring duty cycle shall not be used if T \le 16.7 microseconds.)

Duty Cycle Test Information

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support			V

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 14 of 88

Duty Cycle Data Table

Duty Cycle table and screen captures are shown below for power/psd modes.

Frequency	Mode	Data Rate	Duty Cycle correction (dB)	
	CCK, 1 to 11 Mbps	11	0.2	
2412	Non HT20, 6 to 54 Mbps	6	0.0	
2412	HT/VHT20, M0 to M31	m0	0.1	
	HE20, M0 to M9	m0h1	0.1	
	CCK, 1 to 11 Mbps	11	0.2	
2437	Non HT20, 6 to 54 Mbps	6	0.0	
2437	HT/VHT20, M0 to M31	m0	0.1	
HE20, M0 to M9		m0h1	0.1	
	CCK, 1 to 11 Mbps	11	0.2	
2462	Non HT20, 6 to 54 Mbps	6	0.0	
2402	HT/VHT20, M0 to M31	m0	0.1	
	HE20, M0 to M9	m0h1	0.1	

Page No: 15 of 88

Duty Cycle Data Screenshots

the second state of the se	Analyzer - Swept SA			type - Limited Sale Allowed)		0 2 .
Center Freq 2		CORREC OGHZ PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 28 dB	Avg Type: Log-Pwr Avg Hold: 1/1	TRACE 2 3 4 5 0 TYPE A WARMAN DET P NNNNN	Frequency
10 dB/div Re	f 15.00 dBm		Automation - Automation - Automation		Mkr4 149.0 µs -21.261 dBm	Auto Tune
500	- 124-		¢2			Center Free 2.412000000 GH
25.0 35.0 45.0			0''			Start Free 2.412000000 GH
65.0 85.0 75.0	V		V	V		Stop Free 2.412000000 GH
Center 2.4120 Res BW 3.0 M	IHz	#VBV	V 100 kHz	Sweep 1.0	Span 0 Hz 00 ms (1001 pts) FUNCTION VALUE	CF Step 3.000000 MH <u>Auto</u> Mar
1 N 1 t 2 N 1 t 3 N 1 t 5 6		458.0 µs 472.0 µs 135.0 µs 149.0 µs	-28.523 dBm -18.324 dBm -20.498 dBm -21.251 dBm			Freq Offse 0 H
7 8 9 10 11						Scale Type Log <u>Lir</u>
sa			95.67, 0.19	STATUS		

Duty Cycle, 2412 MHz, CCK, 1 to 11 Mbps

Page No: 16 of 88

A.2 DTS Bandwidth (6dB Bandwidth)

DTS Bandwidth Test Requirement

For the FCC/ LP0002:3.10.1(6.2.1):

15.247 (2)

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

For Industry Canada: RSS-247 5.2 (a)

5.2 Digital transmission systems

DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MHz and 2400-2483.5 MHz: a) The minimum 6 dB bandwidth shall be 500 kHz.

DTS Bandwidth/ 6dB Bandwidth Test Procedure

Ref. KDB 558074 D01 DTS Meas Guidance v05, Section 8.2

ANSI C63.10: 2013, Clause 11.8.2 Option 2

6 BW

Test Procedure

1. Set the radio in the continuous transmitting mode.

2. Allow the trace to stabilize.

3. Setting the x-dB bandwidth mode to -6dB within the measurement set up function.

4. Select the automatic OBW measurement function of an instrument to perform bandwidth measurement.

5. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05, Section 8.2

ANSI C63.10: 2013, Clause 11.8.2 Option 2

6 BW

Test parameters

Page No: 17 of 88

One of the following procedures may be used to determine the modulated DTS bandwidth.

11.8.1 Option 1

The steps for the first option are as follows:

- a) Set RBW = 100 kHz.
- b) Set the $VBW \ge [3 \times RBW]$.
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

11.8.2 Option 2

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW \geq 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support			\checkmark

111111

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 18 of 88

DTS BW Table

Frequency (MHz)	Mode	Data Rate (Mbps)	6dB BW (MHz)	Limit (kHz)	Margin (MHz)
	CCK, 1 to 11 Mbps	11	5.6	>500	5.10
2442	Non HT20, 6 to 54 Mbps	6	16.1	>500	15.60
2412	HT/VHT20, M0 to M31	m0	16.9	>500	16.40
	HE20, M0 to M9	m0h1	18.9	>500	18.40
	CCK, 1 to 11 Mbps	11	6.2	>500	5.70
2437	Non HT20, 6 to 54 Mbps	6	16.2	>500	15.70
2437	HT/VHT20, M0 to M31	m0	17.4	>500	16.90
	HE20, M0 to M9	m0h1	18.6	>500	18.10
	CCK, 1 to 11 Mbps	11	7.0	>500	6.50
2462	Non HT20, 6 to 54 Mbps	6	16.1	>500	15.60
2402	HT/VHT20, M0 to M31	m0	17.4	>500	16.90
	HE20, M0 to M9	m0h1	18.9	>500	18.40

Page No: 19 of 88

DTS Bandwidth Screenshots

Keysight Spectrum Analyzer - Occupied BW		Prototype - Londed Sale 20	uwed)	1.0
Center Freq 2.412000000 NFE	-++- Ing: I	sense swi] r Freq: 2.412000000 GHz Free Run 1; 20 dB	Radio Std: No Radio Device	
15 dBidiv Ref 20.00 dBm				
510 511 351	1 mm			Center Freq 2.412000000 GHz
40.11 65.0 20.0	want		the manage	NATional
650 				
Center 2.412 GHz #Res BW 100 kHz	#	VBW 300 kHz	Span 6 #Swe	0 MHz CF Step ep 5 s 6.00000 MHz
Occupied Bandwidtl 10	י .788 MHz	Total Power	25.7 dBm	Auto Man Freg Offset
Transmit Freq Error x dB Bandwidth	41.287 kHz 5.598 MHz	% of OBW Power x dB	99.00 % -6.00 dB	0 Hz
66			STATUS	

6dB Bandwidth, 2412 MHz, CCK, 1 to 11 Mbps

Page No: 20 of 88

A.3 Occupied Bandwidth

Occupied Bandwidth Test Requirement

The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW.

The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth Test Method

Ref. ANSI C63.10: 2013

Occupied Bandwidth

Test Procedure

- 1. Set the radio in the continuous transmitting mode.
- 2. Allow the trace to stabilize.
- 3. Setting the x-dB bandwidth mode to -26dB & OBW to 99% within the measurement set up function.
- 4. Select the automatic OBW measurement function of an instrument to perform bandwidth measurement.
- 5. Capture graphs and record pertinent measurement data.

Ref. ANSI C63.10: 2013 section 6.9.3

Occupied Bandwidth

Test parameters

6.9.3 Occupied bandwidth-power bandwidth (99%) measurement procedure

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency spin for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 41.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Page No: 21 of 88

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	V	
1	Support			\checkmark

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 22 of 88

Occupied Bandwidth

Frequency (MHz)	Mode	Data Rate (Mbps)	26dB BW (MHz)	99% BW (MHz)
	CCK, 1 to 11 Mbps	11	14.0	11.129
2412	Non HT20, 6 to 54 Mbps	6	21.0	16.688
2412	HT/VHT20, M0 to M31	m0	21.6	17.927
	HE20, M0 to M9	m0h1	21.3	19.055
	CCK, 1 to 11 Mbps	11	14.1	10.983
2437	Non HT20, 6 to 54 Mbps	6	21.3	16.855
2437	HT/VHT20, M0 to M31	m0	21.8	18.184
	HE20, M0 to M9	m0h1	21.6	19.185
	CCK, 1 to 11 Mbps	11	14.2	11.106
2462	Non HT20, 6 to 54 Mbps	6	21.1	16.749
2402	HT/VHT20, M0 to M31	m0	21.7	17.980
	HE20, M0 to M9	m0h1	21.4	19.078

Page No: 23 of 88

26dB / 99% Bandwidth, 2437 MHz, CCK, 1 to 11 Mbps

սիսիս

Page No: 24 of 88

A.4 Maximum Conducted Output Power

Maximum Conducted Output Power Test Requirement

FCC, 15.247/ LP0002:3.10.1(2.3):

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (3) For systems using digital modulation in the 902-928 MHz, **2400-2483.5 MHz**, and 5725-5850 MHz bands: **1 Watt**. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Industry Canada, RSS-247:

5.4 Transmitter output power and equivalent isotropically radiated power (e.i.r.p.) requirements d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

The maximum supported antenna gain is (GAIN_MAX_TRANSMIT_POWER)dBi. The peak correlated gain for each mode is listed in the table below.

Maximum Conducted Output Power Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05 ANSI C63.10: 2013

Maximum Conducted Output power Test Procedure

1. Set the radio in the continuous transmitting mode at full power

Compute power by integrating the spectrum across the EBW (or alternatively entire 99% OBW) of the signal using the instrument's band power measurement function. The integration shall be performed using the spectrum analyzer band-power measurement function with band limits set equal to the EBW or the OBW band edges.
 Capture graphs and record pertinent measurement data.

Ref. 558074 D01 DTS Meas Guidance v05, 8.3.2.2 Measurement using a spectrum analyzer (SA) ANSI C63.10: 2013, section 11.9.2.2.4 Method AVGSA-2

Maximum Conducted Output power

Test parameters

Page No: 25 of 88

11.9.2.2.4 Method AVGSA-2

Method AVGSA-2 uses trace averaging across ON and OFF times of the EUT transmissions, followed by duty cycle correction. The procedure for this method is as follows:

- a) Measure the duty cycle D of the transmitter output signal as described in 11.6.
- b) Set span to at least 1.5 times the OBW.
- c) Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.
- d) Set $VBW \ge [3 \times RBW]$.
- e) Number of points in sweep ≥ [2 × span / RBW]. (This gives bin-to-bin spacing ≤ RBW / 2, so that narrowband signals are not lost between frequency bins.)
- f) Sweep time = auto.
- g) Detector = RMS (i.e., power averaging), if available. Otherwise, use the sample detector mode.
- h) Do not use sweep triggering. Allow the sweep to "free run."
- Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the ON and OFF periods of the transmitter.
- j) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- k) Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%.

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. (See ANSI C63.10 section 14.3 for Guidance)

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	$\mathbf{\nabla}$	
1	Support			\checkmark

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Note: Limit is modified to ensure complying with both conducted power limit of 30dBm and eirp limit of 36 dBm

Page No: 26 of 88

Maximum Output Power

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Tx 2 Max Power (dBm)	Tx 3 Max Power (dBm)	Tx 4 Max Power (dBm)	Duty Cycle Correction (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	4	18.0				0.2	18.2	30.0	11.81
	CCK, 1 to 11 Mbps	2	4	18.0	18.5			0.2	21.5	30.0	8.54
	CCK, 1 to 11 Mbps	3	4	18.0	18.5	17.6		0.2	23.0	30.0	6.99
	CCK, 1 to 11 Mbps	4	4	18.0	18.5	17.6	18.6	0.2	24.4	30.0	5.59
	Non HT20, 6 to 54 Mbps	1	4	12.2				0.0	12.2	30.0	17.75
	Non HT20, 6 to 54 Mbps	2	4	12.2	13.0			0.0	15.7	30.0	14.33
	Non HT20, 6 to 54 Mbps	3	4	11.3	12.0	11.5		0.0	16.4	30.0	13.57
	Non HT20, 6 to 54 Mbps	4	4	11.3	12.0	11.5	12.0	0.0	17.8	30.0	12.22
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	11.3	12.0			0.0	14.7	29.0	14.28
	Non HT20 Beam Forming, 6 to 54 Mbps	3	9	9.3	10.0	9.1		0.0	14.3	27.0	12.70
	Non HT20 Beam Forming, 6 to 54 Mbps	4	10	8.3	8.8	8.1	8.8	0.0	14.6	26.0	11.42
	HT/VHT20, M0 to M7	1	4	12.2				0.1	12.3	30.0	17.75
	HT/VHT20, M0 to M7	2	4	11.4	12.0			0.1	14.8	30.0	15.23
	HT/VHT20, M8 to M15	2	4	11.4	12.0			0.1	14.8	30.0	15.23
	HT/VHT20, M0 to M7	3	4	11.4	12.0	11.2		0.1	16.4	30.0	13.63
2412	HT/VHT20, M8 to M15	3	4	11.4	12.0	11.2		0.1	16.4	30.0	13.63
2	HT/VHT20, M16 to M23	3	4	11.4	12.0	11.2		0.1	16.4	30.0	13.63
	HT/VHT20, M0 to M7	4	4	11.4	12.0	11.2	11.9	0.1	17.7	30.0	12.29
	HT/VHT20, M8 to M15	4	4	11.4	12.0	11.2	11.9	0.1	17.7	30.0	12.29
	HT/VHT20, M16 to M23	4	4	11.4	12.0	11.2	11.9	0.1	17.7	30.0	12.29
	HT/VHT20, M24 to M31	4	4	11.4	12.0	11.2	11.9	0.1	17.7	30.0	12.29
	HT/VHT20 Beam Forming, M0 to M7	2	7	10.1	10.8			0.1	13.5	29.0	15.47
	HT/VHT20 Beam Forming, M8 to M15	2	4	11.4	12.0			0.1	14.8	30.0	15.23
	HT/VHT20 Beam Forming, M0 to M7	3	9	9.2	10.0	9.2		0.1	14.3	27.0	12.69
	HT/VHT20 Beam Forming, M8 to M15	3	6	11.4	12.0	11.2		0.1	16.4	30.0	13.63
	HT/VHT20 Beam Forming, M16 to M23	3	4	11.4	12.0	11.2		0.1	16.4	30.0	13.63
	HT/VHT20 Beam Forming, M0 to M7	4	10	8.2	9.0	8.2	8.7	0.1	14.6	26.0	11.39
	HT/VHT20 Beam Forming, M8 to M15	4	7	10.1	10.8	10.2	10.7	0.1	16.5	29.0	12.47
	HT/VHT20 Beam Forming, M16 to M23	4	5	11.4	12.0	11.2	11.9	0.1	17.7	30.0	12.29
	HT/VHT20 Beam Forming, M24 to M31	4	4	11.4	12.0	11.2	11.9	0.1	17.7	30.0	12.29
	HT/VHT20 STBC, M0 to M7	2	4	11.4	12.0			0.1	14.8	30.0	15.23

Page No: 27 of 88

i I		l	l			
C	5	5	C	¢)	

		3	4	11.4	12.0	11.2		0.1	16.4	20.0	12.62
	HT/VHT20 STBC, M0 to M7	3 4	4	11.4	12.0 12.0	11.2	11.9	0.1 0.1	16.4 17.7	30.0 30.0	13.63 12.29
	HT/VHT20 STBC, M0 to M7	4	-		12.0	11.2	11.9				
	HE20, M0 to M9 1ss	2	4	12.4	10.0			0.1	12.5	30.0	17.53
	HE20, M0 to M9 1ss		4	11.6	12.2			0.1	15.0	30.0	15.01
	HE20, M0 to M9 2ss	2	4	11.6	12.2	11.0		0.1	15.0	30.0	15.01
	HE20, M0 to M9 1ss	3 3	4 4	11.6	12.2	11.6		0.1	16.6	30.0	13.35
	HE20, M0 to M9 2ss			11.6	12.2	11.6		0.1	16.6	30.0	13.35
	HE20, M0 to M9 3ss	3	4	11.6	12.2	11.6	10.0	0.1	16.6	30.0	13.35
	HE20, M0 to M9 1ss	4	4	10.5	11.1	10.3	10.9	0.1	16.8	30.0	13.20
	HE20, M0 to M9 2ss	4	4 4	10.5	11.1	10.3	10.9	0.1	16.8	30.0	13.20
	HE20, M0 to M9 3ss	4		10.5	11.1	10.3	10.9	0.1	16.8	30.0	13.20
	HE20, M0 to M9 4ss	4	4	10.5	11.1	10.3	10.9	0.1	16.8	30.0	13.20
	HE20 Beam Forming, M0 to M9 1ss	2	7	10.5	11.1			0.1	13.9	29.0	15.11
	HE20 Beam Forming, M0 to M9 2ss	2	4	11.6	12.2			0.1	15.0	30.0	15.01
	HE20 Beam Forming, M0 to M9 1ss	3	9	8.4	9.2	8.3		0.1	13.5	27.0	13.51
	HE20 Beam Forming, M0 to M9 2ss	3	6	10.5	11.1	10.3		0.1	15.5	30.0	14.52
	HE20 Beam Forming, M0 to M9 3ss	3	4	11.6	12.2	11.6		0.1	16.6	30.0	13.35
	HE20 Beam Forming, M0 to M9 1ss	4	10	7.2	8.0	7.5	8.1	0.1	13.8	26.0	12.20
	HE20 Beam Forming, M0 to M9 2ss	4	7	9.3	10.1	9.4	9.9	0.1	15.8	29.0	13.23
	HE20 Beam Forming, M0 to M9 3ss	4	5	10.5	11.1	10.3	10.9	0.1	16.8	30.0	13.20
	HE20 Beam Forming, M0 to M9 4ss	4	4	10.5	11.1	10.3	10.9	0.1	16.8	30.0	13.20
	HE20 STBC, M0 to M9 2ss	2	4	11.6	12.2			0.1	15.0	30.0	15.01
	HE20 STBC, M0 to M9 2ss	3	4	11.6	12.2	11.6		0.1	16.6	30.0	13.35
	HE20 STBC, M0 to M9 2ss	4	4	10.5	11.1	10.3	10.9	0.1	16.8	30.0	13.20
	CCK, 1 to 11 Mbps	1	4	17.8				0.2	18.0	30.0	12.01
	CCK, 1 to 11 Mbps	2	4	17.8	18.9			0.2	21.6	30.0	8.41
	CCK, 1 to 11 Mbps	3	4	17.8	18.9	17.4		0.2	23.0	30.0	6.96
	CCK, 1 to 11 Mbps	4	4	17.8	18.9	17.4	18.8	0.2	24.5	30.0	5.52
	Non HT20, 6 to 54 Mbps	1	4	17.3				0.0	17.3	30.0	12.65
	Non HT20, 6 to 54 Mbps	2	4	17.3	18.3			0.0	20.9	30.0	9.12
	Non HT20, 6 to 54 Mbps	3	4	17.3	18.3	17.0		0.0	22.4	30.0	7.61
	Non HT20, 6 to 54 Mbps	4	4	17.3	18.3	17.0	18.1	0.0	23.8	30.0	6.23
2437	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	17.3	18.3			0.0	20.9	29.0	8.12
24	Non HT20 Beam Forming, 6 to 54 Mbps	3	9	17.3	18.3	17.0		0.0	22.4	27.0	4.61
	Non HT20 Beam Forming, 6 to 54 Mbps	4	10	17.3	18.3	17.0	18.1	0.0	23.8	26.0	2.23
	HT/VHT20, M0 to M7	1	4	17.3				0.1	17.4	30.0	12.65
	HT/VHT20, M0 to M7	2	4	17.3	18.1			0.1	20.8	30.0	9.22
	HT/VHT20, M8 to M15	2	4	17.3	18.1			0.1	20.8	30.0	9.22
	HT/VHT20, M0 to M7	3	4	17.3	18.1	17.2		0.1	22.4	30.0	7.62
	HT/VHT20, M8 to M15	3	4	17.3	18.1	17.2		0.1	22.4	30.0	7.62
	HT/VHT20, M16 to M23	3	4	17.3	18.1	17.2		0.1	22.4	30.0	7.62
	HT/VHT20, M0 to M7	4	4	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
	HT/VHT20, M8 to M15 HT/VHT20, M0 to M7 HT/VHT20, M8 to M15 HT/VHT20, M16 to M23	2 3 3 3	4 4 4 4	17.3 17.3 17.3 17.3	18.1 18.1 18.1 18.1	17.2 17.2		0.1 0.1 0.1 0.1	20.8 22.4 22.4 22.4	30.0 30.0 30.0 30.0	9.22 7.62 7.62 7.62

Page No: 28 of 88

cisco

HT/VHT20, M8 to M15	4	4	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20, M16 to M23	4	4	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20, M24 to M31	4	4	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20 Beam Forming, M0 to M7	2	7	17.3	18.1			0.1	20.8	29.0	8.22
HT/VHT20 Beam Forming, M8 to M15	2	4	17.3	18.1			0.1	20.8	30.0	9.22
HT/VHT20 Beam Forming, M0 to M7	3	9	17.3	18.1	17.2		0.1	22.4	27.0	4.62
HT/VHT20 Beam Forming, M8 to M15	3	6	17.3	18.1	17.2		0.1	22.4	30.0	7.62
HT/VHT20 Beam Forming, M16 to M23	3	4	17.3	18.1	17.2		0.1	22.4	30.0	7.62
HT/VHT20 Beam Forming, M0 to M7	4	10	17.3	18.1	17.2	18.1	0.1	23.8	26.0	2.23
HT/VHT20 Beam Forming, M8 to M15	4	7	17.3	18.1	17.2	18.1	0.1	23.8	29.0	5.23
HT/VHT20 Beam Forming, M16 to M23	4	5	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20 Beam Forming, M24 to M31	4	4	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20 STBC, M0 to M7	2	4	17.3	18.1			0.1	20.8	30.0	9.22
HT/VHT20 STBC, M0 to M7	3	4	17.3	18.1	17.2		0.1	22.4	30.0	7.62
HT/VHT20 STBC, M0 to M7	4	4	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HE20, M0 to M9 1ss	1	4	17.3				0.1	17.4	30.0	12.63
HE20, M0 to M9 1ss	2	4	17.3	18.2			0.1	20.8	30.0	9.15
HE20, M0 to M9 2ss	2	4	17.3	18.2			0.1	20.8	30.0	9.15
HE20, M0 to M9 1ss	3	4	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20, M0 to M9 2ss	3	4	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20, M0 to M9 3ss	3	4	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20, M0 to M9 1ss	4	4	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20, M0 to M9 2ss	4	4	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20, M0 to M9 3ss	4	4	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20, M0 to M9 4ss	4	4	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20 Beam Forming, M0 to M9 1ss	2	7	17.3	18.2			0.1	20.8	29.0	8.15
HE20 Beam Forming, M0 to M9 2ss	2	4	17.3	18.2			0.1	20.8	30.0	9.15
HE20 Beam Forming, M0 to M9 1ss	3	9	17.3	18.2	17.3		0.1	22.5	27.0	4.54
HE20 Beam Forming, M0 to M9 2ss	3	6	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20 Beam Forming, M0 to M9 3ss	3	4	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20 Beam Forming, M0 to M9 1ss	4	10	17.3	18.2	17.3	18.3	0.1	23.9	26.0	2.11
HE20 Beam Forming, M0 to M9 2ss	4	7	17.3	18.2	17.3	18.3	0.1	23.9	29.0	5.11
HE20 Beam Forming, M0 to M9 3ss	4	5	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20 Beam Forming, M0 to M9 4ss	4	4	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20 STBC, M0 to M9 2ss	2	4	17.3	18.2			0.1	20.8	30.0	9.15
HE20 STBC, M0 to M9 2ss	3	4	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20 STBC, M0 to M9 2ss	4	4	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11

Page No: 29 of 88

	l	h	ı[h
(1	S	C	0

	CCK 1 to 11 Mbps	1	4	17.6				0.2	17.8	30.0	12.21
	CCK, 1 to 11 Mbps CCK, 1 to 11 Mbps	2	4	17.6	18.5			0.2	21.3	30.0	8.72
	CCK, 1 to 11 Mbps	2	4	17.6	18.5	17.4		0.2	22.8	30.0	7.18
	CCK, 1 to 11 Mbps	4	4	17.6	18.5	17.4	18.7	0.2	24.3	30.0	5.70
	Non HT20, 6 to 54 Mbps	4	4	12.1	10.5	17.4	10.7	0.2	12.1	30.0	17.85
	Non HT20, 6 to 54 Mbps	2	4	12.1	12.9			0.0	15.6	30.0	14.43
	Non HT20, 6 to 54 Mbps	2	4	12.1	12.9	12.3		0.0	17.3	30.0	12.74
	Non HT20, 6 to 54 Mbps	4	4	12.1	12.9	12.3	13.0	0.0	18.7	30.0	11.34
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	11.0	12.0	12.0	10.0	0.0	14.6	29.0	14.42
	Non HT20 Beam Forming, 6 to 54 Mbps	3	9	11.0	12.0	11.2		0.0	16.2	27.0	10.76
	Non HT20 Beam Forming, 6 to 54 Mbps	4	10	10.0	10.8	10.2	10.9	0.0	16.6	26.0	9.44
	HT/VHT20, M0 to M7	- 1	4	12.1	10.0	10.2	10.0	0.0	12.2	30.0	17.85
	HT/VHT20, M0 to M7	2	4	12.1	12.9			0.1	15.6	30.0	14.42
	HT/VHT20, M8 to M15	2	4	12.1	12.9			0.1	15.6	30.0	14.42
	HT/VHT20, M0 to M7	3	4	12.1	12.9	12.2		0.1	17.2	30.0	12.76
	HT/VHT20, M8 to M15	3	4	12.1	12.9	12.2		0.1	17.2	30.0	12.76
	HT/VHT20, M16 to M13	3	4	12.1	12.9	12.2		0.1	17.2	30.0	12.76
	HT/VHT20, M0 to M7	4	4	11.1	11.8	11.2	12.0	0.1	17.6	30.0	12.39
	HT/VHT20, M8 to M15	4	4	11.1	11.8	11.2	12.0	0.1	17.6	30.0	12.39
	HT/VHT20, M16 to M23	4	4	11.1	11.8	11.2	12.0	0.1	17.6	30.0	12.39
	HT/VHT20, M24 to M31	4	4	11.1	11.8	11.2	12.0	0.1	17.6	30.0	12.39
2462	HT/VHT20 Beam Forming, M0 to M7	2	7	11.1	11.8	11.2	12.0	0.1	14.5	29.0	14.47
24	HT/VHT20 Beam Forming, M8 to M15	2	4	12.1	12.9			0.1	15.6	30.0	14.42
	HT/VHT20 Beam Forming, M0 to M7	3	9	9.9	10.8	10.2		0.1	15.1	27.0	11.86
	HT/VHT20 Beam Forming, M8 to M15	3	6	11.1	11.8	11.2		0.1	16.2	30.0	13.80
	HT/VHT20 Beam Forming, M16 to M23	3	4	12.1	12.9	12.2		0.1	17.2	30.0	12.76
	HT/VHT20 Beam Forming, M0 to M7	4	10	8.7	9.9	9.1	9.8	0.1	15.5	26.0	10.52
	HT/VHT20 Beam Forming, M8 to M15	4	7	9.9	10.8	10.2	10.8	0.1	16.5	29.0	12.48
	HT/VHT20 Beam Forming, M16 to M23	4	5	11.1	11.8	11.2	12.0	0.1	17.6	30.0	12.39
	HT/VHT20 Beam Forming, M24 to M31	4	4	11.1	11.8	11.2	12.0	0.1	17.6	30.0	12.39
	HT/VHT20 STBC, M0 to M7	2	4	12.1	12.9			0.1	15.6	30.0	14.42
	HT/VHT20 STBC, M0 to M7	3	4	12.1	12.9	12.2		0.1	17.2	30.0	12.76
	HT/VHT20 STBC, M0 to M7	4	4	11.1	11.8	11.2	12.0	0.1	17.6	30.0	12.39
	HE20, M0 to M9 1ss	1	4	11.2				0.1	11.3	30.0	18.73
	HE20, M0 to M9 1ss	2	4	11.2	12.4			0.1	14.9	30.0	15.08
	HE20, M0 to M9 2ss	2	4	11.2	12.4			0.1	14.9	30.0	15.08
	HE20, M0 to M9 1ss	3	4	11.2	12.4	11.7		0.1	16.6	30.0	13.37
	HE20, M0 to M9 2ss	3	4	11.2	12.4	11.7		0.1	16.6	30.0	13.37
	HE20, M0 to M9 3ss	3	4	11.2	12.4	11.7		0.1	16.6	30.0	13.37
	HE20, M0 to M9 1ss	4	4	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
	HE20, M0 to M9 2ss	4	4	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
	HE20, M0 to M9 3ss	4	4	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
	HE20, M0 to M9 4ss	4	4	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07

Page No: 30 of 88

HE20 Beam Forming, M0 to M9 1ss	2	7	11.2	12.4			0.1	14.9	29.0	14.08
HE20 Beam Forming, M0 to M9 2ss	2	4	11.2	12.4			0.1	14.9	30.0	15.08
HE20 Beam Forming, M0 to M9 1ss	3	9	10.1	11.2	10.4		0.1	15.4	27.0	11.57
HE20 Beam Forming, M0 to M9 2ss	3	6	11.2	12.4	11.7		0.1	16.6	30.0	13.37
HE20 Beam Forming, M0 to M9 3ss	3	4	11.2	12.4	11.7		0.1	16.6	30.0	13.37
HE20 Beam Forming, M0 to M9 1ss	4	10	9.0	10.2	9.5	10.0	0.1	15.8	26.0	10.21
HE20 Beam Forming, M0 to M9 2ss	4	7	10.1	11.2	10.4	11.0	0.1	16.8	29.0	12.22
HE20 Beam Forming, M0 to M9 3ss	4	5	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
HE20 Beam Forming, M0 to M9 4ss	4	4	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
HE20 STBC, M0 to M9 2ss	2	4	11.2	12.4			0.1	14.9	30.0	15.08
HE20 STBC, M0 to M9 2ss	3	4	11.2	12.4	11.7		0.1	16.6	30.0	13.37
HE20 STBC, M0 to M9 2ss	4	4	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07

Page No: 31 of 88

Maximum Transmit Output Power, 2437 MHz, HE20 Beam Forming, M0 to M9 1ss

Antenna B

սիսիս

Antenna D

Antenna C

Antenna A

Page No: 32 of 88

A.5 Power Spectral Density

Power Spectral Density Test Requirement

15.247 (e) / RSS-247 5.2 (b) / LP0002:3.10.1(6.2.2)

5.2 Digital transmission systems

DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MHz and 2400-2483.5 MHz:

b) The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

Power Spectral Density Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05

ANSI C63.10: 2013
Power Spectral Density
Test Procedure
1. Set the radio in the continuous transmitting mode at full power
2.Configure Spectrum analyzer as per test parameters below and Peak search marker
3. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05, section 8.4 DTS maximum power spectral density level in the fundamental emission

ANSI C63.10: 2013, section 11.10.5 Average PSD

Power Spectral Density Test parameters

11.10.5 Method AVGPSD-2

Method AVGPSD-2 uses trace averaging across ON and OFF times of the EUT transmissions, followed by duty cycle correction.

The following procedure is applicable when the EUT cannot be configured to transmit continuously (i.e., $D \le 98\%$), when sweep triggering/signal gating cannot be used to measure only when the EUT is transmitting at its maximum power control level, and when the transmission duty cycle is constant (i.e., duty cycle variations are less than ±2%):

- a) Measure the duty cycle (D) of the transmitter output signal as described in 11.6.
- b) Set instrument center frequency to DTS channel center frequency.
- c) Set span to at least 1.5 times the OBW.
- d) Set RBW to: 3 kHz \leq RBW \leq 100 kHz.
- e) Set $VBW \ge [3 \times RBW]$.
- f) Detector = power averaging (rms) or sample detector (when rms not available).
- g) Ensure that the number of measurement points in the sweep $\geq [2 \times \text{span} / \text{RBW}]$.
- h) Sweep time = auto couple.
- i) Do not use sweep triggering; allow sweep to "free run."
- j) Employ trace averaging (rms) mode over a minimum of 100 traces.
- k) Use the peak marker function to determine the maximum amplitude level.
- Add [10 log (1 / D)], where D is the duty cycle measured in step a), to the measured PSD to compute the average PSD during the actual transmission time.
- m) If measured value exceeds requirement specified by regulatory agency, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

Page No: 33 of 88

The "Measure and add 10 log(N) dB technique", where N is the number of outputs, is used for measuring in-band Power Spectral Density. (See ANSI C63.10 section 14.3.2.3)

սիսիս

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
4	EUT	S01	$\mathbf{\nabla}$	
1	Support			\checkmark

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 34 of 88

Power Spectral Density

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/3kHz)	Tx 2 PSD (dBm/3kHz)	Tx 3 PSD (dBm/3kHz)	Tx 4 PSD (dBm/3kHz)	Duty Cycle Correction (dB)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Margin (dB)
	CCK, 1 to 11 Mbps	1	4	0.1				0.2	0.3	8.0	7.71
	CCK, 1 to 11 Mbps	2	7	0.1	-5.2			0.2	1.4	7.0	5.58
	CCK, 1 to 11 Mbps	3	9	0.1	-5.2	-5.1		0.2	2.3	5.0	2.67
	CCK, 1 to 11 Mbps	4	10	0.1	-5.2	-5.1	-4.7	0.2	3.1	4.0	0.86
	Non HT20, 6 to 54 Mbps	1	4	-3.7				0.0	-3.7	8.0	11.65
	Non HT20, 6 to 54 Mbps	2	7	-3.7	-9.0			0.0	-2.5	7.0	9.53
	Non HT20, 6 to 54 Mbps	3	9	-4.6	-9.1	-16.9		0.0	-3.1	5.0	8.05
	Non HT20, 6 to 54 Mbps	4	10	-4.6	-9.1	-16.9	-10.5	0.0	-2.3	4.0	6.33
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-4.6	-9.1			0.0	-3.2	7.0	10.24
	Non HT20 Beam Forming, 6 to 54 Mbps	3	9	-6.8	-12.4	-19.2		0.0	-5.5	5.0	10.51
	Non HT20 Beam Forming, 6 to 54 Mbps	4	10	-7.5	-13.3	-20.2	-14.3	0.0	-5.6	4.0	9.62
	HT/VHT20, M0 to M7	1	4	-3.5				0.1	-3.4	8.0	11.45
	HT/VHT20, M0 to M7	2	7	-5.1	-9.9			0.1	-3.8	7.0	10.81
	HT/VHT20, M8 to M15	2	4	-5.1	-9.9			0.1	-3.8	8.0	11.81
	HT/VHT20, M0 to M7	3	9	-5.1	-9.9	-15.5		0.1	-3.5	5.0	8.52
2412	HT/VHT20, M8 to M15	3	6	-5.1	-9.9	-15.5		0.1	-3.5	8.0	11.52
N	HT/VHT20, M16 to M23	3	4	-5.1	-9.9	-15.5		0.1	-3.5	8.0	11.52
	HT/VHT20, M0 to M7	4	10	-5.1	-9.9	-15.5	-10.5	0.1	-2.7	4.0	6.72
	HT/VHT20, M8 to M15	4	7	-5.1	-9.9	-15.5	-10.5	0.1	-2.7	7.0	9.72
	HT/VHT20, M16 to M23	4	5	-5.1	-9.9	-15.5	-10.5	0.1	-2.7	8.0	10.72
	HT/VHT20, M24 to M31	4	4	-5.1	-9.9	-15.5	-10.5	0.1	-2.7	8.0	10.72
	HT/VHT20 Beam Forming, M0 to M7	2	7	-6.0	-11.0			0.1	-4.8	7.0	11.75
	HT/VHT20 Beam Forming, M8 to M15	2	4	-5.1	-9.9			0.1	-3.8	8.0	11.81
	HT/VHT20 Beam Forming, M0 to M7	3	9	-6.8	-11.6	-17.8		0.1	-5.3	5.0	10.25
	HT/VHT20 Beam Forming, M8 to M15	3	6	-5.1	-9.9	-15.5		0.1	-3.5	8.0	11.52
	HT/VHT20 Beam Forming, M16 to M23	3	4	-5.1	-9.9	-15.5		0.1	-3.5	8.0	11.52
	HT/VHT20 Beam Forming, M0 to M7	4	10	-8.2	-13.0	-19.0	-13.7	0.1	-5.9	4.0	9.85
	HT/VHT20 Beam Forming, M8 to M15	4	7	-6.0	-11.0	-16.4	-11.9	0.1	-3.7	7.0	10.73
	HT/VHT20 Beam Forming, M16 to M23	4	5	-5.1	-9.9	-15.5	-10.5	0.1	-2.7	8.0	10.72
	HT/VHT20 Beam Forming, M24 to M31	4	4	-5.1	-9.9	-15.5	-10.5	0.1	-2.7	8.0	10.72
	HT/VHT20 STBC, M0 to M7	2	4	-5.1	-9.9			0.1	-3.8	8.0	11.81

Page No: 35 of 88

i I		1				
C	5	5	C	Ç)	

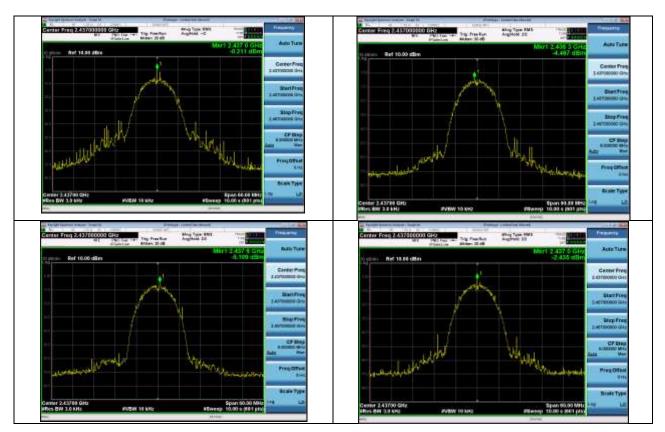
	HT/VHT20 STBC, M0 to M7	3	6	-5.1	-9.9	-15.5		0.1	-3.5	8.0	11.52
	HT/VHT20 STBC, M0 to M7	4	7	-5.1	-9.9	-15.5	-10.5	0.1	-3.5	7.0	9.72
	HE20, M0 to M9 1ss	4	4	-3.7	-9.9	-15.5	-10.5	0.1	-3.6	8.0	11.63
	HE20, M0 to M9 1ss	2	7	-5.0	-9.4			0.1	-3.6	7.0	10.59
	HE20, M0 to M9 2ss	2	4	-5.0	-9.4 -9.4			0.1	-3.6	8.0	11.59
	HE20, M0 to M9 1ss	∠ 3	9	-5.0	-9.4	-14.1		0.1	-3.0	5.0	8.21
	HE20, M0 to M9 2ss	3	9	-5.0	-9.4	-14.1		0.1	-3.2	8.0	11.21
	HE20, M0 to M9 3ss	3	4	-5.0 -5.0					-3.2	8.0 8.0	11.21
		3	4		-9.4	-14.1	10.0	0.1			
	HE20, M0 to M9 1ss		7	-6.2	-10.9	-16.4	-12.8	0.1	-4.0	4.0	7.95
	HE20, M0 to M9 2ss	4	7 5	-6.2	-10.9	-16.4 -16.4	-12.8	0.1 0.1	-4.0	7.0	10.95 11.95
	HE20, M0 to M9 3ss	4		-6.2	-10.9		-12.8		-4.0	8.0	
	HE20, M0 to M9 4ss	4	4	-6.2	-10.9	-16.4	-12.8	0.1	-4.0	8.0	11.95
	HE20 Beam Forming, M0 to M9 1ss	2	7	-6.2	-10.9			0.1	-4.9	7.0	11.87
	HE20 Beam Forming, M0 to M9 2ss	2	4	-5.0	-9.4	47.0		0.1	-3.6	8.0	11.59
	HE20 Beam Forming, M0 to M9 1ss	3	9	-7.6	-12.7	-17.3		0.1	-6.0	5.0	11.02
	HE20 Beam Forming, M0 to M9 2ss	3	6	-6.2	-10.9	-16.4		0.1	-4.6	8.0	12.57
	HE20 Beam Forming, M0 to M9 3ss	3	4	-5.0	-9.4	-14.1		0.1	-3.2	8.0	11.21
	HE20 Beam Forming, M0 to M9 1ss	4	10	-9.3	-13.1	-19.8	-16.4	0.1	-6.9	4.0	10.93
	HE20 Beam Forming, M0 to M9 2ss	4	7	-7.1	-12.3	-16.4	-13.2	0.1	-4.8	7.0	11.82
	HE20 Beam Forming, M0 to M9 3ss	4	5	-6.2	-10.9	-16.4	-12.8	0.1	-4.0	8.0	11.95
	HE20 Beam Forming, M0 to M9 4ss	4	4	-6.2	-10.9	-16.4	-12.8	0.1	-4.0	8.0	11.95
	HE20 STBC, M0 to M9 2ss	2	4	-5.0	-9.4			0.1	-3.6	8.0	11.59
	HE20 STBC, M0 to M9 2ss	3	6	-5.0	-9.4	-14.1		0.1	-3.2	8.0	11.21
	HE20 STBC, M0 to M9 2ss	4	7	-6.2	-10.9	-16.4	-12.8	0.1	-4.0	7.0	10.95
	CCK, 1 to 11 Mbps	1	4	-0.2				0.2	0.0	8.0	8.01
	CCK, 1 to 11 Mbps	2	7	-0.2	-4.5			0.2	1.4	7.0	5.64
	CCK, 1 to 11 Mbps	3	9	-0.2	-4.5	-5.1		0.2	2.3	5.0	2.72
	CCK, 1 to 11 Mbps	4	10	-0.2	-4.5	-5.1	-2.4	0.2	3.6	4.0	0.39
	Non HT20, 6 to 54 Mbps	1	4	0.7				0.0	0.7	8.0	7.25
	Non HT20, 6 to 54 Mbps	2	7	0.7	-4.0			0.0	2.0	7.0	4.99
	Non HT20, 6 to 54 Mbps	3	9	0.7	-4.0	-10.5		0.0	2.3	5.0	2.75
	Non HT20, 6 to 54 Mbps	4	10	0.7	-4.0	-10.5	-5.0	0.0	3.0	4.0	0.99
37	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	0.7	-4.0			0.0	2.0	7.0	4.99
24	Non HT20 Beam Forming, 6 to 54 Mbps	3	9	0.7	-4.0	-10.5		0.0	2.3	5.0	2.75
	Non HT20 Beam Forming, 6 to 54 Mbps	4	10	0.7	-4.0	-10.5	-5.0	0.0	3.0	4.0	0.99
	HT/VHT20, M0 to M7	1	4	0.6				0.1	0.7	8.0	7.35
	HT/VHT20, M0 to M7	2	7	0.6	-4.0			0.1	1.9	7.0	5.05
	HT/VHT20, M8 to M15	2	4	0.6	-4.0			0.1	1.9	8.0	6.05
	HT/VHT20, M0 to M7		9	0.6	-4.0	-9.8		0.1	2.2	5.0	2.77
	HT/VHT20, M8 to M15	3	6	0.6	-4.0	-9.8		0.1	2.2	8.0	5.77
	HT/VHT20, M16 to M23	3	4	0.6	-4.0	-9.8		0.1	2.2	8.0	5.77
	HT/VHT20, M0 to M7	4	10	0.6	-4.0	-9.8	-5.0	0.1	3.0	4.0	1.01
2437	Non HT20, 6 to 54 Mbps Non HT20 Beam Forming, 6 to 54 Mbps Non HT20 Beam Forming, 6 to 54 Mbps Non HT20 Beam Forming, 6 to 54 Mbps HT/VHT20, M0 to M7 HT/VHT20, M0 to M7 HT/VHT20, M8 to M15 HT/VHT20, M8 to M15 HT/VHT20, M8 to M15 HT/VHT20, M16 to M23	4 2 3 4 1 2 3 3 3 3	10 7 9 10 4 7 4 9 6 4	0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6	-4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0	-10.5 -10.5 -10.5 -9.8 -9.8 -9.8	-5.0	0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1	3.0 2.0 2.3 3.0 0.7 1.9 1.9 2.2 2.2 2.2	4.0 7.0 5.0 4.0 8.0 7.0 8.0 5.0 8.0 8.0	00 44 22 00 77 55 66 22 55 55

Page No: 36 of 88

	1							
_		C	5	5	Ċ	Ç	D	

HT/VHT20, M8 to M15	4	7	0.6	-4.0	-9.8	-5.0	0.1	3.0	7.0	4.01
HT/VHT20, M16 to M23	4	5	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HT/VHT20, M24 to M31	4	4	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HT/VHT20 Beam Forming, M0 to M7	2	7	0.6	-4.0			0.1	1.9	7.0	5.05
HT/VHT20 Beam Forming, M8 to M15	2	4	0.6	-4.0			0.1	1.9	8.0	6.05
HT/VHT20 Beam Forming, M0 to M7	3	9	0.6	-4.0	-9.8		0.1	2.2	5.0	2.77
HT/VHT20 Beam Forming, M8 to M15	3	6	0.6	-4.0	-9.8		0.1	2.2	8.0	5.77
HT/VHT20 Beam Forming, M16 to M23	3	4	0.6	-4.0	-9.8		0.1	2.2	8.0	5.77
HT/VHT20 Beam Forming, M0 to M7	4	10	0.6	-4.0	-9.8	-5.0	0.1	3.0	4.0	1.01
HT/VHT20 Beam Forming, M8 to M15	4	7	0.6	-4.0	-9.8	-5.0	0.1	3.0	7.0	4.01
HT/VHT20 Beam Forming, M16 to M23	4	5	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HT/VHT20 Beam Forming, M24 to M31	4	4	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HT/VHT20 STBC, M0 to M7	2	4	0.6	-4.0			0.1	1.9	8.0	6.05
HT/VHT20 STBC, M0 to M7	3	6	0.6	-4.0	-9.8		0.1	2.2	8.0	5.77
HT/VHT20 STBC, M0 to M7	4	7	0.6	-4.0	-9.8	-5.0	0.1	3.0	7.0	4.01
HE20, M0 to M9 1ss	1	4	0.5				0.1	0.6	8.0	7.43
HE20, M0 to M9 1ss	2	7	0.5	-4.5			0.1	1.8	7.0	5.24
HE20, M0 to M9 2ss	2	4	0.5	-4.5			0.1	1.8	8.0	6.24
HE20, M0 to M9 1ss	3	9	0.5	-4.5	-10.0		0.1	2.0	5.0	2.96
HE20, M0 to M9 2ss	3	6	0.5	-4.5	-10.0		0.1	2.0	8.0	5.96
HE20, M0 to M9 3ss	3	4	0.5	-4.5	-10.0		0.1	2.0	8.0	5.96
HE20, M0 to M9 1ss	4	10	0.5	-4.5	-10.0	-5.8	0.1	2.7	4.0	1.29
HE20, M0 to M9 2ss	4	7	0.5	-4.5	-10.0	-5.8	0.1	2.7	7.0	4.29
HE20, M0 to M9 3ss	4	5	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29
HE20, M0 to M9 4ss	4	4	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29
HE20 Beam Forming, M0 to M9 1ss	2	7	0.5	-4.5			0.1	1.8	7.0	5.24
HE20 Beam Forming, M0 to M9 2ss	2	4	0.5	-4.5			0.1	1.8	8.0	6.24
HE20 Beam Forming, M0 to M9 1ss	3	9	0.5	-4.5	-10.0		0.1	2.0	5.0	2.96
HE20 Beam Forming, M0 to M9 2ss	3	6	0.5	-4.5	-10.0		0.1	2.0	8.0	5.96
HE20 Beam Forming, M0 to M9 3ss	3	4	0.5	-4.5	-10.0		0.1	2.0	8.0	5.96
HE20 Beam Forming, M0 to M9 1ss	4	10	0.5	-4.5	-10.0	-5.8	0.1	2.7	4.0	1.29
HE20 Beam Forming, M0 to M9 2ss	4	7	0.5	-4.5	-10.0	-5.8	0.1	2.7	7.0	4.29
HE20 Beam Forming, M0 to M9 3ss	4	5	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29
HE20 Beam Forming, M0 to M9 4ss	4	4	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29
HE20 STBC, M0 to M9 2ss	2	4	0.5	-4.5			0.1	1.8	8.0	6.24
HE20 STBC, M0 to M9 2ss	3	6	0.5	-4.5	-10.0		0.1	2.0	8.0	5.96
HE20 STBC, M0 to M9 2ss	4	7	0.5	-4.5	-10.0	-5.8	0.1	2.7	7.0	4.29

