

CP-DX650

Next Generation Video Endpoint

5150-5250 MHz

Against the following Specifications:

CFR47 Part 15.407

RSS210

Cisco Systems

EMC Laboratory 170 West Tasman Drive San Jose, CA 95134

Author: Phillip Carranco
Approved By: Dilip Patel

Title: Regulatory Compliance Manager

This report replaces any previously entered test report under EDCS - 1248892

Page No: 1 of 71

This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

SECTION 1: OVERVIEW	
1.1 Test Summary	3
SECTION 2: ASSESSMENT INFORMATION	
2.1 General	
SECTION 3: RESULT SUMMARY	
APPENDIX A: EMISSION TEST RESULTS	
	PORTED TOTAL CHANNEL POWER FOR ALL OPERATING MODES
	28
CONDUCTED BANDEDGE	38
APPENDIX B: EMISSION TEST RESULTS	4
	65
MAXIMUM PERMISSIBLE EXPOSURE (MPE) CALCUL	ATIONS
APPENDIX C: TEST EQUIPMENT/SOFTWAR	E USED TO PERFORM THE TEST70

FCC ID: LDKDX6500736

Section 1: Overview

1.1 Test Summary

samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

Emission	Immunity
CFR47 Part 15.407 RSS-210	N/A

The specifications listed above represent actual tests performed to demonstrate compliance against the specifications and basic standards listed on the front cover of this report. This list is not a one to one match to the front cover for one or more of the following reasons.

- 1. Basic standards call up many different test phenomena specifications such as the 61000-4-X series. The basic standards define which elements and levels shall be applied from these specifications and as such it is not appropriate to list the individual specifications on the front cover.
- 2. A Standard listed on the front cover may be required in a particular country but is not appropriate for the particular technologies included in the equipment under test. E.g. You cannot test a DC product to the mains Harmonics requirements in EN61000-3-2. See section 3.2.
- 3. Test results against a particular standard or specification may be included in a different test report. See section 3.2 for an EDCS reference of this data.
- 4. Where appropriate, Cisco may have substituted a later revision of a basic standard to those referenced in the specification on the front sheet of this test report. This decision was based upon improved test methodology and repeatability and/or where the newer revision represented a more stringent test.
- 5. Where relevant, testing has been carried out to the requirements of both EN and IEC Specifications. This was possible because of the similarities of the test methods involved and the Cisco EMC test procedures.
- 6. Testing may have been performed to an equivalent test that satisfies the requirements of the standards and specifications listed on the front cover of the report. See section 3.2.
- 7. Where radiated emissions testing has been performed to EN55022/CISPR22 the additional requirements of VCCI: V-3/2006.04, EN55022: 1994 +A1/2 and CAN/CSA- CISPR 22-02 have also been evaluated unless otherwise stated.
- 8. Testing to the requirements of CFR47 Part 15 was performed against the CISPR22 limits. The results are therefore deemed satisfactory evidence of compliance with Industry Canada Interference Causing Equipment Standard ICES-003.
- 9. Where assessment has been performed to CISPR24, all the applicable test requirements may have not been covered. Refer to the results section for the tests performed.

Notes:

- 1) Where a specification listed on the front cover of this report has deviations from the basic standards listed above, the additional technical requirements of the specification were also assessed.
- 2) Where appropriate, Cisco may have substituted a later revision of a basic standard to those referenced in the specification on the front sheet of this test report. This decision was based upon improved test methodology and repeatability and/or where the newer revision represented a more stringent test.
- 3) Where relevant, testing has been carried out to the requirements of both EN and IEC Specifications. This was possible because of the similarities of the test methods involved and the Cisco EMC test procedures.

FCC ID: LDKDX6500736

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature 15°C to 35°C (54°F to 95°F)

Atmospheric Pressure 860mbar to 1060mbar (25.4" to 31.3")

Humidity 10% to 75*%

*[Where applicable] For ESD testing the humidity limits used were 30% to 60% and for EFT/B tests the humidity limits used were 25% to 75%.

e) All AC testing was performed at one or more of the following supply voltages:

110V 60 Hz (+/-20%) 220V 50 Hz (+/-20%)

This report must not be reproduced except in full, without written approval of Cisco Systems.