Page No: 37 of 88


i I	nı h
C	sco

	CCK, 1 to 11 Mbps	1	4	-1.0				0.2	-0.8	8.0	8.81
	CCK, 1 to 11 Mbps	2	7	-1.0	-4.9			0.2	0.7	7.0	6.32
	CCK, 1 to 11 Mbps	3	9	-1.0	-4.9	-6.3		0.2	1.5	5.0	3.50
	CCK, 1 to 11 Mbps	4	10	-1.0	-4.9	-6.3	-2.1	0.2	3.1	4.0	0.87
	Non HT20, 6 to 54 Mbps	1	4	-4.0				0.0	-4.0	8.0	11.95
	Non HT20, 6 to 54 Mbps	2	7	-4.0	-9.3			0.0	-2.8	7.0	9.83
	Non HT20, 6 to 54 Mbps	3	9	-4.0	-9.3	-16.3		0.0	-2.6	5.0	7.64
	Non HT20, 6 to 54 Mbps	4	10	-4.0	-9.3	-16.3	-10.3	0.0	-1.9	4.0	5.94
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-4.9	-9.8			0.0	-3.6	7.0	10.64
	Non HT20 Beam Forming, 6 to 54 Mbps	3	9	-4.9	-9.8	-16.8		0.0	-3.4	5.0	8.43
	Non HT20 Beam Forming, 6 to 54 Mbps	4	10	-6.7	-10.9	-18.2	-11.6	0.0	-4.2	4.0	8.16
	HT/VHT20, M0 to M7	1	4	-4.3				0.1	-4.2	8.0	12.25
	HT/VHT20, M0 to M7	2	7	-4.3	-9.0			0.1	-3.0	7.0	9.98
	HT/VHT20, M8 to M15	2	4	-4.3	-9.0			0.1	-3.0	8.0	10.98
	HT/VHT20, M0 to M7	3	9	-4.3	-9.0	-14.5		0.1	-2.7	5.0	7.68
	HT/VHT20, M8 to M15	3	6	-4.3	-9.0	-14.5		0.1	-2.7	8.0	10.68
	HT/VHT20, M16 to M23	3	4	-4.3	-9.0	-14.5		0.1	-2.7	8.0	10.68
	HT/VHT20, M0 to M7	4	10	-5.9	-10.2	-15.7	-11.7	0.1	-3.4	4.0	7.44
	HT/VHT20, M8 to M15	4	7	-5.9	-10.2	-15.7	-11.7	0.1	-3.4	7.0	10.44
	HT/VHT20, M16 to M23	4	5	-5.9	-10.2	-15.7	-11.7	0.1	-3.4	8.0	11.44
0	HT/VHT20, M24 to M31	4	4	-5.9	-10.2	-15.7	-11.7	0.1	-3.4	8.0	11.44
2462	HT/VHT20 Beam Forming, M0 to M7	2	7	-5.9	-10.2			0.1	-4.5	7.0	11.48
2	HT/VHT20 Beam Forming, M8 to M15	2	4	-4.3	-9.0			0.1	-3.0	8.0	10.98
	HT/VHT20 Beam Forming, M0 to M7	3	9	-6.4	-10.3	-16.9		0.1	-4.6	5.0	9.60
	HT/VHT20 Beam Forming, M8 to M15	3	6	-5.9	-10.2	-15.7		0.1	-4.2	8.0	12.16
	HT/VHT20 Beam Forming, M16 to M23	3	4	-4.3	-9.0	-14.5		0.1	-2.7	8.0	10.68
	HT/VHT20 Beam Forming, M0 to M7	4	10	-7.7	-12.3	-17.7	-12.9	0.1	-5.2	4.0	9.22
	HT/VHT20 Beam Forming, M8 to M15	4	7	-6.4	-10.3	-16.9	-12.4	0.1	-3.9	7.0	10.92
	HT/VHT20 Beam Forming, M16 to M23	4	5	-5.9	-10.2	-15.7	-11.7	0.1	-3.4	8.0	11.44
	HT/VHT20 Beam Forming, M24 to M31	4	4	-5.9	-10.2	-15.7	-11.7	0.1	-3.4	8.0	11.44
	HT/VHT20 STBC, M0 to M7	2	4	-4.3	-9.0			0.1	-3.0	8.0	10.98
	HT/VHT20 STBC, M0 to M7	3	6	-4.3	-9.0	-14.5		0.1	-2.7	8.0	10.68
	HT/VHT20 STBC, M0 to M7	4	7	-5.9	-10.2	-15.7	-11.7	0.1	-3.4	7.0	10.44
	HE20, M0 to M9 1ss	1	4	-5.5				0.1	-5.4	8.0	13.43
	HE20, M0 to M9 1ss	2	7	-5.5	-9.6			0.1	-4.0	7.0	11.01
	HE20, M0 to M9 2ss	2	4	-5.5	-9.6			0.1	-4.0	8.0	12.01
	HE20, M0 to M9 1ss	3	9	-5.5	-9.6	-14.6		0.1	-3.6	5.0	8.64
	HE20, M0 to M9 2ss	3	6	-5.5	-9.6	-14.6		0.1	-3.6	8.0	11.64
	HE20, M0 to M9 3ss	3	4	-5.5	-9.6	-14.6		0.1	-3.6	8.0	11.64
	HE20, M0 to M9 1ss	4	10	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	4.0	6.99
	HE20, M0 to M9 2ss	4	7	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	7.0	9.99
	HE20, M0 to M9 3ss	4	5	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99
	HE20, M0 to M9 4ss	4	4	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99

Page No: 38 of 88

HE20 Beam Forming, M0 to M9 1ss	2	7	-5.5	-9.6			0.1	-4.0	7.0	11.01
HE20 Beam Forming, M0 to M9 2ss	2	4	-5.5	-9.6			0.1	-4.0	8.0	12.01
HE20 Beam Forming, M0 to M9 1ss	3	9	-6.9	-10.9	-15.0		0.1	-4.9	5.0	9.92
HE20 Beam Forming, M0 to M9 2ss	3	6	-5.5	-9.6	-14.6		0.1	-3.6	8.0	11.64
HE20 Beam Forming, M0 to M9 3ss	3	4	-5.5	-9.6	-14.6		0.1	-3.6	8.0	11.64
HE20 Beam Forming, M0 to M9 1ss	4	10	-8.2	-12.9	-16.9	-13.4	0.1	-5.6	4.0	9.64
HE20 Beam Forming, M0 to M9 2ss	4	7	-6.9	-10.9	-15.0	-13.0	0.1	-4.3	7.0	11.29
HE20 Beam Forming, M0 to M9 3ss	4	5	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99
HE20 Beam Forming, M0 to M9 4ss	4	4	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99
HE20 STBC, M0 to M9 2ss	2	4	-5.5	-9.6			0.1	-4.0	8.0	12.01
HE20 STBC, M0 to M9 2ss	3	6	-5.5	-9.6	-14.6		0.1	-3.6	8.0	11.64
HE20 STBC, M0 to M9 2ss	4	7	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	7.0	9.99

Page No: 39 of 88

Power Spectral Density, 2437 MHz, CCK, 1 to 11 Mbps

uluulu cisco

Page No: 40 of 88

A.6 Conducted Spurious Emissions

Conducted Spurious Emissions Test Requirement

15.205 / RSS-Gen / LP0002

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) and RSS-GEN section 8.10, must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)) and RSS-Gen section 8.9

RSS-Gen 8.9 Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 and Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

RSS-Gen 8.10 (b) Unwanted emissions that fall into restricted bands of Table 6 shall comply with the limits specified in RSS-Gen; and (c) Unwanted emissions that do not fall within the restricted frequency bands of Table 6 shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.

Use formula below to substitute conducted measurements in place of radiated measurements

 $E[dB\mu V/m] = EIRP[dBm] - 20 \log(d[meters]) + 104.77$, where E = field strength and d = 3 meter

1) Average Plot, Limit= -41.25 dBm eirp

2) Peak plot, Limit = -21.25 dBm eirp

Conducted Spurious Emissions Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05 ANSI C63.10: 2013

Conducted Spurious Emissions Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Use the peak marker function to determine the maximum spurs amplitude level.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded. (see ANSI C63.10 2013 section 14.3.2.2)

6. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05, section 8.1 c) 3, section 8.6 DTS emissions in restricted frequency bands

ANSI C63.10: 2013 section 11.12.2.4 (Peak) & 11.12.2.5.2 (Average)

Conducted Spurious Emissions Test parameters	
Peak	Average
Span = 30MHz to 26.5GHz / 26.5GHz to 40GHz	Span = 30MHz to 26.5GHz / 26.5GHz to 40GHz
RBW = 1 MHz	RBW = 1 MHz

```
Page No: 41 of 88
```

$VBW \ge 3 MHz$	$VBW \ge 3 MHz$
Sweep = Auto	Sweep = Auto
Detector = Peak	Detector = RMS
Trace = Max Hold.	Power Averaging

ANSI C63.10: 2013 section 11.12.2.2 c) add the max antenna gain + ground reflection factor (4.7 dB for frequencies between 30 MHz and 1000 MHz, and 0 dB for frequencies > 1000 MHz).

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support			\checkmark

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 42 of 88

Conducted Spurs Average Upper, 2412 MHz, Non HT20, 6 to 54 Mbps

սիսիս

Conducted Spurs Peak Upper, 2412 MHz, Non HT20, 6 to 54 Mbps

		an outper an other set				-	_
Inc.mtty//		Alog Tipe 1001 Augusta 120128	Tig Restan	Here a	un icolico	er Prop	teuis
AdoTun	14 23 732 GHz -55.675 dBm	MK			f -20.00 cBm	4. R	t 44.
Center Pre-							
Dari Fre	Langerto	والمالية المعالية المسالية		منامسومت	han de la caracteria de la	-	
Biog Pre-							1 1
CF Store	8565 26.000 GH2 533766 (1881 pts)	Bweep, 22	13.4 1842	IVBA		12,000 (84V 1.0	
FreqOffic	NESTINA	arms (mathematik)	72.333.45 m 72.333.45 m 72.333.45 m 72.333.45 m	C BOA GALE C BOA GALE C BOA GALE C BOA GALE C D C C C C C C C C C C C C C C C C C C			A STATE
Scale Type							Svera S
		22.756	3				

Page No: 43 of 88

Conducted Spurious Average Table

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Tx 3 Spur Power (dBm)	Tx 4 Spur Power (dBm)	Duty Cycle Correction (dB)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	4	-73.9				0.2	-69.7	-41.25	28.46
	CCK, 1 to 11 Mbps	2	4	-73.9	-72.8			0.2	-66.1	-41.25	24.86
	CCK, 1 to 11 Mbps	3	4	-73.9	-72.8	-72.5		0.2	-64.1	-41.25	22.81
	CCK, 1 to 11 Mbps	4	4	-73.9	-72.8	-72.5	-73.5	0.2	-62.9	-41.25	21.68
	Non HT20, 6 to 54 Mbps	1	4	-75.1				0.0	-71.1	-41.25	29.80
	Non HT20, 6 to 54 Mbps	2	4	-75.1	-74.6			0.0	-67.8	-41.25	26.54
	Non HT20, 6 to 54 Mbps	3	4	-75.5	-74.9	-74.9		0.0	-66.3	-41.25	25.02
	Non HT20, 6 to 54 Mbps	4	4	-75.5	-74.9	-74.9	-76.1	0.0	-65.3	-41.25	24.01
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-75.5	-74.9			0.0	-65.1	-41.25	23.88
	Non HT20 Beam Forming, 6 to 54 Mbps	3	9	-76.0	-75.6	-75.4		0.0	-61.8	-41.25	20.59
	Non HT20 Beam Forming, 6 to 54 Mbps	4	10	-76.3	-76.1	-75.5	-77.3	0.0	-60.2	-41.25	18.94
	HT/VHT20, M0 to M7	1	4	-75.4				0.1	-71.3	-41.25	30.10
	HT/VHT20, M0 to M7	2	4	-75.5	-75.2			0.1	-68.3	-41.25	27.03
	HT/VHT20, M8 to M15	2	4	-75.5	-75.2			0.1	-68.3	-41.25	27.03
N	HT/VHT20, M0 to M7	3	4	-75.5	-75.2	-74.8		0.1	-66.3	-41.25	25.08
2412	HT/VHT20, M8 to M15	3	4	-75.5	-75.2	-74.8		0.1	-66.3	-41.25	25.08
	HT/VHT20, M16 to M23	3	4	-75.5	-75.2	-74.8		0.1	-66.3	-41.25	25.08
	HT/VHT20, M0 to M7	4	4	-75.5	-75.2	-74.8	-76.2	0.1	-65.3	-41.25	24.07
	HT/VHT20, M8 to M15	4	4	-75.5	-75.2	-74.8	-76.2	0.1	-65.3	-41.25	24.07
	HT/VHT20, M16 to M23	4	4	-75.5	-75.2	-74.8	-76.2	0.1	-65.3	-41.25	24.07
	HT/VHT20, M24 to M31	4	4	-75.5	-75.2	-74.8	-76.2	0.1	-65.3	-41.25	24.07
	HT/VHT20 Beam Forming, M0 to M7	2	7	-75.9	-75.4			0.1	-65.6	-41.25	24.33
	HT/VHT20 Beam Forming, M8 to M15	2	4	-75.5	-75.2			0.1	-68.3	-41.25	27.03
	HT/VHT20 Beam Forming, M0 to M7	3	9	-76.2	-75.8	-75.6		0.1	-62.0	-41.25	20.79
	HT/VHT20 Beam Forming, M8 to M15	3	6	-75.5	-75.2	-74.8		0.1	-64.3	-41.25	23.08
	HT/VHT20 Beam Forming, M16 to M23	3	4	-75.5	-75.2	-74.8		0.1	-66.3	-41.25	25.08
	HT/VHT20 Beam Forming, M0 to M7	4	10	-76.6	-76.1	-75.8	-77.6	0.1	-60.4	-41.25	19.15
	HT/VHT20 Beam Forming, M8 to M15	4	7	-75.9	-75.4	-75.1	-76.7	0.1	-62.7	-41.25	21.41
	HT/VHT20 Beam Forming, M16 to M23	4	5	-75.5	-75.2	-74.8	-76.2	0.1	-64.3	-41.25	23.07
	HT/VHT20 Beam Forming, M24 to M31	4	4	-75.5	-75.2	-74.8	-76.2	0.1	-65.3	-41.25	24.07
	HT/VHT20 STBC, M0 to M7	2	4	-75.5	-75.2			0.1	-68.3	-41.25	27.03
			Page	No: 44 c	of 88						

diada cisco

	HT/VHT20 STBC, M0 to M7	3	4	-75.5	-75.2	-74.8		0.1	-66.3	-41.25	25.08
	HT/VHT20 STBC, M0 to M7	4	4	-75.5	-75.2	-74.8	-76.2	0.1	-65.3	-41.25	24.07
	HE20, M0 to M9 1ss	1	4	-75.3				0.1	-71.2	-41.25	29.98
	HE20, M0 to M9 1ss	2	4	-75.7	-75.3			0.1	-68.4	-41.25	27.17
	HE20, M0 to M9 2ss	2	4	-75.7	-75.3			0.1	-68.4	-41.25	27.17
	HE20, M0 to M9 1ss	3	4	-75.7	-75.3	-74.9		0.1	-66.5	-41.25	25.20
	HE20, M0 to M9 2ss	3	4	-75.7	-75.3	-74.9		0.1	-66.5	-41.25	25.20
	HE20, M0 to M9 3ss	3	4	-75.7	-75.3	-74.9		0.1	-66.5	-41.25	25.20
	HE20, M0 to M9 1ss	4	4	-76.0	-75.5	-75.3	-76.6	0.1	-65.7	-41.25	24.49
	HE20, M0 to M9 2ss	4	4	-76.0	-75.5	-75.3	-76.6	0.1	-65.7	-41.25	24.49
	HE20, M0 to M9 3ss	4	4	-76.0	-75.5	-75.3	-76.6	0.1	-65.7	-41.25	24.49
	HE20, M0 to M9 4ss	4	4	-76.0	-75.5	-75.3	-76.6	0.1	-65.7	-41.25	24.49
	HE20 Beam Forming, M0 to M9 1ss	2	7	-76.0	-75.5			0.1	-65.7	-41.25	24.42
	HE20 Beam Forming, M0 to M9 2ss	2	4	-75.7	-75.3			0.1	-68.4	-41.25	27.17
	HE20 Beam Forming, M0 to M9 1ss	3	9	-76.7	-76.2	-75.7		0.1	-62.3	-41.25	21.09
	HE20 Beam Forming, M0 to M9 2ss	3	6	-76.0	-75.5	-75.3		0.1	-64.8	-41.25	23.50
	HE20 Beam Forming, M0 to M9 3ss	3	4	-75.7	-75.3	-74.9		0.1	-66.5	-41.25	25.20
	HE20 Beam Forming, M0 to M9 1ss	4	10	-77.0	-76.1	-75.7	-77.8	0.1	-60.5	-41.25	19.24
	HE20 Beam Forming, M0 to M9 2ss	4	7	-76.4	-75.7	-75.4	-77.1	0.1	-63.0	-41.25	21.77
	HE20 Beam Forming, M0 to M9 3ss	4	5	-76.0	-75.5	-75.3	-76.6	0.1	-64.7	-41.25	23.49
	HE20 Beam Forming, M0 to M9 4ss	4	4	-76.0	-75.5	-75.3	-76.6	0.1	-65.7	-41.25	24.49
	HE20 STBC, M0 to M9 2ss	2	4	-75.7	-75.3			0.1	-68.4	-41.25	27.17
	HE20 STBC, M0 to M9 2ss	3	4	-75.7	-75.3	-74.9		0.1	-66.5	-41.25	25.20
	HE20 STBC, M0 to M9 2ss	4	4	-76.0	-75.5	-75.3	-76.6	0.1	-65.7	-41.25	24.49
	CCK, 1 to 11 Mbps	1	4	-74.9				0.2	-70.7	-41.25	29.46
	CCK, 1 to 11 Mbps	2	4	-74.9	-72.5			0.2	-66.3	-41.25	25.08
	CCK, 1 to 11 Mbps	3	4	-74.9	-72.5	-72.6		0.2	-64.2	-41.25	22.99
	CCK, 1 to 11 Mbps	4	4	-74.9	-72.5	-72.6	-72.9	0.2	-62.9	-41.25	21.66
	Non HT20, 6 to 54 Mbps	1	4	-75.2				0.0	-71.2	-41.25	29.90
	Non HT20, 6 to 54 Mbps	2	4	-75.2	-73.0			0.0	-66.9	-41.25	25.66
	Non HT20, 6 to 54 Mbps	3	4	-75.2	-73.0	-72.7		0.0	-64.7	-41.25	23.43
	Non HT20, 6 to 54 Mbps	4	4	-75.2	-73.0	-72.7	-74.6	0.0	-63.7	-41.25	22.43
37	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-75.2	-73.0			0.0	-63.9	-41.25	22.66
2437	Non HT20 Beam Forming, 6 to 54 Mbps	3	9	-75.2	-73.0	-72.7		0.0	-59.7	-41.25	18.43
	Non HT20 Beam Forming, 6 to 54 Mbps	4	10	-75.2	-73.0	-72.7	-74.6	0.0	-57.7	-41.25	16.43
	HT/VHT20, M0 to M7	1	4	-75.1				0.1	-71.0	-41.25	29.80
	HT/VHT20, M0 to M7	2	4	-75.1	-73.1			0.1	-66.9	-41.25	25.67
	HT/VHT20, M8 to M15	2	4	-75.1	-73.1			0.1	-66.9	-41.25	25.67
	HT/VHT20, M0 to M7	3	4	-75.1	-73.1	-73.0		0.1	-64.8	-41.25	23.56
	HT/VHT20, M8 to M15	3	4	-75.1	-73.1	-73.0		0.1	-64.8	-41.25	23.56
	HT/VHT20, M16 to M23	3	4	-75.1	-73.1	-73.0		0.1	-64.8	-41.25	23.56
	HT/VHT20, M0 to M7	4	4	-75.1	-73.1	-73.0	-74.6	0.1	-63.8	-41.25	22.53

Page No: 45 of 88

cisco

HT/VHT20, M8 to M15	4	4	-75.1	-73.1	-73.0	-74.6	0.1	-63.8	-41.25	22.53
HT/VHT20, M16 to M23	4	4	-75.1	-73.1	-73.0	-74.6	0.1	-63.8	-41.25	22.53
HT/VHT20, M24 to M31	4	4	-75.1	-73.1	-73.0	-74.6	0.1	-63.8	-41.25	22.53
HT/VHT20 Beam Forming, M0 to M7	2	7	-75.1	-73.1	10.0	74.0	0.1	-63.9	-41.25	22.67
HT/VHT20 Beam Forming, M8 to M15	2	4	-75.1	-73.1			0.1	-66.9	-41.25	25.67
HT/VHT20 Beam Forming, M0 to M7	3	9	-75.1	-73.1	-73.0		0.1	-59.8	-41.25	18.56
HT/VHT20 Beam Forming, M8 to M15	3	6	-75.1	-73.1	-73.0		0.1	-62.8	-41.25	21.56
HT/VHT20 Beam Forming, M16 to M23	3	4	-75.1	-73.1	-73.0		0.1	-64.8	-41.25	23.56
HT/VHT20 Beam Forming, M0 to M7	4	10	-75.1	-73.1	-73.0	-74.6	0.1	-57.8	-41.25	16.53
HT/VHT20 Beam Forming, M8 to M15	4	7	-75.1	-73.1	-73.0	-74.6	0.1	-60.8	-41.25	19.53
HT/VHT20 Beam Forming, M16 to M23	4	5	-75.1	-73.1	-73.0	-74.6	0.1	-62.8	-41.25	21.53
HT/VHT20 Beam Forming, M24 to M31	4	4	-75.1	-73.1	-73.0	-74.6	0.1	-63.8	-41.25	22.53
HT/VHT20 STBC, M0 to M7	2	4	-75.1	-73.1			0.1	-66.9	-41.25	25.67
HT/VHT20 STBC, M0 to M7	3	4	-75.1	-73.1	-73.0		0.1	-64.8	-41.25	23.56
HT/VHT20 STBC, M0 to M7	4	4	-75.1	-73.1	-73.0	-74.6	0.1	-63.8	-41.25	22.53
HE20, M0 to M9 1ss	1	4	-74.8				0.1	-70.7	-41.25	29.48
HE20, M0 to M9 1ss	2	4	-74.8	-73.0			0.1	-66.7	-41.25	25.48
HE20, M0 to M9 2ss	2	4	-74.8	-73.0			0.1	-66.7	-41.25	25.48
HE20, M0 to M9 1ss	3	4	-74.8	-73.0	-73.1		0.1	-64.7	-41.25	23.47
HE20, M0 to M9 2ss	3	4	-74.8	-73.0	-73.1		0.1	-64.7	-41.25	23.47
HE20, M0 to M9 3ss	3	4	-74.8	-73.0	-73.1		0.1	-64.7	-41.25	23.47
HE20, M0 to M9 1ss	4	4	-74.8	-73.0	-73.1	-74.5	0.1	-63.7	-41.25	22.44
HE20, M0 to M9 2ss	4	4	-74.8	-73.0	-73.1	-74.5	0.1	-63.7	-41.25	22.44
HE20, M0 to M9 3ss	4	4	-74.8	-73.0	-73.1	-74.5	0.1	-63.7	-41.25	22.44
HE20, M0 to M9 4ss	4	4	-74.8	-73.0	-73.1	-74.5	0.1	-63.7	-41.25	22.44
HE20 Beam Forming, M0 to M9 1ss	2	7	-74.8	-73.0			0.1	-63.7	-41.25	22.48
HE20 Beam Forming, M0 to M9 2ss	2	4	-74.8	-73.0			0.1	-66.7	-41.25	25.48
HE20 Beam Forming, M0 to M9 1ss	3	9	-74.8	-73.0	-73.1		0.1	-59.7	-41.25	18.47
HE20 Beam Forming, M0 to M9 2ss	3	6	-74.8	-73.0	-73.1		0.1	-62.7	-41.25	21.47
HE20 Beam Forming, M0 to M9 3ss	3	4	-74.8	-73.0	-73.1		0.1	-64.7	-41.25	23.47
HE20 Beam Forming, M0 to M9 1ss	4	10	-74.8	-73.0	-73.1	-74.5	0.1	-57.7	-41.25	16.44
HE20 Beam Forming, M0 to M9 2ss	4	7	-74.8	-73.0	-73.1	-74.5	0.1	-60.7	-41.25	19.44
HE20 Beam Forming, M0 to M9 3ss	4	5	-74.8	-73.0	-73.1	-74.5	0.1	-62.7	-41.25	21.44
HE20 Beam Forming, M0 to M9 4ss	4	4	-74.8	-73.0	-73.1	-74.5	0.1	-63.7	-41.25	22.44
HE20 STBC, M0 to M9 2ss	2	4	-74.8	-73.0			0.1	-66.7	-41.25	25.48
HE20 STBC, M0 to M9 2ss	3	4	-74.8	-73.0	-73.1		0.1	-64.7	-41.25	23.47
HE20 STBC, M0 to M9 2ss	4	4	-74.8	-73.0	-73.1	-74.5	0.1	-63.7	-41.25	22.44

Page No: 46 of 88

		4	4	70.4				0.0	74.0	44.05	00.00
	CCK, 1 to 11 Mbps	1	4	-76.1	-74.0			0.2	-71.9	-41.25	30.66
	CCK, 1 to 11 Mbps	2 3	4	-76.1	-74.0	-73.2		0.2	-67.7	-41.25	26.47 24.06
	CCK, 1 to 11 Mbps	-		-76.1			<u> </u>	0.2	-65.3	-41.25	20.95
	CCK, 1 to 11 Mbps	4	4 4	-76.1	-74.0	-73.2	-69.3	0.2	-62.2	-41.25	
	Non HT20, 6 to 54 Mbps			-77.7	75.0			0.0	-73.7	-41.25	32.40
	Non HT20, 6 to 54 Mbps	2	4	-77.7	-75.0	74.0		0.0	-69.1	-41.25	27.84
	Non HT20, 6 to 54 Mbps	3	4	-77.7	-75.0	-74.6	75.0	0.0	-66.7	-41.25	25.50
	Non HT20, 6 to 54 Mbps	4	4	-77.7	-75.0	-74.6	-75.8	0.0	-65.6	-41.25	24.31
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-77.9	-75.5			0.0	-66.5	-41.25	25.23
	Non HT20 Beam Forming, 6 to 54 Mbps	3	9	-77.9	-75.5	-75.1	70.0	0.0	-62.2	-41.25	20.94
	Non HT20 Beam Forming, 6 to 54 Mbps	4	10	-78.3	-75.8	-75.5	-76.8	0.0	-60.4	-41.25	19.15
	HT/VHT20, M0 to M7	1	4	-77.8				0.1	-73.7	-41.25	32.50
	HT/VHT20, M0 to M7	2	4	-77.8	-75.1			0.1	-69.2	-41.25	27.93
	HT/VHT20, M8 to M15	2	4	-77.8	-75.1			0.1	-69.2	-41.25	27.93
	HT/VHT20, M0 to M7	3	4	-77.8	-75.1	-74.8		0.1	-66.9	-41.25	25.63
	HT/VHT20, M8 to M15	3	4	-77.8	-75.1	-74.8		0.1	-66.9	-41.25	25.63
	HT/VHT20, M16 to M23	3	4	-77.8	-75.1	-74.8		0.1	-66.9	-41.25	25.63
	HT/VHT20, M0 to M7	4	4	-78.3	-75.5	-75.0	-76.5	0.1	-66.1	-41.25	24.83
	HT/VHT20, M8 to M15	4	4	-78.3	-75.5	-75.0	-76.5	0.1	-66.1	-41.25	24.83
	HT/VHT20, M16 to M23	4	4	-78.3	-75.5	-75.0	-76.5	0.1	-66.1	-41.25	24.83
52	HT/VHT20, M24 to M31	4	4	-78.3	-75.5	-75.0	-76.5	0.1	-66.1	-41.25	24.83
2462	HT/VHT20 Beam Forming, M0 to M7	2	7	-78.3	-75.5			0.1	-66.6	-41.25	25.37
	HT/VHT20 Beam Forming, M8 to M15	2	4	-77.8	-75.1			0.1	-69.2	-41.25	27.93
	HT/VHT20 Beam Forming, M0 to M7	3	9	-78.5	-75.8	-75.3		0.1	-62.5	-41.25	21.25
	HT/VHT20 Beam Forming, M8 to M15	3	6	-78.3	-75.5	-75.0		0.1	-65.2	-41.25	23.97
	HT/VHT20 Beam Forming, M16 to M23	3	4	-77.8	-75.1	-74.8		0.1	-66.9	-41.25	25.63
	HT/VHT20 Beam Forming, M0 to M7	4	10	-79.1	-75.9	-75.9	-77.3	0.1	-60.8	-41.25	19.54
	HT/VHT20 Beam Forming, M8 to M15	4	7	-78.5	-75.8	-75.3	-76.9	0.1	-63.4	-41.25	22.14
	HT/VHT20 Beam Forming, M16 to M23	4	5	-78.3	-75.5	-75.0	-76.5	0.1	-65.1	-41.25	23.83
	HT/VHT20 Beam Forming, M24 to M31	4	4	-78.3	-75.5	-75.0	-76.5	0.1	-66.1	-41.25	24.83
	HT/VHT20 STBC, M0 to M7	2	4	-77.8	-75.1			0.1	-69.2	-41.25	27.93
	HT/VHT20 STBC, M0 to M7	3	4	-77.8	-75.1	-74.8		0.1	-66.9	-41.25	25.63
	HT/VHT20 STBC, M0 to M7	4	4	-78.3	-75.5	-75.0	-76.5	0.1	-66.1	-41.25	24.83
	HE20, M0 to M9 1ss	1	4	-78.0				0.1	-73.9	-41.25	32.68
	HE20, M0 to M9 1ss	2	4	-78.0	-75.2			0.1	-69.3	-41.25	28.05
	HE20, M0 to M9 2ss	2	4	-78.0	-75.2			0.1	-69.3	-41.25	28.05
	HE20, M0 to M9 1ss	3	4	-78.0	-75.2	-75.0		0.1	-67.0	-41.25	25.78
	HE20, M0 to M9 2ss	3	4	-78.0	-75.2	-75.0		0.1	-67.0	-41.25	25.78
	HE20, M0 to M9 3ss	3	4	-78.0	-75.2	-75.0		0.1	-67.0	-41.25	25.78
	HE20, M0 to M9 1ss	4	4	-78.0	-75.2	-75.0	-76.2	0.1	-65.9	-41.25	24.61
	HE20, M0 to M9 2ss	4	4	-78.0	-75.2	-75.0	-76.2	0.1	-65.9	-41.25	24.61
	HE20, M0 to M9 3ss	4	4	-78.0	-75.2	-75.0	-76.2	0.1	-65.9	-41.25	24.61
	HE20, M0 to M9 4ss	4	4	-78.0	-75.2	-75.0	-76.2	0.1	-65.9	-41.25	24.61

Page No: 47 of 88

HE20 Beam Forming, M0 to M9 1ss	2	7	-78.0	-75.2			0.1	-66.3	-41.25	25.05
HE20 Beam Forming, M0 to M9 2ss	2	4	-78.0	-75.2			0.1	-69.3	-41.25	28.05
HE20 Beam Forming, M0 to M9 1ss	3	9	-78.6	-75.7	-75.3		0.1	-62.5	-41.25	21.22
HE20 Beam Forming, M0 to M9 2ss	3	6	-78.0	-75.2	-75.0		0.1	-65.0	-41.25	23.78
HE20 Beam Forming, M0 to M9 3ss	3	4	-78.0	-75.2	-75.0		0.1	-67.0	-41.25	25.78
HE20 Beam Forming, M0 to M9 1ss	4	10	-78.6	-75.8	-75.5	-77.2	0.1	-60.5	-41.25	19.27
HE20 Beam Forming, M0 to M9 2ss	4	7	-78.6	-75.7	-75.3	-76.7	0.1	-63.3	-41.25	22.07
HE20 Beam Forming, M0 to M9 3ss	4	5	-78.0	-75.2	-75.0	-76.2	0.1	-64.9	-41.25	23.61
HE20 Beam Forming, M0 to M9 4ss	4	4	-78.0	-75.2	-75.0	-76.2	0.1	-65.9	-41.25	24.61
HE20 STBC, M0 to M9 2ss	2	4	-78.0	-75.2			0.1	-69.3	-41.25	28.05
HE20 STBC, M0 to M9 2ss	3	4	-78.0	-75.2	-75.0		0.1	-67.0	-41.25	25.78
HE20 STBC, M0 to M9 2ss	4	4	-78.0	-75.2	-75.0	-76.2	0.1	-65.9	-41.25	24.61

Page No: 48 of 88

Antenna B

սիսիս

Antenna D

Antenna A

Antenna C

Page No: 49 of 88

Conducted Spurious Peak

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Tx 3 Spur Power (dBm)	Tx 4 Spur Power (dBm)	Duty Cycle Correction (dB)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	4	-59.0				0.2	-54.8	-21.25	33.56
	CCK, 1 to 11 Mbps	2	4	-59.0	-60.4			0.2	-52.4	-21.25	31.19
	CCK, 1 to 11 Mbps	3	4	-59.0	-60.4	-68.1		0.2	-52.1	-21.25	30.89
	CCK, 1 to 11 Mbps	4	4	-59.0	-60.4	-68.1	-64.7	0.2	-51.6	-21.25	30.30
	Non HT20, 6 to 54 Mbps	1	4	-63.7				0.0	-59.7	-21.25	38.40
	Non HT20, 6 to 54 Mbps	2	4	-63.7	-69.2			0.0	-58.6	-21.25	37.33
	Non HT20, 6 to 54 Mbps	3	4	-64.3	-69.1	-68.0		0.0	-57.8	-21.25	36.56
	Non HT20, 6 to 54 Mbps	4	4	-64.3	-69.1	-68.0	-67.5	0.0	-56.8	-21.25	35.51
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-64.3	-69.1			0.0	-56.0	-21.25	34.76
	Non HT20 Beam Forming, 6 to 54 Mbps	3	9	-64.7	-67.7	-68.0		0.0	-52.7	-21.25	31.46
	Non HT20 Beam Forming, 6 to 54 Mbps	4	10	-65.5	-68.6	-69.0	-67.9	0.0	-51.5	-21.25	30.20
	HT/VHT20, M0 to M7	1	4	-64.3				0.1	-60.2	-21.25	39.00
	HT/VHT20, M0 to M7	2	4	-63.8	-69.7			0.1	-58.8	-21.25	37.50
	HT/VHT20, M8 to M15	2	4	-63.8	-69.7			0.1	-58.8	-21.25	37.50
2412	HT/VHT20, M0 to M7	3	4	-63.8	-69.7	-68.5		0.1	-57.7	-21.25	36.47
24	HT/VHT20, M8 to M15	3	4	-63.8	-69.7	-68.5		0.1	-57.7	-21.25	36.47
	HT/VHT20, M16 to M23	3	4	-63.8	-69.7	-68.5		0.1	-57.7	-21.25	36.47
	HT/VHT20, M0 to M7	4	4	-63.8	-69.7	-68.5	-68.0	0.1	-56.8	-21.25	35.54
	HT/VHT20, M8 to M15	4	4	-63.8	-69.7	-68.5	-68.0	0.1	-56.8	-21.25	35.54
	HT/VHT20, M16 to M23	4	4	-63.8	-69.7	-68.5	-68.0	0.1	-56.8	-21.25	35.54
	HT/VHT20, M24 to M31	4	4	-63.8	-69.7	-68.5	-68.0	0.1	-56.8	-21.25	35.54
	HT/VHT20 Beam Forming, M0 to M7	2	7	-65.1	-69.2			0.1	-56.6	-21.25	35.37
	HT/VHT20 Beam Forming, M8 to M15	2	4	-63.8	-69.7			0.1	-58.8	-21.25	37.50
	HT/VHT20 Beam Forming, M0 to M7	3	9	-64.0	-68.6	-68.5		0.1	-52.6	-21.25	31.39
	HT/VHT20 Beam Forming, M8 to M15	3	6	-63.8	-69.7	-68.5		0.1	-55.7	-21.25	34.47
	HT/VHT20 Beam Forming, M16 to M23	3	4	-63.8	-69.7	-68.5		0.1	-57.7	-21.25	36.47
	HT/VHT20 Beam Forming, M0 to M7	4	10	-64.0	-69.4	-69.1	-67.6	0.1	-50.9	-21.25	29.61
	HT/VHT20 Beam Forming, M8 to M15	4	7	-65.1	-69.2	-68.8	-68.0	0.1	-54.4	-21.25	33.13
	HT/VHT20 Beam Forming, M16 to M23	4	5	-63.8	-69.7	-68.5	-68.0	0.1	-55.8	-21.25	34.54
	HT/VHT20 Beam Forming, M24 to M31	4	4	-63.8	-69.7	-68.5	-68.0	0.1	-56.8	-21.25	35.54

Page No: 50 of 88

	HT/VHT20 STBC, M0 to M7	2	4	-63.8	-69.7			0.1	-58.8	-21.25	37.50
	HT/VHT20 STBC, M0 to M7	2	4	-63.8	-69.7	-68.5		0.1	-57.7	-21.25	36.47
	HT/VHT20 STBC, M0 to M7	4	4	-63.8	-69.7	-68.5	-68.0	0.1	-56.8	-21.25	35.54
	HE20, M0 to M9 1ss	1	4	-64.7	-09.7	-00.5	-00.0	0.1	-60.6	-21.25	39.38
	HE20, M0 to M9 1ss	2	4	-64.2	-68.5			0.1	-58.8	-21.25	37.51
	HE20, M0 to M9 2ss	2	4	-64.2	-68.5			0.1	-58.8	-21.25	37.51
	HE20, M0 to M9 1ss	3	4	-64.2	-68.5	-68.4		0.1	-57.7	-21.25	36.45
	HE20, M0 to M9 2ss	3	4	-64.2	-68.5	-68.4		0.1	-57.7	-21.25	36.45
	HE20, M0 to M9 3ss	3	4	-64.2	-68.5	-68.4		0.1	-57.7	-21.25	36.45
	HE20, M0 to M9 333	4	4	-65.0	-68.7	-68.1	-67.9	0.1	-57.1	-21.25	35.83
	HE20, M0 to M9 2ss	4	4	-65.0	-68.7	-68.1	-67.9	0.1	-57.1	-21.25	35.83
	HE20, M0 to M9 3ss	4	4	-65.0	-68.7	-68.1	-67.9	0.1	-57.1	-21.25	35.83
	HE20, M0 to M9 4ss	4	4	-65.0	-68.7	-68.1	-67.9	0.1	-57.1	-21.25	35.83
	HE20 Beam Forming, M0 to M9 1ss	2	7	-65.0	-68.7	-00.1	-07.9	0.1	-56.4	-21.25	35.14
	HE20 Beam Forming, M0 to M9 2ss	2	4	-64.2	-68.5			0.1	-58.8	-21.25	37.51
	HE20 Beam Forming, M0 to M9 2ss HE20 Beam Forming, M0 to M9 1ss	2	9	-65.6	-68.5	-68.9		0.1	-53.6	-21.25	32.32
	HE20 Beam Forming, M0 to M9 1ss HE20 Beam Forming, M0 to M9 2ss	3	9	-65.0	-68.7	-68.1		0.1	-55.0	-21.25	34.86
	HE20 Beam Forming, M0 to M9 2ss HE20 Beam Forming, M0 to M9 3ss	3	4	-64.2	-68.5	-68.4		0.1	-57.7	-21.25	36.45
		3	4	-65.3	-69.4	-68.9	-67.9	0.1	-57.7	-21.25	30.23
	HE20 Beam Forming, M0 to M9 1ss HE20 Beam Forming, M0 to M9 2ss	4	7	-65.2	-69.4 -69.5	-69.1	-67.9	0.1		-21.25	33.41
		4	5		-69.5	-69.1			-54.7		34.83
	HE20 Beam Forming, M0 to M9 3ss		5 4	-65.0			-67.9	0.1	-56.1	-21.25	
	HE20 Beam Forming, M0 to M9 4ss	4	4	-65.0 -64.2	-68.7 -68.5	-68.1	-67.9	0.1 0.1	-57.1	-21.25	35.83
	HE20 STBC, M0 to M9 2ss	_				<u> </u>			-58.8	-21.25	37.51
	HE20 STBC, M0 to M9 2ss	3	4	-64.2	-68.5	-68.4	67.0	0.1	-57.7	-21.25	36.45
	HE20 STBC, M0 to M9 2ss	4	4	-65.0	-68.7	-68.1	-67.9	0.1	-57.1	-21.25	35.83
	CCK, 1 to 11 Mbps	1	1	-63.0				0.2	-58.8	-21.25	37.56
	CCK, 1 to 11 Mbps	2	4	-63.0	-60.2			0.2	-56.0	-21.25	32.93
	CCK, 1 to 11 Mbps	2	4	-63.0	-60.2	-66.8		0.2	-54.2 -53.6	-21.25	32.93
		3 4	4	-63.0		-66.8	69.1	0.2	-53.0		31.96
	CCK, 1 to 11 Mbps	4			-60.2	-00.0	-68.1			-21.25	
	Non HT20, 6 to 54 Mbps		4	-67.1	<u> </u>			0.0	-63.1	-21.25	
	Non HT20, 6 to 54 Mbps	2	4	-67.1	-63.8	66.0		0.0	-58.1	-21.25	36.84
	Non HT20, 6 to 54 Mbps	3	4	-67.1	-63.8	-66.0	69.0	0.0	-56.6	-21.25	35.34
2437	Non HT20, 6 to 54 Mbps	4	4	-67.1	-63.8	-66.0	-68.0	0.0	-55.9	-21.25	34.61
24	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-67.1	-63.8	00.0		0.0	-55.1	-21.25	33.84
	Non HT20 Beam Forming, 6 to 54 Mbps	3	9	-67.1	-63.8	-66.0	<u> </u>	0.0	-51.6	-21.25	30.34
	Non HT20 Beam Forming, 6 to 54 Mbps	4	10	-67.1	-63.8	-66.0	-68.0	0.0	-49.9	-21.25	28.61
	HT/VHT20, M0 to M7	1	4	-66.4	64.4			0.1	-62.3	-21.25	41.10
	HT/VHT20, M0 to M7	2	4	-66.4	-64.1			0.1	-58.0	-21.25	36.79
	HT/VHT20, M8 to M15	2	4	-66.4	-64.1	00.7		0.1	-58.0	-21.25	36.79
	HT/VHT20, M0 to M7	3	4	-66.4	-64.1	-68.7		0.1	-57.2	-21.25	35.93
	HT/VHT20, M8 to M15	3	4	-66.4	-64.1	-68.7		0.1	-57.2	-21.25	35.93
	HT/VHT20, M16 to M23	3	4	-66.4	-64.1	-68.7		0.1	-57.2	-21.25	35.93

Page No: 51 of 88

HT/VHT20, M0 to M7	4	4	-66.4	-64.1	-68.7	-67.6	0.1	-56.3	-21.25	35.03
HT/VHT20, M8 to M15	4	4	-66.4	-64.1	-68.7	-67.6	0.1	-56.3	-21.25	35.03
HT/VHT20, M16 to M23	4	4	-66.4	-64.1	-68.7	-67.6	0.1	-56.3	-21.25	35.03
HT/VHT20, M24 to M31	4	4	-66.4	-64.1	-68.7	-67.6	0.1	-56.3	-21.25	35.03
HT/VHT20 Beam Forming, M0 to M7	2	7	-66.4	-64.1			0.1	-55.0	-21.25	33.79
HT/VHT20 Beam Forming, M8 to M15	2	4	-66.4	-64.1			0.1	-58.0	-21.25	36.79
HT/VHT20 Beam Forming, M0 to M7	3	9	-66.4	-64.1	-68.7		0.1	-52.2	-21.25	30.93
HT/VHT20 Beam Forming, M8 to M15	3	6	-66.4	-64.1	-68.7		0.1	-55.2	-21.25	33.93
HT/VHT20 Beam Forming, M16 to M23	3	4	-66.4	-64.1	-68.7		0.1	-57.2	-21.25	35.93
HT/VHT20 Beam Forming, M0 to M7	4	10	-66.4	-64.1	-68.7	-67.6	0.1	-50.3	-21.25	29.03
HT/VHT20 Beam Forming, M8 to M15	4	7	-66.4	-64.1	-68.7	-67.6	0.1	-53.3	-21.25	32.03
HT/VHT20 Beam Forming, M16 to M23	4	5	-66.4	-64.1	-68.7	-67.6	0.1	-55.3	-21.25	34.03
HT/VHT20 Beam Forming, M24 to M31	4	4	-66.4	-64.1	-68.7	-67.6	0.1	-56.3	-21.25	35.03
HT/VHT20 STBC, M0 to M7	2	4	-66.4	-64.1			0.1	-58.0	-21.25	36.79
HT/VHT20 STBC, M0 to M7	3	4	-66.4	-64.1	-68.7		0.1	-57.2	-21.25	35.93
HT/VHT20 STBC, M0 to M7	4	4	-66.4	-64.1	-68.7	-67.6	0.1	-56.3	-21.25	35.03
HE20, M0 to M9 1ss	1	4	-67.6				0.1	-63.5	-21.25	42.28
HE20, M0 to M9 1ss	2	4	-67.6	-64.1			0.1	-58.4	-21.25	37.18
HE20, M0 to M9 2ss	2	4	-67.6	-64.1			0.1	-58.4	-21.25	37.18
HE20, M0 to M9 1ss	3	4	-67.6	-64.1	-67.8		0.1	-57.3	-21.25	36.06
HE20, M0 to M9 2ss	3	4	-67.6	-64.1	-67.8		0.1	-57.3	-21.25	36.06
HE20, M0 to M9 3ss	3	4	-67.6	-64.1	-67.8		0.1	-57.3	-21.25	36.06
HE20, M0 to M9 1ss	4	4	-67.6	-64.1	-67.8	-67.0	0.1	-56.3	-21.25	35.01
HE20, M0 to M9 2ss	4	4	-67.6	-64.1	-67.8	-67.0	0.1	-56.3	-21.25	35.01
HE20, M0 to M9 3ss	4	4	-67.6	-64.1	-67.8	-67.0	0.1	-56.3	-21.25	35.01
HE20, M0 to M9 4ss	4	4	-67.6	-64.1	-67.8	-67.0	0.1	-56.3	-21.25	35.01
HE20 Beam Forming, M0 to M9 1ss	2	7	-67.6	-64.1			0.1	-55.4	-21.25	34.18
HE20 Beam Forming, M0 to M9 2ss	2	4	-67.6	-64.1			0.1	-58.4	-21.25	37.18
HE20 Beam Forming, M0 to M9 1ss	3	9	-67.6	-64.1	-67.8		0.1	-52.3	-21.25	31.06
HE20 Beam Forming, M0 to M9 2ss	3	6	-67.6	-64.1	-67.8		0.1	-55.3	-21.25	34.06
HE20 Beam Forming, M0 to M9 3ss	3	4	-67.6	-64.1	-67.8		0.1	-57.3	-21.25	
HE20 Beam Forming, M0 to M9 1ss	4	10	-67.6	-64.1	-67.8	-67.0	0.1	-50.3	-21.25	29.01
HE20 Beam Forming, M0 to M9 2ss	4	7	-67.6	-64.1	-67.8	-67.0	0.1	-53.3	-21.25	32.01
HE20 Beam Forming, M0 to M9 3ss	4	5	-67.6	-64.1	-67.8	-67.0	0.1	-55.3	-21.25	34.01
HE20 Beam Forming, M0 to M9 4ss	4	4	-67.6	-64.1	-67.8	-67.0	0.1	-56.3	-21.25	35.01
HE20 STBC, M0 to M9 2ss	2	4	-67.6	-64.1			0.1	-58.4	-21.25	37.18
HE20 STBC, M0 to M9 2ss	3	4	-67.6	-64.1	-67.8		0.1	-57.3	-21.25	36.06
HE20 STBC, M0 to M9 2ss	4	4	-67.6	-64.1	-67.8	-67.0	0.1	-56.3	-21.25	35.01

Page No: 52 of 88

	CCK, 1 to 11 Mbps	1	4	-63.8	07.7			0.2	-59.6	-21.25	38.36
	CCK, 1 to 11 Mbps	2	4	-63.8	-67.7	00.0		0.2	-58.1	-21.25	36.87
	CCK, 1 to 11 Mbps	3	4	-63.8	-67.7	-68.3	07.0	0.2	-57.1	-21.25	35.90
	CCK, 1 to 11 Mbps	4	4	-63.8	-67.7	-68.3	-67.3	0.2	-56.2	-21.25	34.92
	Non HT20, 6 to 54 Mbps	1	4	-68.2				0.0	-64.2	-21.25	42.90
	Non HT20, 6 to 54 Mbps	2	4	-68.2	-68.8			0.0	-61.4	-21.25	40.18
	Non HT20, 6 to 54 Mbps	3	4	-68.2	-68.8	-68.8		0.0	-59.8	-21.25	38.52
	Non HT20, 6 to 54 Mbps	4	4	-68.2	-68.8	-68.8	-68.9	0.0	-58.6	-21.25	37.35
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-67.3	-68.1			0.0	-57.6	-21.25	36.38
	Non HT20 Beam Forming, 6 to 54 Mbps	3	9	-67.3	-68.1	-67.9	00.4	0.0	-53.9	-21.25	32.69
	Non HT20 Beam Forming, 6 to 54 Mbps	4	10	-68.8	-69.7	-67.5	-66.4	0.0	-51.9	-21.25	30.60
	HT/VHT20, M0 to M7	1	4	-67.3				0.1	-63.2	-21.25	42.00
	HT/VHT20, M0 to M7	2	4	-67.3	-69.2			0.1	-61.1	-21.25	39.83
	HT/VHT20, M8 to M15	2	4	-67.3	-69.2			0.1	-61.1	-21.25	39.83
	HT/VHT20, M0 to M7	3	4	-67.3	-69.2	-67.5		0.1	-59.1	-21.25	37.85
	HT/VHT20, M8 to M15	3	4	-67.3	-69.2	-67.5		0.1	-59.1	-21.25	37.85
	HT/VHT20, M16 to M23	3	4	-67.3	-69.2	-67.5		0.1	-59.1	-21.25	37.85
	HT/VHT20, M0 to M7	4	4	-68.0	-68.7	-69.3	-69.1	0.1	-58.7	-21.25	37.42
	HT/VHT20, M8 to M15	4	4	-68.0	-68.7	-69.3	-69.1	0.1	-58.7	-21.25	37.42
	HT/VHT20, M16 to M23	4	4	-68.0	-68.7	-69.3	-69.1	0.1	-58.7	-21.25	37.42
2	HT/VHT20, M24 to M31	4	4	-68.0	-68.7	-69.3	-69.1	0.1	-58.7	-21.25	37.42
2462	HT/VHT20 Beam Forming, M0 to M7	2	7	-68.0	-68.7			0.1	-58.3	-21.25	37.02
	HT/VHT20 Beam Forming, M8 to M15	2	4	-67.3	-69.2			0.1	-61.1	-21.25	39.83
	HT/VHT20 Beam Forming, M0 to M7	3	9	-68.9	-67.1	-68.6		0.1	-54.3	-21.25	33.05
	HT/VHT20 Beam Forming, M8 to M15	3	6	-68.0	-68.7	-69.3		0.1	-57.8	-21.25	36.56
	HT/VHT20 Beam Forming, M16 to M23	3	4	-67.3	-69.2	-67.5		0.1	-59.1	-21.25	37.85
	HT/VHT20 Beam Forming, M0 to M7	4	10	-68.9	-69.3	-67.9	-67.9	0.1	-52.4	-21.25	31.13
	HT/VHT20 Beam Forming, M8 to M15	4	7	-68.9	-67.1	-68.6	-67.5	0.1	-54.9	-21.25	33.64
	HT/VHT20 Beam Forming, M16 to M23	4	5	-68.0	-68.7	-69.3	-69.1	0.1	-57.7	-21.25	36.42
	HT/VHT20 Beam Forming, M24 to M31	4	4	-68.0	-68.7	-69.3	-69.1	0.1	-58.7	-21.25	37.42
	HT/VHT20 STBC, M0 to M7	2	4	-67.3	-69.2			0.1	-61.1	-21.25	39.83
	HT/VHT20 STBC, M0 to M7	3	4	-67.3	-69.2	-67.5		0.1	-59.1	-21.25	37.85
	HT/VHT20 STBC, M0 to M7	4	4	-68.0	-68.7	-69.3	-69.1	0.1	-58.7	-21.25	37.42
	HE20, M0 to M9 1ss	1	4	-68.7				0.1	-64.6	-21.25	43.38
	HE20, M0 to M9 1ss	2	4	-68.7	-68.9			0.1	-61.7	-21.25	40.47
	HE20, M0 to M9 2ss	2	4	-68.7	-68.9			0.1	-61.7	-21.25	40.47
	HE20, M0 to M9 1ss	3	4	-68.7	-68.9	-68.0		0.1	-59.7	-21.25	38.43
	HE20, M0 to M9 2ss	3	4	-68.7	-68.9	-68.0		0.1	-59.7	-21.25	38.43
	HE20, M0 to M9 3ss	3	4	-68.7	-68.9	-68.0		0.1	-59.7	-21.25	38.43
	HE20, M0 to M9 1ss	4	4	-68.7	-68.9	-68.0	-69.1	0.1	-58.6	-21.25	37.32
	HE20, M0 to M9 2ss	4	4	-68.7	-68.9	-68.0	-69.1	0.1	-58.6	-21.25	37.32
	HE20, M0 to M9 3ss	4	4	-68.7	-68.9	-68.0	-69.1	0.1	-58.6	-21.25	37.32
	HE20, M0 to M9 4ss	4	4	-68.7	-68.9	-68.0	-69.1	0.1	-58.6	-21.25	37.32
		-									

Page No: 53 of 88

HE20 Beam Forming, M0 to M9 1ss	2	7	-68.7	-68.9			0.1	-58.7	-21.25	37.47
HE20 Beam Forming, M0 to M9 2ss	2	4	-68.7	-68.9			0.1	-61.7	-21.25	40.47
HE20 Beam Forming, M0 to M9 1ss	3	9	-68.8	-69.2	-68.6		0.1	-55.0	-21.25	33.77
HE20 Beam Forming, M0 to M9 2ss	3	6	-68.7	-68.9	-68.0		0.1	-57.7	-21.25	36.43
HE20 Beam Forming, M0 to M9 3ss	3	4	-68.7	-68.9	-68.0		0.1	-59.7	-21.25	38.43
HE20 Beam Forming, M0 to M9 1ss	4	10	-69.0	-68.5	-69.0	-68.4	0.1	-52.6	-21.25	31.38
HE20 Beam Forming, M0 to M9 2ss	4	7	-68.8	-69.2	-68.6	-68.4	0.1	-55.7	-21.25	34.40
HE20 Beam Forming, M0 to M9 3ss	4	5	-68.7	-68.9	-68.0	-69.1	0.1	-57.6	-21.25	36.32
HE20 Beam Forming, M0 to M9 4ss	4	4	-68.7	-68.9	-68.0	-69.1	0.1	-58.6	-21.25	37.32
HE20 STBC, M0 to M9 2ss	2	4	-68.7	-68.9			0.1	-61.7	-21.25	40.47
HE20 STBC, M0 to M9 2ss	3	4	-68.7	-68.9	-68.0		0.1	-59.7	-21.25	38.43
HE20 STBC, M0 to M9 2ss	4	4	-68.7	-68.9	-68.0	-69.1	0.1	-58.6	-21.25	37.32

Page No: 54 of 88

The series of th

Antenna A

Antenna C

cisco

Scale Tv:

Antenna B

Antenna D

Page No: 55 of 88

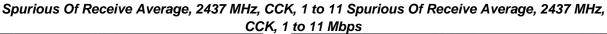
This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

Conducted Spurs Peak, 2437 MHz, Non HT20 Beam Forming, 6 to 54 Mbps

A.7 Conducted Receiver Spurious Emissions

Spurious Of Receive Average Upp, 2412 MHz, Non HT20, 6 to 54 Mbps

Spurious Of Receive Peak Upper, 2412 MHz, Non HT20, 6 to 54 Mbps



Page No: 56 of 88

Conducted Receiver Spurious Average

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Rx 1 Spur Power (dBm)	Rx 2 Spur Power (dBm)	Rx 3 Spur Power (dBm)	Rx 4 Spur Power (dBm)	Duty Cycle Correction (dB)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	4	4	-87.7	-89.3	-88.9	-88.8	0.2	-78.4	-41.25	37.17
2412	Non HT20, 6 to 54 Mbps	4	4	-86.3	-89.1	-88.8	-88.9	0.0	-78.0	-41.25	36.79
24	HT/VHT20, M0 to M7	4	4	-86.5	-89.2	-88.8	-88.7	0.1	-78.1	-41.25	36.84
	HE20, M0 to M9 1ss	4	4	-86.9	-89.6	-88.9	-89.1	0.1	-78.4	-41.25	37.16
	CCK, 1 to 11 Mbps	4	4	-85.9	-89.4	-88.8	-89.0	0.2	-77.8	-41.25	36.57
37	Non HT20, 6 to 54 Mbps	4	4	-86.9	-88.9	-88.8	-89.0	0.0	-78.2	-41.25	36.99
2437	HT/VHT20, M0 to M7	4	4	-87.3	-89.7	-88.8	-89.2	0.1	-78.6	-41.25	37.33
	HE20, M0 to M9 1ss	4	4	-86.7	-89.9	-89.0	-89.0	0.1	-78.4	-41.25	37.14
	CCK, 1 to 11 Mbps	4	4	-86.8	-89.9	-89.0	-89.3	0.2	-78.4	-41.25	37.12
2462	Non HT20, 6 to 54 Mbps	4	4	-86.7	-89.6	-88.8	-89.0	0.0	-78.3	-41.25	37.06
24	HT/VHT20, M0 to M7	4	4	-86.9	-89.6	-88.6	-89.1	0.1	-78.4	-41.25	37.10
	HE20, M0 to M9 1ss	4	4	-87.1	-89.3	-88.5	-88.8	0.1	-78.3	-41.25	37.01

Page No: 57 of 88

Antenna C

Antenna B

Antenna D

սիսիս

Page No: 58 of 88

Conducted Receiver Spurious Peak

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Rx 1 Spur Power (dBm)	Rx 2 Spur Power (dBm)	Rx 3 Spur Power (dBm)	Rx 4 Spur Power (dBm)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	4	4	-69.0	-70.6	-70.5	-69.4	-59.6	-21.25	38.36
2412	Non HT20, 6 to 54 Mbps	4	4	-70.4	-70.0	-70.1	-68.9	-59.7	-21.25	38.50
24	HT/VHT20, M0 to M7	4	4	-68.7	-69.9	-69.1	-69.6	-59.2	-21.25	37.98
	HE20, M0 to M9 1ss	4	4	-69.1	-70.2	-69.2	-68.9	-59.2	-21.25	37.99
	CCK, 1 to 11 Mbps	4	4	-69.7	-69.7	-69.8	-69.1	-59.4	-21.25	38.10
2437	Non HT20, 6 to 54 Mbps	4	4	-70.0	-70.6	-69.7	-70.2	-60.0	-21.25	38.80
24	HT/VHT20, M0 to M7	4	4	-68.5	-70.3	-69.9	-69.0	-59.3	-21.25	38.04
	HE20, M0 to M9 1ss	4	4	-70.7	-70.5	-69.9	-69.9	-60.1	-21.25	38.90
	CCK, 1 to 11 Mbps	4	4	-70.6	-70.5	-68.8	-68.2	-59.2	-21.25	37.94
2462	Non HT20, 6 to 54 Mbps	4	4	-69.7	-69.9	-68.6	-68.7	-59.1	-21.25	37.87
24	HT/VHT20, M0 to M7	4	4	-69.1	-70.7	-69.2	-68.9	-59.3	-21.25	38.10
	HE20, M0 to M9 1ss	4	4	-69.9	-69.1	-68.2	-70.3	-59.2	-21.25	37.96


Page No: 59 of 88

Spurious Of Receive Peak, 2462 MHz, Non HT20, 6 to 54 Mbps

Antenna B

Antenna C

Antenna D

cisco

Page No: 60 of 88

Scale Ty

A.8 Conducted Bandedge (Restricted Band)

Conducted Band Edge Test Requirement

15.247 / LP0002:3.10.1(5) & 2.8

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RSS-247

5.5 Unwanted emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

15.205 / RSS-Gen

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), and RSS-Gen 8.10 must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)) and RSS-Gen 8.9.

Conducted Bandedge Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05

ANSI C63.10: 2013

Conducted Band edge

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode. Use the procedures in KDB 558074 D01 DTS Meas Guidance v04 to substitute conducted measurements in place of radiated measurements.

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded.

6. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance.

Also measure any emissions in the restricted bands

7. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05, section 8.1 c) 3, section 8.6 DTS emissions in restricted frequency bands

ANSI C63.10: 2013 section 11.12.2.4 (Peak) & 11.12.2.5.2 (Average)

Page No: 61 of 88

Conducted Spurious Emissions Test parameters	
Peak	Average
RBW = 1 MHz	RBW = 1 MHz
$VBW \ge 3 MHz$	$VBW \ge 3 MHz$
Sweep = Auto	Sweep = Auto
Detector = Peak	Detector = RMS
Trace = Max Hold.	Power Averaging

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\triangleleft	
1	Support			\checkmark

Tested By :	Date of testing:	
Chris Blair	10-Sep-19 - 01-Oct-19	
Test Result : PASS		

Test Equipment

See Appendix C for list of test equipment

Page No: 62 of 88

Restricted Band

Conducted Bandedge Average Table

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Tx 3 Bandedge Level (dBm)	Tx 4 Bandedge Level (dBm)	Tx 5 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	4	-49.9				0.2	-45.7	-41.25	4.46
	CCK, 1 to 11 Mbps	2	4	-49.9	-53.6			0.2	-44.2	-41.25	2.91
	CCK, 1 to 11 Mbps	3	4	-49.9	-53.6	-56.6		0.2	-43.6	-41.25	2.31
	CCK, 1 to 11 Mbps	4	4	-49.9	-53.6	-56.6	-56.0	0.2	-43.0	-41.25	1.70
	Non HT20, 6 to 54 Mbps	1	4	-47.0				0.0	-43.0	-41.25	1.70
	Non HT20, 6 to 54 Mbps	2	4	-47.0	-51.8			0.0	-41.7	-41.25	0.46
	Non HT20, 6 to 54 Mbps	3	4	-49.9	-55.0	-56.4		0.0	-44.0	-41.25	2.75
	Non HT20, 6 to 54 Mbps	4	4	-49.9	-55.0	-56.4	-54.0	0.0	-43.0	-41.25	1.77
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-49.9	-55.0			0.0	-41.7	-41.25	0.44
	Non HT20 Beam Forming, 6 to 54 Mbps	3	9	-54.0	-58.4	-61.4		0.0	-43.1	-41.25	1.82
	Non HT20 Beam Forming, 6 to 54 Mbps	4	10	-55.7	-60.6	-61.9	-60.7	0.0	-42.9	-41.25	1.66
	HT/VHT20, M0 to M7	1	4	-46.6				0.1	-42.5	-41.25	1.30
	HT/VHT20, M0 to M7	2	4	-49.4	-54.2			0.1	-44.1	-41.25	2.86
2412	HT/VHT20, M8 to M15	2	4	-49.4	-54.2			0.1	-44.1	-41.25	2.86
24	HT/VHT20, M0 to M7	3	4	-49.4	-54.2	-56.1		0.1	-43.5	-41.25	2.21
	HT/VHT20, M8 to M15	3	4	-49.4	-54.2	-56.1		0.1	-43.5	-41.25	2.21
	HT/VHT20, M16 to M23	3	4	-49.4	-54.2	-56.1		0.1	-43.5	-41.25	2.21
	HT/VHT20, M0 to M7	4	4	-49.4	-54.2	-56.1	-53.1	0.1	-42.4	-41.25	1.15
	HT/VHT20, M8 to M15	4	4	-49.4	-54.2	-56.1	-53.1	0.1	-42.4	-41.25	1.15
	HT/VHT20, M16 to M23	4	4	-49.4	-54.2	-56.1	-53.1	0.1	-42.4	-41.25	1.15
	HT/VHT20, M24 to M31	4	4	-49.4	-54.2	-56.1	-53.1	0.1	-42.4	-41.25	1.15
	HT/VHT20 Beam Forming, M0 to M7	2	7	-50.9	-57.1			0.1	-42.9	-41.25	1.66
	HT/VHT20 Beam Forming, M8 to M15	2	4	-49.4	-54.2			0.1	-44.1	-41.25	2.86
	HT/VHT20 Beam Forming, M0 to M7	3	9	-53.3	-57.9	-59.9		0.1	-42.3	-41.25	1.05
	HT/VHT20 Beam Forming, M8 to M15	3	6	-49.4	-54.2	-56.1		0.1	-41.5	-41.25	0.21
	HT/VHT20 Beam Forming, M16 to M23	3	4	-49.4	-54.2	-56.1		0.1	-43.5	-41.25	2.21
	HT/VHT20 Beam Forming, M0 to M7	4	10	-54.4	-60.1	-60.8	-58.8	0.1	-41.6	-41.25	0.40
	HT/VHT20 Beam Forming, M8 to M15	4	7	-50.9	-57.1	-58.1	-55.3	0.1	-41.3	-41.25	0.06
			Page	No: 63 of	88						

Page No: 63 of 88

uluulu cisco

	HT/VHT20 Beam Forming, M16 to M23	4	5	-49.4	-54.2	-56.1	-53.1	0.1	-41.4	-41.25	0.15
	HT/VHT20 Beam Forming, M24 to M31	4	4	-49.4	-54.2	-56.1	-53.1	0.1	-42.4	-41.25	1.15
	HT/VHT20 STBC, M0 to M7	2	4	-49.4	-54.2			0.1	-44.1	-41.25	2.86
	HT/VHT20 STBC, M0 to M7	3	4	-49.4	-54.2	-56.1		0.1	-43.5	-41.25	2.21
	HT/VHT20 STBC, M0 to M7	4	4	-49.4	-54.2	-56.1	-53.1	0.1	-42.4	-41.25	1.15
	HE20, M0 to M9 1ss	1	4	-45.5				0.1	-41.4	-41.25	0.18
	HE20, M0 to M9 1ss	2	4	-47.8	-53.2			0.1	-42.6	-41.25	1.38
	HE20, M0 to M9 2ss	2	4	-47.8	-53.2			0.1	-42.6	-41.25	1.38
	HE20, M0 to M9 1ss	3	4	-47.8	-53.2	-54.5		0.1	-42.0	-41.25	0.72
	HE20, M0 to M9 2ss	3	4	-47.8	-53.2	-54.5		0.1	-42.0	-41.25	0.72
	HE20, M0 to M9 3ss	3	4	-47.8	-53.2	-54.5		0.1	-42.0	-41.25	0.72
	HE20, M0 to M9 1ss	4	4	-49.7	-56.2	-56.7	-53.2	0.1	-42.9	-41.25	1.67
	HE20, M0 to M9 2ss	4	4	-49.7	-56.2	-56.7	-53.2	0.1	-42.9	-41.25	1.67
	HE20, M0 to M9 3ss	4	4	-49.7	-56.2	-56.7	-53.2	0.1	-42.9	-41.25	1.67
	HE20, M0 to M9 4ss	4	4	-49.7	-56.2	-56.7	-53.2	0.1	-42.9	-41.25	1.67
	HE20 Beam Forming, M0 to M9 1ss	2	7	-49.7	-56.2			0.1	-41.8	-41.25	0.51
	HE20 Beam Forming, M0 to M9 2ss	2	4	-47.8	-53.2			0.1	-42.6	-41.25	1.38
	HE20 Beam Forming, M0 to M9 1ss	3	9	-52.7	-59.0	-59.9		0.1	-42.1	-41.25	0.85
	HE20 Beam Forming, M0 to M9 2ss	3	6	-49.7	-56.2	-56.7		0.1	-42.1	-41.25	0.85
	HE20 Beam Forming, M0 to M9 3ss	3	4	-47.8	-53.2	-54.5		0.1	-42.0	-41.25	0.72
	HE20 Beam Forming, M0 to M9 1ss	4	10	-55.0	-60.7	-62.5	-58.7	0.1	-42.2	-41.25	0.96
	HE20 Beam Forming, M0 to M9 2ss	4	7	-51.2	-57.6	-58.4	-55.5	0.1	-41.6	-41.25	0.35
	HE20 Beam Forming, M0 to M9 3ss	4	5	-49.7	-56.2	-56.7	-53.2	0.1	-41.9	-41.25	0.67
	HE20 Beam Forming, M0 to M9 4ss	4	4	-49.7	-56.2	-56.7	-53.2	0.1	-42.9	-41.25	1.67
	HE20 STBC, M0 to M9 2ss	2	4	-47.8	-53.2			0.1	-42.6	-41.25	1.38
	HE20 STBC, M0 to M9 2ss	3	4	-47.8	-53.2	-54.5		0.1	-42.0	-41.25	0.72
	HE20 STBC, M0 to M9 2ss	4	4	-49.7	-56.2	-56.7	-53.2	0.1	-42.9	-41.25	1.67
	CCK, 1 to 11 Mbps	1	4	-50.2				0.2	-46.0	-41.25	4.76
	CCK, 1 to 11 Mbps	2	4	-50.2	-53.9			0.2	-44.5	-41.25	3.21
	CCK, 1 to 11 Mbps	3	4	-50.2	-53.9	-53.9		0.2	-43.3	-41.25	2.08
	CCK, 1 to 11 Mbps	4	4	-50.2	-53.9	-53.9	-54.6	0.2	-42.6	-41.25	1.30
	Non HT20, 6 to 54 Mbps	1	4	-48.6				0.0	-44.6	-41.25	3.30
	Non HT20, 6 to 54 Mbps	2	4	-48.6	-55.4			0.0	-43.7	-41.25	2.48
	Non HT20, 6 to 54 Mbps	3	4	-48.6	-55.4	-55.8		0.0	-43.1	-41.25	1.84
2462	Non HT20, 6 to 54 Mbps	4	4	-48.6	-55.4	-55.8	-53.1	0.0	-42.1	-41.25	0.86
N	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-52.1	-58.3			0.0	-44.1	-41.25	2.87
	Non HT20 Beam Forming, 6 to 54 Mbps	3	9	-52.1	-58.3	-57.9		0.0	-41.3	-41.25	0.04
	Non HT20 Beam Forming, 6 to 54 Mbps	4	10	-55.6	-59.4	-59.2	-57.7	0.0	-41.6	-41.25	0.38
	HT/VHT20, M0 to M7	1	4	-47.2				0.1	-43.1	-41.25	1.90
	HT/VHT20, M0 to M7	2	4	-47.2	-54.2			0.1	-42.4	-41.25	1.11
	HT/VHT20, M8 to M15	2	4	-47.2	-54.2			0.1	-42.4	-41.25	1.11
	HT/VHT20, M0 to M7	3	4	-47.2	-54.2	-55.6		0.1	-41.9	-41.25	0.61

Page No: 64 of 88

	-41.25	0.01
		0.61
	-41.25	0.61
	-41.25	2.81
	-41.25	2.81
	-41.25	2.81
	-41.25	2.81
	-41.25	1.34
	-41.25	1.11
	-41.25	1.73
HT/VHT20 Beam Forming, M8 to M15 3 6 -50.5 -57.1 -58.1 0.1 -43.0	-41.25	1.76
HT/VHT20 Beam Forming, M16 to M23 3 4 -47.2 -54.2 -55.6 0.1 -41.9	-41.25	0.61
HT/VHT20 Beam Forming, M0 to M7 4 10 -55.6 -60.5 -61.1 -59.8 0.1 -42.6	-41.25	1.32
HT/VHT20 Beam Forming, M8 to M15 4 7 -53.9 -59.8 -59.4 -58.0 0.1 -44.0	-41.25	2.75
HT/VHT20 Beam Forming, M16 to M23 4 5 -50.5 -57.1 -58.1 -55.2 0.1 -43.1	-41.25	1.81
HT/VHT20 Beam Forming, M24 to M31 4 4 -50.5 -57.1 -58.1 -55.2 0.1 -44.1	-41.25	2.81
HT/VHT20 STBC, M0 to M7 2 4 -47.2 -54.2 0.1 -42.4	-41.25	1.11
HT/VHT20 STBC, M0 to M7 3 4 -47.2 -54.2 -55.6 0.1 -41.9	-41.25	0.61
HT/VHT20 STBC, M0 to M7 4 4 -50.5 -57.1 -58.1 -55.2 0.1 -44.1	-41.25	2.81
HE20, M0 to M9 1ss 1 4 -50.2 0.1 -46.1	-41.25	4.88
HE20, M0 to M9 1ss 2 4 -50.2 -54.9 0.1 -44.9	-41.25	3.62
HE20, M0 to M9 2ss 2 4 -50.2 -54.9 0.1 -44.9	-41.25	3.62
HE20, M0 to M9 1ss 3 4 -50.2 -54.9 -56.7 0.1 -44.2	-41.25	2.95
HE20, M0 to M9 2ss 3 4 -50.2 -54.9 -56.7 0.1 -44.2	-41.25	2.95
HE20, M0 to M9 3ss 3 4 -50.2 -54.9 -56.7 0.1 -44.2	-41.25	2.95
HE20, M0 to M9 1ss 4 4 -50.2 -54.9 -56.7 -55.3 0.1 -43.4	-41.25	2.16
HE20, M0 to M9 2ss 4 4 -50.2 -54.9 -56.7 -55.3 0.1 -43.4	-41.25	2.16
HE20, M0 to M9 3ss 4 4 -50.2 -54.9 -56.7 -55.3 0.1 -43.4	-41.25	2.16
HE20, M0 to M9 4ss 4 4 -50.2 -54.9 -56.7 -55.3 0.1 -43.4	-41.25	2.16
HE20 Beam Forming, M0 to M9 1ss 2 7 -50.2 -54.9 0.1 -41.9	-41.25	0.62
HE20 Beam Forming, M0 to M9 2ss 2 4 -50.2 -54.9 0.1 -44.9	-41.25	3.62
	-41.25	0.17
	-41.25	0.95
	-41.25	2.95
	-41.25	0.09
	-41.25	1.32
	-41.25	1.16
	-41.25	2.16
	-41.25	3.62
	-41.25	2.95

Page No: 65 of 88

Conducted Bandedge Average, 2412 MHz, HT/VHT20 Beam Forming, M8 to M15

Antenna C

սիսիւ

cisco

Antenna B

Antenna D

Page No: 66 of 88

Conducted Bandedge Average, 2462 MHz, Non HT20 Beam Forming, 6 to 54 Mbps

Antenna A

սիսիս

Recept Sector Dalate In			(pp (2mind 2ministrant)		-1-1 10.0
Center Freq 2.86450 PASS	00000 GH2	Trig FreeRun EAstern 22 of5	Alvg Tape RMS Augmpid: 195/128	That is a second second	Prostatop
Ref 10.00	dBm	1 1000000000	Mix	2 3 162 4 GHz -66 149 dBm	Auto Ture
Them I Pass					Center Free 3 86460000 GH
					BtartFree 3.44200000 OH
2				••• ² •••••	Stop Pre £247080000 GH
itart 2.4620 GHz Res EW 1.0 MHz		W 3.0 MHz*	Gwrep 1	5top 3.2870 GHz .000 ms (591 pts)	CF Bits RESOLDED MA
	1481988	67.854 diim 188.140 diim	ACTOR PROTOTIVE SH	TREES SEA	Freq Offse g H
1 7 8 9					Bcale Type
		1	2014		11.11 (A.1.1)

Antenna C

Page No: 67 of 88

Conducted Bandedge Peak Table

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Tx 3 Bandedge Level (dBm)	Tx 4 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	4	-37.1				-32.9	-21.25	11.66
	CCK, 1 to 11 Mbps	2	4	-37.1	-41.5			-31.6	-21.25	10.31
	CCK, 1 to 11 Mbps	3	4	-37.1	-41.5	-44.9		-31.1	-21.25	9.81
	CCK, 1 to 11 Mbps	4	4	-37.1	-41.5	-44.9	-39.3	-29.6	-21.25	8.37
	Non HT20, 6 to 54 Mbps	1	4	-36.6				-32.6	-21.25	11.30
	Non HT20, 6 to 54 Mbps	2	4	-36.6	-38.7			-30.5	-21.25	9.22
	Non HT20, 6 to 54 Mbps	3	4	-37.9	-44.4	-45.7		-32.4	-21.25	11.17
	Non HT20, 6 to 54 Mbps	4	4	-37.9	-44.4	-45.7	-42.5	-31.5	-21.25	10.21
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-37.9	-44.4			-30.0	-21.25	8.73
	Non HT20 Beam Forming, 6 to 54 Mbps	3	9	-43.2	-48.1	-50.6		-32.4	-21.25	11.13
	Non HT20 Beam Forming, 6 to 54 Mbps	4	10	-45.8	-50.1	-51.7	-51.0	-32.9	-21.25	11.65
	HT/VHT20, M0 to M7	1	4	-33.5				-29.4	-21.25	8.20
	HT/VHT20, M0 to M7	2	4	-35.5	-40.9			-30.3	-21.25	9.10
	HT/VHT20, M8 to M15	2	4	-35.5	-40.9			-30.3	-21.25	9.10
2412	HT/VHT20, M0 to M7	3	4	-35.5	-40.9	-46.0		-30.1	-21.25	8.81
	HT/VHT20, M8 to M15	3	4	-35.5	-40.9	-46.0		-30.1	-21.25	8.81
	HT/VHT20, M16 to M23	3	4	-35.5	-40.9	-46.0		-30.1	-21.25	8.81
	HT/VHT20, M0 to M7	4	4	-35.5	-40.9	-46.0	-38.2	-28.6	-21.25	7.38
	HT/VHT20, M8 to M15	4	4	-35.5	-40.9	-46.0	-38.2	-28.6	-21.25	7.38
	HT/VHT20, M16 to M23	4	4	-35.5	-40.9	-46.0	-38.2	-28.6	-21.25	7.38
	HT/VHT20, M24 to M31	4	4	-35.5	-40.9	-46.0	-38.2	-28.6	-21.25	7.38
	HT/VHT20 Beam Forming, M0 to M7	2	7	-40.1	-45.4			-31.9	-21.25	10.67
	HT/VHT20 Beam Forming, M8 to M15	2	4	-35.5	-40.9			-30.3	-21.25	9.10
	HT/VHT20 Beam Forming, M0 to M7	3	9	-42.4	-45.5	-48.5		-31.0	-21.25	9.70
	HT/VHT20 Beam Forming, M8 to M15	3	6	-35.5	-40.9	-46.0		-28.1	-21.25	6.81
	HT/VHT20 Beam Forming, M16 to M23	3	4	-35.5	-40.9	-46.0		-30.1	-21.25	8.81
	HT/VHT20 Beam Forming, M0 to M7	4	10	-43.3	-48.1	-49.4	-47.4	-30.3	-21.25	9.06
	HT/VHT20 Beam Forming, M8 to M15	4	7	-40.1	-45.4	-48.0	-45.4	-30.6	-21.25	9.36
	HT/VHT20 Beam Forming, M16 to M23	4	5	-35.5	-40.9	-46.0	-38.2	-27.6	-21.25	6.38

Page No: 68 of 88

i I		l	l			
C	5		C	(D	

	HT//HT20 Room Forming, M24 to M21	4	4	-35.5	-40.9	-46.0	-38.2	-28.6	-21.25	7.38
	HT/VHT20 Beam Forming, M24 to M31 HT/VHT20 STBC, M0 to M7	2	4	-35.5	-40.9	-40.0	-30.2	-20.0	-21.25	9.10
		∠ 3	4	-35.5	-40.9	-46.0			-21.25	9.10 8.81
	HT/VHT20 STBC, M0 to M7		4		-40.9	-46.0	-38.2	-30.1 -28.6		
	HT/VHT20 STBC, M0 to M7	4	4 4	-35.5	-40.9	-40.0	-30.2		-21.25	7.38
	HE20, M0 to M9 1ss	1		-27.8	20.0			-23.7	-21.25	2.48
	HE20, M0 to M9 1ss	2	4	-31.7	-36.6			-26.4	-21.25	5.17
	HE20, M0 to M9 2ss	2	4	-31.7	-36.6			-26.4	-21.25	5.17
	HE20, M0 to M9 1ss	3	4	-31.7	-36.6	-41.4		-26.1	-21.25	4.83
	HE20, M0 to M9 2ss	3	4	-31.7	-36.6	-41.4		-26.1	-21.25	4.83
	HE20, M0 to M9 3ss	3	4	-31.7	-36.6	-41.4		-26.1	-21.25	4.83
	HE20, M0 to M9 1ss	4	4	-35.9	-42.2	-46.8	-41.0	-29.7	-21.25	8.48
	HE20, M0 to M9 2ss	4	4	-35.9	-42.2	-46.8	-41.0	-29.7	-21.25	8.48
	HE20, M0 to M9 3ss	4	4	-35.9	-42.2	-46.8	-41.0	-29.7	-21.25	8.48
	HE20, M0 to M9 4ss	4	4	-35.9	-42.2	-46.8	-41.0	-29.7	-21.25	8.48
	HE20 Beam Forming, M0 to M9 1ss	2	7	-35.9	-42.2			-27.9	-21.25	6.67
	HE20 Beam Forming, M0 to M9 2ss	2	4	-31.7	-36.6			-26.4	-21.25	5.17
	HE20 Beam Forming, M0 to M9 1ss	3	9	-43.4	-48.1	-50.2		-32.4	-21.25	11.19
	HE20 Beam Forming, M0 to M9 2ss	3	6	-35.9	-42.2	-46.8		-28.6	-21.25	7.39
	HE20 Beam Forming, M0 to M9 3ss	3	4	-31.7	-36.6	-41.4		-26.1	-21.25	4.83
	HE20 Beam Forming, M0 to M9 1ss	4	10	-45.4	-50.8	-50.7	-46.1	-31.5	-21.25	10.22
	HE20 Beam Forming, M0 to M9 2ss	4	7	-42.0	-46.0	-49.1	-45.4	-31.8	-21.25	10.57
	HE20 Beam Forming, M0 to M9 3ss	4	5	-35.9	-42.2	-46.8	-41.0	-28.7	-21.25	7.48
	HE20 Beam Forming, M0 to M9 4ss	4	4	-35.9	-42.2	-46.8	-41.0	-29.7	-21.25	8.48
	HE20 STBC, M0 to M9 2ss	2	4	-31.7	-36.6			-26.4	-21.25	5.17
	HE20 STBC, M0 to M9 2ss	3	4	-31.7	-36.6	-41.4		-26.1	-21.25	4.83
	HE20 STBC, M0 to M9 2ss	4	4	-35.9	-42.2	-46.8	-41.0	-29.7	-21.25	8.48
			-							
	CCK, 1 to 11 Mbps	1	4	-38.2				-34.0	-21.25	12.76
	CCK, 1 to 11 Mbps	2	4	-38.2	-39.7			-31.7	-21.25	10.43
	CCK, 1 to 11 Mbps	3	4	-38.2	-39.7	-42.4		-30.8	-21.25	9.56
	CCK, 1 to 11 Mbps	4	4	-38.2	-39.7	-42.4	-41.7	-30.0	-21.25	8.72
	Non HT20, 6 to 54 Mbps	1	4	-31.0				-27.0	-21.25	5.70
	Non HT20, 6 to 54 Mbps	2	4	-31.0	-36.4			-25.9	-21.25	4.60
	Non HT20, 6 to 54 Mbps	3	4	-31.0	-36.4	-41.9		-25.6	-21.25	4.34
22	Non HT20, 6 to 54 Mbps	4	4	-31.0	-36.4	-41.9	-35.8	-24.6	-21.25	3.40
2462	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-35.1	-44.8			-27.6	-21.25	6.36
	Non HT20 Beam Forming, 6 to 54 Mbps	3	9	-35.1	-44.8	-46.0		-25.3	-21.25	4.05
	Non HT20 Beam Forming, 6 to 54 Mbps	4	10	-40.6	-47.4	-48.2	-44.9	-28.1	-21.25	6.86
	HT/VHT20, M0 to M7	1	4	-30.2				-26.1	-21.25	4.90
	HT/VHT20, M0 to M7	2	4	-30.2	-35.6			-25.0	-21.25	3.80
	HT/VHT20, M8 to M15	2	4	-30.2	-35.6			-25.0	-21.25	3.80
	HT/VHT20, M0 to M7	3	4	-30.2	-35.6	-39.6		-24.7	-21.25	3.43
	HT/VHT20, M8 to M15	3	4	-30.2	-35.6	-39.6		-24.7	-21.25	3.43
		5	-	00.2	55.0	00.0		24.1	21.20	0.40

Page No: 69 of 88

HT/VHT20, M16 to M23	3	4	-30.2	-35.6	-39.6		-24.7	-21.25	3.43
HT/VHT20, M0 to M7	4	4	-33.9	-40.6	-43.6	-36.0	-27.0	-21.25	5.73
HT/VHT20, M8 to M15	4	4	-33.9	-40.6	-43.6	-36.0	-27.0	-21.25	5.73
HT/VHT20, M16 to M23	4	4	-33.9	-40.6	-43.6	-36.0	-27.0	-21.25	5.73
HT/VHT20, M24 to M31	4	4	-33.9	-40.6	-43.6	-36.0	-27.0	-21.25	5.73
HT/VHT20 Beam Forming, M0 to M7	2	7	-33.9	-40.6			-26.0	-21.25	4.76
HT/VHT20 Beam Forming, M8 to M15	2	4	-30.2	-35.6			-25.0	-21.25	3.80
HT/VHT20 Beam Forming, M0 to M7	3	9	-37.0	-46.3	-46.2		-27.0	-21.25	5.77
HT/VHT20 Beam Forming, M8 to M15	3	6	-33.9	-40.6	-43.6		-26.6	-21.25	5.39
HT/VHT20 Beam Forming, M16 to M23	3	4	-30.2	-35.6	-39.6		-24.7	-21.25	3.43
HT/VHT20 Beam Forming, M0 to M7	4	10	-42.6	-49.2	-50.9	-47.6	-30.3	-21.25	9.04
HT/VHT20 Beam Forming, M8 to M15	4	7	-37.0	-46.3	-46.2	-44.1	-28.4	-21.25	7.14
HT/VHT20 Beam Forming, M16 to M23	4	5	-33.9	-40.6	-43.6	-36.0	-26.0	-21.25	4.73
HT/VHT20 Beam Forming, M24 to M31	4	4	-33.9	-40.6	-43.6	-36.0	-27.0	-21.25	5.73
HT/VHT20 STBC, M0 to M7	2	4	-30.2	-35.6			-25.0	-21.25	3.80
HT/VHT20 STBC, M0 to M7	3	4	-30.2	-35.6	-39.6		-24.7	-21.25	3.43
HT/VHT20 STBC, M0 to M7	4	4	-33.9	-40.6	-43.6	-36.0	-27.0	-21.25	5.73
HE20, M0 to M9 1ss	1	4	-30.6				-26.5	-21.25	5.28
HE20, M0 to M9 1ss	2	4	-30.6	-35.9			-25.4	-21.25	4.16
HE20, M0 to M9 2ss	2	4	-30.6	-35.9			-25.4	-21.25	4.16
HE20, M0 to M9 1ss	3	4	-30.6	-35.9	-39.0		-25.0	-21.25	3.70
HE20, M0 to M9 2ss	3	4	-30.6	-35.9	-39.0		-25.0	-21.25	3.70
HE20, M0 to M9 3ss	3	4	-30.6	-35.9	-39.0		-25.0	-21.25	3.70
HE20, M0 to M9 1ss	4	4	-30.6	-35.9	-39.0	-36.5	-24.2	-21.25	2.99
HE20, M0 to M9 2ss	4	4	-30.6	-35.9	-39.0	-36.5	-24.2	-21.25	2.99
HE20, M0 to M9 3ss	4	4	-30.6	-35.9	-39.0	-36.5	-24.2	-21.25	2.99
HE20, M0 to M9 4ss	4	4	-30.6	-35.9	-39.0	-36.5	-24.2	-21.25	2.99
HE20 Beam Forming, M0 to M9 1ss	2	7	-30.6	-35.9			-22.4	-21.25	1.16
HE20 Beam Forming, M0 to M9 2ss	2	4	-30.6	-35.9			-25.4	-21.25	4.16
HE20 Beam Forming, M0 to M9 1ss	3	9	-35.9	-42.2	-46.3		-25.6	-21.25	4.36
HE20 Beam Forming, M0 to M9 2ss	3	6	-30.6	-35.9	-39.0		-23.0	-21.25	1.70
HE20 Beam Forming, M0 to M9 3ss	3	4	-30.6	-35.9	-39.0		-25.0	-21.25	3.70
HE20 Beam Forming, M0 to M9 1ss	4	10	-39.6	-45.6	-48.1	-46.9	-27.6	-21.25	6.30
HE20 Beam Forming, M0 to M9 2ss	4	7	-35.9	-42.2	-46.3	-39.8	-26.4	-21.25	5.20
HE20 Beam Forming, M0 to M9 3ss	4	5	-30.6	-35.9	-39.0	-36.5	-23.2	-21.25	1.99
HE20 Beam Forming, M0 to M9 4ss	4	4	-30.6	-35.9	-39.0	-36.5	-24.2	-21.25	2.99
HE20 STBC, M0 to M9 2ss	2	4	-30.6	-35.9			-25.4	-21.25	4.16
HE20 STBC, M0 to M9 2ss	3	4	-30.6	-35.9	-39.0		-25.0	-21.25	3.70
HE20 STBC, M0 to M9 2ss	4	4	-30.6	-35.9	-39.0	-36.5	-24.2	-21.25	2.99

Page No: 70 of 88

Conducted Bandedge Peak, 2412 MHz, HE20, M0 to M9 1ss

սիսիւ

cisco

Antenna A

Page No: 71 of 88

Antenna A

Antenna B

սիսիւ

cisco

Auto T

Center Fr

Scale Ty

Page No: 72 of 88

A.9 Conducted Bandedge (Non-Restricted Band)

Emissions in non-restricted frequency bands - Test Requirement

15.247 / LP0002:3.10.1(5) & 2.8

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RSS-Gen 8.9 Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 and Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

RSS-Gen 8.10 (b) Unwanted emissions that fall into restricted bands of Table 6 shall comply with the limits specified in RSS-Gen; and (c) Unwanted emissions that do not fall within the restricted frequency bands of Table 6 shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.