FCC ID: LDKDX6500736

2.2 Date of testing

15-October-2012

2.3 Report Issue Date

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled

2.4 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc., 170 West Tasman Drive San Jose, CA 95134, USA

Registration Numbers for Industry Canada

Cisco System Site	Site Identifier
Building P, 10m Chamber	Company #: 4624-2
Building P, 5m Chamber	Company #: 4624-1
Building N, 5m Chamber	Company #: 6111
Building I, 5m Chamber	Company #: 6112

Test Engineers

Phillip Carranco

2.5 Equipment Assessed (EUT)

CP-DX650 Next Generation Video Endpoint

Page No: 5 of 71

FCC ID: LDKDX6500736

2.6 EUT Description

The CP-DX650 is the next generation 1080p Video Endpoint with key expansion module support. This new generation of desktop phone incorporates an Android based operating system. Three USB ports, one micro OTG USB port, one higher powered USB-proprietary connector combination (AUX) and one standard USB Port. Support HDMI with a maximum external resolution of 1920 x 1200, also includes a single 3.5mm headset jack.

WiFi (802.11 a/b/g/n) & Bluetooth 3.0 capabilities (Bluetooth operating at ver 2.1 + EDR)

Murata module, LBEH1ZNSXC-526, supports for 802.11/a/b/g/n + Bluetooth 3.0 module

SDIO interface to WLAN - Omap4 SD host controller port 5

PCM (McBSP1) interface to Bluetooth

WiFi + BT chip - Marvell 88W8787

Clocks – 38.4MHz 20ppm for main clock, 32.768KHz sleep clock

Supports 802.11i security standard

Coexistence between WiFi and BT with one antenna to both connected to the 2.4GHz radios

Single antenna for 2.4 and 5GHz bands with diplex inside the module

Up to 72Mbps (20 MHz channel)

Non HT-20, One Antenna, 6 to 54 Mbps

HT-20, One Antenna, M0 to M7

HT-40, One Antenna, M0 to M7

FCC ID: LDKDX6500736

Section 3: Result Summary

Conducted emissions

Basic Standard	Result
99% and 26dB Bandwidth	Pass
Peak Output Power	Pass
Power Spectral Density	Pass
Peak Excursion	Pass
Conducted Spurious Emissions	Pass
Restricted Band Edge Measurements	Pass

Radiated emissions

Basic Standard	Result
Radiated Spurious and Harmonic Emissions	Pass
Co-Locator Radiated Spurious Emissions	Pass

FCC ID: LDKDX6500736

Section4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing. During preliminary testing all three planes (X,Y & Z) were evaluated to determine "Worst Case". The orientation used for this report was demined "Worst Case".

4.1 Sample Details

Sample Number	Equipment Details	Serial Number	Part Number
S01	CP-DX650	FCH1627A5AU	73-15144-01

The following antennas were evaluated as part of this testing process. The antennas listed reflect the maximum gain allowed for each family type of antenna:

Fixed internal Amphenol Dual Band Antenna at 5GHz, Gain: (no external antenna can be used.)

5150 – 5250MHz: 2.4 dBi 5250 – 5350MHz: 3.9 dBi 5500 – 5700MHz: 3.8 dBi 5745 – 5805MHz: 3.3 dBi

4.2 System Details

System #	Description	Samples
1	Radio Test Sample	S01

4.3 Mode of Operation Details

Mode#	Description	Comments
1	802.11AN Test Mode	System is placed in a continuous Transmit Mode at various channels per Test Requirements. Worse Case Data Rate used for all Testing. 802.11A set to 6Mbps, HT20 set to M0 & HT40 set to M0

Section 5: Modifications

5.1 Sample Modifications Performed During Assessment

No modifications were performed during assessment.

Page No: 8 of 71

FCC ID: LDKDX6500736

Appendix A: Emission Test Results

Target Maximum Channel Power

The following table details the maximum supported Total Channel Power for all operating modes.

	Maximum Channel Power (dBm) Frequency (MHz)			
Operating Mode	5180 5200 5240			
Non HT-20, 6 to 54 Mbps	16	16	16	
HT-20, M0 to M23	16	16	16	
	5190	5230		
HT-40, M0 to M23	16	16		

99% and 26dB Bandwidth

Connect the antenna port(s) to the spectrum analyzer input. Using the spectrum analyzer Channel Bandwidth mode, configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