Emissions in non-restricted frequency bands - Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05 ANSI C63.10: 2013

Emissions in non-restricted frequency bands - Conducted

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Use the marker function to determine the maximum spurs amplitude level.

5. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05 section, 8.5 DTS emissions in non-restricted frequency bands, 8.7 DTS band-edge measurements

			10: 201	·			1.3		
•	•	•			1.4	1	1	a	

Emissions in non-restricted frequency bands - Conducted Test parameters	
 11.11.2 Reference Level measurement Establish a reference level by using the following procedure: a) Set instrument center frequency to DTS channel center frequency. b) Set the span to ≥ 1.5 x DTS bandwidth. c) Set the RBW = 100 kHz. d) Set the VBW ≥ 3 x RBW. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum PSD level. 	 11.11.3 Emission Level Measurement a) Set the center frequency and span to encompass frequency range to be measured. b) Set the RBW = 100 kHz. c) Set the VBW ≥ 3 x RBW. d) Detector = peak. e) Sweep time = auto couple. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use the peak marker function to determine the maximum amplitude level.

Page No: 73 of 88

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	V	
1	Support			\checkmark

Tested By :	Date of testing:	
Chris Blair	10-Sep-19 - 01-Oct-19	
Test Result : PASS		

Test Equipment See Appendix C for list of test equipment

Page No: 74 of 88

Non-Restricted Band

Frequency (MHz)	Mode	Data Rate (Mbps)	Conducted Bandedge Delta (dB)	Limit (dBc)	Duty Cycle Correction (dB)	Margin (dB)
	CCK, 1 to 11 Mbps	11	44.7	>30	0.2	14.51
2412	Non HT20, 6 to 54 Mbps	6	42.6	>30	0.0	12.55
24	HT/VHT20, M0 to M31	m0	36.9	>30	0.1	6.85
	HE20, M0 to M9	m0h1	38.4	>30	0.1	8.33
	CCK, 1 to 11 Mbps	11	59.9	>30	0.2	29.71
2462	Non HT20, 6 to 54 Mbps	6	49.1	>30	0.0	19.05
24	HT/VHT20, M0 to M31	m0	45.7	>30	0.1	15.65
	HE20, M0 to M9	m0h1	46.5	>30	0.1	16.43

Page No: 75 of 88

Any supply Taxan to an Analysian Strengt CA			Description of the Advanced		100.00
enter Freq 2.406000000	GHz Trig P	ree Run 20 dl5	Avg Type: Log-Pwr	TRACE D 2 4 8	Frequency
0 dBrdly Ref 10.00 dBm			Mkr2 2	398 864 GHz -35.86 dBm	Auto Tun
	prised on	alaalaa a	()3A2 maa meelyne toertriedi		Center Frei 2.40600000 0H
e . Marinetter	State -				Start Fre 2.390005000 GH
00 00 00					Stop Fre 2.42300000 GH
tart 2.39000 GHz Res BW 100 kHz	#VBW 300 ki		Sweep 1.0	top 2,42200 GHz 00 ms (1001 pts)	CF Ste 3.300000 MH
N Y 2.40	10 000 GHz -42.09 10 864 GHz -36.05	dBm			Freq Offse 0 H
9					Scale Typ Log LL
in an ann		<u> </u>	STATUS	1.1	

Conducted Bandedge Delta, 2412 MHz, HT/VHT20, M0 to M7

սիսիս

Page No: 76 of 88

Appendix B: Radiated and AC Conducted Emission Test Results

Testing done by outside laboratory, not included in the scope of this report.

Page No: 77 of 88

Appendix C: List of Test Equipment Used to perform the test

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due	Test Item
57475	Cisco	Automation Test Insertion Loss	NA	NA	A1-A9
53614	Keysight N9030A-550	PXA Signal Analyzer, 3Hz to 50GHz	16 Jul 2019	16 Jul 2020	A1-A9
55095	NI PXI-1042	CHASSIS, PXI	NA	NA	A1-A9
57236	NI PXI-8115	Embedded Controller	NA	NA	A1-A9
57242	NI PXI-2796	40 GHz Dual 6x1 Multiplexer (SP6T)	NA	NA	A1-A9
57243	NI PXI-2799	Switch 1x1	NA	NA	A1-A9
56090	NI PXI-2796	40 GHz Dual 6x1 Multiplexer (SP6T)	NA	NA	A1-A9
7329	Omega CT485B	Chart recorder	18 Feb 2019	18 Feb 2020	A1-A9
56328	Pasternack PE5019-1	Torque wrench	14 Feb 2019	14 Feb 2020	A1-A9
56329	Pasternack PE5019-1	Torque wrench	28 Feb 2019	28 Feb 2020	A1-A9
56330	Pasternack PE5019-1	Torque wrench	28 Feb 2019	28 Feb 2020	A1-A9

Page No: 78 of 88

Appendix D: Abbreviation Key and Definitions

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	٥C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
ТАР	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control System	Qp	Quasi Peak
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak
Cal	Calibration	kHz	Kilohertz (1x10 ³)
EN	European Norm	MHz	MegaHertz (1x10 ⁶)
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)
CISPR	International Special Committee on Radio Interference	Н	Horizontal
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization Network	dB	decibel
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³)
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)
L2	Line2	А	Amp
L3	Line 3	μA	Micro Amp (1x10 ⁻⁶)
DC	Direct Current	mS	Milli Second (1x10 ⁻³)
RAW	Uncorrected measurement value, as indicated by the measuring device	μS	Micro Second (1x10 ⁻⁶)
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)
SLCE	Signal Line Conducted Emissions	m	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
Ν	Neutral Line	R	Return
S	Supply	AC	Alternating Current

The following table defines abbreviations used within this test report.

Page No: 79 of 88

Appendix E: Photographs of Test Setups

Please refer to the attachment

Page No: 80 of 88

Appendix F: Software Used to Perform Testing

Cisco Internal LabView Radio Test Automation Software rev57

Appendix G:Test Procedures

Measurements were made in accordance with

- KDB 558074 D01 DTS Meas Guidance v05
- KDB 662911 MIMO
- ANSI C63.4 2014 Unintentional Radiators
- ANSI C63.10 2013 Intentional Radiators

Test procedures are summarized below

FCC 2.4GHz Test Procedures	EDCS # 1445042
FCC 2.4GHz RSE Test Procedures	EDCS # 1480386

Appendix H: Scope of Accreditation (A2LA certificate number 1178-01)

The scope of accreditation of Cisco Systems, Inc. can be found on the A2LA web page at:

http://www.a2la.org/scopepdf/1178-01.pdf

Appendix I: Test Assessment Plan

Target Power Tables EDCS# 18087112

Page No: 81 of 88

Appendix J: UUT Software Info

APA453.0E7B.CCD0# APA453.0E7B.CCD0#test watchdog monitoring off APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0#show ver Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR sec. 52.227-19 and subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS sec. 252.227-7013.

Cisco Systems, Inc. 170 West Tasman Drive San Jose, California 95134-1706

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

This product contains some software licensed under the "GNU General Public License, version 2" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU General Public License, version 2", available here: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

This product contains some software licensed under the "GNU Library General Public License, version 2" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU Library General Public License, version 2", available here: http://www.gnu.org/licenses/old-licenses/lgpl-2.0.html

Page No: 82 of 88

This product contains some software licensed under the "GNU Lesser General Public License, version 2.1" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU Lesser General Public License, version 2.1", available here: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

This product contains some software licensed under the "GNU General Public License, version 3" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU General Public License, Version 3", available here: http://www.gnu.org/licenses/gpl.html.

This product contains some software licensed under the "GNU Affero General Public License, version 3" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU Affero General Public License, version 3", available here: http://www.gnu.org/licenses/agpl-3.0.html.

Cisco AP Software, (ap1g7), [cheetah-build6:/san2/BUILD/workspace/Nightly-Cheetah-axel-bcm-mfg-c8_10_throttle] Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2019 by Cisco Systems, Inc. Compiled Fri Sep 6 08:06:05 PDT 2019

ROM: Bootstrap program is U-Boot boot loader BOOTLDR: U-Boot boot loader Version

APA453.0E7B.CCD0 uptime is 0 days, 0 hours, 4 minutes Last reload time : Fri Sep 6 08:22:50 UTC 2019 Last reload reason : unknown

cisco C9120AXE-B with 1809824/1062468K bytes of memory. Processor board ID 0 AP Running Image : 8.8.1.10 Primary Boot Image : 0.0.0.0 Primary Boot Image Hash: Backup Boot Image Hash: 1 Gigabit Ethernet interfaces 2 802.11 Radios Radio Driver version : 17.10 RC77.13 Radio FW version : 1268.14948.r14702 14702 NSS FW version : NA

Base ethernet MAC Address: A4:53:0E:7B:CC:D0Part Number: 0-000000-00PCA Assembly Number: 800-105708-01PCA Revision Number: 09PCB Serial Number: FOC23302F0Q

Page No: 83 of 88

Top Assembly Part Number	: 800-105708-01
Top Assembly Serial Number	: 0
Top Revision Number	: 09
Product/Model Number	: C9120AXE-B

APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# Read timed out

User Access Verification Username: Cisco Password: Lock out for 4 seconds in release image

% Authentication failed

User Access Verification Username: Cisco Password: APA453.0E7B.CCD0>en Password: APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# EXITING CISCO SHELL. PLEASE EXECUTE EXIT IN DEVSHELL TO GET BACK TO CISCO SHELL. մինին

BusyBox v1.29.3 () built-in shell (ash)

Welcome to Cisco.

Usage of this device is governed by Cisco's End User License Agreement, available at: http://www.cisco.com/c/en/us/td/docs/general/warranty/English/EU1KEN_.html.

Page No: 84 of 88

mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# echo 0 > /meraki_gpio/RF_2G_ble mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# cat MERAKI_BUILD.extra Fri Sep 6 08:06:05 PDT 2019 cheetah-build6 /san2/BUILD/workspace/Nightly-Cheetah-axel-bcm-mfg-c8_10_throttle

* (HEAD detached at fb31ca5b6a)

syn base: fb31ca5b6ab1468794221acdd081bea192921139 commit: fb31ca5b6ab1468794221acdd081bea192921139 tree 9933345a372cf5493649162765b52efdf4ff9219 mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# show_cookie Part Number : 0-000000-00 Board Revision : 00 PCB Serial Number : FOC23302F0Q : 0-000000-00 PCB Fab Part Number Deviation Number :0 : A4:53:0E:7B:CC:D0 MAC Address MAC Address Block Size :4 Radio 0 MAC Address : D4:AD:BD:A2:16:80 Radio 0 MAC Address Block Size : 16 Radio 1 MAC Address : D4:AD:BD:A2:16:90 Radio 1 MAC Address Block Size : 16 PCA Assembly Number : 800-105708-01 PCA Revision Number : 09 Product/Model Number : C9120AXE-B Top Assembly Part Number : 800-105708-01 Top Revision Number :09 Top Assembly Serial Number : 0 RMA Test History :00 **RMA History** : 00 **RMA Number** : 00-00-00-00 Device Type : 4C Max Association Allowed :2 Radio(2.4G) Carrier Set :0000 Radio(2.4G) Max Transmit Power Level : 100 Radio(2.4G) Antenna Diversity Support: 01 Radio(2.4G) Encryption Ability : 0002 :0029 Radio(5G) Carrier Set Radio(5G) Max Transmit Power Level : 100

Page No: 85 of 88

Radio(5G) Antenna Diversity Support : 01 Radio(5G) Encryption Ability :0002 Radio(802.11g) Radio Mode : 255 PEP Product Identifier (PID) : C9120AXE-B PEP Version Identifier (VID) : V01 : 00 System Flags :0000 Controller Type Host Controller Type : 0000 Mfr Service Date : 2019.08.03-47:59:59 Radio(49) Carrier Set : 0000 Radio(49) Max Transmit Power Level : 0 Radio(49) Antenna Diversity Support : 00 Radio(49) Encryption Ability : 0000 Radio(58) Carrier Set : 0029 Radio(58) Max Transmit Power Level : 100 Radio(58) Antenna Diversity Support : 01 Radio(58) Encryption Ability : 0002 ACT2 ID : C9120 Static AP Mode :0 mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# cat /storage/rxtx_mode tx mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# cd /usr/bin/bcm/mfg mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# ./init_config.sh broardcast_ssids show_carrier_cookies | grep -o '..\$' 41 wl-i apr1v0 country US wl -i apr0v0 country US Chanspec set to 0x1001 [*09/06/2019 08:42:38.7040] wlc_ucode_download: wl1: Loading 129 MU ucode Chanspec set to 0xd024 [*09/06/2019 08:42:38.7870] wlc_ucode_download: wl0: Loading 129 MU ucode mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# ./dfstool.lua

Vanc dfstool BOARD: Axel BCM !!!!!!

Page No: 86 of 88

Display config: wl -i apr0v0 status | head -3 "Not associated. Last associated with SSID: """

Display config: wl -i apr1v0 status | head -3 "Not associated. Last associated with SSID: """

show_carrier_cookies | grep -o '..\$' rc:result="41"

wl -i apr1v0 country US wl -i apr0v0 country US > line=""

>do0 stop line="do0 stop"

DEBUG: compliance stop command matched. INFO: subcommand="compliance off".

execution section for compliance stop command. line="do0 stop" interface="0" stop_option="stop" wl -i apr0v0 pkteng_status | awk -F'[,]' '{print \$3}' main:result="0"

1601792112 (0x5f796870)

> line="" >do1 stop line="do1 stop"

DEBUG: compliance stop command matched. INFO: subcommand="compliance off".

execution section for compliance stop command. line="do1 stop" interface="1" stop_option="stop" wl -i apr1v0 pkteng_status | awk -F'[,]' '{print \$3}' main:result="0"

1601792112 (0x5f796870)

Page No: 87 of 88

cisco

> line="" >do4 stop line="do4 stop"

DEBUG: compliance stop command matched. INFO: subcommand="compliance off".

execution section for compliance stop command. line="do4 stop" interface="4" stop_option="stop" [09/06/2019 08:44:03.9220] NXP-RHL-Driver 0001:01:00.0: xcvr[0], swcmd 0x23 done [09/06/2019 08:44:04.1030] NXP-RHL-Driver 0001:01:00.0: xcvr[0], swcmd 0x4 done [09/06/2019 08:44:04.1870] NXP-RHL-Driver 0001:01:00.0: VSPA FW :: FN = dcr.eld > line=""

>

Page No: 88 of 88

Test Report

C1920AXE-x (x = A, B, N, T)

Cisco Catalyst C9120AX Series 802.11ax Access Point

2.4GHz WLAN Radio + 6dBi Antenna

FCC ID: LDKEDAC92157 IC: 2461N-EDAC92157

2400-2483.5 MHz

Against the following Specifications:

CFR47 Part 15.247 RSS-247 RSS-Gen Issue 5 LP0002 (2018-01-10)

Cisco Systems 170 West Tasman Drive

San Jose, CA 95134

Author: Chris Blair Approved By: Gez Thorpe **Tested By: Chris Blair** Title: Radio Compliance Manager Revision: See EDCS

This report replaces any previously entered test report under EDCS – **18334960**. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. Test Report Template EDCS# 11644121.

Page No: 1 of 88

SECTION 1: OVI	CRVIEW	3
SECTION 2: ASS	ESSMENT INFORMATION	4
2.1 GENERAL		4
2.2 DATE OF TES	TING	6
	E DATE	
	ILITIES	
	Assessed (EUT)	
	PTION	
	ULT SUMMARY	
3.1 RESULTS SU	MMARY TABLE	9
SECTION 4: SAM	IPLE DETAILS	12
	AILS	
	AILS	
4.3 MODE OF OF	ERATION DETAILS	12
APPENDIX A: EN	AISSION TEST RESULTS	13
CONDUCTED TE	ST SETUP DIAGRAM	13
TARGET MAXIM	UM CHANNEL POWER	13
	Ε	
	VIDTH (6DB BANDWIDTH)	
	ANDWIDTH	
	Conducted Output Power	
) SPURIOUS EMISSIONS	
	RECEIVER SPURIOUS EMISSIONS	
	BANDEDGE (RESTRICTED BAND)	
	BANDEDGE (NON-RESTRICTED BAND)	
APPENDIX B: RA	ADIATED AND AC CONDUCTED EMISSION TEST RESULTS	77
APPENDIX C:	LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST	78
APPENDIX D:	ABBREVIATION KEY AND DEFINITIONS	79
APPENDIX E:	PHOTOGRAPHS OF TEST SETUPS	80
APPENDIX F:	SOFTWARE USED TO PERFORM TESTING	81
APPENDIX G:	TEST PROCEDURES	81
APPENDIX H:	SCOPE OF ACCREDITATION (A2LA CERTIFICATE NUMBER 1178-01)	81
APPENDIX I:	TEST ASSESSMENT PLAN	81
APPENDIX J:	UUT SOFTWARE INFO	82

Section 1: Overview

The samples were assessed against the tests under the requirements of the following specifications:

Emission

CFR47 Part 15.247 RSS-247 Issue 2: Feb 2017 RSS-Gen Issue 5: Apr 2018 LP0002 (2018-01-10)

Page No: 3 of 88

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

 Temperature
 15°C to 35°C (54°F to 95°F)

 Atmospheric Pressure
 860mbar to 1060mbar (25.4" to 31.3")

 Humidity
 10% to 75*%

Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB] The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss.

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Page No: 4 of 88

Measurement Uncertainty Values

voltage and power measurements	±2dB
conducted EIRP measurements	± 1.4 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7
temperature measurements	± 0.54°
humidity measurements	± 2.3%
DC and low frequency measurements	± 2.5%

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

30 MHz – 40GHz	+/- 0.38 dB
----------------	-------------

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

Page No: 5 of 88

2.2 Date of testing

10-Sep-19 - 01-Oct-19

2.3 Report Issue Date

14-Oct-19

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System. The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled.

2.4 Testing facilities

This assessment was performed by: Chris Blair & Julian Land

Testing Laboratory

Cisco Systems, Inc. 125 West Tasman Drive (Building P) San Jose, CA 95134 USA

Headquarters

Cisco Systems, Inc., 170 West Tasman Drive San Jose, CA 95134, USA

Registration Numbers for Industry Canada

Cisco System Site	Address	Site Identifier
Building P, 10m Chamber	125 West Tasman Dr	Company #: 2461N-2
	San Jose, CA 95134	
Building P, 5m Chamber	125 West Tasman Dr	Company #: 2461N-1
	San Jose, CA 95134	
Building I, 5m Chamber	285 W. Tasman Drive	Company #: 2461M-1
	San Jose, California 95134	
Building 7, 5m Chamber	425 E. Tasman Drive	Company #: 2461N-3
	San Jose, California 95134	

Test Engineers

Chris Blair

2.5 Equipment Assessed (EUT)

C1920AXE-x

Page No: 6 of 88

2.6 EUT Description

The radio supports the following modes of operation. The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst case data for all modes. Data is recorded at the lowest supported data rate for each mode. This report covers operation on channel 1-11.

802.11b - Legacy CCK, One Antenna, 1 to 11 Mbps 802.11b - Legacy CCK, Two Antennas, 1 to 11 Mbps 802.11b - Legacy CCK, Three Antennas, 1 to 11 Mbps 802.11b - Legacy CCK, Four Antennas, 1 to 11 Mbps

802.11g - Non HT20, One Antenna, 6 to 54 Mbps, 1ss 802.11g - Non HT20, Two Antennas, 6 to 54 Mbps, 1ss 802.11g - Non HT20, Three Antennas, 6 to 54 Mbps, 1ss 802.11g - Non HT20, Four Antennas, 6 to 54 Mbps, 1ss

802.11g - Non HT20 Beam Forming, Two Antennas, 6 to 54 Mbps, 1ss 802.11g - Non HT20 Beam Forming, Three Antennas, 6 to 54 Mbps, 1ss 802.11g - Non HT20 Beam Forming, Four Antennas, 6 to 54 Mbps, 1ss

802.11n/ac - HT/VHT20, One Antenna, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Two Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20, Three Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Three Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20, Three Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20, Four Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Four Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20, Four Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20, Four Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20, Four Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20, Four Antennas, M16 to M23, 3ss

802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20 Beam Forming, Three Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Three Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20 Beam Forming, Three Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M8 to M15, 2ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M16 to M23, 3ss 802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M16 to M23, 3ss

802.11n/ac - HT/VHT20 STBC, Two Antennas, M0 to M7, 2ss 802.11n/ac - HT/VHT20 STBC, Three Antennas, M0 to M7, 2ss 802.11n/ac - HT/VHT20 STBC, Four Antennas, M0 to M7, 2ss

802.11ax - HE20, One Antenna, M0 to M9 1ss 802.11ax - HE20, Two Antennas, M0 to M9 1ss 802.11ax - HE20, Two Antennas, M0 to M9 2ss

Page No: 7 of 88

802.11ax - HE20, Three Antennas, M0 to M9 1ss 802.11ax - HE20. Three Antennas. M0 to M9 2ss 802.11ax - HE20, Three Antennas, M0 to M9 3ss 802.11ax - HE20, Four Antennas, M0 to M9 1ss 802.11ax - HE20, Four Antennas, M0 to M9 2ss 802.11ax - HE20, Four Antennas, M0 to M9 3ss 802.11ax - HE20, Four Antennas, M0 to M9 4ss 802.11ax - HE20 Beam Forming, Two Antennas, M0 to M9 1ss 802.11ax - HE20 Beam Forming, Two Antennas, M0 to M9 2ss 802.11ax - HE20 Beam Forming, Three Antennas, M0 to M9 1ss 802.11ax - HE20 Beam Forming, Three Antennas, M0 to M9 2ss 802.11ax - HE20 Beam Forming, Three Antennas, M0 to M9 3ss 802.11ax - HE20 Beam Forming, Four Antennas, M0 to M9 1ss 802.11ax - HE20 Beam Forming, Four Antennas, M0 to M9 2ss 802.11ax - HE20 Beam Forming, Four Antennas, M0 to M9 3ss 802.11ax - HE20 Beam Forming, Four Antennas, M0 to M9 4ss 802.11ax - HE20 STBC, Two Antennas, M0 to M9 2ss 802.11ax - HE20 STBC, Three Antennas, M0 to M9 2ss 802.11ax - HE20 STBC, Four Antennas, M0 to M9 2ss

Antenna Gain Frequency Part Number Antenna Type (dBi) -E SKU 2.4GHz&5GHz 2.4 GHz 2 dBi/5 GHz 4 dBi Dipole Ant., 2dBi@2.4GHz Black, connectors RP-TNC 4dBi@5GHz AIR-ANT2524DB-R/= 2.4GHz&5GHz 2.4 GHz 2 dBi/5 GHz 4 dBi Dipole Ant., 2dBi@2.4GHz AIR-ANT2524DG-R/= Gray, connectors RP-TNC 4dBi@5GHz 2.4GHz&5GHz 2.4 GHz 2 dBi/5 GHz 4 dBi Dipole Ant., 2dBi@2.4GHz AIR-ANT2524DW-R/= White, connectors RP-TNC 4dBi@5GHz 2.4GHz&5GHz 2.4 GHz 3dBi/5 GHz 5 dBi Low Profile 3dBi@2.4GHz AIR-ANT2535SDW-R Antenna, White, connectors RP-TNC 5dBi@5GHz 2.4GHz&5GHz 2.4 GHz 6 dBi/5 GHz 6 dBi Directionnel 6dBi@2.4GHz AIR-ANT2566P4W-R= Ant., 4-port, connectors RP-TNC 6dBi@5GHz 2.4GHz&5GHz 2.4GHz 2 dBi/5GHz 4 dBi Ceiling Mount 2dBi@2.4GHz AIR-ANT2524V4C-R= Omni Ant., 4-port, connectors RP-TNC 4dBi@5GHz 2.4GHz&5GHz 2.4GHz 4 dBi/5GHz 4 dBi Wall Mount 4dBi@2.4GHz AIR-ANT2544V4M-R= **Omni Ant., 4-port, connectors RP-TNC** 4dBi@5GHz 2.4GHz&5GHz 2.4 GHz 6 dBi/5 GHz 6 dBi 60 Deg. Patch 6dBi@2.4GHz AIR-ANT2566D4M-R= Ant., 4-port, RP-TNC 6dBi@5GHz

The following antennas are supported by this product series. The data included in this report represent the worst case data for all antennas.

Page No: 8 of 88

Section 3: Result Summary

3.1 Results Summary Table

Conducted emissions			
Basic Standard	Technical Requirements / Details	Result	
FCC 15.247 RSS-247 LP0002:3.10.1(6.2.1)	6dB Bandwidth Systems using digital modulation techniques may operate in the 2400-2483.5MHz band. The minimum 6dB bandwidth shall be at least 500 kHz	Pass	
FCC 15.247 RSS-247	 99% & 26 dB Bandwidth: The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW. The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission. 	Pass	
FCC 15.247 RSS-247 LP0002:3.10.1(2.3)	 Output Power: 15.247 The maximum conducted output power of the intentional radiator for systems using digital modulation in the 2400-2483.5 MHz band shall not exceed 1 Watt (30dBm). If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. RSS-247 For DTSs employing digital modulation techniques operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. Except as provided in Section 5.4(e), the e.i.r.p. shall not exceed 4 W. 	Pass	
FCC 15.247 RSS-247 LP0002:3.10.1(6.2.2)	Power Spectral Density For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.	Pass	

Page No: 9 of 88

FCC 15.247 RSS-247 LP0002:3.10.1(5)/2.8	Conducted Spurious Emissions / Band-Edge: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.	Pass
FCC 15.247 RSS-247 FCC 15.205 RSS-Gen	Restricted band : Unwanted emissions falling within the restricted bands, as defined in FCC 15.205 (a) and RSS-Gen 8.10 must also comply with the radiated emission limits specified in FCC 15.209 (a) and RSS-Gen 8.9	Pass

Page No: 10 of 88

Radiated Emissions (General requirements)				
Basic Standard	Technical Requirements / Details	Result		
FCC 15.209 RSS-Gen LP0002:3.10.1(5)/2.8	TX Spurious Emissions: Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the filed strength limits table in this section. Unwanted emissions falling within the restricted bands, as defined in FCC 15.205 (a) and RSS-Gen 8.10 must also comply with the radiated emission limits specified in FCC 15.209 (a) and RSS-Gen 8.9	Not Tested		
RSS-Gen LP0002:3.10.1(5)2.8	 RX Spurious Emissions: RSS-Gen 8.9 Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 and Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission. RSS-Gen 8.10 Restricted Bands Unwanted emissions that fall into restricted bands of Table 6 shall comply with the limits specified in RSS-Gen; and (c) Unwanted emissions that do not fall within the restricted frequency bands of Table 6 shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen. 	Not Tested		
FCC 15.207 RSS-Gen LP0002:2.3	AC conducted Emissions: Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.	Not Tested		

Radiated Emissions (General requirements)

Page No: 11 of 88

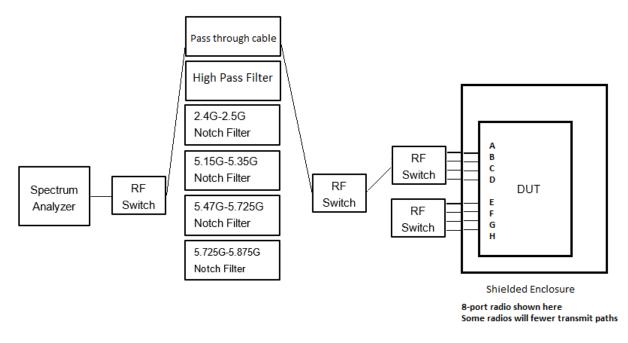
Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing.

4.1 Sample Details

Sample No.	Equipment Details	Manufacturer	Hardware Rev.	Firmware Rev.	Software Rev.	Serial Number
S01	C1920AXE-x	Foxconn	P2-2	1268.149 48.r1470 2 14702	Cisco AP Software, (ap1g7), [cheetah-build6:/san2/BUILD/ workspace/Nightly-Cheetah-a xel-bcm-mfg-c8_10_throttle] Compiled Fri Sep 6 08:06:05 PDT 2019	FOC23302F0Q

4.2 System Details


System #	Description	Samples
1	C1920AXE-x	S01

4.3 Mode of Operation Details

Mode#	Description	Comments
1	Continuously Transmitting	Constant duty cycle

Appendix A: Emission Test Results

Conducted Test Setup Diagram

Target Maximum Channel Power

The following table details the maximum supported Total Channel Power for all operating modes.

	Maximum Channel Power (dBm)		
	Fre	equency (M	Hz)
Operating Mode	2412	2437	2462
Legacy CCK, 1 to 11 Mbps	23 23 23		23
Non HT20, 6 to 54 Mbps	17 22 18		18
Non HT20 Beam Forming, 6 to 54 Mbps	14 22 15		15
HT/VHT20, M0 to M31	17 24 18		18
HT/VHT20 Beam Forming, M0 to M31	17 24 18		18
HT/VHT20 STBC, M0 to M7	17 24 18		18
HE20, M0 to M9	16 24 18		
HE20 Beam Forming, M0 to M9	16 24 18		18
HE20 STBC, M0 to M9 2ss	16	24	18

A.1 Duty Cycle

Duty Cycle Test Requirement

From KDB 558074, Section 6

6.0 Duty cycle, transmission duration and maximum power control level

Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (*i.e.*, with a duty cycle of greater than or equal to 98%). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be utilized to ensure that measurements are made only during transmissions at the maximum power control level. ...

When continuous transmission cannot be achieved and sweep triggering/signal gating cannot be implemented, alternate procedures are provided that can be used to measure the average power; however, they will require an additional measurement of the transmitter duty cycle. Within this guidance document, the duty cycle refers to the fraction of time over which the transmitter is on and is transmitting at its maximum power control level. The duty cycle is considered to be constant if variations are less than ± 2 percent, otherwise the duty cycle is considered to be non-constant.

Duty Cycle Test Method

From KDB 558074, Section 6:

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \ge OBW if possible; otherwise, set RBW to the largest available value. Set VBW \ge RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span measurement method of measuring duty cycle shall not be used if T \le 16.7 microseconds.)

Duty Cycle Test Information

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support			\checkmark

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 14 of 88

Duty Cycle Data Table

Duty Cycle table and screen captures are shown below for power/psd modes.

Frequency	Mode	Data Rate	Duty Cycle correction (dB)
	CCK, 1 to 11 Mbps	11	0.2
2412	Non HT20, 6 to 54 Mbps	6	0.0
2412	HT/VHT20, M0 to M31	m0	0.1
	HE20, M0 to M9	m0h1	0.1
	CCK, 1 to 11 Mbps	11	0.2
2437	Non HT20, 6 to 54 Mbps	6	0.0
2437	HT/VHT20, M0 to M31	m0	0.1
	HE20, M0 to M9	m0h1	0.1
	CCK, 1 to 11 Mbps	11	0.2
2462	Non HT20, 6 to 54 Mbps	6	0.0
	HT/VHT20, M0 to M31	m0	0.1
	HE20, M0 to M9	m0h1	0.1

Page No: 15 of 88

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

Duty Cycle Data Screenshots

the second state of the se	Analyzer - Swept SA			type - Limited Sale Allowed)		0 2 .
Center Freq 2		CORREC OGHZ PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 28 dB	Avg Type: Log-Pwr Avg Hold: 1/1	TRACE 2 3 4 5 0 TYPE A WARMAN DET P NNNNN	Frequency
10 dB/div Re	f 15.00 dBm		Automation - Automation - Automation		Mkr4 149.0 µs -21.261 dBm	Auto Tune
500	- 124-		¢2			Center Free 2.412000000 GH
25.0 35.0 45.0			0''			Start Free 2.412000000 GH
65.0 85.0 75.0	V		V	V		Stop Free 2.412000000 GH
Center 2.4120 Res BW 3.0 M	IHz	#VBV	V 100 kHz	Sweep 1.0	Span 0 Hz 00 ms (1001 pts) FUNCTION VALUE	CF Step 3.000000 MH <u>Auto</u> Mar
1 N 1 t 2 N 1 t 3 N 1 t 5 6		458.0 µs 472.0 µs 135.0 µs 149.0 µs	-28.523 dBm -18.324 dBm -20.498 dBm -21.251 dBm			Freq Offse 0 H
7 8 9 10 11						Scale Type Log <u>Lir</u>
sa			95.67, 0.19	STATUS		

Duty Cycle, 2412 MHz, CCK, 1 to 11 Mbps

Page No: 16 of 88

A.2 DTS Bandwidth (6dB Bandwidth)

DTS Bandwidth Test Requirement

For the FCC/ LP0002:3.10.1(6.2.1):

15.247 (2)

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

For Industry Canada: RSS-247 5.2 (a)

5.2 Digital transmission systems

DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MHz and 2400-2483.5 MHz: a) The minimum 6 dB bandwidth shall be 500 kHz.

DTS Bandwidth/ 6dB Bandwidth Test Procedure

Ref. KDB 558074 D01 DTS Meas Guidance v05, Section 8.2

ANSI C63.10: 2013, Clause 11.8.2 Option 2

6 BW

Test Procedure

1. Set the radio in the continuous transmitting mode.

2. Allow the trace to stabilize.

3. Setting the x-dB bandwidth mode to -6dB within the measurement set up function.

4. Select the automatic OBW measurement function of an instrument to perform bandwidth measurement.

5. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05, Section 8.2

ANSI C63.10: 2013, Clause 11.8.2 Option 2

6 BW

Test parameters

Page No: 17 of 88

One of the following procedures may be used to determine the modulated DTS bandwidth.

11.8.1 Option 1

The steps for the first option are as follows:

- a) Set RBW = 100 kHz.
- b) Set the $VBW \ge [3 \times RBW]$.
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

11.8.2 Option 2

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW \geq 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	$\mathbf{\nabla}$	
1	Support			\checkmark

111111

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 18 of 88

DTS BW Table

Frequency (MHz)	Mode	Data Rate (Mbps)	6dB BW (MHz)	Limit (kHz)	Margin (MHz)
	CCK, 1 to 11 Mbps	11	5.6	>500	5.10
2412	Non HT20, 6 to 54 Mbps	6	16.1	>500	15.60
	HT/VHT20, M0 to M31	m0	16.9	>500	16.40
	HE20, M0 to M9	m0h1	18.9	>500	18.40
	CCK, 1 to 11 Mbps	11	6.2	>500	5.70
2437	Non HT20, 6 to 54 Mbps	6	16.2	>500	15.70
	HT/VHT20, M0 to M31	m0	17.0	>500	16.50
	HE20, M0 to M9	m0h1	18.6	>500	18.10
	CCK, 1 to 11 Mbps	11	6.5	>500	6.00
2462	Non HT20, 6 to 54 Mbps	6	16.1	>500	15.60
2402	HT/VHT20, M0 to M31	m0	17.4	>500	16.90
	HE20, M0 to M9	m0h1	18.9	>500	18.40

Page No: 19 of 88

DTS Bandwidth Screenshots

Kaysight Spectrum Analyzer - Occupied BW	601653.0 <i>02 - 0</i> 22	Prototype - Londed Sale 20	kiwad)		1981
Center Freq 2.412000000	-t- Trig: I	sense ovr r Freq: 2.412000000 GHz Free Run h: 20 dB	Radio Std Radio Dev		Frequency
15 dBidiv Ref 20.00 dBm		11 - 14			
Log 5 00 40.11 25 0	1				Center Freq 2.412000000 GHz
40.11 65.0	went	hum	-		
-1211 65 0					
Center 2.412 GHz			Spa	n 60 MHz	
#Res BW 100 kHz	#	VBW 300 kHz		weep 5 s	CF Step 6.000000 MHz
Occupied Bandwidth 10.	788 MHz	Total Power	25.7 dBm		Auto Man Freq Offset
Transmit Freq Error x dB Bandwidth	41.287 kHz 5.598 MHz	% of OBW Power x dB	99.00 % -6.00 dB		0 Hz
86			STATUS		

6dB Bandwidth, 2412 MHz, CCK, 1 to 11 Mbps

Page No: 20 of 88

A.3 Occupied Bandwidth

Occupied Bandwidth Test Requirement

The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW.

The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth Test Method

Ref. ANSI C63.10: 2013

Occupied Bandwidth

Test Procedure

- 1. Set the radio in the continuous transmitting mode.
- 2. Allow the trace to stabilize.
- 3. Setting the x-dB bandwidth mode to -26dB & OBW to 99% within the measurement set up function.
- 4. Select the automatic OBW measurement function of an instrument to perform bandwidth measurement.
- 5. Capture graphs and record pertinent measurement data.

Ref. ANSI C63.10: 2013 section 6.9.3

Occupied Bandwidth

Test parameters

6.9.3 Occupied bandwidth-power bandwidth (99%) measurement procedure

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 41.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Page No: 21 of 88

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
1	EUT	S01	K	
	Support			$\mathbf{\nabla}$

Tested By :	Date of testing:		
Chris Blair	10-Sep-19 - 01-Oct-19		
Test Result : PASS			

Test Equipment


See Appendix C for list of test equipment

Page No: 22 of 88

Occupied Bandwidth

Frequency (MHz)	Mode	Data Rate (Mbps)	26dB BW (MHz)	99% BW (MHz)			
0440	CCK, 1 to 11 Mbps	11	13.8	10.965			
	Non HT20, 6 to 54 Mbps	6	21.1	16.701			
2412	HT/VHT20, M0 to M31	m0	21.6	17.927			
	HE20, M0 to M9	m0h1	21.3	19.055			
	CCK, 1 to 11 Mbps	11	13.9	10.884			
2437	Non HT20, 6 to 54 Mbps	6	21.2	16.763			
2437	HT/VHT20, M0 to M31	m0	21.7	18.040			
	HE20, M0 to M9	m0h1	21.5	19.167			
	CCK, 1 to 11 Mbps	11	14.0	10.939			
2462	Non HT20, 6 to 54 Mbps	6	21.2	16.800			
2402	HT/VHT20, M0 to M31	m0	21.7	17.978			
	HE20, M0 to M9	m0h1	21.4	19.071			

Page No: 23 of 88

26dB / 99% Bandwidth, 2437 MHz, CCK, 1 to 11 Mbps

սիսիս

Page No: 24 of 88

A.4 Maximum Conducted Output Power

Maximum Conducted Output Power Test Requirement

FCC, 15.247/ LP0002:3.10.1(2.3):

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (3) For systems using digital modulation in the 902-928 MHz, **2400-2483.5 MHz**, and 5725-5850 MHz bands: **1 Watt**. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Industry Canada, RSS-247:

5.4 Transmitter output power and equivalent isotropically radiated power (e.i.r.p.) requirements d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

The maximum supported antenna gain is (GAIN_MAX_TRANSMIT_POWER)dBi. The peak correlated gain for each mode is listed in the table below.

Maximum Conducted Output Power Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05 ANSI C63.10: 2013

Maximum Conducted Output power Test Procedure

1. Set the radio in the continuous transmitting mode at full power

Compute power by integrating the spectrum across the EBW (or alternatively entire 99% OBW) of the signal using the instrument's band power measurement function. The integration shall be performed using the spectrum analyzer band-power measurement function with band limits set equal to the EBW or the OBW band edges.
 Capture graphs and record pertinent measurement data.

Ref. 558074 D01 DTS Meas Guidance v05, 8.3.2.2 Measurement using a spectrum analyzer (SA) ANSI C63.10: 2013, section 11.9.2.2.4 Method AVGSA-2

Maximum Conducted Output power

Test parameters

Page No: 25 of 88

- j) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- k) Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%.

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. (See ANSI C63.10 section 14.3 for Guidance)

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	K	
1	Support			\checkmark

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Note: Limit is modified to ensure complying with both conducted power limit of 30dBm and eirp limit of 36 dBm

Page No: 26 of 88

Maximum Output Power

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Tx 2 Max Power (dBm)	Tx 3 Max Power (dBm)	Tx 4 Max Power (dBm)	Duty Cycle Correction (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	6	18.0				0.2	18.2	30.0	11.81
	CCK, 1 to 11 Mbps	2	6	18.0	18.5			0.2	21.5	30.0	8.54
	CCK, 1 to 11 Mbps	3	6	18.0	18.5	17.6		0.2	23.0	30.0	6.99
	CCK, 1 to 11 Mbps	4	6	17.0	17.5	16.8	17.4	0.2	23.4	30.0	6.60
	Non HT20, 6 to 54 Mbps	1	6	11.3				0.0	11.3	30.0	18.65
	Non HT20, 6 to 54 Mbps	2	6	11.3	12.0			0.0	14.7	30.0	15.28
	Non HT20, 6 to 54 Mbps	3	6	11.3	12.0	11.5		0.0	16.4	30.0	13.57
	Non HT20, 6 to 54 Mbps	4	6	10.3	10.9	10.2	10.8	0.0	16.6	30.0	13.37
	Non HT20 Beam Forming, 6 to 54 Mbps	2	9	10.3	10.9			0.0	13.7	27.0	13.33
	Non HT20 Beam Forming, 6 to 54 Mbps	3	11	8.3	8.8	8.1		0.0	13.2	25.0	11.77
	Non HT20 Beam Forming, 6 to 54 Mbps	4	12	7.1	7.9	7.4	7.9	0.0	13.7	24.0	10.35
	HT/VHT20, M0 to M7	1	6	11.4				0.1	11.5	30.0	18.55
	HT/VHT20, M0 to M7	2	6	11.4	12.0			0.1	14.8	30.0	15.23
	HT/VHT20, M8 to M15	2	6	11.4	12.0			0.1	14.8	30.0	15.23
	HT/VHT20, M0 to M7	3	6	11.4	12.0	11.2		0.1	16.4	30.0	13.63
2412	HT/VHT20, M8 to M15	3	6	11.4	12.0	11.2		0.1	16.4	30.0	13.63
2	HT/VHT20, M16 to M23	3	6	11.4	12.0	11.2		0.1	16.4	30.0	13.63
	HT/VHT20, M0 to M7	4	6	10.1	10.8	10.2	10.7	0.1	16.5	30.0	13.47
	HT/VHT20, M8 to M15	4	6	10.1	10.8	10.2	10.7	0.1	16.5	30.0	13.47
	HT/VHT20, M16 to M23	4	6	10.1	10.8	10.2	10.7	0.1	16.5	30.0	13.47
	HT/VHT20, M24 to M31	4	6	10.1	10.8	10.2	10.7	0.1	16.5	30.0	13.47
	HT/VHT20 Beam Forming, M0 to M7	2	9	9.2	10.0			0.1	12.7	27.0	14.32
	HT/VHT20 Beam Forming, M8 to M15	2	6	11.4	12.0			0.1	14.8	30.0	15.23
	HT/VHT20 Beam Forming, M0 to M7	3	11	8.2	9.0	8.2		0.1	13.3	25.0	11.69
	HT/VHT20 Beam Forming, M8 to M15	3	8	10.1	10.8	10.2		0.1	15.2	28.0	12.80
	HT/VHT20 Beam Forming, M16 to M23	3	6	11.4	12.0	11.2		0.1	16.4	30.0	13.63
	HT/VHT20 Beam Forming, M0 to M7	4	12	7.0	7.8	7.2	7.7	0.1	13.5	24.0	10.49
	HT/VHT20 Beam Forming, M8 to M15	4	9	8.2	9.0	8.2	8.7	0.1	14.6	27.0	12.39
	HT/VHT20 Beam Forming, M16 to M23	4	7	10.1	10.8	10.2	10.7	0.1	16.5	29.0	12.47
	HT/VHT20 Beam Forming, M24 to M31	4	6	10.1	10.8	10.2	10.7	0.1	16.5	30.0	13.47
	HT/VHT20 STBC, M0 to M7	2	6	11.4	12.0			0.1	14.8	30.0	15.23

Page No: 27 of 88

i I		1				
C	5	5	C	Ç)	

		_									
	HT/VHT20 STBC, M0 to M7	3	6	11.4	12.0	11.2		0.1	16.4	30.0	13.63
	HT/VHT20 STBC, M0 to M7	4	6	10.1	10.8	10.2	10.7	0.1	16.5	30.0	13.47
	HE20, M0 to M9 1ss	1	6	11.6				0.1	11.7	30.0	18.33
	HE20, M0 to M9 1ss	2	6	10.5	11.1			0.1	13.9	30.0	16.11
	HE20, M0 to M9 2ss	2	6	10.5	11.1			0.1	13.9	30.0	16.11
	HE20, M0 to M9 1ss	3	6	10.5	11.1	10.3		0.1	15.5	30.0	14.52
	HE20, M0 to M9 2ss	3	6	10.5	11.1	10.3		0.1	15.5	30.0	14.52
	HE20, M0 to M9 3ss	3	6	10.5	11.1	10.3		0.1	15.5	30.0	14.52
	HE20, M0 to M9 1ss	4	6	9.3	10.1	9.4	9.9	0.1	15.8	30.0	14.23
	HE20, M0 to M9 2ss	4	6	9.3	10.1	9.4	9.9	0.1	15.8	30.0	14.23
	HE20, M0 to M9 3ss	4	6	9.3	10.1	9.4	9.9	0.1	15.8	30.0	14.23
	HE20, M0 to M9 4ss	4	6	9.3	10.1	9.4	9.9	0.1	15.8	30.0	14.23
	HE20 Beam Forming, M0 to M9 1ss	2	9	8.4	9.2			0.1	11.9	27.0	15.11
	HE20 Beam Forming, M0 to M9 2ss	2	6	10.5	11.1			0.1	13.9	30.0	16.11
	HE20 Beam Forming, M0 to M9 1ss	3	11	7.2	8.0	7.5		0.1	12.4	25.0	12.58
	HE20 Beam Forming, M0 to M9 2ss	3	8	9.3	10.1	9.4		0.1	14.5	28.0	13.55
	HE20 Beam Forming, M0 to M9 3ss	3	6	10.5	11.1	10.3		0.1	15.5	30.0	14.52
	HE20 Beam Forming, M0 to M9 1ss	4	12	6.3	7.3	6.6	7.3	0.1	13.0	24.0	11.02
	HE20 Beam Forming, M0 to M9 2ss	4	9	7.2	8.0	7.5	8.1	0.1	13.8	27.0	13.20
	HE20 Beam Forming, M0 to M9 3ss	4	7	9.3	10.1	9.4	9.9	0.1	15.8	29.0	13.23
	HE20 Beam Forming, M0 to M9 4ss	4	6	9.3	10.1	9.4	9.9	0.1	15.8	30.0	14.23
	HE20 STBC, M0 to M9 2ss	2	6	10.5	11.1			0.1	13.9	30.0	16.11
	HE20 STBC, M0 to M9 2ss	3	6	10.5	11.1	10.3		0.1	15.5	30.0	14.52
	HE20 STBC, M0 to M9 2ss	4	6	9.3	10.1	9.4	9.9	0.1	15.8	30.0	14.23
	CCK, 1 to 11 Mbps	1	6	17.8				0.2	18.0	30.0	12.01
	CCK, 1 to 11 Mbps	2	6	17.8	18.9			0.2	21.6	30.0	8.41
	CCK, 1 to 11 Mbps	3	6	17.8	18.9	17.4		0.2	23.0	30.0	6.96
	CCK, 1 to 11 Mbps	4	6	15.9	16.7	15.4	16.6	0.2	22.4	30.0	7.61
	Non HT20, 6 to 54 Mbps	1	6	17.3				0.0	17.3	30.0	12.65
	Non HT20, 6 to 54 Mbps	2	6	17.3	18.3			0.0	20.9	30.0	9.12
	Non HT20, 6 to 54 Mbps	3	6	17.3	18.3	17.0		0.0	22.4	30.0	7.61
	Non HT20, 6 to 54 Mbps	4	6	15.4	16.4	15.1	16.3	0.0	21.9	30.0	8.10
2437	Non HT20 Beam Forming, 6 to 54 Mbps	2	9	17.3	18.3			0.0	20.9	27.0	6.12
24	Non HT20 Beam Forming, 6 to 54 Mbps	3	11	17.3	18.3	17.0		0.0	22.4	25.0	2.61
	Non HT20 Beam Forming, 6 to 54 Mbps	4	12	15.4	16.4	15.1	16.3	0.0	21.9	24.0	2.10
	HT/VHT20, M0 to M7	1	6	17.3				0.1	17.4	30.0	12.65
	HT/VHT20, M0 to M7	2	6	17.3	18.1			0.1	20.8	30.0	9.22
	HT/VHT20, M8 to M15	2	6	17.3	18.1			0.1	20.8	30.0	9.22
	HT/VHT20, M0 to M7	3	6	17.3	18.1	17.2		0.1	22.4	30.0	7.62
	HT/VHT20, M8 to M15	3	6	17.3	18.1	17.2		0.1	22.4	30.0	7.62
	HT/VHT20, M16 to M23	3	6	17.3	18.1	17.2		0.1	22.4	30.0	7.62
	HT/VHT20, M0 to M7	4	6	15.3	16.2	15.2	16.2	0.1	21.8	30.0	8.18

Page No: 28 of 88

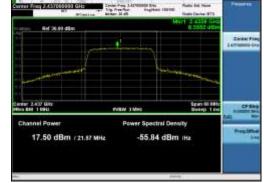
cisco

HT/VHT20, M8 to M15	4	6	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20, M16 to M23	4	6	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20, M24 to M31	4	6	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20 Beam Forming, M0 to M7	2	9	17.3	18.1			0.1	20.8	27.0	6.22
HT/VHT20 Beam Forming, M8 to M15	2	6	17.3	18.1			0.1	20.8	30.0	9.22
HT/VHT20 Beam Forming, M0 to M7	3	11	17.3	18.1	17.2		0.1	22.4	25.0	2.62
HT/VHT20 Beam Forming, M8 to M15	3	8	17.3	18.1	17.2		0.1	22.4	28.0	5.62
HT/VHT20 Beam Forming, M16 to M23	3	6	17.3	18.1	17.2		0.1	22.4	30.0	7.62
HT/VHT20 Beam Forming, M0 to M7	4	12	15.3	16.2	15.2	16.2	0.1	21.8	24.0	2.18
HT/VHT20 Beam Forming, M8 to M15	4	9	17.3	18.1	17.2	18.1	0.1	23.8	27.0	3.23
HT/VHT20 Beam Forming, M16 to M23	4	7	17.3	18.1	17.2	18.1	0.1	23.8	29.0	5.23
HT/VHT20 Beam Forming, M24 to M31	4	6	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HT/VHT20 STBC, M0 to M7	2	6	17.3	18.1			0.1	20.8	30.0	9.22
HT/VHT20 STBC, M0 to M7	3	6	17.3	18.1	17.2		0.1	22.4	30.0	7.62
HT/VHT20 STBC, M0 to M7	4	6	17.3	18.1	17.2	18.1	0.1	23.8	30.0	6.23
HE20, M0 to M9 1ss	1	6	17.3				0.1	17.4	30.0	12.63
HE20, M0 to M9 1ss	2	6	17.3	18.2			0.1	20.8	30.0	9.15
HE20, M0 to M9 2ss	2	6	17.3	18.2			0.1	20.8	30.0	9.15
HE20, M0 to M9 1ss	3	6	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20, M0 to M9 2ss	3	6	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20, M0 to M9 3ss	3	6	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20, M0 to M9 1ss	4	6	16.5	17.5	16.5	17.4	0.1	23.1	30.0	6.91
HE20, M0 to M9 2ss	4	6	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20, M0 to M9 3ss	4	6	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20, M0 to M9 4ss	4	6	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20 Beam Forming, M0 to M9 1ss	2	9	17.3	18.2			0.1	20.8	27.0	6.15
HE20 Beam Forming, M0 to M9 2ss	2	6	17.3	18.2			0.1	20.8	30.0	9.15
HE20 Beam Forming, M0 to M9 1ss	3	11	17.3	18.2	17.3		0.1	22.5	25.0	2.54
HE20 Beam Forming, M0 to M9 2ss	3	8	17.3	18.2	17.3		0.1	22.5	28.0	5.54
HE20 Beam Forming, M0 to M9 3ss	3	6	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20 Beam Forming, M0 to M9 1ss	4	12	16.5	17.5	16.5	17.4	0.1	23.1	24.0	0.91
HE20 Beam Forming, M0 to M9 2ss	4	9	17.3	18.2	17.3	18.3	0.1	23.9	27.0	3.11
HE20 Beam Forming, M0 to M9 3ss	4	7	17.3	18.2	17.3	18.3	0.1	23.9	29.0	5.11
HE20 Beam Forming, M0 to M9 4ss	4	6	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11
HE20 STBC, M0 to M9 2ss	2	6	17.3	18.2			0.1	20.8	30.0	9.15
HE20 STBC, M0 to M9 2ss	3	6	17.3	18.2	17.3		0.1	22.5	30.0	7.54
HE20 STBC, M0 to M9 2ss	4	6	17.3	18.2	17.3	18.3	0.1	23.9	30.0	6.11

Page No: 29 of 88

$ \mathbf{u} $	ы	h
C	ISC	0

	CCK, 1 to 11 Mbps	1	6	17.6				0.2	17.8	30.0	12.21
	CCK, 1 to 11 Mbps	2	6	17.6	18.5			0.2	21.3	30.0	8.72
	CCK, 1 to 11 Mbps	3	6	17.6	18.5	17.4		0.2	22.8	30.0	7.18
	CCK, 1 to 11 Mbps	4	6	15.6	16.3	15.5	16.5	0.2	22.2	30.0	7.79
	Non HT20, 6 to 54 Mbps	1	6	12.1				0.0	12.1	30.0	17.85
	Non HT20, 6 to 54 Mbps	2	6	12.1	12.9			0.0	15.6	30.0	14.43
	Non HT20, 6 to 54 Mbps	3	6	11.0	12.0	11.2		0.0	16.2	30.0	13.76
	Non HT20, 6 to 54 Mbps	4	6	11.0	12.0	11.2	11.9	0.0	17.6	30.0	12.39
	Non HT20 Beam Forming, 6 to 54 Mbps	2	9	11.0	12.0			0.0	14.6	27.0	12.42
	Non HT20 Beam Forming, 6 to 54 Mbps	3	11	10.0	10.8	10.2		0.0	15.2	25.0	9.84
	Non HT20 Beam Forming, 6 to 54 Mbps	4	12	7.8	8.8	8.0	8.8	0.0	14.4	24.0	9.56
	HT/VHT20, M0 to M7	1	6	11.1				0.1	11.2	30.0	18.85
	HT/VHT20, M0 to M7	2	6	11.1	11.8			0.1	14.5	30.0	15.47
	HT/VHT20, M8 to M15	2	6	11.1	11.8			0.1	14.5	30.0	15.47
	HT/VHT20, M0 to M7	3	6	11.1	11.8	11.2		0.1	16.2	30.0	13.80
	HT/VHT20, M8 to M15	3	6	11.1	11.8	11.2		0.1	16.2	30.0	13.80
	HT/VHT20, M16 to M23	3	6	11.1	11.8	11.2		0.1	16.2	30.0	13.80
	HT/VHT20, M0 to M7	4	6	11.1	11.8	11.2	12.0	0.1	17.6	30.0	12.39
	HT/VHT20, M8 to M15	4	6	11.1	11.8	11.2	12.0	0.1	17.6	30.0	12.39
	HT/VHT20, M16 to M23	4	6	11.1	11.8	11.2	12.0	0.1	17.6	30.0	12.39
~	HT/VHT20, M24 to M31	4	6	11.1	11.8	11.2	12.0	0.1	17.6	30.0	12.39
2462	HT/VHT20 Beam Forming, M0 to M7	2	9	9.9	10.8			0.1	13.4	27.0	13.56
2	HT/VHT20 Beam Forming, M8 to M15	2	6	11.1	11.8			0.1	14.5	30.0	15.47
	HT/VHT20 Beam Forming, M0 to M7	3	11	8.7	9.9	9.1		0.1	14.1	25.0	10.91
	HT/VHT20 Beam Forming, M8 to M15	3	8	9.9	10.8	10.2		0.1	15.1	28.0	12.86
	HT/VHT20 Beam Forming, M16 to M23	3	6	11.1	11.8	11.2		0.1	16.2	30.0	13.80
	HT/VHT20 Beam Forming, M0 to M7	4	12	7.6	8.7	8.1	8.9	0.1	14.4	24.0	9.57
	HT/VHT20 Beam Forming, M8 to M15	4	9	9.9	10.8	10.2	10.8	0.1	16.5	27.0	10.48
	HT/VHT20 Beam Forming, M16 to M23	4	7	9.9	10.8	10.2	10.8	0.1	16.5	29.0	12.48
	HT/VHT20 Beam Forming, M24 to M31	4	6	11.1	11.8	11.2	12.0	0.1	17.6	30.0	12.39
	HT/VHT20 STBC, M0 to M7	2	6	11.1	11.8			0.1	14.5	30.0	15.47
	HT/VHT20 STBC, M0 to M7	3	6	11.1	11.8	11.2		0.1	16.2	30.0	13.80
	HT/VHT20 STBC, M0 to M7	4	6	11.1	11.8	11.2	12.0	0.1	17.6	30.0	12.39
	HE20, M0 to M9 1ss	1	6	11.2				0.1	11.3	30.0	18.73
	HE20, M0 to M9 1ss	2	6	11.2	12.4			0.1	14.9	30.0	15.08
	HE20, M0 to M9 2ss	2	6	11.2	12.4			0.1	14.9	30.0	15.08
	HE20, M0 to M9 1ss	3	6	11.2	12.4	11.7		0.1	16.6	30.0	13.37
	HE20, M0 to M9 2ss	3	6	11.2	12.4	11.7		0.1	16.6	30.0	13.37
	HE20, M0 to M9 3ss	3	6	11.2	12.4	11.7		0.1	16.6	30.0	13.37
	HE20, M0 to M9 1ss	4	6	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
	HE20, M0 to M9 2ss	4	6	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
	HE20, M0 to M9 3ss	4	6	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
	HE20, M0 to M9 4ss	4	6	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07


Page No: 30 of 88

HE20 Beam Forming, M0 to M9 1ss	2	9	10.1	11.2			0.1	13.8	27.0	13.24
HE20 Beam Forming, M0 to M9 2ss	2	6	11.2	12.4			0.1	14.9	30.0	15.08
HE20 Beam Forming, M0 to M9 1ss	3	11	8.1	9.3	8.4		0.1	13.5	25.0	11.53
HE20 Beam Forming, M0 to M9 2ss	3	8	10.1	11.2	10.4		0.1	15.4	28.0	12.57
HE20 Beam Forming, M0 to M9 3ss	3	6	11.2	12.4	11.7		0.1	16.6	30.0	13.37
HE20 Beam Forming, M0 to M9 1ss	4	12	7.1	8.2	7.5	8.0	0.1	13.8	24.0	10.19
HE20 Beam Forming, M0 to M9 2ss	4	9	9.0	10.2	9.5	10.0	0.1	15.8	27.0	11.21
HE20 Beam Forming, M0 to M9 3ss	4	7	10.1	11.2	10.4	11.0	0.1	16.8	29.0	12.22
HE20 Beam Forming, M0 to M9 4ss	4	6	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07
HE20 STBC, M0 to M9 2ss	2	6	11.2	12.4			0.1	14.9	30.0	15.08
HE20 STBC, M0 to M9 2ss	3	6	11.2	12.4	11.7		0.1	16.6	30.0	13.37
HE20 STBC, M0 to M9 2ss	4	6	11.2	12.4	11.7	12.0	0.1	17.9	30.0	12.07

Page No: 31 of 88

Antenna B

սիսիս

Antenna D

Antenna C

Antenna A

Page No: 32 of 88

A.5 Power Spectral Density

Power Spectral Density Test Requirement

15.247 (e) / RSS-247 5.2 (b) / LP0002:3.10.1(6.2.2)

5.2 Digital transmission systems

DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MHz and 2400-2483.5 MHz:

b) The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

Power Spectral Density Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05

ANSI C63.10: 2013
Power Spectral Density
Test Procedure
1. Set the radio in the continuous transmitting mode at full power
2.Configure Spectrum analyzer as per test parameters below and Peak search marker
3. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05, section 8.4 DTS maximum power spectral density level in the fundamental emission

ANSI C63.10: 2013, section 11.10.5 Average PSD

Power Spectral Density Test parameters

11.10.5 Method AVGPSD-2

Method AVGPSD-2 uses trace averaging across on and OFF times of the EUT transmissions, followed by duty cycle correction.

The following procedure is applicable when the EUT cannot be configured to transmit continuously (i.e., $D \le 98\%$), when sweep triggering/signal gating cannot be used to measure only when the EUT is transmitting at its maximum power control level, and when the transmission duty cycle is constant (i.e., duty cycle variations are less than ±2%):

- a) Measure the duty cycle (D) of the transmitter output signal as described in 11.6.
- b) Set instrument center frequency to DTS channel center frequency.
- c) Set span to at least 1.5 times the OBW.
- d) Set RBW to: 3 kHz \leq RBW \leq 100 kHz.
- e) Set $VBW \ge [3 \times RBW]$.
- f) Detector power averaging (rms) or sample detector (when rms not available).
- g) Ensure that the number of measurement points in the sweep $\geq [2 \times \text{span} / \text{RBW}]$.
- h) Sweep time = auto couple.
- i) Do not use sweep triggering; allow sweep to "free run."
- j) Employ trace averaging (rms) mode over a minimum of 100 traces.
- k) Use the peak marker function to determine the maximum amplitude level.
- Add [10 log (1 / D)], where D is the duty cycle measured in step a), to the measured PSD to compute the average PSD during the actual transmission time.
- m) If measured value exceeds requirement specified by regulatory agency, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

Page No: 33 of 88

The "Measure and add 10 log(N) dB technique", where N is the number of outputs, is used for measuring in-band Power Spectral Density. (See ANSI C63.10 section 14.3.2.3)

սիսիս

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support			\checkmark

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 34 of 88

Power Spectral Density

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/3kHz)	Tx 2 PSD (dBm/3kHz)	Tx 3 PSD (dBm/3kHz)	Tx 4 PSD (dBm/3kHz)	Duty Cycle Correction (dB)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Margin (dB)
	CCK, 1 to 11 Mbps	1	6	0.1				0.2	0.3	8.0	7.71
	CCK, 1 to 11 Mbps	2	9	0.1	-5.2			0.2	1.4	5.0	3.58
	CCK, 1 to 11 Mbps	3	11	0.1	-5.2	-5.1		0.2	2.3	3.0	0.67
	CCK, 1 to 11 Mbps	4	12	-1.4	-5.5	-6.5	-6.0	0.2	1.9	2.0	0.10
	Non HT20, 6 to 54 Mbps	1	6	-4.6				0.0	-4.6	8.0	12.55
	Non HT20, 6 to 54 Mbps	2	9	-4.6	-9.1			0.0	-3.2	5.0	8.24
	Non HT20, 6 to 54 Mbps	3	11	-4.6	-9.1	-16.9		0.0	-3.1	3.0	6.05
	Non HT20, 6 to 54 Mbps	4	12	-5.3	-11.4	-17.2	-12.0	0.0	-3.4	2.0	5.43
	Non HT20 Beam Forming, 6 to 54 Mbps	2	9	-5.3	-11.4			0.0	-4.3	5.0	9.30
	Non HT20 Beam Forming, 6 to 54 Mbps	3	11	-7.5	-13.3	-20.2		0.0	-6.3	3.0	9.26
	Non HT20 Beam Forming, 6 to 54 Mbps	4	12	-9.5	-13.8	-21.3	-14.2	0.0	-7.0	2.0	8.96
	HT/VHT20, M0 to M7	1	6	-5.1				0.1	-5.0	8.0	13.05
	HT/VHT20, M0 to M7	2	9	-5.1	-9.9			0.1	-3.8	5.0	8.81
	HT/VHT20, M8 to M15	2	6	-5.1	-9.9			0.1	-3.8	8.0	11.81
	HT/VHT20, M0 to M7	3	11	-5.1	-9.9	-15.5		0.1	-3.5	3.0	6.52
2412	HT/VHT20, M8 to M15	3	8	-5.1	-9.9	-15.5		0.1	-3.5	6.0	9.52
N	HT/VHT20, M16 to M23	3	6	-5.1	-9.9	-15.5		0.1	-3.5	8.0	11.52
	HT/VHT20, M0 to M7	4	12	-6.0	-11.0	-16.4	-11.9	0.1	-3.7	2.0	5.73
	HT/VHT20, M8 to M15	4	9	-6.0	-11.0	-16.4	-11.9	0.1	-3.7	5.0	8.73
	HT/VHT20, M16 to M23	4	7	-6.0	-11.0	-16.4	-11.9	0.1	-3.7	7.0	10.73
	HT/VHT20, M24 to M31	4	6	-6.0	-11.0	-16.4	-11.9	0.1	-3.7	8.0	11.73
	HT/VHT20 Beam Forming, M0 to M7	2	9	-6.8	-11.6			0.1	-5.5	5.0	10.51
	HT/VHT20 Beam Forming, M8 to M15	2	6	-5.1	-9.9			0.1	-3.8	8.0	11.81
	HT/VHT20 Beam Forming, M0 to M7	3	11	-8.2	-13.0	-19.0		0.1	-6.6	3.0	9.64
	HT/VHT20 Beam Forming, M8 to M15	3	8	-6.0	-11.0	-16.4		0.1	-4.5	6.0	10.46
	HT/VHT20 Beam Forming, M16 to M23	3	6	-5.1	-9.9	-15.5		0.1	-3.5	8.0	11.52
	HT/VHT20 Beam Forming, M0 to M7	4	12	-9.3	-13.6	-19.7	-15.9	0.1	-7.0	2.0	8.99
	HT/VHT20 Beam Forming, M8 to M15	4	9	-8.2	-13.0	-19.0	-13.7	0.1	-5.9	5.0	10.85
	HT/VHT20 Beam Forming, M16 to M23	4	7	-6.0	-11.0	-16.4	-11.9	0.1	-3.7	7.0	10.73
	HT/VHT20 Beam Forming, M24 to M31	4	6	-6.0	-11.0	-16.4	-11.9	0.1	-3.7	8.0	11.73
	HT/VHT20 STBC, M0 to M7	2	6	-5.1	-9.9			0.1	-3.8	8.0	11.81

Page No: 35 of 88

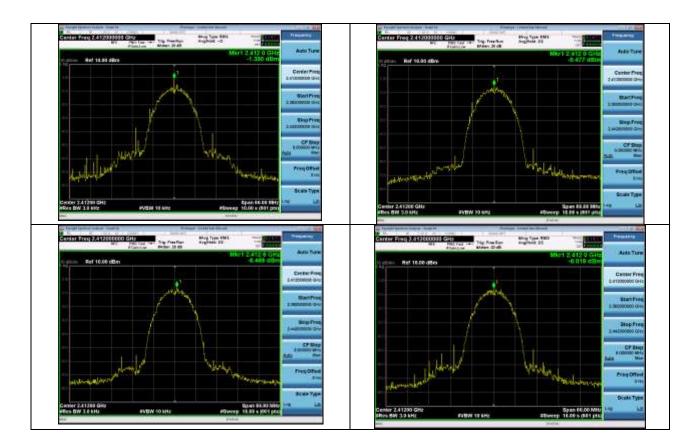
ы	ы	h
C	ISC	0

	HT/VHT20 STBC, M0 to M7	3	8	-5.1	-9.9	-15.5		0.1	-3.5	6.0	9.52
	HT/VHT20 STBC, M0 to M7	4	9	-6.0	-11.0	-16.4	-11.9	0.1	-3.7	5.0	8.73
	HE20, M0 to M9 1ss	4	6	-5.0	-11.0	-10.4	-11.9	0.1	-4.9	8.0	12.93
	HE20, M0 to M9 1ss	2	9	-6.2	-10.9			0.1	-4.9	5.0	9.87
	HE20, M0 to M9 2ss	2	9 6	-6.2	-10.9			0.1	-4.9	8.0	12.87
	HE20, M0 to M9 1ss	2	11	-6.2	-10.9	-16.4		0.1	-4.6	3.0	7.57
	HE20, M0 to M9 2ss	3	8	-6.2	-10.9	-16.4		0.1	-4.6	6.0	10.57
	HE20, M0 to M9 3ss	3	6	-0.2 -6.2	-10.9	-16.4		0.1	-4.6	8.0	12.57
		3 4	12	-0.2	-12.3	-16.4	-13.2	0.1	-4.8	2.0	6.82
	HE20, M0 to M9 1ss		9								
	HE20, M0 to M9 2ss	4	9	-7.1	-12.3	-16.4	-13.2	0.1	-4.8	5.0	9.82 11.82
	HE20, M0 to M9 3ss	4		-7.1	-12.3	-16.4	-13.2	0.1	-4.8	7.0	
	HE20, M0 to M9 4ss	4	6	-7.1	-12.3	-16.4	-13.2	0.1	-4.8	8.0	12.82
	HE20 Beam Forming, M0 to M9 1ss	2	9	-7.6	-12.7			0.1	-6.4	5.0	11.37
	HE20 Beam Forming, M0 to M9 2ss	2	6	-6.2	-10.9	40.0		0.1	-4.9	8.0	12.87
	HE20 Beam Forming, M0 to M9 1ss	3	11	-9.3	-13.1	-19.8		0.1	-7.5	3.0	10.46
	HE20 Beam Forming, M0 to M9 2ss	3	8	-7.1	-12.3	-16.4		0.1	-5.5	6.0	11.51
	HE20 Beam Forming, M0 to M9 3ss	3	6	-6.2	-10.9	-16.4		0.1	-4.6	8.0	12.57
	HE20 Beam Forming, M0 to M9 1ss	4	12	-10.0	-16.5	-20.2	-13.9	0.1	-7.6	2.0	9.56
	HE20 Beam Forming, M0 to M9 2ss	4	9	-9.3	-13.1	-19.8	-16.4	0.1	-6.9	5.0	11.93
	HE20 Beam Forming, M0 to M9 3ss	4	7	-7.1	-12.3	-16.4	-13.2	0.1	-4.8	7.0	11.82
	HE20 Beam Forming, M0 to M9 4ss	4	6	-7.1	-12.3	-16.4	-13.2	0.1	-4.8	8.0	12.82
	HE20 STBC, M0 to M9 2ss	2	6	-6.2	-10.9			0.1	-4.9	8.0	12.87
	HE20 STBC, M0 to M9 2ss	3	8	-6.2	-10.9	-16.4		0.1	-4.6	6.0	10.57
	HE20 STBC, M0 to M9 2ss	4	9	-7.1	-12.3	-16.4	-13.2	0.1	-4.8	5.0	9.82
	CCK, 1 to 11 Mbps	1	6	-0.2				0.2	0.0	8.0	8.01
	CCK, 1 to 11 Mbps	2	9	-0.2	-4.5			0.2	1.4	5.0	3.64
	CCK, 1 to 11 Mbps	3	11	-0.2	-4.5	-5.1		0.2	2.3	3.0	0.72
	CCK, 1 to 11 Mbps	4	12	-2.1	-6.7	-8.4	-4.8	0.2	1.4	2.0	0.65
	Non HT20, 6 to 54 Mbps	1	6	0.7				0.0	0.7	8.0	7.25
	Non HT20, 6 to 54 Mbps	2	9	0.7	-4.0			0.0	2.0	5.0	2.99
	Non HT20, 6 to 54 Mbps	3	11	0.7	-4.0	-10.5		0.0	2.3	3.0	0.75
	Non HT20, 6 to 54 Mbps	4	12	-1.0	-5.9	-12.9	-7.3	0.0	1.1	2.0	0.85
2437	Non HT20 Beam Forming, 6 to 54 Mbps	2	9	0.7	-4.0			0.0	2.0	5.0	2.99
24	Non HT20 Beam Forming, 6 to 54 Mbps	3	11	0.7	-4.0	-10.5		0.0	2.3	3.0	0.75
	Non HT20 Beam Forming, 6 to 54 Mbps	4	12	-1.0	-5.9	-12.9	-7.3	0.0	1.1	2.0	0.85
	HT/VHT20, M0 to M7	1	6	0.6				0.1	0.7	8.0	7.35
	HT/VHT20, M0 to M7	2	9	0.6	-4.0			0.1	1.9	5.0	3.05
	HT/VHT20, M8 to M15	2	6	0.6	-4.0			0.1	1.9	8.0	6.05
	HT/VHT20, M0 to M7	3	11	0.6	-4.0	-9.8		0.1	2.2	3.0	0.77
	HT/VHT20, M8 to M15	3	8	0.6	-4.0	-9.8		0.1	2.2	6.0	3.77
	HT/VHT20, M16 to M23	3	6	0.6	-4.0	-9.8		0.1	2.2	8.0	5.77
	HT/VHT20, M0 to M7	4	12	-1.4	-6.4	-11.7	-7.1	0.1	0.9	2.0	1.10

Page No: 36 of 88

1			l	1			
	C	5	5	C	(D	

HT/VHT20, M8 to M15	4	9	0.6	-4.0	-9.8	-5.0	0.1	3.0	5.0	2.01
HT/VHT20, M16 to M23	4	7	0.6	-4.0	-9.8	-5.0	0.1	3.0	7.0	4.01
HT/VHT20, M24 to M31	4	6	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HT/VHT20 Beam Forming, M0 to M7	2	9	0.6	-4.0			0.1	1.9	5.0	3.05
HT/VHT20 Beam Forming, M8 to M15	2	6	0.6	-4.0			0.1	1.9	8.0	6.05
HT/VHT20 Beam Forming, M0 to M7	3	11	0.6	-4.0	-9.8		0.1	2.2	3.0	0.77
HT/VHT20 Beam Forming, M8 to M15	3	8	0.6	-4.0	-9.8		0.1	2.2	6.0	3.77
HT/VHT20 Beam Forming, M16 to M23	3	6	0.6	-4.0	-9.8		0.1	2.2	8.0	5.77
HT/VHT20 Beam Forming, M0 to M7	4	12	-1.4	-6.4	-11.7	-7.1	0.1	0.9	2.0	1.10
HT/VHT20 Beam Forming, M8 to M15	4	9	0.6	-4.0	-9.8	-5.0	0.1	3.0	5.0	2.01
HT/VHT20 Beam Forming, M16 to M23	4	7	0.6	-4.0	-9.8	-5.0	0.1	3.0	7.0	4.01
HT/VHT20 Beam Forming, M24 to M31	4	6	0.6	-4.0	-9.8	-5.0	0.1	3.0	8.0	5.01
HT/VHT20 STBC, M0 to M7	2	6	0.6	-4.0			0.1	1.9	8.0	6.05
HT/VHT20 STBC, M0 to M7	3	8	0.6	-4.0	-9.8		0.1	2.2	6.0	3.77
HT/VHT20 STBC, M0 to M7	4	9	0.6	-4.0	-9.8	-5.0	0.1	3.0	5.0	2.01
HE20, M0 to M9 1ss	1	6	0.5				0.1	0.6	8.0	7.43
HE20, M0 to M9 1ss	2	9	0.5	-4.5			0.1	1.8	5.0	3.24
HE20, M0 to M9 2ss	2	6	0.5	-4.5			0.1	1.8	8.0	6.24
HE20, M0 to M9 1ss	3	11	0.5	-4.5	-10.0		0.1	2.0	3.0	0.96
HE20, M0 to M9 2ss	3	8	0.5	-4.5	-10.0		0.1	2.0	6.0	3.96
HE20, M0 to M9 3ss	3	6	0.5	-4.5	-10.0		0.1	2.0	8.0	5.96
HE20, M0 to M9 1ss	4	12	-0.6	-4.6	-11.1	-6.5	0.1	1.9	2.0	0.12
HE20, M0 to M9 2ss	4	9	0.5	-4.5	-10.0	-5.8	0.1	2.7	5.0	2.29
HE20, M0 to M9 3ss	4	7	0.5	-4.5	-10.0	-5.8	0.1	2.7	7.0	4.29
HE20, M0 to M9 4ss	4	6	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29
HE20 Beam Forming, M0 to M9 1ss	2	9	0.5	-4.5			0.1	1.8	5.0	3.24
HE20 Beam Forming, M0 to M9 2ss	2	6	0.5	-4.5			0.1	1.8	8.0	6.24
HE20 Beam Forming, M0 to M9 1ss	3	11	0.5	-4.5	-10.0		0.1	2.0	3.0	0.96
HE20 Beam Forming, M0 to M9 2ss	3	8	0.5	-4.5	-10.0		0.1	2.0	6.0	3.96
HE20 Beam Forming, M0 to M9 3ss	3	6	0.5	-4.5	-10.0		0.1	2.0	8.0	5.96
HE20 Beam Forming, M0 to M9 1ss	4	12	-0.6	-4.6	-11.1	-6.5	0.1	1.9	2.0	0.12
HE20 Beam Forming, M0 to M9 2ss	4	9	0.5	-4.5	-10.0	-5.8	0.1	2.7	5.0	2.29
HE20 Beam Forming, M0 to M9 3ss	4	7	0.5	-4.5	-10.0	-5.8	0.1	2.7	7.0	4.29
HE20 Beam Forming, M0 to M9 4ss	4	6	0.5	-4.5	-10.0	-5.8	0.1	2.7	8.0	5.29
HE20 STBC, M0 to M9 2ss	2	6	0.5	-4.5			0.1	1.8	8.0	6.24
HE20 STBC, M0 to M9 2ss	3	8	0.5	-4.5	-10.0		0.1	2.0	6.0	3.96
HE20 STBC, M0 to M9 2ss	4	9	0.5	-4.5	-10.0	-5.8	0.1	2.7	5.0	2.29


Page No: 37 of 88

		_									
	CCK, 1 to 11 Mbps	1	6	-1.0				0.2	-0.8	8.0	8.81
	CCK, 1 to 11 Mbps	2	9	-1.0	-4.9			0.2	0.7	5.0	4.32
	CCK, 1 to 11 Mbps	3	11	-1.0	-4.9	-6.3		0.2	1.5	3.0	1.50
	CCK, 1 to 11 Mbps	4	12	-2.4	-5.6	-8.4	-6.0	0.2	1.1	2.0	0.85
	Non HT20, 6 to 54 Mbps	1	6	-4.0				0.0	-4.0	8.0	11.95
	Non HT20, 6 to 54 Mbps	2	9	-4.0	-9.3			0.0	-2.8	5.0	7.83
	Non HT20, 6 to 54 Mbps	3	11	-4.9	-9.8	-16.8		0.0	-3.4	3.0	6.43
	Non HT20, 6 to 54 Mbps	4	12	-4.9	-9.8	-16.8	-11.1	0.0	-2.7	2.0	4.74
	Non HT20 Beam Forming, 6 to 54 Mbps	2	9	-4.9	-9.8			0.0	-3.6	5.0	8.64
	Non HT20 Beam Forming, 6 to 54 Mbps	3	11	-6.7	-10.9	-18.2		0.0	-5.0	3.0	8.04
	Non HT20 Beam Forming, 6 to 54 Mbps	4	12	-8.3	-14.1	-19.7	-13.3	0.0	-6.1	2.0	8.08
	HT/VHT20, M0 to M7	1	6	-5.9				0.1	-5.8	8.0	13.85
	HT/VHT20, M0 to M7	2	9	-5.9	-10.2			0.1	-4.5	5.0	9.48
	HT/VHT20, M8 to M15	2	6	-5.9	-10.2			0.1	-4.5	8.0	12.48
	HT/VHT20, M0 to M7	3	11	-5.9	-10.2	-15.7		0.1	-4.2	3.0	7.16
	HT/VHT20, M8 to M15	3	8	-5.9	-10.2	-15.7		0.1	-4.2	6.0	10.16
	HT/VHT20, M16 to M23	3	6	-5.9	-10.2	-15.7		0.1	-4.2	8.0	12.16
	HT/VHT20, M0 to M7	4	12	-5.9	-10.2	-15.7	-11.7	0.1	-3.4	2.0	5.44
	HT/VHT20, M8 to M15	4	9	-5.9	-10.2	-15.7	-11.7	0.1	-3.4	5.0	8.44
	HT/VHT20, M16 to M23	4	7	-5.9	-10.2	-15.7	-11.7	0.1	-3.4	7.0	10.44
0	HT/VHT20, M24 to M31	4	6	-5.9	-10.2	-15.7	-11.7	0.1	-3.4	8.0	11.44
2462	HT/VHT20 Beam Forming, M0 to M7	2	9	-6.4	-10.3			0.1	-4.9	5.0	9.86
2	HT/VHT20 Beam Forming, M8 to M15	2	6	-5.9	-10.2			0.1	-4.5	8.0	12.48
	HT/VHT20 Beam Forming, M0 to M7	3	11	-7.7	-12.3	-17.7		0.1	-6.0	3.0	9.04
	HT/VHT20 Beam Forming, M8 to M15	3	8	-6.4	-10.3	-16.9		0.1	-4.6	6.0	10.60
	HT/VHT20 Beam Forming, M16 to M23	3	6	-5.9	-10.2	-15.7		0.1	-4.2	8.0	12.16
	HT/VHT20 Beam Forming, M0 to M7	4	12	-8.7	-13.2	-18.8	-14.0	0.1	-6.2	2.0	8.22
	HT/VHT20 Beam Forming, M8 to M15	4	9	-6.4	-10.3	-16.9	-12.4	0.1	-3.9	5.0	8.92
	HT/VHT20 Beam Forming, M16 to M23	4	7	-6.4	-10.3	-16.9	-12.4	0.1	-3.9	7.0	10.92
	HT/VHT20 Beam Forming, M24 to M31	4	6	-5.9	-10.2	-15.7	-11.7	0.1	-3.4	8.0	11.44
	HT/VHT20 STBC, M0 to M7	2	6	-5.9	-10.2			0.1	-4.5	8.0	12.48
	HT/VHT20 STBC, M0 to M7	3	8	-5.9	-10.2	-15.7		0.1	-4.2	6.0	10.16
	HT/VHT20 STBC, M0 to M7	4	9	-5.9	-10.2	-15.7	-11.7	0.1	-3.4	5.0	8.44
	HE20, M0 to M9 1ss	1	6	-5.5				0.1	-5.4	8.0	13.43
	HE20, M0 to M9 1ss	2	9	-5.5	-9.6			0.1	-4.0	5.0	9.01
	HE20, M0 to M9 2ss	2	6	-5.5	-9.6			0.1	-4.0	8.0	12.01
	HE20, M0 to M9 1ss	3	11	-5.5	-9.6	-14.6		0.1	-3.6	3.0	6.64
	HE20, M0 to M9 2ss	3	8	-5.5	-9.6	-14.6		0.1	-3.6	6.0	9.64
	HE20, M0 to M9 3ss	3	6	-5.5	-9.6	-14.6		0.1	-3.6	8.0	11.64
	HE20, M0 to M9 1ss	4	12	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	2.0	4.99
	HE20, M0 to M9 2ss	4	9	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	5.0	7.99
	HE20, M0 to M9 3ss	4	7	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	7.0	9.99
	HE20, M0 to M9 4ss	4	6	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99

Page No: 38 of 88

HE20 Beam Forming, M0 to M9 1ss	2	9	-6.9	-10.9			0.1	-5.4	5.0	10.38
HE20 Beam Forming, M0 to M9 2ss	2	6	-5.5	-9.6			0.1	-4.0	8.0	12.01
HE20 Beam Forming, M0 to M9 1ss	3	11	-8.6	-13.5	-17.8		0.1	-6.9	3.0	9.94
HE20 Beam Forming, M0 to M9 2ss	3	8	-6.9	-10.9	-15.0		0.1	-4.9	6.0	10.92
HE20 Beam Forming, M0 to M9 3ss	3	6	-5.5	-9.6	-14.6		0.1	-3.6	8.0	11.64
HE20 Beam Forming, M0 to M9 1ss	4	12	-9.2	-14.0	-18.2	-15.9	0.1	-6.9	2.0	8.91
HE20 Beam Forming, M0 to M9 2ss	4	9	-8.2	-12.9	-16.9	-13.4	0.1	-5.6	5.0	10.64
HE20 Beam Forming, M0 to M9 3ss	4	7	-6.9	-10.9	-15.0	-13.0	0.1	-4.3	7.0	11.29
HE20 Beam Forming, M0 to M9 4ss	4	6	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	8.0	10.99
HE20 STBC, M0 to M9 2ss	2	6	-5.5	-9.6			0.1	-4.0	8.0	12.01
HE20 STBC, M0 to M9 2ss	3	8	-5.5	-9.6	-14.6		0.1	-3.6	6.0	9.64
HE20 STBC, M0 to M9 2ss	4	9	-5.5	-9.6	-14.6	-11.6	0.1	-3.0	5.0	7.99

Page No: 39 of 88

Power Spectral Density, 2412 MHz, CCK, 1 to 11 Mbps

Page No: 40 of 88

A.6 Conducted Spurious Emissions

Conducted Spurious Emissions Test Requirement

15.205 / RSS-Gen / LP0002

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) and RSS-GEN section 8.10, must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)) and RSS-Gen section 8.9

RSS-Gen 8.9 Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 and Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

RSS-Gen 8.10 (b) Unwanted emissions that fall into restricted bands of Table 6 shall comply with the limits specified in RSS-Gen; and (c) Unwanted emissions that do not fall within the restricted frequency bands of Table 6 shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.

Use formula below to substitute conducted measurements in place of radiated measurements

 $E[dB\mu V/m] = EIRP[dBm] - 20 \log(d[meters]) + 104.77$, where E = field strength and d = 3 meter

1) Average Plot, Limit= -41.25 dBm eirp

2) Peak plot, Limit = -21.25 dBm eirp

Conducted Spurious Emissions Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05 ANSI C63.10: 2013

Conducted Spurious Emissions Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Use the peak marker function to determine the maximum spurs amplitude level.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded. (see ANSI C63.10 2013 section 14.3.2.2)

6. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05, section 8.1 c) 3, section 8.6 DTS emissions in restricted frequency bands

ANSI C63.10: 2013 section 11.12.2.4 (Peak) & 11.12.2.5.2 (Average)

Conducted Spurious Emissions Test parameters	
Peak	Average
Span = 30MHz to 26.5GHz / 26.5GHz to 40GHz	Span = 30MHz to 26.5GHz / 26.5GHz to 40GHz
RBW = 1 MHz	RBW = 1 MHz

```
Page No: 41 of 88
```

$VBW \ge 3 MHz$	$VBW \ge 3 MHz$
Sweep = Auto	Sweep = Auto
Detector = Peak	Detector = RMS
Trace = Max Hold.	Power Averaging

ANSI C63.10: 2013 section 11.12.2.2 c) add the max antenna gain + ground reflection factor (4.7 dB for frequencies between 30 MHz and 1000 MHz, and 0 dB for frequencies > 1000 MHz).

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	$\mathbf{\nabla}$	
1	Support			\checkmark

Tested By :	Date of testing:
Chris Blair	10-Sep-19 - 01-Oct-19
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 42 of 88

Conducted Spurs Average Upper, 2412 MHz, Non HT20, 6 to 54 Mbps

սիսիս

Conducted Spurs Peak Upper, 2412 MHz, Non HT20, 6 to 54 Mbps

Constitution of the local data in the second s		a second s		
	Not Can the Read	Alog Tiges FMIE		Treasury I
t study - Rof -20.00 dBm		Mkr	4 23.732 GHz -55.675 dBm	Auto Tur
				Center Fre
and the second s	- Andrea and a start and a start and a start a		Laurente	Diarti Fre
				Biog Pro H americana bi
Bart 12,000 GHL Res BW 1.0 MHz	1V84V 0.0 10H2	- Bweep, 23.	nogo zekonala Greg Ki res (1881 proc	CF 91
	100 Gra 72 30 die 100 Gra 72 30 die 200 Gra 72 30 die 200 Gra 72 30 die	NACTOR I POLITIKUSE		Pregome
				Scale Typ
	3			1

Page No: 43 of 88

Conducted Spurious Average Table

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Tx 3 Spur Power (dBm)	Tx 4 Spur Power (dBm)	Duty Cycle Correction (dB)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	6	-73.9				0.2	-67.7	-41.25	26.46
	CCK, 1 to 11 Mbps	2	6	-73.9	-72.8			0.2	-64.1	-41.25	22.86
	CCK, 1 to 11 Mbps	3	6	-73.9	-72.8	-72.5		0.2	-62.1	-41.25	20.81
	CCK, 1 to 11 Mbps	4	6	-74.0	-73.1	-73.0	-73.8	0.2	-61.2	-41.25	19.99
	Non HT20, 6 to 54 Mbps	1	6	-75.5				0.0	-69.5	-41.25	28.20
	Non HT20, 6 to 54 Mbps	2	6	-75.5	-74.9			0.0	-66.1	-41.25	24.88
	Non HT20, 6 to 54 Mbps	3	6	-75.5	-74.9	-74.9		0.0	-64.3	-41.25	23.02
	Non HT20, 6 to 54 Mbps	4	6	-75.8	-75.3	-75.1	-76.6	0.0	-63.6	-41.25	22.35
	Non HT20 Beam Forming, 6 to 54 Mbps	2	9	-75.8	-75.3			0.0	-63.5	-41.25	22.24
	Non HT20 Beam Forming, 6 to 54 Mbps	3	11	-76.3	-76.1	-75.5		0.0	-60.1	-41.25	18.89
	Non HT20 Beam Forming, 6 to 54 Mbps	4	12	-76.9	-76.1	-75.6	-77.6	0.0	-58.4	-41.25	17.17
	HT/VHT20, M0 to M7	1	6	-75.5				0.1	-69.4	-41.25	28.20
	HT/VHT20, M0 to M7	2	6	-75.5	-75.2			0.1	-66.3	-41.25	25.03
	HT/VHT20, M8 to M15	2	6	-75.5	-75.2			0.1	-66.3	-41.25	25.03
N	HT/VHT20, M0 to M7	3	6	-75.5	-75.2	-74.8		0.1	-64.3	-41.25	23.08
2412	HT/VHT20, M8 to M15	3	6	-75.5	-75.2	-74.8		0.1	-64.3	-41.25	23.08
	HT/VHT20, M16 to M23	3	6	-75.5	-75.2	-74.8		0.1	-64.3	-41.25	23.08
	HT/VHT20, M0 to M7	4	6	-75.9	-75.4	-75.1	-76.7	0.1	-63.7	-41.25	22.41
	HT/VHT20, M8 to M15	4	6	-75.9	-75.4	-75.1	-76.7	0.1	-63.7	-41.25	22.41
	HT/VHT20, M16 to M23	4	6	-75.9	-75.4	-75.1	-76.7	0.1	-63.7	-41.25	22.41
	HT/VHT20, M24 to M31	4	6	-75.9	-75.4	-75.1	-76.7	0.1	-63.7	-41.25	22.41
	HT/VHT20 Beam Forming, M0 to M7	2	9	-76.2	-75.8			0.1	-63.9	-41.25	22.68
	HT/VHT20 Beam Forming, M8 to M15	2	6	-75.5	-75.2			0.1	-66.3	-41.25	25.03
	HT/VHT20 Beam Forming, M0 to M7	3	11	-76.6	-76.1	-75.8		0.1	-60.3	-41.25	19.08
	HT/VHT20 Beam Forming, M8 to M15	3	8	-75.9	-75.4	-75.1		0.1	-62.6	-41.25	21.38
	HT/VHT20 Beam Forming, M16 to M23	3	6	-75.5	-75.2	-74.8		0.1	-64.3	-41.25	23.08
	HT/VHT20 Beam Forming, M0 to M7	4	12	-76.9	-76.4	-75.9	-77.5	0.1	-58.6	-41.25	17.31
	HT/VHT20 Beam Forming, M8 to M15	4	9	-76.6	-76.1	-75.8	-77.6	0.1	-61.4	-41.25	20.15
	HT/VHT20 Beam Forming, M16 to M23	4	7	-75.9	-75.4	-75.1	-76.7	0.1	-62.7	-41.25	21.41
	HT/VHT20 Beam Forming, M24 to M31	4	6	-75.9	-75.4	-75.1	-76.7	0.1	-63.7	-41.25	22.41
	HT/VHT20 STBC, M0 to M7	2	6	-75.5	-75.2			0.1	-66.3	-41.25	25.03
				No: 44 c					•		

diada cisco

	HT/VHT20 STBC, M0 to M7	3	6	-75.5	-75.2	-74.8		0.1	-64.3	-41.25	23.08
	HT/VHT20 STBC, M0 to M7	4	6	-75.9	-75.4	-75.1	-76.7	0.1	-63.7	-41.25	22.41
	HE20, M0 to M9 1ss	1	6	-75.7				0.1	-69.6	-41.25	28.38
	HE20, M0 to M9 1ss	2	6	-76.0	-75.5			0.1	-66.7	-41.25	25.42
	HE20, M0 to M9 2ss	2	6	-76.0	-75.5			0.1	-66.7	-41.25	25.42
	HE20, M0 to M9 1ss	3	6	-76.0	-75.5	-75.3		0.1	-64.8	-41.25	23.50
	HE20, M0 to M9 2ss	3	6	-76.0	-75.5	-75.3		0.1	-64.8	-41.25	23.50
	HE20, M0 to M9 3ss	3	6	-76.0	-75.5	-75.3		0.1	-64.8	-41.25	23.50
	HE20, M0 to M9 1ss	4	6	-76.4	-75.7	-75.4	-77.1	0.1	-64.0	-41.25	22.77
	HE20, M0 to M9 2ss	4	6	-76.4	-75.7	-75.4	-77.1	0.1	-64.0	-41.25	22.77
	HE20, M0 to M9 3ss	4	6	-76.4	-75.7	-75.4	-77.1	0.1	-64.0	-41.25	22.77
	HE20, M0 to M9 4ss	4	6	-76.4	-75.7	-75.4	-77.1	0.1	-64.0	-41.25	22.77
	HE20 Beam Forming, M0 to M9 1ss	2	9	-76.7	-76.2			0.1	-64.4	-41.25	23.12
	HE20 Beam Forming, M0 to M9 2ss	2	6	-76.0	-75.5			0.1	-66.7	-41.25	25.42
	HE20 Beam Forming, M0 to M9 1ss	3	11	-77.0	-76.1	-75.7		0.1	-60.4	-41.25	19.15
	HE20 Beam Forming, M0 to M9 2ss	3	8	-76.4	-75.7	-75.4		0.1	-63.0	-41.25	21.73
	HE20 Beam Forming, M0 to M9 3ss	3	6	-76.0	-75.5	-75.3		0.1	-64.8	-41.25	23.50
	HE20 Beam Forming, M0 to M9 1ss	4	12	-77.2	-76.1	-75.9	-78.0	0.1	-58.6	-41.25	17.38
	HE20 Beam Forming, M0 to M9 2ss	4	9	-77.0	-76.1	-75.7	-77.8	0.1	-61.5	-41.25	20.24
	HE20 Beam Forming, M0 to M9 3ss	4	7	-76.4	-75.7	-75.4	-77.1	0.1	-63.0	-41.25	21.77
	HE20 Beam Forming, M0 to M9 4ss	4	6	-76.4	-75.7	-75.4	-77.1	0.1	-64.0	-41.25	22.77
	HE20 STBC, M0 to M9 2ss	2	6	-76.0	-75.5			0.1	-66.7	-41.25	25.42
	HE20 STBC, M0 to M9 2ss	3	6	-76.0	-75.5	-75.3		0.1	-64.8	-41.25	23.50
	HE20 STBC, M0 to M9 2ss	4	6	-76.4	-75.7	-75.4	-77.1	0.1	-64.0	-41.25	22.77
	CCK, 1 to 11 Mbps	1	6	-74.9				0.2	-68.7	-41.25	27.46
	CCK, 1 to 11 Mbps	2	6	-74.9	-72.5			0.2	-64.3	-41.25	23.08
	CCK, 1 to 11 Mbps	3	6	-74.9	-72.5	-72.6		0.2	-62.2	-41.25	20.99
	CCK, 1 to 11 Mbps	4	6	-75.5	-73.4	-73.6	-75.1	0.2	-62.1	-41.25	20.84
	Non HT20, 6 to 54 Mbps	1	6	-75.2				0.0	-69.2	-41.25	27.90
	Non HT20, 6 to 54 Mbps	2	6	-75.2	-73.0			0.0	-64.9	-41.25	23.66
	Non HT20, 6 to 54 Mbps	3	6	-75.2	-73.0	-72.7		0.0	-62.7	-41.25	21.43
	Non HT20, 6 to 54 Mbps	4	6	-76.2	-73.5	-73.5	-75.3	0.0	-62.4	-41.25	21.16
2437	Non HT20 Beam Forming, 6 to 54 Mbps	2	9	-75.2	-73.0			0.0	-61.9	-41.25	20.66
24	Non HT20 Beam Forming, 6 to 54 Mbps	3	11	-75.2	-73.0	-72.7		0.0	-57.7	-41.25	16.43
	Non HT20 Beam Forming, 6 to 54 Mbps	4	12	-76.2	-73.5	-73.5	-75.3	0.0	-56.4	-41.25	15.16
	HT/VHT20, M0 to M7	1	6	-75.1				0.1	-69.0	-41.25	27.80
	HT/VHT20, M0 to M7	2	6	-75.1	-73.1			0.1	-64.9	-41.25	23.67
	HT/VHT20, M8 to M15	2	6	-75.1	-73.1			0.1	-64.9	-41.25	23.67
	HT/VHT20, M0 to M7	3	6	-75.1	-73.1	-73.0		0.1	-62.8	-41.25	21.56
	HT/VHT20, M8 to M15	3	6	-75.1	-73.1	-73.0		0.1	-62.8	-41.25	21.56
	HT/VHT20, M16 to M23	3	6	-75.1	-73.1	-73.0		0.1	-62.8	-41.25	21.56
	HT/VHT20, M0 to M7	4	6	-76.4	-73.6	-73.3	-75.3	0.1	-62.4	-41.25	21.15

Page No: 45 of 88

ahaha cisco

HT/VHT20, M8 to M15	4	6	-75.1	-73.1	-73.0	-74.6	0.1	-61.8	-41.25	20.53
HT/VHT20, M16 to M23	4	6	-75.1	-73.1	-73.0	-74.6	0.1	-61.8	-41.25	20.53
HT/VHT20, M24 to M31	4	6	-75.1	-73.1	-73.0	-74.6	0.1	-61.8	-41.25	20.53
HT/VHT20 Beam Forming, M0 to M7	2	9	-75.1	-73.1	10.0	7 1.0	0.1	-61.9	-41.25	20.67
HT/VHT20 Beam Forming, M8 to M15	2	6	-75.1	-73.1			0.1	-64.9	-41.25	23.67
HT/VHT20 Beam Forming, M0 to M7	3	11	-75.1	-73.1	-73.0		0.1	-57.8	-41.25	16.56
HT/VHT20 Beam Forming, M8 to M15	3	8	-75.1	-73.1	-73.0		0.1	-60.8	-41.25	19.56
HT/VHT20 Beam Forming, M16 to M23	3	6	-75.1	-73.1	-73.0		0.1	-62.8	-41.25	21.56
HT/VHT20 Beam Forming, M0 to M7	4	12	-76.4	-73.6	-73.3	-75.3	0.1	-56.4	-41.25	15.15
HT/VHT20 Beam Forming, M8 to M15	4	9	-75.1	-73.1	-73.0	-74.6	0.1	-58.8	-41.25	17.53
HT/VHT20 Beam Forming, M16 to M23	4	7	-75.1	-73.1	-73.0	-74.6	0.1	-60.8	-41.25	19.53
HT/VHT20 Beam Forming, M24 to M31	4	6	-75.1	-73.1	-73.0	-74.6	0.1	-61.8	-41.25	20.53
HT/VHT20 STBC, M0 to M7	4	6	-75.1	-73.1	-73.0	-74.0	0.1	-64.9	-41.25	23.67
HT/VHT20 STBC, M0 to M7	2	6	-75.1	-73.1	-73.0		0.1	-62.8	-41.25	23.07
	4	6	-75.1	-73.1	-73.0	-74.6	0.1	-61.8	-41.25	20.53
HT/VHT20 STBC, M0 to M7	4	6		-73.1	-73.0	-74.0	0.1	-68.7	-41.25	20.55
HE20, M0 to M9 1ss HE20, M0 to M9 1ss	2	6	-74.8 -74.8	-73.0			0.1	-64.7	-41.25	23.48
	2									23.40
HE20, M0 to M9 2ss		6	-74.8	-73.0	70.4		0.1	-64.7	-41.25	
HE20, M0 to M9 1ss	3 3	6	-74.8	-73.0	-73.1		0.1	-62.7	-41.25	21.47
HE20, M0 to M9 2ss	_	6	-74.8	-73.0	-73.1		0.1	-62.7	-41.25	21.47
HE20, M0 to M9 3ss	3	6	-74.8	-73.0	-73.1	75.0	0.1	-62.7	-41.25	21.47
HE20, M0 to M9 1ss	4	6	-76.0	-73.3	-73.3	-75.2	0.1	-62.2	-41.25	20.96
HE20, M0 to M9 2ss	4	6	-74.8	-73.0	-73.1	-74.5	0.1	-61.7	-41.25	20.44
HE20, M0 to M9 3ss	4	6	-74.8	-73.0	-73.1	-74.5	0.1	-61.7	-41.25	20.44
HE20, M0 to M9 4ss	4	6	-74.8	-73.0	-73.1	-74.5	0.1	-61.7	-41.25	20.44
HE20 Beam Forming, M0 to M9 1ss	2	9	-74.8	-73.0			0.1	-61.7	-41.25	20.48
HE20 Beam Forming, M0 to M9 2ss	2	6	-74.8	-73.0	70.4		0.1	-64.7	-41.25	23.48
HE20 Beam Forming, M0 to M9 1ss	3	11	-74.8	-73.0	-73.1		0.1	-57.7	-41.25	16.47
HE20 Beam Forming, M0 to M9 2ss	3	8	-74.8	-73.0	-73.1		0.1	-60.7	-41.25	19.47
HE20 Beam Forming, M0 to M9 3ss	3	6	-74.8	-73.0	-73.1	75.0	0.1	-62.7	-41.25	21.47
HE20 Beam Forming, M0 to M9 1ss	4	12	-76.0	-73.3	-73.3	-75.2	0.1	-56.2	-41.25	14.96
HE20 Beam Forming, M0 to M9 2ss	4	9	-74.8	-73.0	-73.1	-74.5	0.1	-58.7	-41.25	17.44
HE20 Beam Forming, M0 to M9 3ss	4	7	-74.8	-73.0	-73.1	-74.5	0.1	-60.7	-41.25	19.44
HE20 Beam Forming, M0 to M9 4ss	4	6	-74.8	-73.0	-73.1	-74.5	0.1	-61.7	-41.25	20.44
HE20 STBC, M0 to M9 2ss	2	6	-74.8	-73.0			0.1	-64.7	-41.25	23.48
HE20 STBC, M0 to M9 2ss	3	6	-74.8	-73.0	-73.1		0.1	-62.7	-41.25	21.47
HE20 STBC, M0 to M9 2ss	4	6	-74.8	-73.0	-73.1	-74.5	0.1	-61.7	-41.25	20.44

Page No: 46 of 88

	CCK, 1 to 11 Mbps	1	6	-76.1				0.2	-69.9	-41.25	28.66
	CCK, 1 to 11 Mbps	2	6	-76.1	-74.0			0.2	-65.7	-41.25	24.47
	CCK, 1 to 11 Mbps	3	6	-76.1	-74.0	-73.2		0.2	-63.3	-41.25	22.06
	CCK, 1 to 11 Mbps	4	6	-76.4	-74.2	-73.8	-74.4	0.2	-62.4	-41.25	21.13
	Non HT20, 6 to 54 Mbps	1	6	-77.7				0.0	-71.7	-41.25	30.40
	Non HT20, 6 to 54 Mbps	2	6	-77.7	-75.0			0.0	-67.1	-41.25	25.84
	Non HT20, 6 to 54 Mbps	3	6	-77.9	-75.5	-75.1		0.0	-65.2	-41.25	23.94
	Non HT20, 6 to 54 Mbps	4	6	-77.9	-75.5	-75.1	-76.3	0.0	-64.0	-41.25	22.76
	Non HT20 Beam Forming, 6 to 54 Mbps	2	9	-77.9	-75.5			0.0	-64.5	-41.25	23.23
	Non HT20 Beam Forming, 6 to 54 Mbps	3	11	-78.3	-75.8	-75.5		0.0	-60.5	-41.25	19.30
	Non HT20 Beam Forming, 6 to 54 Mbps	4	12	-78.9	-76.4	-75.9	-77.7	0.0	-59.0	-41.25	17.76
	HT/VHT20, M0 to M7	1	6	-78.3				0.1	-72.2	-41.25	31.00
	HT/VHT20, M0 to M7	2	6	-78.3	-75.5			0.1	-67.6	-41.25	26.37
	HT/VHT20, M8 to M15	2	6	-78.3	-75.5			0.1	-67.6	-41.25	26.37
	HT/VHT20, M0 to M7	3	6	-78.3	-75.5	-75.0		0.1	-65.2	-41.25	23.97
	HT/VHT20, M8 to M15	3	6	-78.3	-75.5	-75.0		0.1	-65.2	-41.25	23.97
	HT/VHT20, M16 to M23	3	6	-78.3	-75.5	-75.0		0.1	-65.2	-41.25	23.97
	HT/VHT20, M0 to M7	4	6	-78.3	-75.5	-75.0	-76.5	0.1	-64.1	-41.25	22.83
	HT/VHT20, M8 to M15	4	6	-78.3	-75.5	-75.0	-76.5	0.1	-64.1	-41.25	22.83
	HT/VHT20, M16 to M23	4	6	-78.3	-75.5	-75.0	-76.5	0.1	-64.1	-41.25	22.83
0	HT/VHT20, M24 to M31	4	6	-78.3	-75.5	-75.0	-76.5	0.1	-64.1	-41.25	22.83
2462	HT/VHT20 Beam Forming, M0 to M7	2	9	-78.5	-75.8			0.1	-64.9	-41.25	23.63
7	HT/VHT20 Beam Forming, M8 to M15	2	6	-78.3	-75.5			0.1	-67.6	-41.25	26.37
	HT/VHT20 Beam Forming, M0 to M7	3	11	-79.1	-75.9	-75.9		0.1	-60.9	-41.25	19.66
	HT/VHT20 Beam Forming, M8 to M15	3	8	-78.5	-75.8	-75.3		0.1	-63.5	-41.25	22.25
	HT/VHT20 Beam Forming, M16 to M23	3	6	-78.3	-75.5	-75.0		0.1	-65.2	-41.25	23.97
	HT/VHT20 Beam Forming, M0 to M7	4	12	-79.0	-76.5	-75.9	-77.6	0.1	-59.0	-41.25	17.77
	HT/VHT20 Beam Forming, M8 to M15	4	9	-78.5	-75.8	-75.3	-76.9	0.1	-61.4	-41.25	20.14
	HT/VHT20 Beam Forming, M16 to M23	4	7	-78.5	-75.8	-75.3	-76.9	0.1	-63.4	-41.25	22.14
	HT/VHT20 Beam Forming, M24 to M31	4	6	-78.3	-75.5	-75.0	-76.5	0.1	-64.1	-41.25	22.83
	HT/VHT20 STBC, M0 to M7	2	6	-78.3	-75.5			0.1	-67.6	-41.25	26.37
	HT/VHT20 STBC, M0 to M7	3	6	-78.3	-75.5	-75.0		0.1	-65.2	-41.25	23.97
	HT/VHT20 STBC, M0 to M7	4	6	-78.3	-75.5	-75.0	-76.5	0.1	-64.1	-41.25	22.83
	HE20, M0 to M9 1ss	1	6	-78.0				0.1	-71.9	-41.25	30.68
	HE20, M0 to M9 1ss	2	6	-78.0	-75.2			0.1	-67.3	-41.25	26.05
	HE20, M0 to M9 2ss	2	6	-78.0	-75.2			0.1	-67.3	-41.25	26.05
	HE20, M0 to M9 1ss	3	6	-78.0	-75.2	-75.0		0.1	-65.0	-41.25	23.78
	HE20, M0 to M9 2ss	3	6	-78.0	-75.2	-75.0		0.1	-65.0	-41.25	23.78
	HE20, M0 to M9 3ss	3	6	-78.0	-75.2	-75.0		0.1	-65.0	-41.25	23.78
	HE20, M0 to M9 1ss	4	6	-78.0	-75.2	-75.0	-76.2	0.1	-63.9	-41.25	22.61
	HE20, M0 to M9 2ss	4	6	-78.0	-75.2	-75.0	-76.2	0.1	-63.9	-41.25	22.61
	HE20, M0 to M9 3ss	4	6	-78.0	-75.2	-75.0	-76.2	0.1	-63.9	-41.25	22.61
	HE20, M0 to M9 4ss	4	6	-78.0	-75.2	-75.0	-76.2	0.1	-63.9	-41.25	22.61

Page No: 47 of 88

IE20 Beam Forming, M0 to M9 1ss	2	9	-78.6	-75.7			0.1	-64.8	-41.25	23.59
IE20 Beam Forming, M0 to M9 2ss	2	6	-78.0	-75.2			0.1	-67.3	-41.25	26.05
IE20 Beam Forming, M0 to M9 1ss	3	11	-78.9	-76.2	-75.7		0.1	-60.9	-41.25	19.64
IE20 Beam Forming, M0 to M9 2ss	3	8	-78.6	-75.7	-75.3		0.1	-63.5	-41.25	22.22
IE20 Beam Forming, M0 to M9 3ss	3	6	-78.0	-75.2	-75.0		0.1	-65.0	-41.25	23.78
IE20 Beam Forming, M0 to M9 1ss	4	12	-79.3	-76.4	-75.9	-77.7	0.1	-59.1	-41.25	17.80
IE20 Beam Forming, M0 to M9 2ss	4	9	-78.6	-75.8	-75.5	-77.2	0.1	-61.5	-41.25	20.27
IE20 Beam Forming, M0 to M9 3ss	4	7	-78.6	-75.7	-75.3	-76.7	0.1	-63.3	-41.25	22.07
IE20 Beam Forming, M0 to M9 4ss	4	6	-78.0	-75.2	-75.0	-76.2	0.1	-63.9	-41.25	22.61
IE20 STBC, M0 to M9 2ss	2	6	-78.0	-75.2			0.1	-67.3	-41.25	26.05
IE20 STBC, M0 to M9 2ss	3	6	-78.0	-75.2	-75.0		0.1	-65.0	-41.25	23.78
IE20 STBC, M0 to M9 2ss	4	6	-78.0	-75.2	-75.0	-76.2	0.1	-63.9	-41.25	22.61
	IE20 Beam Forming, M0 to M9 2ss IE20 Beam Forming, M0 to M9 1ss IE20 Beam Forming, M0 to M9 2ss IE20 Beam Forming, M0 to M9 3ss IE20 Beam Forming, M0 to M9 1ss IE20 Beam Forming, M0 to M9 2ss IE20 Beam Forming, M0 to M9 3ss IE20 Beam Forming, M0 to M9 3ss IE20 Beam Forming, M0 to M9 4ss IE20 STBC, M0 to M9 2ss IE20 STBC, M0 to M9 2ss	IE20 Beam Forming, M0 to M9 2ss2IE20 Beam Forming, M0 to M9 1ss3IE20 Beam Forming, M0 to M9 2ss3IE20 Beam Forming, M0 to M9 3ss3IE20 Beam Forming, M0 to M9 1ss4IE20 Beam Forming, M0 to M9 2ss4IE20 Beam Forming, M0 to M9 2ss4IE20 Beam Forming, M0 to M9 3ss4IE20 STBC, M0 to M9 2ss2IE20 STBC, M0 to M9 2ss3	IE20 Beam Forming, M0 to M9 2ss 2 6 IE20 Beam Forming, M0 to M9 1ss 3 11 IE20 Beam Forming, M0 to M9 1ss 3 8 IE20 Beam Forming, M0 to M9 2ss 3 8 IE20 Beam Forming, M0 to M9 3ss 3 6 IE20 Beam Forming, M0 to M9 3ss 3 6 IE20 Beam Forming, M0 to M9 1ss 4 12 IE20 Beam Forming, M0 to M9 2ss 4 9 IE20 Beam Forming, M0 to M9 3ss 4 7 IE20 Beam Forming, M0 to M9 3ss 4 6 IE20 Beam Forming, M0 to M9 4ss 4 6 IE20 STBC, M0 to M9 2ss 2 6 IE20 STBC, M0 to M9 2ss 3 6	IE20 Beam Forming, M0 to M9 2ss 2 6 -78.0 IE20 Beam Forming, M0 to M9 1ss 3 11 -78.9 IE20 Beam Forming, M0 to M9 2ss 3 8 -78.6 IE20 Beam Forming, M0 to M9 3ss 3 6 -78.0 IE20 Beam Forming, M0 to M9 3ss 3 6 -78.0 IE20 Beam Forming, M0 to M9 3ss 3 6 -78.0 IE20 Beam Forming, M0 to M9 1ss 4 12 -79.3 IE20 Beam Forming, M0 to M9 2ss 4 9 -78.6 IE20 Beam Forming, M0 to M9 3ss 4 7 -78.6 IE20 Beam Forming, M0 to M9 3ss 4 6 -78.0 IE20 Beam Forming, M0 to M9 4ss 4 6 -78.0 IE20 STBC, M0 to M9 2ss 2 6 -78.0 IE20 STBC, M0 to M9 2ss 3 6 -78.0	IE20 Beam Forming, M0 to M9 2ss26-78.0-75.2IE20 Beam Forming, M0 to M9 1ss311-78.9-76.2IE20 Beam Forming, M0 to M9 2ss38-78.6-75.7IE20 Beam Forming, M0 to M9 3ss36-78.0-75.2IE20 Beam Forming, M0 to M9 1ss412-79.3-76.4IE20 Beam Forming, M0 to M9 1ss49-78.6-75.8IE20 Beam Forming, M0 to M9 2ss49-78.6-75.7IE20 Beam Forming, M0 to M9 3ss47-78.6-75.7IE20 Beam Forming, M0 to M9 3ss46-78.0-75.2IE20 Beam Forming, M0 to M9 4ss46-78.0-75.2IE20 STBC, M0 to M9 2ss26-78.0-75.2IE20 STBC, M0 to M9 2ss36-78.0-75.2	IE20 Beam Forming, M0 to M9 2ss26-78.0-75.2IE20 Beam Forming, M0 to M9 1ss311-78.9-76.2-75.7IE20 Beam Forming, M0 to M9 2ss38-78.6-75.7-75.3IE20 Beam Forming, M0 to M9 3ss36-78.0-75.2-75.0IE20 Beam Forming, M0 to M9 3ss36-78.0-75.2-75.0IE20 Beam Forming, M0 to M9 1ss412-79.3-76.4-75.9IE20 Beam Forming, M0 to M9 2ss49-78.6-75.8-75.5IE20 Beam Forming, M0 to M9 3ss47-78.6-75.7-75.3IE20 Beam Forming, M0 to M9 4ss46-78.0-75.2-75.0IE20 STBC, M0 to M9 2ss26-78.0-75.2-75.0IE20 STBC, M0 to M9 2ss36-78.0-75.2-75.0	IE20 Beam Forming, M0 to M9 2ss 2 6 -78.0 -75.2 Image: Constraint of the state of	IE20 Beam Forming, M0 to M9 2ss26-78.0-75.20.1IE20 Beam Forming, M0 to M9 1ss311-78.9-76.2-75.70.1IE20 Beam Forming, M0 to M9 2ss38-78.6-75.7-75.30.1IE20 Beam Forming, M0 to M9 2ss36-78.0-75.2-75.00.1IE20 Beam Forming, M0 to M9 3ss36-78.0-75.2-75.00.1IE20 Beam Forming, M0 to M9 1ss412-79.3-76.4-75.9-77.70.1IE20 Beam Forming, M0 to M9 2ss49-78.6-75.8-75.5-77.20.1IE20 Beam Forming, M0 to M9 3ss47-78.6-75.7-75.3-76.70.1IE20 Beam Forming, M0 to M9 3ss46-78.0-75.2-75.0-76.20.1IE20 Beam Forming, M0 to M9 3ss46-78.0-75.2-75.0-76.20.1IE20 STBC, M0 to M9 2ss26-78.0-75.2-75.00.1IE20 STBC, M0 to M9 2ss36-78.0-75.2-75.00.1	IE20 Beam Forming, M0 to M9 2ss26-78.0-75.20.1-67.3IE20 Beam Forming, M0 to M9 1ss311-78.9-76.2-75.70.1-60.9IE20 Beam Forming, M0 to M9 2ss38-78.6-75.7-75.30.1-63.5IE20 Beam Forming, M0 to M9 3ss36-78.0-75.2-75.00.1-63.5IE20 Beam Forming, M0 to M9 3ss36-78.0-75.2-75.00.1-65.0IE20 Beam Forming, M0 to M9 1ss412-79.3-76.4-75.9-77.70.1-59.1IE20 Beam Forming, M0 to M9 2ss49-78.6-75.8-75.5-77.20.1-61.5IE20 Beam Forming, M0 to M9 3ss47-78.6-75.7-75.3-76.70.1-63.3IE20 Beam Forming, M0 to M9 3ss46-78.0-75.2-75.0-76.20.1-63.3IE20 Beam Forming, M0 to M9 3ss46-78.0-75.2-75.0-76.20.1-63.3IE20 Beam Forming, M0 to M9 3ss46-78.0-75.2-75.0-76.20.1-63.3IE20 STBC, M0 to M9 2ss26-78.0-75.2-75.00.1-67.3IE20 STBC, M0 to M9 2ss36-78.0-75.2-75.00.1-65.0	IE20 Beam Forming, M0 to M9 2ss26-78.0-75.200.1-67.3-41.25IE20 Beam Forming, M0 to M9 1ss311-78.9-76.2-75.70.1-60.9-41.25IE20 Beam Forming, M0 to M9 2ss38-78.6-75.7-75.30.1-63.5-41.25IE20 Beam Forming, M0 to M9 3ss36-78.0-75.2-75.00.1-63.5-41.25IE20 Beam Forming, M0 to M9 3ss36-78.0-75.2-75.00.1-65.0-41.25IE20 Beam Forming, M0 to M9 3ss412-79.3-76.4-75.9-77.70.1-59.1-41.25IE20 Beam Forming, M0 to M9 2ss49-78.6-75.8-75.5-77.20.1-61.5-41.25IE20 Beam Forming, M0 to M9 2ss49-78.6-75.7-75.3-76.70.1-63.3-41.25IE20 Beam Forming, M0 to M9 3ss47-78.6-75.7-75.3-76.70.1-63.3-41.25IE20 Beam Forming, M0 to M9 3ss46-78.0-75.2-75.0-76.20.1-63.3-41.25IE20 STBC, M0 to M9 2ss26-78.0-75.2-75.00.1-67.3-41.25IE20 STBC, M0 to M9 2ss36-78.0-75.2-75.00.1-67.3-41.25IE20 STBC, M0 to M9 2ss36-78.0-75.2-75.00.1-65.0-41.25

Page No: 48 of 88

Conducted Spurs Average, 2437 MHz, HE20 Beam Forming, M0 to M9 1ss

Antenna B

սիսիս

cisco

Antenna D

Antenna C

Page No: 49 of 88

Conducted Spurious Peak

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Tx 3 Spur Power (dBm)	Tx 4 Spur Power (dBm)	Duty Cycle Correction (dB)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	6	-59.0				0.2	-52.8	-21.25	31.56
	CCK, 1 to 11 Mbps	2	6	-59.0	-60.4			0.2	-50.4	-21.25	29.19
	CCK, 1 to 11 Mbps	3	6	-59.0	-60.4	-68.1		0.2	-50.1	-21.25	28.89
	CCK, 1 to 11 Mbps	4	6	-59.2	-62.3	-69.4	-67.4	0.2	-50.6	-21.25	29.36
	Non HT20, 6 to 54 Mbps	1	6	-64.3				0.0	-58.3	-21.25	37.00
	Non HT20, 6 to 54 Mbps	2	6	-64.3	-69.1			0.0	-57.0	-21.25	35.76
	Non HT20, 6 to 54 Mbps	3	6	-64.3	-69.1	-68.0		0.0	-55.8	-21.25	34.56
	Non HT20, 6 to 54 Mbps	4	6	-64.2	-68.6	-68.0	-68.7	0.0	-54.9	-21.25	33.61
	Non HT20 Beam Forming, 6 to 54 Mbps	2	9	-64.2	-68.6			0.0	-53.8	-21.25	32.56
	Non HT20 Beam Forming, 6 to 54 Mbps	3	11	-65.5	-68.6	-69.0		0.0	-51.6	-21.25	30.33
	Non HT20 Beam Forming, 6 to 54 Mbps	4	12	-65.4	-68.9	-66.6	-68.5	0.0	-49.0	-21.25	27.80
	HT/VHT20, M0 to M7	1	6	-63.8				0.1	-57.7	-21.25	36.50
	HT/VHT20, M0 to M7	2	6	-63.8	-69.7			0.1	-56.8	-21.25	35.50
	HT/VHT20, M8 to M15	2	6	-63.8	-69.7			0.1	-56.8	-21.25	35.50
2412	HT/VHT20, M0 to M7	3	6	-63.8	-69.7	-68.5		0.1	-55.7	-21.25	34.47
24	HT/VHT20, M8 to M15	3	6	-63.8	-69.7	-68.5		0.1	-55.7	-21.25	34.47
	HT/VHT20, M16 to M23	3	6	-63.8	-69.7	-68.5		0.1	-55.7	-21.25	34.47
	HT/VHT20, M0 to M7	4	6	-65.1	-69.2	-68.8	-68.0	0.1	-55.4	-21.25	34.13
	HT/VHT20, M8 to M15	4	6	-65.1	-69.2	-68.8	-68.0	0.1	-55.4	-21.25	34.13
	HT/VHT20, M16 to M23	4	6	-65.1	-69.2	-68.8	-68.0	0.1	-55.4	-21.25	34.13
	HT/VHT20, M24 to M31	4	6	-65.1	-69.2	-68.8	-68.0	0.1	-55.4	-21.25	34.13
	HT/VHT20 Beam Forming, M0 to M7	2	9	-64.0	-68.6			0.1	-53.7	-21.25	32.40
	HT/VHT20 Beam Forming, M8 to M15	2	6	-63.8	-69.7			0.1	-56.8	-21.25	35.50
	HT/VHT20 Beam Forming, M0 to M7	3	11	-64.0	-69.4	-69.1		0.1	-50.9	-21.25	29.66
	HT/VHT20 Beam Forming, M8 to M15	3	8	-65.1	-69.2	-68.8		0.1	-54.5	-21.25	33.21
	HT/VHT20 Beam Forming, M16 to M23	3	6	-63.8	-69.7	-68.5		0.1	-55.7	-21.25	34.47
	HT/VHT20 Beam Forming, M0 to M7	4	12	-65.1	-69.2	-68.6	-67.9	0.1	-49.3	-21.25	28.07
	HT/VHT20 Beam Forming, M8 to M15	4	9	-64.0	-69.4	-69.1	-67.6	0.1	-51.9	-21.25	30.61
	HT/VHT20 Beam Forming, M16 to M23	4	7	-65.1	-69.2	-68.8	-68.0	0.1	-54.4	-21.25	33.13
	HT/VHT20 Beam Forming, M24 to M31	4	6	-65.1	-69.2	-68.8	-68.0	0.1	-55.4	-21.25	34.13

Page No: 50 of 88

	HT/VHT20 STBC, M0 to M7	2	6	-63.8	-69.7			0.1	-56.8	-21.25	35.50
	HT/VHT20 STBC, M0 to M7	3	6	-63.8	-69.7	-68.5		0.1	-55.7	-21.25	34.47
	HT/VHT20 STBC, M0 to M7	4	6	-65.1	-69.2	-68.8	-68.0	0.1	-55.4	-21.25	34.13
	HE20, M0 to M9 1ss	1	6	-64.2				0.1	-58.1	-21.25	36.88
	HE20, M0 to M9 1ss	2	6	-65.0	-68.7			0.1	-57.4	-21.25	36.14
	HE20, M0 to M9 2ss	2	6	-65.0	-68.7			0.1	-57.4	-21.25	36.14
	HE20, M0 to M9 1ss	3	6	-65.0	-68.7	-68.1		0.1	-56.1	-21.25	34.86
	HE20, M0 to M9 2ss	3	6	-65.0	-68.7	-68.1		0.1	-56.1	-21.25	34.86
	HE20, M0 to M9 3ss	3	6	-65.0	-68.7	-68.1		0.1	-56.1	-21.25	34.86
	HE20, M0 to M9 1ss	4	6	-65.2	-69.5	-69.1	-68.7	0.1	-55.7	-21.25	34.41
	HE20, M0 to M9 2ss	4	6	-65.2	-69.5	-69.1	-68.7	0.1	-55.7	-21.25	34.41
	HE20, M0 to M9 3ss	4	6	-65.2	-69.5	-69.1	-68.7	0.1	-55.7	-21.25	34.41
	HE20, M0 to M9 4ss	4	6	-65.2	-69.5	-69.1	-68.7	0.1	-55.7	-21.25	34.41
	HE20 Beam Forming, M0 to M9 1ss	2	9	-65.6	-68.5			0.1	-54.7	-21.25	33.49
	HE20 Beam Forming, M0 to M9 2ss	2	6	-65.0	-68.7			0.1	-57.4	-21.25	36.14
	HE20 Beam Forming, M0 to M9 1ss	3	11	-65.3	-69.4	-68.9		0.1	-51.6	-21.25	30.37
	HE20 Beam Forming, M0 to M9 2ss	3	8	-65.2	-69.5	-69.1		0.1	-54.6	-21.25	33.38
	HE20 Beam Forming, M0 to M9 3ss	3	6	-65.0	-68.7	-68.1		0.1	-56.1	-21.25	34.86
	HE20 Beam Forming, M0 to M9 1ss	4	12	-66.3	-69.0	-68.9	-68.4	0.1	-49.9	-21.25	28.67
	HE20 Beam Forming, M0 to M9 2ss	4	9	-65.3	-69.4	-68.9	-67.9	0.1	-52.5	-21.25	31.23
	HE20 Beam Forming, M0 to M9 3ss	4	7	-65.2	-69.5	-69.1	-68.7	0.1	-54.7	-21.25	33.41
	HE20 Beam Forming, M0 to M9 4ss	4	6	-65.2	-69.5	-69.1	-68.7	0.1	-55.7	-21.25	34.41
	HE20 STBC, M0 to M9 2ss	2	6	-65.0	-68.7			0.1	-57.4	-21.25	36.14
	HE20 STBC, M0 to M9 2ss	3	6	-65.0	-68.7	-68.1		0.1	-56.1	-21.25	34.86
	HE20 STBC, M0 to M9 2ss	4	6	-65.2	-69.5	-69.1	-68.7	0.1	-55.7	-21.25	34.41
									-		
	CCK, 1 to 11 Mbps	1	6	-63.0				0.2	-56.8	-21.25	35.56
	CCK, 1 to 11 Mbps	2	6	-63.0	-60.2			0.2	-52.2	-21.25	30.93
	CCK, 1 to 11 Mbps	3	6	-63.0	-60.2	-66.8		0.2	-51.6	-21.25	30.34
	CCK, 1 to 11 Mbps	4	6	-62.9	-62.3	-68.5	-66.9	0.2	-52.2	-21.25	30.95
	Non HT20, 6 to 54 Mbps	1	6	-67.1				0.0	-61.1	-21.25	39.80
	Non HT20, 6 to 54 Mbps	2	6	-67.1	-63.8			0.0	-56.1	-21.25	34.84
	Non HT20, 6 to 54 Mbps	3	6	-67.1	-63.8	-66.0		0.0	-54.6	-21.25	33.34
	Non HT20, 6 to 54 Mbps	4	6	-65.4	-65.3	-68.3	-68.3	0.0	-54.5	-21.25	33.26
2437	Non HT20 Beam Forming, 6 to 54 Mbps	2	9	-67.1	-63.8			0.0	-53.1	-21.25	31.84
2	Non HT20 Beam Forming, 6 to 54 Mbps	3	11	-67.1	-63.8	-66.0		0.0	-49.6	-21.25	28.34
	Non HT20 Beam Forming, 6 to 54 Mbps	4	12	-65.4	-65.3	-68.3	-68.3	0.0	-48.5	-21.25	27.26
	HT/VHT20, M0 to M7	1	6	-66.4				0.1	-60.3	-21.25	39.10
	HT/VHT20, M0 to M7	2	6	-66.4	-64.1			0.1	-56.0	-21.25	34.79
	HT/VHT20, M8 to M15	2	6	-66.4	-64.1			0.1	-56.0	-21.25	34.79
	HT/VHT20, M0 to M7	3	6	-66.4	-64.1	-68.7		0.1	-55.2	-21.25	33.93
	HT/VHT20, M8 to M15	3	6	-66.4	-64.1	-68.7		0.1	-55.2	-21.25	33.93
	HT/VHT20, M16 to M23	3	6	-66.4	-64.1	-68.7		0.1	-55.2	-21.25	33.93
		-							0012	0	00.00

Page No: 51 of 88

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version.

Cisco Systems, Inc. Company Confidential

HT/VHT20, M0 to M7	4	6	-65.0	-66.7	-68.7	-68.3	0.1	-54.8	-21.25	33.60
HT/VHT20, M8 to M15	4	6	-66.4	-64.1	-68.7	-67.6	0.1	-54.3	-21.25	33.03
HT/VHT20, M16 to M23	4	6	-66.4	-64.1	-68.7	-67.6	0.1	-54.3	-21.25	33.03
HT/VHT20, M24 to M31	4	6	-66.4	-64.1	-68.7	-67.6	0.1	-54.3	-21.25	33.03
HT/VHT20 Beam Forming, M0 to M7	2	9	-66.4	-64.1			0.1	-53.0	-21.25	31.79
HT/VHT20 Beam Forming, M8 to M15	2	6	-66.4	-64.1			0.1	-56.0	-21.25	34.79
HT/VHT20 Beam Forming, M0 to M7	3	11	-66.4	-64.1	-68.7		0.1	-50.2	-21.25	28.93
HT/VHT20 Beam Forming, M8 to M15	3	8	-66.4	-64.1	-68.7		0.1	-53.2	-21.25	31.93
HT/VHT20 Beam Forming, M16 to M23	3	6	-66.4	-64.1	-68.7		0.1	-55.2	-21.25	33.93
HT/VHT20 Beam Forming, M0 to M7	4	12	-65.0	-66.7	-68.7	-68.3	0.1	-48.8	-21.25	27.60
HT/VHT20 Beam Forming, M8 to M15	4	9	-66.4	-64.1	-68.7	-67.6	0.1	-51.3	-21.25	30.03
HT/VHT20 Beam Forming, M16 to M23	4	7	-66.4	-64.1	-68.7	-67.6	0.1	-53.3	-21.25	32.03
HT/VHT20 Beam Forming, M24 to M31	4	6	-66.4	-64.1	-68.7	-67.6	0.1	-54.3	-21.25	33.03
HT/VHT20 STBC, M0 to M7	2	6	-66.4	-64.1			0.1	-56.0	-21.25	34.79
HT/VHT20 STBC, M0 to M7	3	6	-66.4	-64.1	-68.7		0.1	-55.2	-21.25	33.93
HT/VHT20 STBC, M0 to M7	4	6	-66.4	-64.1	-68.7	-67.6	0.1	-54.3	-21.25	33.03
HE20, M0 to M9 1ss	1	6	-67.6				0.1	-61.5	-21.25	40.28
HE20, M0 to M9 1ss	2	6	-67.6	-64.1			0.1	-56.4	-21.25	35.18
HE20, M0 to M9 2ss	2	6	-67.6	-64.1			0.1	-56.4	-21.25	35.18
HE20, M0 to M9 1ss	3	6	-67.6	-64.1	-67.8		0.1	-55.3	-21.25	34.06
HE20, M0 to M9 2ss	3	6	-67.6	-64.1	-67.8		0.1	-55.3	-21.25	34.06
HE20, M0 to M9 3ss	3	6	-67.6	-64.1	-67.8		0.1	-55.3	-21.25	34.06
HE20, M0 to M9 1ss	4	6	-67.2	-66.2	-68.8	-68.8	0.1	-55.5	-21.25	34.27
HE20, M0 to M9 2ss	4	6	-67.6	-64.1	-67.8	-67.0	0.1	-54.3	-21.25	33.01
HE20, M0 to M9 3ss	4	6	-67.6	-64.1	-67.8	-67.0	0.1	-54.3	-21.25	33.01
HE20, M0 to M9 4ss	4	6	-67.6	-64.1	-67.8	-67.0	0.1	-54.3	-21.25	33.01
HE20 Beam Forming, M0 to M9 1ss	2	9	-67.6	-64.1			0.1	-53.4	-21.25	32.18
HE20 Beam Forming, M0 to M9 2ss	2	6	-67.6	-64.1			0.1	-56.4	-21.25	35.18
HE20 Beam Forming, M0 to M9 1ss	3	11	-67.6	-64.1	-67.8		0.1	-50.3	-21.25	29.06
HE20 Beam Forming, M0 to M9 2ss	3	8	-67.6	-64.1	-67.8		0.1	-53.3	-21.25	32.06
HE20 Beam Forming, M0 to M9 3ss	3	6	-67.6	-64.1	-67.8		0.1	-55.3	-21.25	34.06
HE20 Beam Forming, M0 to M9 1ss	4	12	-67.2	-66.2	-68.8	-68.8	0.1	-49.5	-21.25	28.27
HE20 Beam Forming, M0 to M9 2ss	4	9	-67.6	-64.1	-67.8	-67.0	0.1	-51.3	-21.25	30.01
HE20 Beam Forming, M0 to M9 3ss	4	7	-67.6	-64.1	-67.8	-67.0	0.1	-53.3	-21.25	32.01
HE20 Beam Forming, M0 to M9 4ss	4	6	-67.6	-64.1	-67.8	-67.0	0.1	-54.3	-21.25	33.01
HE20 STBC, M0 to M9 2ss	2	6	-67.6	-64.1			0.1	-56.4	-21.25	35.18
HE20 STBC, M0 to M9 2ss	3	6	-67.6	-64.1	-67.8		0.1	-55.3	-21.25	34.06
HE20 STBC, M0 to M9 2ss	4	6	-67.6	-64.1	-67.8	-67.0	0.1	-54.3	-21.25	33.01

Page No: 52 of 88

	CCK, 1 to 11 Mbps	1	6	-63.8				0.2	-57.6	-21.25	36.36
	CCK, 1 to 11 Mbps	2	6	-63.8	-67.7			0.2	-56.1	-21.25	34.87
	CCK, 1 to 11 Mbps	3	6	-63.8	-67.7	-68.3		0.2	-55.1	-21.25	33.90
	CCK, 1 to 11 Mbps	4	6	-64.9	-68.3	-68.6	-67.9	0.2	-54.9	-21.25	33.68
	Non HT20, 6 to 54 Mbps	1	6	-68.2				0.0	-62.2	-21.25	40.90
	Non HT20, 6 to 54 Mbps	2	6	-68.2	-68.8			0.0	-59.4	-21.25	38.18
	Non HT20, 6 to 54 Mbps	3	6	-67.3	-68.1	-67.9		0.0	-56.9	-21.25	35.69
	Non HT20, 6 to 54 Mbps	4	6	-67.3	-68.1	-67.9	-68.2	0.0	-55.8	-21.25	34.54
	Non HT20 Beam Forming, 6 to 54 Mbps	2	9	-67.3	-68.1			0.0	-55.6	-21.25	34.38
	Non HT20 Beam Forming, 6 to 54 Mbps	3	11	-68.8	-69.7	-67.5		0.0	-52.8	-21.25	31.51
	Non HT20 Beam Forming, 6 to 54 Mbps	4	12	-68.2	-68.7	-68.7	-68.7	0.0	-50.5	-21.25	29.25
	HT/VHT20, M0 to M7	1	6	-68.0				0.1	-61.9	-21.25	40.70
	HT/VHT20, M0 to M7	2	6	-68.0	-68.7			0.1	-59.3	-21.25	38.02
	HT/VHT20, M8 to M15	2	6	-68.0	-68.7			0.1	-59.3	-21.25	38.02
	HT/VHT20, M0 to M7	3	6	-68.0	-68.7	-69.3		0.1	-57.8	-21.25	36.56
	HT/VHT20, M8 to M15	3	6	-68.0	-68.7	-69.3		0.1	-57.8	-21.25	36.56
	HT/VHT20, M16 to M23	3	6	-68.0	-68.7	-69.3		0.1	-57.8	-21.25	36.56
	HT/VHT20, M0 to M7	4	6	-68.0	-68.7	-69.3	-69.1	0.1	-56.7	-21.25	35.42
	HT/VHT20, M8 to M15	4	6	-68.0	-68.7	-69.3	-69.1	0.1	-56.7	-21.25	35.42
	HT/VHT20, M16 to M23	4	6	-68.0	-68.7	-69.3	-69.1	0.1	-56.7	-21.25	35.42
2	HT/VHT20, M24 to M31	4	6	-68.0	-68.7	-69.3	-69.1	0.1	-56.7	-21.25	35.42
2462	HT/VHT20 Beam Forming, M0 to M7	2	9	-68.9	-67.1			0.1	-55.8	-21.25	34.59
	HT/VHT20 Beam Forming, M8 to M15	2	6	-68.0	-68.7			0.1	-59.3	-21.25	38.02
	HT/VHT20 Beam Forming, M0 to M7	3	11	-68.9	-69.3	-67.9		0.1	-52.8	-21.25	31.59
	HT/VHT20 Beam Forming, M8 to M15	3	8	-68.9	-67.1	-68.6		0.1	-55.3	-21.25	34.05
	HT/VHT20 Beam Forming, M16 to M23	3	6	-68.0	-68.7	-69.3		0.1	-57.8	-21.25	36.56
	HT/VHT20 Beam Forming, M0 to M7	4	12	-69.6	-69.4	-68.8	-68.9	0.1	-51.1	-21.25	29.84
	HT/VHT20 Beam Forming, M8 to M15	4	9	-68.9	-67.1	-68.6	-67.5	0.1	-52.9	-21.25	31.64
	HT/VHT20 Beam Forming, M16 to M23	4	7	-68.9	-67.1	-68.6	-67.5	0.1	-54.9	-21.25	33.64
	HT/VHT20 Beam Forming, M24 to M31	4	6	-68.0	-68.7	-69.3	-69.1	0.1	-56.7	-21.25	35.42
	HT/VHT20 STBC, M0 to M7	2	6	-68.0	-68.7			0.1	-59.3	-21.25	38.02
	HT/VHT20 STBC, M0 to M7	3	6	-68.0	-68.7	-69.3		0.1	-57.8	-21.25	36.56
	HT/VHT20 STBC, M0 to M7	4	6	-68.0	-68.7	-69.3	-69.1	0.1	-56.7	-21.25	35.42
	HE20, M0 to M9 1ss	1	6	-68.7				0.1	-62.6	-21.25	41.38
	HE20, M0 to M9 1ss	2	6	-68.7	-68.9			0.1	-59.7	-21.25	38.47
	HE20, M0 to M9 2ss	2	6	-68.7	-68.9			0.1	-59.7	-21.25	38.47
	HE20, M0 to M9 1ss	3	6	-68.7	-68.9	-68.0		0.1	-57.7	-21.25	36.43
	HE20, M0 to M9 2ss	3	6	-68.7	-68.9	-68.0		0.1	-57.7	-21.25	36.43
	HE20, M0 to M9 3ss	3	6	-68.7	-68.9	-68.0		0.1	-57.7	-21.25	36.43
	HE20, M0 to M9 1ss	4	6	-68.7	-68.9	-68.0	-69.1	0.1	-56.6	-21.25	35.32
	HE20, M0 to M9 2ss	4	6	-68.7	-68.9	-68.0	-69.1	0.1	-56.6	-21.25	35.32
	HE20, M0 to M9 3ss	4	6	-68.7	-68.9	-68.0	-69.1	0.1	-56.6	-21.25	35.32
	HE20, M0 to M9 4ss	4	6	-68.7	-68.9	-68.0	-69.1	0.1	-56.6	-21.25	35.32

Page No: 53 of 88

HE20 Beam Forming, M0 to M9 1ss	2	9	-68.8	-69.2			0.1	-56.9	-21.25	35.67
HE20 Beam Forming, M0 to M9 2ss	2	6	-68.7	-68.9			0.1	-59.7	-21.25	38.47
HE20 Beam Forming, M0 to M9 1ss	3	11	-68.9	-69.4	-67.3		0.1	-52.6	-21.25	31.35
HE20 Beam Forming, M0 to M9 2ss	3	8	-68.8	-69.2	-68.6		0.1	-56.0	-21.25	34.77
HE20 Beam Forming, M0 to M9 3ss	3	6	-68.7	-68.9	-68.0		0.1	-57.7	-21.25	36.43
HE20 Beam Forming, M0 to M9 1ss	4	12	-68.2	-68.6	-69.2	-67.6	0.1	-50.3	-21.25	29.03
HE20 Beam Forming, M0 to M9 2ss	4	9	-69.0	-68.5	-69.0	-68.4	0.1	-53.6	-21.25	32.38
HE20 Beam Forming, M0 to M9 3ss	4	7	-68.8	-69.2	-68.6	-68.4	0.1	-55.7	-21.25	34.40
HE20 Beam Forming, M0 to M9 4ss	4	6	-68.7	-68.9	-68.0	-69.1	0.1	-56.6	-21.25	35.32
HE20 STBC, M0 to M9 2ss	2	6	-68.7	-68.9			0.1	-59.7	-21.25	38.47
HE20 STBC, M0 to M9 2ss	3	6	-68.7	-68.9	-68.0		0.1	-57.7	-21.25	36.43
HE20 STBC, M0 to M9 2ss	4	6	-68.7	-68.9	-68.0	-69.1	0.1	-56.6	-21.25	35.32

Page No: 54 of 88

Name Description Descripi Description Des

Antenna A

Antenna C

սիսի

cisco

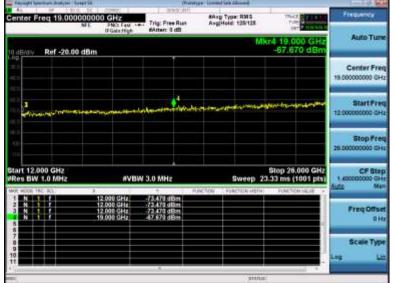
Scale Tv:

Antenna B

Antenna D

Page No: 55 of 88

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential


Conducted Spurs Peak, 2437 MHz, Non HT20 Beam Forming, 6 to 54 Mbps

A.7 Conducted Receiver Spurious Emissions

Spurious Of Receive Average Upp, 2412 MHz, Non HT20, 6 to 54 Mbps

Spurious Of Receive Peak Upper, 2412 MHz, Non HT20, 6 to 54 Mbps

Page No: 56 of 88

Conducted Receiver Spurious Average

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Rx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Tx 3 Spur Power (dBm)	Tx 4 Spur Power (dBm)	Duty Cycle Correction (dB)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	4	6	-87.7	-89.3	-88.9	-88.8	0.2	-76.4	-41.25	35.17
2412	Non HT20, 6 to 54 Mbps	4	6	-86.3	-89.1	-88.8	-88.9	0.0	-76.0	-41.25	34.79
24	HT/VHT20, M0 to M7	4	6	-86.5	-89.2	-88.8	-88.7	0.1	-76.1	-41.25	34.84
	HE20, M0 to M9 1ss	4	6	-86.9	-89.6	-88.9	-89.1	0.1	-76.4	-41.25	35.16
	CCK, 1 to 11 Mbps	4	6	-85.9	-89.4	-88.8	-89.0	0.2	-75.8	-41.25	34.57
2437	Non HT20, 6 to 54 Mbps	4	6	-86.9	-88.9	-88.8	-89.0	0.0	-76.2	-41.25	34.99
24	HT/VHT20, M0 to M7	4	6	-87.3	-89.7	-88.8	-89.2	0.1	-76.6	-41.25	35.33
	HE20, M0 to M9 1ss	4	6	-86.7	-89.9	-89.0	-89.0	0.1	-76.4	-41.25	35.14
	CCK, 1 to 11 Mbps	4	6	-86.8	-89.9	-89.0	-89.3	0.2	-76.4	-41.25	35.12
2462	Non HT20, 6 to 54 Mbps	4	6	-86.7	-89.6	-88.8	-89.0	0.0	-76.3	-41.25	35.06
24	HT/VHT20, M0 to M7	4	6	-86.9	-89.6	-88.6	-89.1	0.1	-76.4	-41.25	35.10
	HE20, M0 to M9 1ss	4	6	-87.1	-89.3	-88.5	-88.8	0.1	-76.3	-41.25	35.01

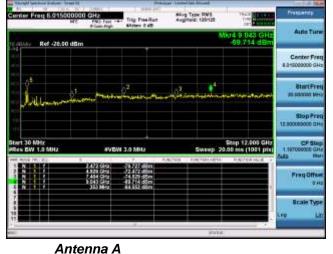
Page No: 57 of 88

Spurious Of Receive Average, 2437 MHz, CCK, 1 to 11 Mbps

սիսիւ

Antenna A

Antenna C


Antenna D

Page No: 58 of 88

Conducted Receiver Spurious Peak

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Rx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Tx 3 Spur Power (dBm)	Tx 4 Spur Power (dBm)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	4	6	-69.0	-70.6	-70.5	-69.4	-57.6	-21.25	36.36
2412	Non HT20, 6 to 54 Mbps	4	6	-70.4	-70.0	-70.1	-68.9	-57.7	-21.25	36.50
24	HT/VHT20, M0 to M7	4	6	-68.7	-69.9	-69.1	-69.6	-57.2	-21.25	35.98
	HE20, M0 to M9 1ss	4	6	-69.1	-70.2	-69.2	-68.9	-57.2	-21.25	35.99
	CCK, 1 to 11 Mbps	4	6	-69.7	-69.7	-69.8	-69.1	-57.4	-21.25	36.10
2437	Non HT20, 6 to 54 Mbps	4	6	-70.0	-70.6	-69.7	-70.2	-58.0	-21.25	36.80
24	HT/VHT20, M0 to M7	4	6	-68.5	-70.3	-69.9	-69.0	-57.3	-21.25	36.04
	HE20, M0 to M9 1ss	4	6	-70.7	-70.5	-69.9	-69.9	-58.1	-21.25	36.90
	CCK, 1 to 11 Mbps	4	6	-70.6	-70.5	-68.8	-68.2	-57.2	-21.25	35.94
2462	Non HT20, 6 to 54 Mbps	4	6	-69.7	-69.9	-68.6	-68.7	-57.1	-21.25	35.87
24	HT/VHT20, M0 to M7	4	6	-69.1	-70.7	-69.2	-68.9	-57.3	-21.25	36.10
	HE20, M0 to M9 1ss	4	6	-69.9	-69.1	-68.2	-70.3	-57.2	-21.25	35.96

Page No: 59 of 88

Spurious Of Receive Peak, 2462 MHz, Non HT20, 6 to 54 Mbps

cisco

Antenna B

Antenna C

Antenna D

Page No: 60 of 88

A.8 Conducted Bandedge (Restricted Band)

Conducted Band Edge Test Requirement

15.247 / LP0002:3.10.1(5) & 2.8

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RSS-247

5.5 Unwanted emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

15.205 / RSS-Gen

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), and RSS-Gen 8.10 must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)) and RSS-Gen 8.9.

Conducted Bandedge Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05

ANSI C63.10: 2013

Conducted Band edge

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode. Use the procedures in KDB 558074 D01 DTS Meas Guidance v04 to substitute conducted measurements in place of radiated measurements.

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded.

6. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance.

Also measure any emissions in the restricted bands

7. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05, section 8.1 c) 3, section 8.6 DTS emissions in restricted frequency bands

ANSI C63.10: 2013 section 11.12.2.4 (Peak) & 11.12.2.5.2 (Average)

Page No: 61 of 88

Conducted Spurious Emissions Test parameters	
Peak	Average
RBW = 1 MHz	RBW = 1 MHz
$VBW \ge 3 MHz$	$VBW \ge 3 MHz$
Sweep = Auto	Sweep = Auto
Detector = Peak	Detector = RMS
Trace = Max Hold.	Power Averaging

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment	
	EUT	S01	K		
1	Support			\checkmark	

Tested By :	Date of testing:	
Chris Blair	10-Sep-19 - 01-Oct-19	
Test Result : PASS		

Test Equipment

See Appendix C for list of test equipment

Page No: 62 of 88

Restricted Band

Conducted Bandedge Average Table

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Tx 3 Bandedge Level (dBm)	Tx 4 Bandedge Level (dBm)	Tx 5 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	6	-49.9				0.2	-43.7	-41.25	2.46
	CCK, 1 to 11 Mbps	2	6	-49.9	-53.6			0.2	-42.2	-41.25	0.91
	CCK, 1 to 11 Mbps	3	6	-49.9	-53.6	-56.6		0.2	-41.6	-41.25	0.31
	CCK, 1 to 11 Mbps	4	6	-54.3	-55.1	-57.4	-57.5	0.2	-43.6	-41.25	2.39
	Non HT20, 6 to 54 Mbps	1	6	-49.9				0.0	-43.9	-41.25	2.60
	Non HT20, 6 to 54 Mbps	2	6	-49.9	-55.0			0.0	-42.7	-41.25	1.44
	Non HT20, 6 to 54 Mbps	3	6	-49.9	-55.0	-56.4		0.0	-42.0	-41.25	0.75
	Non HT20, 6 to 54 Mbps	4	6	-51.9	-57.2	-59.7	-56.3	0.0	-43.2	-41.25	1.99
	Non HT20 Beam Forming, 6 to 54 Mbps	2	9	-51.9	-57.2			0.0	-41.7	-41.25	0.48
	Non HT20 Beam Forming, 6 to 54 Mbps	3	11	-55.7	-60.6	-61.9		0.0	-42.7	-41.25	1.46
	Non HT20 Beam Forming, 6 to 54 Mbps	4	12	-57.8	-61.8	-64.7	-61.2	0.0	-42.6	-41.25	1.37
	HT/VHT20, M0 to M7	1	6	-49.4				0.1	-43.3	-41.25	2.10
	HT/VHT20, M0 to M7	2	6	-49.4	-54.2			0.1	-42.1	-41.25	0.86
2412	HT/VHT20, M8 to M15	2	6	-49.4	-54.2			0.1	-42.1	-41.25	0.86
24	HT/VHT20, M0 to M7	3	6	-49.4	-54.2	-56.1		0.1	-41.5	-41.25	0.21
	HT/VHT20, M8 to M15	3	6	-49.4	-54.2	-56.1		0.1	-41.5	-41.25	0.21
	HT/VHT20, M16 to M23	3	6	-49.4	-54.2	-56.1		0.1	-41.5	-41.25	0.21
	HT/VHT20, M0 to M7	4	6	-50.9	-57.1	-58.1	-55.3	0.1	-42.3	-41.25	1.06
	HT/VHT20, M8 to M15	4	6	-50.9	-57.1	-58.1	-55.3	0.1	-42.3	-41.25	1.06
	HT/VHT20, M16 to M23	4	6	-50.9	-57.1	-58.1	-55.3	0.1	-42.3	-41.25	1.06
	HT/VHT20, M24 to M31	4	6	-50.9	-57.1	-58.1	-55.3	0.1	-42.3	-41.25	1.06
	HT/VHT20 Beam Forming, M0 to M7	2	9	-53.3	-57.9			0.1	-43.0	-41.25	1.70
	HT/VHT20 Beam Forming, M8 to M15	2	6	-49.4	-54.2			0.1	-42.1	-41.25	0.86
	HT/VHT20 Beam Forming, M0 to M7	3	11	-54.4	-60.1	-60.8		0.1	-41.6	-41.25	0.34
	HT/VHT20 Beam Forming, M8 to M15	3	8	-50.9	-57.1	-58.1		0.1	-41.3	-41.25	0.04
	HT/VHT20 Beam Forming, M16 to M23	3	6	-49.4	-54.2	-56.1		0.1	-41.5	-41.25	0.21
	HT/VHT20 Beam Forming, M0 to M7	4	12	-56.7	-61.6	-63.2	-60.9	0.1	-41.8	-41.25	0.55
	HT/VHT20 Beam Forming, M8 to M15	4	9	-54.4	-60.1	-60.8	-58.8	0.1	-42.6	-41.25	1.40
			Page	No: 63 of	00						

cisco

	HT/VHT20 Beam Forming, M16 to M23	4	7	-50.9	-57.1	-58.1	-55.3	0.1	-41.3	-41.25	0.06
	HT/VHT20 Beam Forming, M24 to M31	4	6	-50.9	-57.1	-58.1	-55.3	0.1	-42.3	-41.25	1.06
	HT/VHT20 STBC, M0 to M7	2	6	-49.4	-54.2			0.1	-42.1	-41.25	0.86
	HT/VHT20 STBC, M0 to M7	3	6	-49.4	-54.2	-56.1		0.1	-41.5	-41.25	0.21
	HT/VHT20 STBC, M0 to M7	4	6	-50.9	-57.1	-58.1	-55.3	0.1	-42.3	-41.25	1.06
	HE20, M0 to M9 1ss	1	6	-47.8				0.1	-41.7	-41.25	0.48
	HE20, M0 to M9 1ss	2	6	-49.7	-56.2			0.1	-42.8	-41.25	1.51
	HE20, M0 to M9 2ss	2	6	-49.7	-56.2			0.1	-42.8	-41.25	1.51
	HE20, M0 to M9 1ss	3	6	-49.7	-56.2	-56.7		0.1	-42.1	-41.25	0.85
	HE20, M0 to M9 2ss	3	6	-49.7	-56.2	-56.7		0.1	-42.1	-41.25	0.85
	HE20, M0 to M9 3ss	3	6	-49.7	-56.2	-56.7		0.1	-42.1	-41.25	0.85
	HE20, M0 to M9 1ss	4	6	-51.2	-57.6	-58.4	-55.5	0.1	-42.6	-41.25	1.35
	HE20, M0 to M9 2ss	4	6	-51.2	-57.6	-58.4	-55.5	0.1	-42.6	-41.25	1.35
	HE20, M0 to M9 3ss	4	6	-51.2	-57.6	-58.4	-55.5	0.1	-42.6	-41.25	1.35
	HE20, M0 to M9 4ss	4	6	-51.2	-57.6	-58.4	-55.5	0.1	-42.6	-41.25	1.35
	HE20 Beam Forming, M0 to M9 1ss	2	9	-52.7	-59.0			0.1	-42.7	-41.25	1.47
	HE20 Beam Forming, M0 to M9 2ss	2	6	-49.7	-56.2			0.1	-42.8	-41.25	1.51
	HE20 Beam Forming, M0 to M9 1ss	3	11	-55.0	-60.7	-62.5		0.1	-42.3	-41.25	1.08
	HE20 Beam Forming, M0 to M9 2ss	3	8	-51.2	-57.6	-58.4		0.1	-41.6	-41.25	0.36
	HE20 Beam Forming, M0 to M9 3ss	3	6	-49.7	-56.2	-56.7		0.1	-42.1	-41.25	0.85
	HE20 Beam Forming, M0 to M9 1ss	4	12	-56.4	-63.9	-63.7	-60.0	0.1	-41.8	-41.25	0.53
	HE20 Beam Forming, M0 to M9 2ss	4	9	-55.0	-60.7	-62.5	-58.7	0.1	-43.2	-41.25	1.96
	HE20 Beam Forming, M0 to M9 3ss	4	7	-51.2	-57.6	-58.4	-55.5	0.1	-41.6	-41.25	0.35
	HE20 Beam Forming, M0 to M9 4ss	4	6	-51.2	-57.6	-58.4	-55.5	0.1	-42.6	-41.25	1.35
	HE20 STBC, M0 to M9 2ss	2	6	-49.7	-56.2			0.1	-42.8	-41.25	1.51
	HE20 STBC, M0 to M9 2ss	3	6	-49.7	-56.2	-56.7		0.1	-42.1	-41.25	0.85
	HE20 STBC, M0 to M9 2ss	4	6	-51.2	-57.6	-58.4	-55.5	0.1	-42.6	-41.25	1.35
	CCK, 1 to 11 Mbps	1	6	-50.2				0.2	-44.0	-41.25	2.76
	CCK, 1 to 11 Mbps	2	6	-50.2	-53.9			0.2	-42.5	-41.25	1.21
	CCK, 1 to 11 Mbps	3	6	-50.2	-53.9	-53.9		0.2	-41.3	-41.25	0.08
	CCK, 1 to 11 Mbps	4	6	-55.6	-55.4	-55.9	-55.8	0.2	-43.5	-41.25	2.21
	Non HT20, 6 to 54 Mbps	1	6	-48.6				0.0	-42.6	-41.25	1.30
	Non HT20, 6 to 54 Mbps	2	6	-48.6	-55.4			0.0	-41.7	-41.25	0.48
~	Non HT20, 6 to 54 Mbps	3	6	-52.1	-58.3	-57.9		0.0	-44.3	-41.25	3.04
2462	Non HT20, 6 to 54 Mbps	4	6	-52.1	-58.3	-57.9	-55.6	0.0	-43.2	-41.25	1.91
2	Non HT20 Beam Forming, 6 to 54 Mbps	2	9	-52.1	-58.3			0.0	-42.1	-41.25	0.87
	Non HT20 Beam Forming, 6 to 54 Mbps	3	11	-55.6	-59.4	-59.2		0.0	-41.9	-41.25	0.62
	Non HT20 Beam Forming, 6 to 54 Mbps	4	12	-57.8	-61.9	-61.5	-61.4	0.0	-42.2	-41.25	0.98
	HT/VHT20, M0 to M7	1	6	-50.5				0.1	-44.4	-41.25	3.20
	HT/VHT20, M0 to M7	2	6	-50.5	-57.1			0.1	-43.6	-41.25	2.34
	HT/VHT20, M8 to M15	2	6	-50.5	-57.1			0.1	-43.6	-41.25	2.34
	HT/VHT20, M0 to M7	3	6	-50.5	-57.1	-58.1		0.1	-43.0	-41.25	1.76

Page No: 64 of 88

l			l				
	C	5	5	C	¢	D	

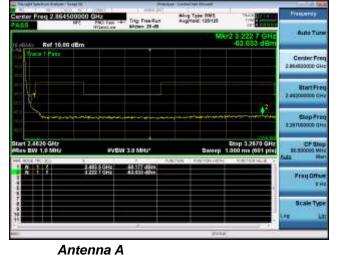
HT/HT20, M8 to M15 3 6 -50.5 -57.1 -58.1 0.1 -43.0 -41.25 1.76 HT/WHT20, M8 to M23 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HT/HT20, M8 to M15 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HT/HT20, M8 to M15 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HT/HT20, M24 to M31 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HT/HT20 Beam Forming, M0 to M7 2 9 -53.9 -59.8 -61.1 0.1 -43.0 -41.25 1.76 HT/HT20 Beam Forming, M16 to M15 3 8 -53.9 -59.8 -59.4 -0.1 -43.0 -41.25 1.76 HT/HT20 Beam Forming, M16 to M23 3 6 -50.5 -57.1 -58.1 0.1 -43.0 -41.25 0.75 HT/HT20 Beam Forming, M8 to M15 </th <th></th>											
HTV/HT20, M0 to M7 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HTV/HT20, M8 to M15 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HTV/HT20, M4 to M31 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HTV/HT20, M24 to M31 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HTV/HT20 Beam Forming, M0 to M7 3 11 -55.6 -60.5 -61.1 0.1 -43.8 -41.25 1.24 HTV/HT20 Beam Forming, M0 to M7 3 16 -50.5 -57.1 -58.1 0.1 -44.0 -41.25 1.73 HTV/HT20 Beam Forming, M0 to M2 4 7 -53.9 -59.4 -58.0 0.1 -42.1 -41.25 0.75 HTV/HT20 Beam Forming, M8 to M15 4 9 -53.9 -59.4											
HT/VHT20, M16 to M23 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HT/VHT20, M16 to M23 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HT/VHT20, M24 to M31 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HT/VHT20 Beam Forming, M0 to M7 2 9 -53.9 -59.8 0.1 -43.9 -41.25 2.34 HT/VHT20 Beam Forming, M0 to M7 3 11 -55.6 -60.5 -61.1 0.1 -43.0 -41.25 1.24 HT/VHT20 Beam Forming, M16 to M23 3 6 -50.5 -57.1 -58.1 0.1 -44.0 -41.25 0.75 HT/VHT20 Beam Forming, M16 to M23 4 7 -53.9 -59.8 -59.4 -58.0 0.1 -44.0 -41.25 0.75 HT/VHT20 Beam Forming, M16 to M23 4 7 -53.9 -59.8 -59.4 -58.0 0.1 -44.0 -41.25 0.75 <	HT/VHT20, M16 to M23	-		-50.5				0.1			
HT/VHT20, M16 to M23 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HT/VHT20, M24 to M31 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HT/VHT20 Beam Forming, M0 to M7 2 9 -53.9 -59.8 0.1 -43.6 -41.25 2.34 HT/VHT20 Beam Forming, M0 to M7 3 11 -55.6 -60.5 -61.1 0.1 -44.25 -41.25 1.24 HT/VHT20 Beam Forming, M6 to M23 3 6 -50.5 -57.1 -58.1 0.1 -44.0 -41.25 0.76 HT/VHT20 Beam Forming, M6 to M15 4 9 -53.9 -59.8 -58.0 0.1 -44.0 -41.25 0.75 HT/VHT20 Beam Forming, M16 to M23 4 7 -53.9 -59.8 -58.0 0.1 -44.0 -41.25 2.75 HT/VHT20 Beam Forming, M24 to M31 4 6 -50.5 -57.1 -58.1 -58.0 0.1 -44.0 -41.25 2.84 HT/VHT20 STBC, M0 to M7 <td>HT/VHT20, M0 to M7</td> <td>4</td> <td>6</td> <td>-50.5</td> <td>-57.1</td> <td>-58.1</td> <td>-55.2</td> <td>0.1</td> <td>-42.1</td> <td>-41.25</td> <td>0.81</td>	HT/VHT20, M0 to M7	4	6	-50.5	-57.1	-58.1	-55.2	0.1	-42.1	-41.25	0.81
HT/VHT20, M24 to M31 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HT/VHT20 Beam Forming, M0 to M7 2 9 -53.9 -59.8 0.1 -43.6 -41.25 2.60 HT/VHT20 Beam Forming, M0 to M7 3 11 -55.6 -60.5 -61.1 0.1 -42.5 -41.25 1.24 HT/VHT20 Beam Forming, M16 to M23 3 6 -50.5 -57.1 -58.1 0.1 -44.0 -41.25 1.76 HT/VHT20 Beam Forming, M16 to M23 3 6 -50.5 -57.1 -58.1 0.1 -42.0 -41.25 0.72 HT/VHT20 Beam Forming, M16 to M23 4 7 -53.9 -59.8 -59.4 -58.0 0.1 -41.2 0.72 HT/VHT20 Beam Forming, M24 to M31 4 6 -50.5 -57.1 -81.1 0.1 -43.0 -41.25 2.75 HT/VHT20 STBC, M0 to M7 2 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 1.84 HT/VHT20 STBC, M0 to M7 4	HT/VHT20, M8 to M15	4	6	-50.5		-58.1	-55.2	0.1	-42.1	-41.25	0.81
HT/VHT20 Beam Forming, M0 to M7 2 9 -53.9 -59.8 0.1 -43.9 -41.25 2.60 HT/VHT20 Beam Forming, M0 to M7 3 11 -55.6 -60.5 -61.1 0.1 -43.6 -41.25 2.34 HT/VHT20 Beam Forming, M6 to M15 3 8 -53.9 -59.8 -61.1 0.1 -42.6 -41.25 1.72 HT/VHT20 Beam Forming, M16 to M23 3 6 -50.5 -57.1 -58.1 0.1 -40.0 -41.25 0.41 -41.05 1.72 HT/VHT20 Beam Forming, M16 to M23 3 6 -50.5 -57.1 -58.0 0.1 -41.0 -41.25 0.75 HT/VHT20 Beam Forming, M16 to M23 4 7 -53.9 -59.8 -59.4 -58.0 0.1 -42.0 -41.25 0.75 HT/VHT20 Beam Forming, M24 to M31 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.0 41.25 2.34 HT/VHT20 STBC, M0 to M7 3 6 -50.5 -57.1 -58.1 55.2 0.1 -42.1 41.25 0.81	HT/VHT20, M16 to M23	4	6	-50.5	-57.1	-58.1	-55.2	0.1	-42.1	-41.25	0.81
HT/VHT20 Beam Forming, M8 to M15 2 6 -50.5 -57.1 0.1 -43.6 -41.25 2.34 HT/VHT20 Beam Forming, M0 to M7 3 11 -55.6 -60.5 -61.1 0.1 -42.5 -14.25 1.24 HT/VHT20 Beam Forming, M6 to M23 3 6 -50.5 -57.1 -58.1 0.1 -44.0 -41.25 1.76 HT/VHT20 Beam Forming, M16 to M23 3 6 -50.5 -57.1 -58.1 0.11 -42.0 -41.25 0.76 HT/VHT20 Beam Forming, M16 to M23 4 7 -53.9 -59.8 -59.4 -58.0 0.1 -42.0 -41.25 0.75 HT/VHT20 Beam Forming, M24 to M31 4 6 -50.5 -57.1 -58.1 52.0 0.1 -42.0 -41.25 0.31 HT/VHT20 STBC, M0 to M7 2 6 -50.5 -57.1 -58.1 0.1 -43.6 -41.25 0.81 HE20, M0 to M9 1ss 1 6 -50.2 -54.9 0.1 -44.1 41.25 0.85 HE20, M0 to M9 1ss 1 6	HT/VHT20, M24 to M31	4	6	-50.5	-57.1	-58.1	-55.2	0.1	-42.1	-41.25	0.81
HT/VHT20 Beam Forming, M0 to M7 3 11 -55.6 -60.5 -61.1 0.1 -42.5 -41.25 1.24 HT/VHT20 Beam Forming, M6 to M15 3 8 -53.9 -59.8 -59.4 0.1 -44.0 -41.25 2.73 HT/VHT20 Beam Forming, M0 to M7 4 12 -56.7 -51.9 -60.9 0.1 -41.0 -41.25 0.42 HT/VHT20 Beam Forming, M6 to M15 4 9 -53.9 -59.8 -59.4 -58.0 0.1 -44.0 -41.25 0.42 HT/VHT20 Beam Forming, M6 to M23 4 7 -53.9 -59.8 -59.4 -58.0 0.1 -44.0 -41.25 0.42 HT/VHT20 Beam Forming, M24 to M31 4 6 -50.5 -57.1 -58.1 0.1 -43.0 -41.25 0.31 HT/VHT20 STBC, M0 to M7 3 6 -50.5 -57.1 -58.1 0.1 -44.0 -41.25 0.88 HE20, M0 to M9 1ss 1 6 -50.2 -54.9 0.1 -44.2 -41.25 1.62 HE20, M0 to M9 1ss 1 <	HT/VHT20 Beam Forming, M0 to M7	2		-53.9	-59.8			0.1	-43.9	-41.25	2.60
HT/VHT20 Beam Forming, M8 to M15 3 8 -53.9 -59.4 0.1 -44.0 -41.25 2.73 HT/VHT20 Beam Forming, M16 to M23 3 6 -50.5 -57.1 -58.1 0.1 -43.0 -41.25 1.76 HT/VHT20 Beam Forming, M16 to M23 4 9 -53.9 -59.4 -58.0 0.1 -44.0 -41.25 0.72 HT/VHT20 Beam Forming, M16 to M23 4 7 -53.9 -59.4 -58.0 0.1 -44.0 -41.25 0.75 HT/VHT20 Beam Forming, M24 to M31 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HT/VHT20 STBC, M0 to M7 2 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HE20, M0 to M9 1ss 1 6 -50.2 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.88 HE20, M0 to M9 1ss 1 6 -50.2 -54.9 0.1 -44.2 -41.25 0.62 HE20, M0 to M9 1ss 3 6	HT/VHT20 Beam Forming, M8 to M15	2	6	-50.5	-57.1			0.1	-43.6	-41.25	2.34
HT/VHT20 Beam Forming, M16 to M23 3 6 -50.5 -57.1 -58.1 0.1 -43.0 -41.25 1.76 HT/VHT20 Beam Forming, M0 to M7 4 12 -56.7 -61.9 -61.9 -60.9 0.1 -41.7 -41.25 0.42 HT/VHT20 Beam Forming, M8 to M15 4 9 -53.9 -59.8 -59.4 -58.0 0.1 -42.0 -41.25 0.75 HT/VHT20 Beam Forming, M2 to M31 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 2.34 HT/VHT20 STBC, M0 to M7 3 6 -50.5 -57.1 -58.1 0.1 -43.6 -41.25 2.34 HT/VHT20 STBC, M0 to M7 4 6 -50.2 -57.1 -58.1 0.1 -44.1 -41.25 1.86 HE20, M0 to M9 1ss 1 6 -50.2 -54.9 0.1 -44.1 -41.25 1.62 HE20, M0 to M9 1ss 3 6 -50.2 -54.9 0.1 -42.9 -41.25 1.62 HE20, M0 to M9 2ss 3 6 -50	HT/VHT20 Beam Forming, M0 to M7	3	11	-55.6	-60.5	-61.1		0.1	-42.5	-41.25	1.24
HT/VHT20 Beam Forming, M0 to M7 4 12 -56.7 -61.9 -60.9 0.1 -41.7 -41.25 0.42 HT/VHT20 Beam Forming, M8 to M15 4 9 -53.9 -59.8 -59.4 -58.0 0.1 -42.0 -41.25 0.75 HT/VHT20 Beam Forming, M24 to M31 4 6 -50.5 -57.1 -58.0 0.1 -42.0 -41.25 0.75 HT/VHT20 STBC, M0 to M7 2 6 -50.5 -57.1 -58.1 0.1 -43.0 -41.25 0.36 HT/VHT20 STBC, M0 to M7 3 6 -50.5 -57.1 -58.1 0.1 -43.0 -41.25 0.81 HT/VHT20 STBC, M0 to M7 4 6 -50.5 -57.1 -58.1 0.1 -42.1 -41.25 0.81 HE20, M0 to M9 1ss 1 6 -50.2 -54.9 0.1 -42.2 -41.25 1.62 HE20, M0 to M9 1ss 3 6 -50.2 -54.9 -56.7 0.1 -42.2 -41.25 0.95 HE20, M0 to M9 2ss 3 6 -50.2 -54.9	HT/VHT20 Beam Forming, M8 to M15	3	8	-53.9	-59.8	-59.4		0.1	-44.0	-41.25	2.73
HT/VHT20 Beam Forming, M8 to M15 4 9 -53.9 -59.8 -59.4 -58.0 0.1 -42.0 -41.25 0.75 HT/VHT20 Beam Forming, M16 to M23 4 7 -53.9 -59.8 -59.4 -58.0 0.1 -44.0 -41.25 0.75 HT/VHT20 Beam Forming, M24 to M31 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HT/VHT20 STBC, M0 to M7 2 6 -50.5 -57.1 -58.1 0.1 -43.0 -41.25 1.81 HT/VHT20 STBC, M0 to M7 4 6 -50.2 -57.1 -58.1 0.1 -42.0 -41.25 0.81 HE20, M0 to M9 1ss 1 6 -50.2 -54.9 0.1 -42.9 -41.25 1.62 HE20, M0 to M9 1ss 2 6 -50.2 -54.9 -0.1 -42.9 -41.25 0.62 HE20, M0 to M9 2ss 3 6 -50.2 -54.9 -56.7 0.1 -42.2 -41.25 0.95 HE20, M0 to M9 2ss 3 6 -50.2	HT/VHT20 Beam Forming, M16 to M23	3	6	-50.5	-57.1	-58.1		0.1	-43.0	-41.25	1.76
HT/VHT20 Beam Forming, M16 to M23 4 7 -53.9 -59.8 -59.4 -58.0 0.1 -44.0 -41.25 2.75 HT/VHT20 Beam Forming, M24 to M31 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HT/VHT20 STBC, M0 to M7 2 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HT/VHT20 STBC, M0 to M7 3 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HT/VHT20 STBC, M0 to M7 4 6 -50.2 - 0.1 -43.0 -41.25 0.81 HE20, M0 to M9 1ss 1 6 -50.2 -54.9 0.1 -42.2 -41.25 1.62 HE20, M0 to M9 2ss 2 6 -50.2 -54.9 -66.7 0.1 -42.2 -41.25 0.95 HE20, M0 to M9 2ss 3 6 -50.2 -54.9 -56.7 0.1 -42.2 -41.25 0.95 HE20, M0 to M9 2ss 4 6 -50.2 <td>HT/VHT20 Beam Forming, M0 to M7</td> <td>4</td> <td>12</td> <td>-56.7</td> <td>-61.9</td> <td>-61.9</td> <td>-60.9</td> <td>0.1</td> <td>-41.7</td> <td>-41.25</td> <td>0.42</td>	HT/VHT20 Beam Forming, M0 to M7	4	12	-56.7	-61.9	-61.9	-60.9	0.1	-41.7	-41.25	0.42
HT/VHT20 Beam Forming, M24 to M31 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HT/VHT20 STBC, M0 to M7 2 6 -50.5 -57.1 0.1 -43.6 -41.25 2.34 HT/VHT20 STBC, M0 to M7 3 6 -50.5 -57.1 -58.1 0.1 -43.6 -41.25 2.34 HT/VHT20 STBC, M0 to M7 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HE20, M0 to M9 1ss 1 6 -50.2 -57.4 -58.1 -55.2 0.1 -42.9 -41.25 0.81 HE20, M0 to M9 1ss 2 6 -50.2 -54.9 0.1 -42.9 -41.25 1.62 HE20, M0 to M9 2ss 3 6 -50.2 -54.9 -56.7 0.1 -42.2 -41.25 0.95 HE20, M0 to M9 2ss 3 6 -50.2 -54.9 -56.7 0.1 -42.2 -41.25 0.95 HE20, M0 to M9 2ss 4 6 -50.2 -54.9 <t< td=""><td>HT/VHT20 Beam Forming, M8 to M15</td><td>4</td><td>9</td><td>-53.9</td><td>-59.8</td><td>-59.4</td><td>-58.0</td><td>0.1</td><td>-42.0</td><td>-41.25</td><td>0.75</td></t<>	HT/VHT20 Beam Forming, M8 to M15	4	9	-53.9	-59.8	-59.4	-58.0	0.1	-42.0	-41.25	0.75
HT/VHT20 STBC, M0 to M7 2 6 -50.5 -57.1 0.1 -43.6 -41.25 2.34 HT/VHT20 STBC, M0 to M7 3 6 -50.5 -57.1 -58.1 0.1 -43.0 -41.25 1.76 HT/VHT20 STBC, M0 to M7 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HE20, M0 to M9 1ss 1 6 -50.2 -54.9 0.1 -44.1 -41.25 0.88 HE20, M0 to M9 1ss 2 6 -50.2 -54.9 0.1 -42.9 -41.25 1.62 HE20, M0 to M9 2ss 2 6 -50.2 -54.9 -56.7 0.1 -42.2 -41.25 0.95 HE20, M0 to M9 2ss 3 6 -50.2 -54.9 -56.7 0.1 -42.2 -41.25 0.95 HE20, M0 to M9 3ss 3 6 -50.2 -54.9 -56.7 0.1 -42.2 -41.25 0.95 HE20, M0 to M9 3ss 4 6 -50.2 -54.9 -56.7 -55.3 0.1 -41.4	HT/VHT20 Beam Forming, M16 to M23	4	7	-53.9	-59.8	-59.4	-58.0	0.1	-44.0	-41.25	2.75
HT/VHT20 STBC, M0 to M7 3 6 -50.5 -57.1 -58.1 0.1 -43.0 -41.25 1.76 HT/VHT20 STBC, M0 to M7 4 6 -50.5 -57.1 -58.1 -55.2 0.1 -42.1 -41.25 0.81 HE20, M0 to M9 1ss 1 6 -50.2 -57.9 0.1 -44.1 -41.25 2.88 HE20, M0 to M9 1ss 2 6 -50.2 -54.9 0.1 -42.9 -41.25 1.62 HE20, M0 to M9 2ss 2 6 -50.2 -54.9 0.1 -42.9 -41.25 1.62 HE20, M0 to M9 2ss 3 6 -50.2 -54.9 -56.7 0.1 -42.2 -41.25 0.95 HE20, M0 to M9 2ss 3 6 -50.2 -54.9 -56.7 0.1 -42.2 -41.25 0.95 HE20, M0 to M9 3ss 4 6 -50.2 -54.9 -56.7 -55.3 0.1 -41.4 -41.25 0.16 HE20, M0 to M9 3ss 4 6 -50.2 -54.9 -56.7 -55.3 0.1 <td< td=""><td>HT/VHT20 Beam Forming, M24 to M31</td><td>4</td><td>6</td><td>-50.5</td><td>-57.1</td><td>-58.1</td><td>-55.2</td><td>0.1</td><td>-42.1</td><td>-41.25</td><td>0.81</td></td<>	HT/VHT20 Beam Forming, M24 to M31	4	6	-50.5	-57.1	-58.1	-55.2	0.1	-42.1	-41.25	0.81
HT/VHT20 STBC, M0 to M746-50.5-57.1-58.1-55.20.1-42.1-41.250.81HE20, M0 to M9 1ss16-50.2-0.1-44.1-41.252.88HE20, M0 to M9 1ss26-50.2-54.90.1-42.9-41.251.62HE20, M0 to M9 2ss26-50.2-54.90.1-42.9-41.251.62HE20, M0 to M9 2ss36-50.2-54.9-0.1-42.2-41.250.95HE20, M0 to M9 2ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 3ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 3ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss29-52.2-57.9-56.7-55.30.1-41.4-41.250.16HE20 Beam Formi	HT/VHT20 STBC, M0 to M7	2	6	-50.5	-57.1			0.1	-43.6	-41.25	2.34
HE20, M0 to M9 1ss16-50.200.1-44.1-41.252.88HE20, M0 to M9 1ss26-50.2-54.90.1-42.9-41.251.62HE20, M0 to M9 2ss26-50.2-54.90.1-42.9-41.251.62HE20, M0 to M9 1ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 2ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 3ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 3ss46-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss311-55.2-57.90.1-42.1-41.250.16HE20 Beam Forming, M0 to M9 1ss3 </td <td>HT/VHT20 STBC, M0 to M7</td> <td>3</td> <td>6</td> <td>-50.5</td> <td>-57.1</td> <td>-58.1</td> <td></td> <td>0.1</td> <td>-43.0</td> <td>-41.25</td> <td>1.76</td>	HT/VHT20 STBC, M0 to M7	3	6	-50.5	-57.1	-58.1		0.1	-43.0	-41.25	1.76
HE20, M0 to M9 1ss26-50.2-54.90.1-42.9-41.251.62HE20, M0 to M9 2ss26-50.2-54.90.1-42.9-41.251.62HE20, M0 to M9 1ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 2ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 3ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 3ss46-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 1ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 4ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 4ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, Beam Forming, M0 to M9 1ss311-55.2-61.7-61.20.1-42.4-41.251.62<	HT/VHT20 STBC, M0 to M7	4	6	-50.5	-57.1	-58.1	-55.2	0.1	-42.1	-41.25	0.81
HE20, M0 to M9 2ss26-50.2-54.90.1-42.9-41.251.62HE20, M0 to M9 1ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 2ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 3ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 3ss46-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 2ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 2ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 4ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 4ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20 Beam Forming, M0 to M9 1ss29-52.2-57.9-58.90.1-42.4-41.251.62HE20 Beam Forming, M0 to M9 3ss36-50.2-54.9-56.70.1<	HE20, M0 to M9 1ss	1	6	-50.2				0.1	-44.1	-41.25	2.88
HE20, M0 to M9 1ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 2ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 3ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 3ss46-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 1ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 2ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 4ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 4ss29-52.2-57.9-56.70.1-42.2-41.251.62HE20 Beam Forming, M0 to M9 1ss311-55.2-61.7-61.20.1-42.4-41.251.17HE20 Beam Forming, M0 to M9 3ss36-50.2-54.9-56.70.1 <td>HE20, M0 to M9 1ss</td> <td>2</td> <td>6</td> <td>-50.2</td> <td>-54.9</td> <td></td> <td></td> <td>0.1</td> <td>-42.9</td> <td>-41.25</td> <td>1.62</td>	HE20, M0 to M9 1ss	2	6	-50.2	-54.9			0.1	-42.9	-41.25	1.62
HE20, M0 to M9 2ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 3ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 1ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 2ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 4ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20 Beam Forming, M0 to M9 1ss29-52.2-57.90.1-42.1-41.250.85HE20 Beam Forming, M0 to M9 2ss38-52.2-57.9-61.7-61.20.1-42.4-41.251.62HE20 Beam Forming, M0 to M9 3ss36-50.2-54.9-56.70.1-42.4-41.250.95HE20 Beam Forming, M0 to M9 3ss36-50.2-54.9-56.70.1-42.4-41.250.87HE20 Beam Forming, M0 to M9 3ss47-52.2	HE20, M0 to M9 2ss	2	6	-50.2	-54.9			0.1	-42.9	-41.25	1.62
HE20, M0 to M9 3ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20, M0 to M9 1ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 2ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 4ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20 Beam Forming, M0 to M9 1ss29-52.2-57.90.1-42.1-41.250.85HE20 Beam Forming, M0 to M9 1ss311-55.2-61.7-61.20.1-42.4-41.251.62HE20 Beam Forming, M0 to M9 1ss311-55.2-57.9-58.90.1-42.4-41.251.17HE20 Beam Forming, M0 to M9 2ss38-52.2-57.9-58.90.1-42.1-41.250.95HE20 Beam Forming, M0 to M9 3ss412-56.8-62.5-63.0-61.80.1-42.1-41.250.87HE20 Beam Forming, M0 to M9 3ss47-52.2-57.9-58.9-57.10.1-42.6-41.251.09HE20 Beam Forming, M0 to M9 3ss4	HE20, M0 to M9 1ss	3	6	-50.2	-54.9	-56.7		0.1	-42.2	-41.25	0.95
HE20, M0 to M9 1ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 2ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 4ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20 Beam Forming, M0 to M9 1ss29-52.2-57.90.1-42.1-41.250.85HE20 Beam Forming, M0 to M9 2ss26-50.2-54.90.1-42.9-41.251.62HE20 Beam Forming, M0 to M9 1ss311-55.2-61.7-61.20.1-42.4-41.251.20HE20 Beam Forming, M0 to M9 2ss38-52.2-57.9-58.90.1-42.4-41.251.17HE20 Beam Forming, M0 to M9 3ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20 Beam Forming, M0 to M9 3ss412-56.8-62.5-63.0-61.80.1-42.1-41.250.87HE20 Beam Forming, M0 to M9 3ss47-52.2-57.9-58.9-57.10.1-42.6-41.251.32HE20 Beam Forming, M0 to M9 3ss4 </td <td>HE20, M0 to M9 2ss</td> <td>3</td> <td>6</td> <td>-50.2</td> <td>-54.9</td> <td>-56.7</td> <td></td> <td>0.1</td> <td>-42.2</td> <td>-41.25</td> <td>0.95</td>	HE20, M0 to M9 2ss	3	6	-50.2	-54.9	-56.7		0.1	-42.2	-41.25	0.95
HE20, M0 to M9 2ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 4ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20 Beam Forming, M0 to M9 1ss29-52.2-57.90.1-42.1-41.250.85HE20 Beam Forming, M0 to M9 2ss26-50.2-54.90.1-42.9-41.251.62HE20 Beam Forming, M0 to M9 2ss311-55.2-61.7-61.20.1-42.4-41.251.20HE20 Beam Forming, M0 to M9 2ss38-52.2-57.9-58.90.1-42.4-41.251.20HE20 Beam Forming, M0 to M9 2ss36-50.2-54.9-56.70.1-42.4-41.251.17HE20 Beam Forming, M0 to M9 3ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20 Beam Forming, M0 to M9 3ss412-56.8-62.5-63.0-61.80.1-42.1-41.250.87HE20 Beam Forming, M0 to M9 3ss47-52.2-57.9-58.9-57.10.1-42.6-41.251.32HE20 Beam Forming, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20 Beam Forming, M0 to M9 3ss	HE20, M0 to M9 3ss	3	6	-50.2	-54.9	-56.7		0.1	-42.2	-41.25	0.95
HE20, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20, M0 to M9 4ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20 Beam Forming, M0 to M9 1ss29-52.2-57.90.1-42.1-41.250.85HE20 Beam Forming, M0 to M9 2ss26-50.2-54.90.1-42.9-41.251.62HE20 Beam Forming, M0 to M9 2ss311-55.2-61.7-61.20.1-42.4-41.251.20HE20 Beam Forming, M0 to M9 2ss38-52.2-57.9-58.90.1-42.4-41.251.20HE20 Beam Forming, M0 to M9 3ss36-50.2-54.9-56.70.1-42.4-41.251.20HE20 Beam Forming, M0 to M9 3ss36-50.2-54.9-56.70.1-42.4-41.250.95HE20 Beam Forming, M0 to M9 3ss412-56.8-62.5-63.0-61.80.1-42.1-41.250.95HE20 Beam Forming, M0 to M9 3ss47-52.2-57.9-58.9-57.10.1-42.6-41.251.09HE20 Beam Forming, M0 to M9 3ss46-50.2-54.9-56.70.1-42.6-41.251.32HE20 Beam Forming, M0 to M9 3ss46-50.2-54.9-56.70.1-42.6-41.251.32HE20 Beam Forming, M0 to M9 3ss4	HE20, M0 to M9 1ss	4	6	-50.2	-54.9	-56.7	-55.3	0.1	-41.4	-41.25	0.16
HE20, M0 to M9 4ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20 Beam Forming, M0 to M9 1ss29-52.2-57.90.1-42.1-41.250.85HE20 Beam Forming, M0 to M9 2ss26-50.2-54.90.1-42.9-41.251.62HE20 Beam Forming, M0 to M9 1ss311-55.2-61.7-61.20.1-42.4-41.251.20HE20 Beam Forming, M0 to M9 1ss38-52.2-57.9-58.90.1-42.4-41.251.20HE20 Beam Forming, M0 to M9 2ss38-52.2-57.9-58.90.1-42.4-41.251.17HE20 Beam Forming, M0 to M9 3ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20 Beam Forming, M0 to M9 3ss412-56.8-62.5-63.0-61.80.1-42.1-41.250.87HE20 Beam Forming, M0 to M9 2ss49-54.1-59.9-60.1-58.70.1-42.3-41.250.87HE20 Beam Forming, M0 to M9 3ss47-52.2-57.9-58.9-57.10.1-42.6-41.251.09HE20 Beam Forming, M0 to M9 3ss46-50.2-54.9-56.70.1-42.6-41.251.32HE20 Beam Forming, M0 to M9 3ss46-50.2-54.9-56.70.1-42.6-41.251.32 <tr<tr>HE20 Beam Forming, M0 to M9 3s</tr<tr>	HE20, M0 to M9 2ss	4	6	-50.2	-54.9	-56.7	-55.3	0.1	-41.4	-41.25	0.16
HE20 Beam Forming, M0 to M9 1ss29-52.2-57.90.1-42.1-41.250.85HE20 Beam Forming, M0 to M9 2ss26-50.2-54.90.1-42.9-41.251.62HE20 Beam Forming, M0 to M9 1ss311-55.2-61.7-61.20.1-42.4-41.251.20HE20 Beam Forming, M0 to M9 2ss38-52.2-57.9-58.90.1-42.4-41.251.17HE20 Beam Forming, M0 to M9 3ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20 Beam Forming, M0 to M9 3ss412-56.8-62.5-63.0-61.80.1-42.1-41.250.87HE20 Beam Forming, M0 to M9 1ss412-56.8-62.5-63.0-61.80.1-42.1-41.250.87HE20 Beam Forming, M0 to M9 3ss47-52.2-57.9-58.9-57.10.1-42.3-41.251.09HE20 Beam Forming, M0 to M9 3ss47-52.2-57.9-58.9-57.10.1-42.6-41.251.32HE20 Beam Forming, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20 STBC, M0 to M9 2ss26-50.2-54.9-56.7-55.30.1-41.2-41.251.62HE20 STBC, M0 to M9 2ss36-50.2-54.9-56.70.1-42.2-41.251.62HE20 ST	HE20, M0 to M9 3ss	4	6	-50.2	-54.9	-56.7	-55.3	0.1	-41.4	-41.25	0.16
HE20 Beam Forming, M0 to M9 2ss26-50.2-54.90.1-42.9-41.251.62HE20 Beam Forming, M0 to M9 1ss311-55.2-61.7-61.20.1-42.4-41.251.20HE20 Beam Forming, M0 to M9 2ss38-52.2-57.9-58.90.1-42.4-41.251.17HE20 Beam Forming, M0 to M9 3ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20 Beam Forming, M0 to M9 1ss412-56.8-62.5-63.0-61.80.1-42.1-41.250.87HE20 Beam Forming, M0 to M9 1ss49-54.1-59.9-60.1-58.70.1-42.3-41.251.09HE20 Beam Forming, M0 to M9 2ss49-54.1-59.9-60.1-58.70.1-42.6-41.251.09HE20 Beam Forming, M0 to M9 3ss47-52.2-57.9-58.9-57.10.1-42.6-41.251.32HE20 Beam Forming, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.251.32HE20 Beam Forming, M0 to M9 4ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20 STBC, M0 to M9 2ss26-50.2-54.9-56.70.1-42.9-41.251.62HE20 STBC, M0 to M9 2ss36-50.2-54.9-56.70.1-42.2-41.250.95 </td <td>HE20, M0 to M9 4ss</td> <td>4</td> <td>6</td> <td>-50.2</td> <td>-54.9</td> <td>-56.7</td> <td>-55.3</td> <td>0.1</td> <td>-41.4</td> <td>-41.25</td> <td>0.16</td>	HE20, M0 to M9 4ss	4	6	-50.2	-54.9	-56.7	-55.3	0.1	-41.4	-41.25	0.16
HE20 Beam Forming, M0 to M9 1ss311-55.2-61.7-61.20.1-42.4-41.251.20HE20 Beam Forming, M0 to M9 2ss38-52.2-57.9-58.90.1-42.4-41.251.17HE20 Beam Forming, M0 to M9 3ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20 Beam Forming, M0 to M9 1ss412-56.8-62.5-63.0-61.80.1-42.1-41.250.87HE20 Beam Forming, M0 to M9 2ss49-54.1-59.9-60.1-58.70.1-42.3-41.251.09HE20 Beam Forming, M0 to M9 3ss47-52.2-57.9-58.9-57.10.1-42.6-41.251.32HE20 Beam Forming, M0 to M9 3ss46-50.2-54.9-56.755.30.1-41.4-41.251.32HE20 Beam Forming, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.251.32HE20 Beam Forming, M0 to M9 4ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20 STBC, M0 to M9 2ss26-50.2-54.9-56.70.1-42.9-41.251.62HE20 STBC, M0 to M9 2ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20 STBC, M0 to M9 2ss36-50.2-54.9-56.70.1-42.2-41.250.95 </td <td>HE20 Beam Forming, M0 to M9 1ss</td> <td>2</td> <td>9</td> <td>-52.2</td> <td>-57.9</td> <td></td> <td></td> <td>0.1</td> <td>-42.1</td> <td>-41.25</td> <td>0.85</td>	HE20 Beam Forming, M0 to M9 1ss	2	9	-52.2	-57.9			0.1	-42.1	-41.25	0.85
HE20 Beam Forming, M0 to M9 2ss38-52.2-57.9-58.90.1-42.4-41.251.17HE20 Beam Forming, M0 to M9 3ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20 Beam Forming, M0 to M9 1ss412-56.8-62.5-63.0-61.80.1-42.1-41.250.87HE20 Beam Forming, M0 to M9 2ss49-54.1-59.9-60.1-58.70.1-42.3-41.251.09HE20 Beam Forming, M0 to M9 3ss47-52.2-57.9-58.9-57.10.1-42.6-41.251.32HE20 Beam Forming, M0 to M9 3ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20 STBC, M0 to M9 2ss26-50.2-54.9-56.70.1-42.9-41.251.62HE20 STBC, M0 to M9 2ss36-50.2-54.9-56.70.1-42.2-41.250.95	HE20 Beam Forming, M0 to M9 2ss	2	6	-50.2	-54.9			0.1	-42.9	-41.25	1.62
HE20 Beam Forming, M0 to M9 3ss36-50.2-54.9-56.70.1-42.2-41.250.95HE20 Beam Forming, M0 to M9 1ss412-56.8-62.5-63.0-61.80.1-42.1-41.250.87HE20 Beam Forming, M0 to M9 2ss49-54.1-59.9-60.1-58.70.1-42.3-41.251.09HE20 Beam Forming, M0 to M9 3ss47-52.2-57.9-58.9-57.10.1-42.6-41.251.32HE20 Beam Forming, M0 to M9 4ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20 STBC, M0 to M9 2ss26-50.2-54.9-56.70.1-42.9-41.251.62HE20 STBC, M0 to M9 2ss36-50.2-54.9-56.70.1-42.2-41.250.95	HE20 Beam Forming, M0 to M9 1ss	3	11	-55.2	-61.7	-61.2		0.1	-42.4	-41.25	1.20
HE20 Beam Forming, M0 to M9 1ss412-56.8-62.5-63.0-61.80.1-42.1-41.250.87HE20 Beam Forming, M0 to M9 2ss49-54.1-59.9-60.1-58.70.1-42.3-41.251.09HE20 Beam Forming, M0 to M9 3ss47-52.2-57.9-58.9-57.10.1-42.6-41.251.32HE20 Beam Forming, M0 to M9 4ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20 STBC, M0 to M9 2ss26-50.2-54.9-66.70.1-42.9-41.251.62HE20 STBC, M0 to M9 2ss36-50.2-54.9-56.70.1-42.2-41.250.95	HE20 Beam Forming, M0 to M9 2ss	3	8	-52.2	-57.9	-58.9		0.1	-42.4	-41.25	1.17
HE20 Beam Forming, M0 to M9 2ss49-54.1-59.9-60.1-58.70.1-42.3-41.251.09HE20 Beam Forming, M0 to M9 3ss47-52.2-57.9-58.9-57.10.1-42.6-41.251.32HE20 Beam Forming, M0 to M9 4ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20 STBC, M0 to M9 2ss26-50.2-54.9-56.70.1-42.9-41.251.62HE20 STBC, M0 to M9 2ss36-50.2-54.9-56.70.1-42.2-41.250.95	HE20 Beam Forming, M0 to M9 3ss	3	6	-50.2	-54.9	-56.7		0.1	-42.2	-41.25	0.95
HE20 Beam Forming, M0 to M9 3ss47-52.2-57.9-58.9-57.10.1-42.6-41.251.32HE20 Beam Forming, M0 to M9 4ss46-50.2-54.9-56.7-55.30.1-41.4-41.250.16HE20 STBC, M0 to M9 2ss26-50.2-54.9-60.1-42.9-41.251.62HE20 STBC, M0 to M9 2ss36-50.2-54.9-56.70.1-42.2-41.250.95	HE20 Beam Forming, M0 to M9 1ss	4	12	-56.8	-62.5	-63.0	-61.8	0.1	-42.1	-41.25	0.87
HE20 Beam Forming, M0 to M9 4ss 4 6 -50.2 -54.9 -56.7 -55.3 0.1 -41.4 -41.25 0.16 HE20 STBC, M0 to M9 2ss 2 6 -50.2 -54.9 -6 0.1 -42.9 -41.25 1.62 HE20 STBC, M0 to M9 2ss 3 6 -50.2 -54.9 -56.7 0.1 -42.2 -41.25 0.95	HE20 Beam Forming, M0 to M9 2ss	4	9	-54.1	-59.9	-60.1	-58.7	0.1	-42.3	-41.25	1.09
HE20 STBC, M0 to M9 2ss 2 6 -50.2 -54.9 0.1 -42.9 -41.25 1.62 HE20 STBC, M0 to M9 2ss 3 6 -50.2 -54.9 -56.7 0.1 -42.2 -41.25 0.95	HE20 Beam Forming, M0 to M9 3ss	4	7	-52.2	-57.9	-58.9	-57.1	0.1	-42.6	-41.25	1.32
HE20 STBC, M0 to M9 2ss 3 6 -50.2 -54.9 -56.7 0.1 -42.2 -41.25 0.95	HE20 Beam Forming, M0 to M9 4ss	4	6	-50.2	-54.9	-56.7	-55.3	0.1	-41.4	-41.25	0.16
	HE20 STBC, M0 to M9 2ss	2	6	-50.2	-54.9			0.1	-42.9	-41.25	1.62
HE20 STBC, M0 to M9 2ss 4 6 -50.2 -54.9 -56.7 -55.3 0.1 -41.4 -41.25 0.16	HE20 STBC, M0 to M9 2ss	3	6	-50.2	-54.9	-56.7		0.1	-42.2	-41.25	0.95
	HE20 STBC, M0 to M9 2ss	4	6	-50.2	-54.9	-56.7	-55.3	0.1	-41.4	-41.25	0.16

Page No: 65 of 88

Conducted Bandedge Average, 2412 MHz, HT/VHT20 Beam Forming, M8 to M15

Antenna A

Antenna C


սիսիս

cisco

Antenna B

Page No: 66 of 88

Conducted Bandedge Average, 2462 MHz, CCK, 1 to 11 Mbps

Antenna B

Startight Spectrum Stationers for	And Salary Local Street And Street St								
enter Freq 2.86450 AST		1000-003224	Alvg Tape RMS Avg/Tpid: 135/120	TRACK DECKED	Pressance				
E miney Ref 10.00	dBm		Mo	2 3.228 1 GHz -62.910 dBm	Auto Ture				
Traca 1 Para					Center Free J. Mintology GH				
0					Start Free 3.44200000 GH				
Linn		*******		2	Stop Pres £297060000 GH				
tært 2.4620 GHz Res EW 1.0 MHz	ave	W 3.0 MH/	Gwrep 1	Stop 3.2679 GHz 060 ms (691 pts)	CF She BL SOCCE MA				
	2.485.6 GHz 3.228 1 GHz	43 812 diim 82 910 dilee			Freq Offse CH				
7 0 0 10					Scale Type				
NE.			2016						

Antenna C

Page No: 67 of 88

Conducted Bandedge Peak Table

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Tx 3 Bandedge Level (dBm)	Tx 4 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	6	-37.1				-30.9	-21.25	9.66
	CCK, 1 to 11 Mbps	2	6	-37.1	-41.5			-29.6	-21.25	8.31
	CCK, 1 to 11 Mbps	3	6	-37.1	-41.5	-44.9		-29.1	-21.25	7.81
	CCK, 1 to 11 Mbps	4	6	-38.3	-42.8	-45.2	-43.8	-29.5	-21.25	8.21
	Non HT20, 6 to 54 Mbps	1	6	-37.9				-31.9	-21.25	10.60
	Non HT20, 6 to 54 Mbps	2	6	-37.9	-44.4			-31.0	-21.25	9.73
	Non HT20, 6 to 54 Mbps	3	6	-37.9	-44.4	-45.7		-30.4	-21.25	9.17
	Non HT20, 6 to 54 Mbps	4	6	-41.9	-45.9	-49.4	-46.8	-33.1	-21.25	11.82
	Non HT20 Beam Forming, 6 to 54 Mbps	2	9	-41.9	-45.9			-31.4	-21.25	10.15
	Non HT20 Beam Forming, 6 to 54 Mbps	3	11	-45.8	-50.1	-51.7		-32.6	-21.25	11.39
	Non HT20 Beam Forming, 6 to 54 Mbps	4	12	-48.2	-52.1	-53.8	-49.6	-32.3	-21.25	11.09
	HT/VHT20, M0 to M7	1	6	-35.5				-29.4	-21.25	8.20
	HT/VHT20, M0 to M7	2	6	-35.5	-40.9			-28.3	-21.25	7.10
	HT/VHT20, M8 to M15	2	6	-35.5	-40.9			-28.3	-21.25	7.10
2412	HT/VHT20, M0 to M7	3	6	-35.5	-40.9	-46.0		-28.1	-21.25	6.81
	HT/VHT20, M8 to M15	3	6	-35.5	-40.9	-46.0		-28.1	-21.25	6.81
	HT/VHT20, M16 to M23	3	6	-35.5	-40.9	-46.0		-28.1	-21.25	6.81
	HT/VHT20, M0 to M7	4	6	-40.1	-45.4	-48.0	-45.4	-31.6	-21.25	10.36
	HT/VHT20, M8 to M15	4	6	-40.1	-45.4	-48.0	-45.4	-31.6	-21.25	10.36
	HT/VHT20, M16 to M23	4	6	-40.1	-45.4	-48.0	-45.4	-31.6	-21.25	10.36
	HT/VHT20, M24 to M31	4	6	-40.1	-45.4	-48.0	-45.4	-31.6	-21.25	10.36
	HT/VHT20 Beam Forming, M0 to M7	2	9	-42.4	-45.5			-31.6	-21.25	10.37
	HT/VHT20 Beam Forming, M8 to M15	2	6	-35.5	-40.9			-28.3	-21.25	7.10
	HT/VHT20 Beam Forming, M0 to M7	3	11	-43.3	-48.1	-49.4		-30.3	-21.25	9.02
	HT/VHT20 Beam Forming, M8 to M15	3	8	-40.1	-45.4	-48.0		-30.4	-21.25	9.16
	HT/VHT20 Beam Forming, M16 to M23	3	6	-35.5	-40.9	-46.0		-28.1	-21.25	6.81
	HT/VHT20 Beam Forming, M0 to M7	4	12	-45.4	-51.7	-52.9	-46.9	-30.1	-21.25	8.83
	HT/VHT20 Beam Forming, M8 to M15	4	9	-43.3	-48.1	-49.4	-47.4	-31.3	-21.25	10.06
	HT/VHT20 Beam Forming, M16 to M23	4	7	-40.1	-45.4	-48.0	-45.4	-30.6	-21.25	9.36

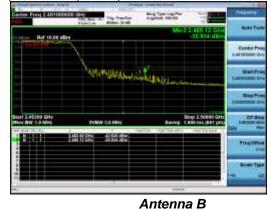
Page No: 68 of 88

	HT/VHT20 Beam Forming, M24 to M31	4	6	-40.1	-45.4	-48.0	-45.4	-31.6	-21.25	10.36
	HT/VHT20 STBC, M0 to M7	2	6	-35.5	-40.9			-28.3	-21.25	7.10
	HT/VHT20 STBC, M0 to M7	3	6	-35.5	-40.9	-46.0		-28.1	-21.25	6.81
	HT/VHT20 STBC, M0 to M7	4	6	-40.1	-45.4	-48.0	-45.4	-31.6	-21.25	10.36
	HE20, M0 to M9 1ss	1	6	-31.7				-25.6	-21.25	4.38
	HE20, M0 to M9 1ss	2	6	-35.9	-42.2			-28.9	-21.25	7.67
	HE20, M0 to M9 2ss	2	6	-35.9	-42.2			-28.9	-21.25	7.67
	HE20, M0 to M9 1ss	3	6	-35.9	-42.2	-46.8		-28.6	-21.25	7.39
	HE20, M0 to M9 2ss	3	6	-35.9	-42.2	-46.8		-28.6	-21.25	7.39
	HE20, M0 to M9 3ss	3	6	-35.9	-42.2	-46.8		-28.6	-21.25	7.39
	HE20, M0 to M9 1ss	4	6	-42.0	-46.0	-49.1	-45.4	-32.8	-21.25	11.57
	HE20, M0 to M9 2ss	4	6	-42.0	-46.0	-49.1	-45.4	-32.8	-21.25	11.57
	HE20, M0 to M9 3ss	4	6	-42.0	-46.0	-49.1	-45.4	-32.8	-21.25	11.57
	HE20, M0 to M9 4ss	4	6	-42.0	-46.0	-49.1	-45.4	-32.8	-21.25	11.57
	HE20 Beam Forming, M0 to M9 1ss	2	9	-43.4	-48.1			-33.1	-21.25	11.82
	HE20 Beam Forming, M0 to M9 2ss	2	6	-35.9	-42.2			-28.9	-21.25	7.67
	HE20 Beam Forming, M0 to M9 1ss	3	11	-45.4	-50.8	-50.7		-32.3	-21.25	11.09
	HE20 Beam Forming, M0 to M9 2ss	3	8	-42.0	-46.0	-49.1		-31.9	-21.25	10.66
	HE20 Beam Forming, M0 to M9 3ss	3	6	-35.9	-42.2	-46.8		-28.6	-21.25	7.39
	HE20 Beam Forming, M0 to M9 1ss		12	-44.0	-53.7	-54.3	-51.2	-30.5	-21.25	9.25
	HE20 Beam Forming, M0 to M9 2ss		9	-45.4	-50.8	-50.7	-46.1	-32.5	-21.25	11.22
	HE20 Beam Forming, M0 to M9 3ss	4	7	-42.0	-46.0	-49.1	-45.4	-31.8	-21.25	10.57
	HE20 Beam Forming, M0 to M9 4ss	4	6	-42.0	-46.0	-49.1	-45.4	-32.8	-21.25	11.57
	HE20 STBC, M0 to M9 2ss	2	6	-35.9	-42.2			-28.9	-21.25	7.67
	HE20 STBC, M0 to M9 2ss	3	6	-35.9	-42.2	-46.8		-28.6	-21.25	7.39
	HE20 STBC, M0 to M9 2ss	4	6	-42.0	-46.0	-49.1	-45.4	-32.8	-21.25	11.57
	CCK, 1 to 11 Mbps	1	6	-38.2				-32.0	-21.25	10.76
	CCK, 1 to 11 Mbps	2	6	-38.2	-39.7			-29.7	-21.25	8.43
	CCK, 1 to 11 Mbps	3	6	-38.2	-39.7	-42.4		-28.8	-21.25	7.56
	CCK, 1 to 11 Mbps	4	6	-38.6	-40.9	-46.5	-42.3	-29.0	-21.25	7.78
	Non HT20, 6 to 54 Mbps	1	6	-31.0				-25.0	-21.25	3.70
	Non HT20, 6 to 54 Mbps	2	6	-31.0	-36.4			-23.9	-21.25	2.60
	Non HT20, 6 to 54 Mbps	3	6	-35.1	-44.8	-46.0		-28.3	-21.25	7.05
2462	Non HT20, 6 to 54 Mbps	4	6	-35.1	-44.8	-46.0	-43.3	-27.8	-21.25	6.53
24	Non HT20 Beam Forming, 6 to 54 Mbps	2	9	-35.1	-44.8			-25.6	-21.25	4.36
	Non HT20 Beam Forming, 6 to 54 Mbps	3	11	-40.6	-47.4	-48.2		-28.1	-21.25	6.90
	Non HT20 Beam Forming, 6 to 54 Mbps	4	12	-46.2	-49.4	-49.8	-48.9	-30.3	-21.25	9.01
	HT/VHT20, M0 to M7	1	6	-33.9				-27.8	-21.25	6.60
	HT/VHT20, M0 to M7	2	6	-33.9	-40.6			-27.0	-21.25	5.76
	HT/VHT20, M8 to M15	2	6	-33.9	-40.6			-27.0	-21.25	5.76
	HT/VHT20, M0 to M7	3	6	-33.9	-40.6	-43.6		-26.6	-21.25	5.39
	HT/VHT20, M8 to M15	3	6	-33.9	-40.6	-43.6		-26.6	-21.25	5.39
		-								

Page No: 69 of 88

HT/VHT20, M16 to M23	3	6	-33.9	-40.6	-43.6		-26.6	-21.25	5.39
HT/VHT20, M0 to M7	4	6	-33.9	-40.6	-43.6	-36.0	-25.0	-21.25	3.73
HT/VHT20, M8 to M15	4	6	-33.9	-40.6	-43.6	-36.0	-25.0	-21.25	3.73
HT/VHT20, M16 to M23	4	6	-33.9	-40.6	-43.6	-36.0	-25.0	-21.25	3.73
HT/VHT20, M24 to M31	4	6	-33.9	-40.6	-43.6	-36.0	-25.0	-21.25	3.73
HT/VHT20 Beam Forming, M0 to M7	2	9	-37.0	-46.3			-27.5	-21.25	6.22
HT/VHT20 Beam Forming, M8 to M15	2	6	-33.9	-40.6			-27.0	-21.25	5.76
HT/VHT20 Beam Forming, M0 to M7	3	11	-42.6	-49.2	-50.9		-30.2	-21.25	8.94
HT/VHT20 Beam Forming, M8 to M15	3	8	-37.0	-46.3	-46.2		-28.0	-21.25	6.77
HT/VHT20 Beam Forming, M16 to M23	3	6	-33.9	-40.6	-43.6		-26.6	-21.25	5.39
HT/VHT20 Beam Forming, M0 to M7	4	12	-42.9	-49.0	-51.6	-48.5	-28.7	-21.25	7.41
HT/VHT20 Beam Forming, M8 to M15	4	9	-37.0	-46.3	-46.2	-44.1	-26.4	-21.25	5.14
HT/VHT20 Beam Forming, M16 to M23	4	7	-37.0	-46.3	-46.2	-44.1	-28.4	-21.25	7.14
HT/VHT20 Beam Forming, M24 to M31	4	6	-33.9	-40.6	-43.6	-36.0	-25.0	-21.25	3.73
HT/VHT20 STBC, M0 to M7	2	6	-33.9	-40.6			-27.0	-21.25	5.76
HT/VHT20 STBC, M0 to M7	3	6	-33.9	-40.6	-43.6		-26.6	-21.25	5.39
HT/VHT20 STBC, M0 to M7	4	6	-33.9	-40.6	-43.6	-36.0	-25.0	-21.25	3.73
HE20, M0 to M9 1ss	1	6	-30.6				-24.5	-21.25	3.28
HE20, M0 to M9 1ss	2	6	-30.6	-35.9			-23.4	-21.25	2.16
HE20, M0 to M9 2ss	2	6	-30.6	-35.9			-23.4	-21.25	2.16
HE20, M0 to M9 1ss	3	6	-30.6	-35.9	-39.0		-23.0	-21.25	1.70
HE20, M0 to M9 2ss	3	6	-30.6	-35.9	-39.0		-23.0	-21.25	1.70
HE20, M0 to M9 3ss	3	6	-30.6	-35.9	-39.0		-23.0	-21.25	1.70
HE20, M0 to M9 1ss	4	6	-30.6	-35.9	-39.0	-36.5	-22.2	-21.25	0.99
HE20, M0 to M9 2ss	4	6	-30.6	-35.9	-39.0	-36.5	-22.2	-21.25	0.99
HE20, M0 to M9 3ss	4	6	-30.6	-35.9	-39.0	-36.5	-22.2	-21.25	0.99
HE20, M0 to M9 4ss	4	6	-30.6	-35.9	-39.0	-36.5	-22.2	-21.25	0.99
HE20 Beam Forming, M0 to M9 1ss	2	9	-35.9	-42.2			-25.9	-21.25	4.67
HE20 Beam Forming, M0 to M9 2ss	2	6	-30.6	-35.9			-23.4	-21.25	2.16
HE20 Beam Forming, M0 to M9 1ss	3	11	-42.2	-49.6	-50.5		-29.9	-21.25	8.65
HE20 Beam Forming, M0 to M9 2ss	3	8	-35.9	-42.2	-46.3		-26.6	-21.25	5.36
HE20 Beam Forming, M0 to M9 3ss	3	6	-30.6	-35.9	-39.0		-23.0	-21.25	1.70
HE20 Beam Forming, M0 to M9 1ss	4	12	-44.5	-50.9	-51.4	-50.0	-30.1	-21.25	8.84
HE20 Beam Forming, M0 to M9 2ss	4	9	-39.6	-45.6	-48.1	-46.9	-28.6	-21.25	7.30
HE20 Beam Forming, M0 to M9 3ss	4	7	-35.9	-42.2	-46.3	-39.8	-26.4	-21.25	5.20
HE20 Beam Forming, M0 to M9 4ss	4	6	-30.6	-35.9	-39.0	-36.5	-22.2	-21.25	0.99
HE20 STBC, M0 to M9 2ss	2	6	-30.6	-35.9			-23.4	-21.25	2.16
HE20 STBC, M0 to M9 2ss	3	6	-30.6	-35.9	-39.0		-23.0	-21.25	1.70
HE20 STBC, M0 to M9 2ss	4	6	-30.6	-35.9	-39.0	-36.5	-22.2	-21.25	0.99

Page No: 70 of 88


Conducted Bandedge Peak, 2412 MHz, HE20, M0 to M9 1ss

սիսիւ

cisco

Antenna A

Page No: 71 of 88

սիսիս

Conducted Bandedge Peak, 2462 MHz, HE20, M0 to M9 1ss

Antenna D

Antenna C

Page No: 72 of 88

A.9 Conducted Bandedge (Non-Restricted Band)

Emissions in non-restricted frequency bands - Test Requirement

15.247 / LP0002:3.10.1(5) & 2.8

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RSS-Gen 8.9 Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 and Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

RSS-Gen 8.10 (b) Unwanted emissions that fall into restricted bands of Table 6 shall comply with the limits specified in RSS-Gen: and (c) Unwanted emissions that do not fall within the restricted frequency bands of Table 6 shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.

Emissions in non-restricted frequency bands - Test Method

Ref. KDB 558074 D01 DTS Meas Guidance v05 ANSI C63.10: 2013

Emissions in non-restricted frequency bands - Conducted

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Use the marker function to determine the maximum spurs amplitude level.

5. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v05 section, 8.5 DTS emissions in non-restricted frequency bands, 8.7 DTS band-edge measurements

A	NSI	C63.10:	2013	se	ect	ion	11.11.2,	11.11	1.3		
•		•		•		1 0				2	

Emissions in non-restricted frequency bands - Conducted	
Test parameters	
 11.11.2 Reference Level measurement Establish a reference level by using the following procedure: a) Set instrument center frequency to DTS channel center frequency. b) Set the span to ≥ 1.5 x DTS bandwidth. c) Set the RBW = 100 kHz. d) Set the VBW ≥ 3 x RBW. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum PSD level. 	 11.11.3 Emission Level Measurement a) Set the center frequency and span to encompass frequency range to be measured. b) Set the RBW = 100 kHz. c) Set the VBW ≥ 3 x RBW. d) Detector = peak. e) Sweep time = auto couple. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use the peak marker function to determine the maximum amplitude level.

Page No: 73 of 88

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	V	
1	Support			\checkmark

Tested By :	Date of testing:	
Chris Blair	10-Sep-19 - 01-Oct-19	
Test Result : PASS		

Test Equipment See Appendix C for list of test equipment

Page No: 74 of 88

Non-Restricted Band

Frequency (MHz)	Mode	Data Rate (Mbps)	Conducted Bandedge Delta (dB)	Limit (dBc)	Duty Cycle Correction (dB)	Margin (dB)
	CCK, 1 to 11 Mbps	11	44.7	>30	0.2	14.51
2412	Non HT20, 6 to 54 Mbps	6	43.9	>30	0.0	13.85
24	HT/VHT20, M0 to M31	m0	38.4	>30	0.1	8.35
	HE20, M0 to M9	m0h1	42.6	>30	0.1	12.53
	CCK, 1 to 11 Mbps	11	59.9	>30	0.2	29.71
2462	Non HT20, 6 to 54 Mbps	6	49.1	>30	0.0	19.05
24	HT/VHT20, M0 to M31	m0	47.7	>30	0.1	17.65
	HE20, M0 to M9	m0h1	46.5	>30	0.1	16.43

Page No: 75 of 88

Repught Spectrum Analysis Surget SA			a (Dynamid May Alfonsia)		100.00
enter Freq 2.40600000	Disco Minist Trig	Free Run en: 20 dS	Avg Type: Log-Pwr	TRACE D 2 1 4	Frequency
deraly Ref 10.00 dBm		and the set of the	Mkr	2 399 216 GHz -38.16 dBm	Auto Tun
	j.	u dinaharaha	in the state of th		Center Fre 2.40600000 OH
CO	and				Start Fre 2.39000000 GH
ия ра					Stop Fre 2.42200000 G
art 2.39000 GHz Res BIV 100 kHz	AVBW 300		Sweep	Stop 2.42200 GHz 1.000 ms (1001 pts)	CF Ste 3,200000 Mi Auto Ma
N 1 1 246	99 216 GHz -38	19 dBm 15 dBm 8.44 dB			Freg Offs 0 (
					Scale Typ Log Li
1		G (11)	1110		

Conducted Bandedge Delta, 2412 MHz, HT/VHT20, M0 to M7

սիսիս

Page No: 76 of 88

Appendix B: Radiated and AC Conducted Emission Test Results

Testing done by outside laboratory, not included in the scope of this report.

Page No: 77 of 88

Appendix C: List of Test Equipment Used to perform the test

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due	Test Item
57475	Cisco	Automation Test Insertion Loss	NA	NA	A1-A9
53614	Keysight N9030A-550	PXA Signal Analyzer, 3Hz to 50GHz	16 Jul 2019	16 Jul 2020	A1-A9
55095	NI PXI-1042	CHASSIS, PXI	NA	NA	A1-A9
57236	NI PXI-8115	Embedded Controller	NA	NA	A1-A9
57242	NI PXI-2796	40 GHz Dual 6x1 Multiplexer (SP6T)	NA	NA	A1-A9
57243	NI PXI-2799	Switch 1x1	NA	NA	A1-A9
56090	NI PXI-2796	40 GHz Dual 6x1 Multiplexer (SP6T)	NA	NA	A1-A9
7329	Omega CT485B	Chart recorder	18 Feb 2019	18 Feb 2020	A1-A9
56328	Pasternack PE5019-1	Torque wrench	14 Feb 2019	14 Feb 2020	A1-A9
56329	Pasternack PE5019-1	Torque wrench	28 Feb 2019	28 Feb 2020	A1-A9
56330	Pasternack PE5019-1	Torque wrench	28 Feb 2019	28 Feb 2020	A1-A9

Page No: 78 of 88

Appendix D: Abbreviation Key and Definitions

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	°C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
TAP	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control System	Qp	Quasi Peak
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak
Cal	Calibration	kHz	Kilohertz (1x10 ³)
EN	European Norm	MHz	MegaHertz (1x10 ⁶)
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)
CISPR	International Special Committee on Radio Interference	Н	Horizontal
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization Network	dB	decibel
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³)
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)
L2	Line2	А	Amp
L3	Line 3	μA	Micro Amp (1x10 ⁻⁶)
DC	Direct Current	mS	Milli Second (1x10 ⁻³)
RAW	Uncorrected measurement value, as indicated by the measuring device	μS	Micro Second (1x10 ⁻⁶)
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)
SLCE	Signal Line Conducted Emissions	m	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
Ν	Neutral Line	R	Return
S	Supply	AC	Alternating Current

The following table defines abbreviations used within this test report.

Page No: 79 of 88

Appendix E: Photographs of Test Setups

Please refer to the attachment

Page No: 80 of 88

Appendix F: Software Used to Perform Testing

Cisco Internal LabView Radio Test Automation Software rev57

Appendix G:Test Procedures

Measurements were made in accordance with

- KDB 558074 D01 DTS Meas Guidance v05
- KDB 662911 MIMO
- ANSI C63.4 2014 Unintentional Radiators
- ANSI C63.10 2013 Intentional Radiators

Test procedures are summarized below

FCC 2.4GHz Test Procedures	EDCS # 1445042
FCC 2.4GHz RSE Test Procedures	EDCS # 1480386

Appendix H: Scope of Accreditation (A2LA certificate number 1178-01)

The scope of accreditation of Cisco Systems, Inc. can be found on the A2LA web page at:

http://www.a2la.org/scopepdf/1178-01.pdf

Appendix I: Test Assessment Plan

Target Power Tables EDCS# 18087112

Page No: 81 of 88

Appendix J: UUT Software Info

APA453.0E7B.CCD0# APA453.0E7B.CCD0#test watchdog monitoring off APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0#show ver Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR sec. 52.227-19 and subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS sec. 252.227-7013.

Cisco Systems, Inc. 170 West Tasman Drive San Jose, California 95134-1706

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

This product contains some software licensed under the "GNU General Public License, version 2" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU General Public License, version 2", available here: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

This product contains some software licensed under the "GNU Library General Public License, version 2" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU Library General Public License, version 2", available here: http://www.gnu.org/licenses/old-licenses/lgpl-2.0.html

Page No: 82 of 88

This product contains some software licensed under the "GNU Lesser General Public License, version 2.1" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU Lesser General Public License, version 2.1", available here: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

This product contains some software licensed under the "GNU General Public License, version 3" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU General Public License, Version 3", available here: http://www.gnu.org/licenses/gpl.html.

This product contains some software licensed under the "GNU Affero General Public License, version 3" provided with ABSOLUTELY NO WARRANTY under the terms of "GNU Affero General Public License, version 3", available here: http://www.gnu.org/licenses/agpl-3.0.html.

Cisco AP Software, (ap1g7), [cheetah-build6:/san2/BUILD/workspace/Nightly-Cheetah-axel-bcm-mfg-c8_10_throttle] Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2019 by Cisco Systems, Inc. Compiled Fri Sep 6 08:06:05 PDT 2019

ROM: Bootstrap program is U-Boot boot loader BOOTLDR: U-Boot boot loader Version

APA453.0E7B.CCD0 uptime is 0 days, 0 hours, 4 minutes Last reload time : Fri Sep 6 08:22:50 UTC 2019 Last reload reason : unknown

cisco C9120AXE-B with 1809824/1062468K bytes of memory. Processor board ID 0 AP Running Image : 8.8.1.10 Primary Boot Image : 0.0.0.0 Primary Boot Image Hash: Backup Boot Image Hash: 1 Gigabit Ethernet interfaces 2 802.11 Radios Radio Driver version : 17.10 RC77.13 Radio FW version : 1268.14948.r14702 14702 NSS FW version : NA

Base ethernet MAC Address: A4:53:0E:7B:CC:D0Part Number: 0-000000-00PCA Assembly Number: 800-105708-01PCA Revision Number: 09PCB Serial Number: FOC23302F0Q

Page No: 83 of 88

Top Assembly Part Number	: 800-105708-01
Top Assembly Serial Number	: 0
Top Revision Number	: 09
Product/Model Number	: C9120AXE-B

APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# Read timed out

User Access Verification Username: Cisco Password: Lock out for 4 seconds in release image

% Authentication failed

User Access Verification Username: Cisco Password: APA453.0E7B.CCD0>en Password: APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# APA453.0E7B.CCD0# EXITING CISCO SHELL. PLEASE EXECUTE EXIT IN DEVSHELL TO GET BACK TO CISCO SHELL. մինին

BusyBox v1.29.3 () built-in shell (ash)

Welcome to Cisco.

Usage of this device is governed by Cisco's End User License Agreement, available at: http://www.cisco.com/c/en/us/td/docs/general/warranty/English/EU1KEN_.html.

Page No: 84 of 88

mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# echo 0 > /meraki_gpio/RF_2G_ble mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# cat MERAKI_BUILD.extra Fri Sep 6 08:06:05 PDT 2019 cheetah-build6 /san2/BUILD/workspace/Nightly-Cheetah-axel-bcm-mfg-c8_10_throttle

* (HEAD detached at fb31ca5b6a)

syn base: fb31ca5b6ab1468794221acdd081bea192921139 commit: fb31ca5b6ab1468794221acdd081bea192921139 tree 9933345a372cf5493649162765b52efdf4ff9219 mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# show_cookie Part Number : 0-000000-00 Board Revision : 00 PCB Serial Number : FOC23302F0Q : 0-000000-00 PCB Fab Part Number Deviation Number :0 : A4:53:0E:7B:CC:D0 MAC Address MAC Address Block Size :4 Radio 0 MAC Address : D4:AD:BD:A2:16:80 Radio 0 MAC Address Block Size : 16 Radio 1 MAC Address : D4:AD:BD:A2:16:90 Radio 1 MAC Address Block Size : 16 PCA Assembly Number : 800-105708-01 PCA Revision Number : 09 Product/Model Number : C9120AXE-B Top Assembly Part Number : 800-105708-01 Top Revision Number : 09 Top Assembly Serial Number : 0 RMA Test History :00 **RMA History** : 00 **RMA Number** : 00-00-00-00 Device Type : 4C Max Association Allowed :2 Radio(2.4G) Carrier Set :0000 Radio(2.4G) Max Transmit Power Level : 100 Radio(2.4G) Antenna Diversity Support: 01 Radio(2.4G) Encryption Ability : 0002 :0029 Radio(5G) Carrier Set Radio(5G) Max Transmit Power Level : 100

Page No: 85 of 88

Radio(5G) Antenna Diversity Support : 01 Radio(5G) Encryption Ability : 0002 Radio(802.11g) Radio Mode : 255 PEP Product Identifier (PID) : C9120AXE-B PEP Version Identifier (VID) : V01 :00 System Flags :0000 Controller Type Host Controller Type : 0000 Mfr Service Date : 2019.08.03-47:59:59 Radio(49) Carrier Set : 0000 Radio(49) Max Transmit Power Level : 0 Radio(49) Antenna Diversity Support : 00 Radio(49) Encryption Ability : 0000 Radio(58) Carrier Set : 0029 Radio(58) Max Transmit Power Level : 100 Radio(58) Antenna Diversity Support : 01 Radio(58) Encryption Ability : 0002 ACT2 ID : C9120 Static AP Mode :0 mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# cat /storage/rxtx_mode tx mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# mA4530E7BCCD0:/# cd /usr/bin/bcm/mfg mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# ./init_config.sh broardcast_ssids show_carrier_cookies | grep -o '..\$' 41 wl-i apr1v0 country US wl -i apr0v0 country US Chanspec set to 0x1001 [*09/06/2019 08:42:38.7040] wlc_ucode_download: wl1: Loading 129 MU ucode Chanspec set to 0xd024 [*09/06/2019 08:42:38.7870] wlc_ucode_download: wl0: Loading 129 MU ucode mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# mA4530E7BCCD0:/usr/bin/bcm/mfg# ./dfstool.lua

Vanc dfstool BOARD: Axel BCM !!!!!!

Page No: 86 of 88

Display config: wl -i apr0v0 status | head -3 "Not associated. Last associated with SSID: """

Display config: wl -i apr1v0 status | head -3 "Not associated. Last associated with SSID: """

show_carrier_cookies | grep -o '..\$' rc:result="41"

wl -i apr1v0 country US wl -i apr0v0 country US > line=""

>do0 stop line="do0 stop"

DEBUG: compliance stop command matched. INFO: subcommand="compliance off".

execution section for compliance stop command. line="do0 stop" interface="0" stop_option="stop" wl -i apr0v0 pkteng_status | awk -F'[,]' '{print \$3}' main:result="0"

1601792112 (0x5f796870)

> line="" >do1 stop line="do1 stop"

DEBUG: compliance stop command matched. INFO: subcommand="compliance off".

execution section for compliance stop command. line="do1 stop" interface="1" stop_option="stop" wl -i apr1v0 pkteng_status | awk -F'[,]' '{print \$3}' main:result="0"

1601792112 (0x5f796870)

Page No: 87 of 88

cisco

> line="" >do4 stop line="do4 stop"

DEBUG: compliance stop command matched. INFO: subcommand="compliance off".

execution section for compliance stop command. line="do4 stop" interface="4" stop_option="stop" [09/06/2019 08:44:03.9220] NXP-RHL-Driver 0001:01:00.0: xcvr[0], swcmd 0x23 done [09/06/2019 08:44:04.1030] NXP-RHL-Driver 0001:01:00.0: xcvr[0], swcmd 0x4 done [09/06/2019 08:44:04.1870] NXP-RHL-Driver 0001:01:00.0: VSPA FW :: FN = dcr.eld > line=""

>

Page No: 88 of 88