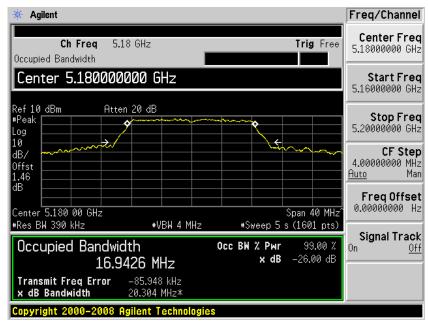
Center Frequency: Frequency from table below

Span: 2 x Nominal Bandwidth (e.g. 40MHz for a 20MHz channel)

Reference Level: 20 dBm Attenuation: 10 dB Sweep Time: 5 s

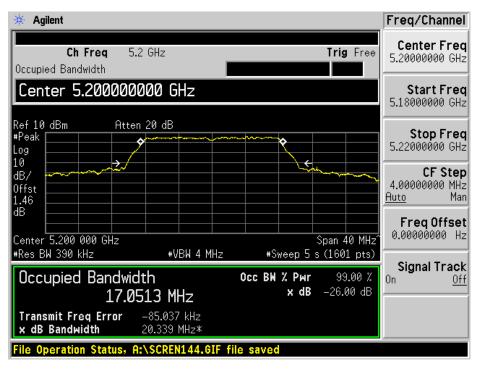
Resolution Bandwidth: 1%-3% of 26 dB Bandwidth

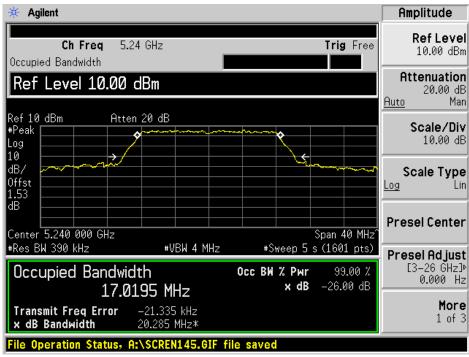
Video Bandwidth: ≥Resolution Bandwidth


X dB Bandwidth: 26 dB
Detector: Peak
Trace: Single

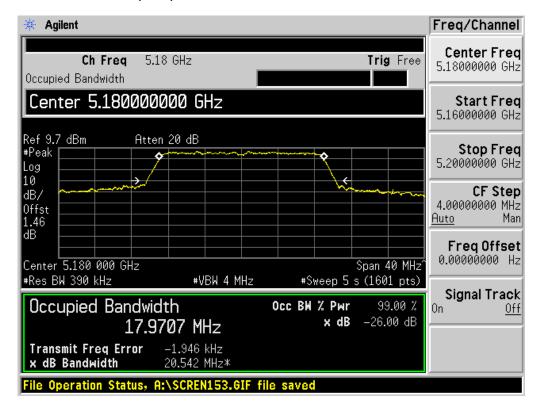
Place the radio in continuous transmit mode. View the transmitter waveform on the spectrum analyzer, and record the pertinent measurements:

99% and 26dB Bandwidth for 802.11A

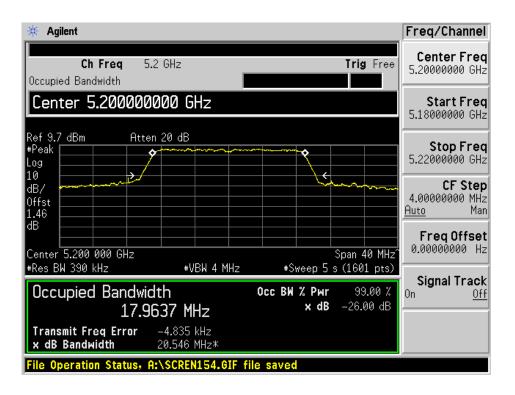

Frequency	Data Rate	99% Bandwidth	26dB
(MHz)	(Mbps)	(MHz)	Bandwidth
			(MHz)
5180	6	16.943	20.304
5200	6	17.051	20.339
5240	6	17.020	20.285

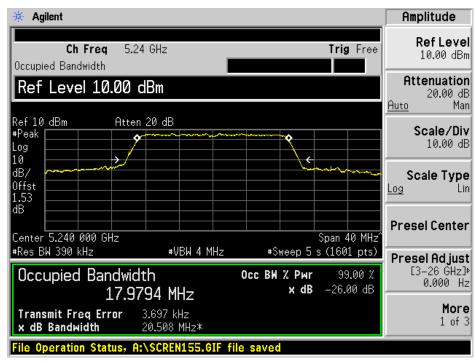

Graphical Test Results for 802.11a:

Page No: 10 of 71

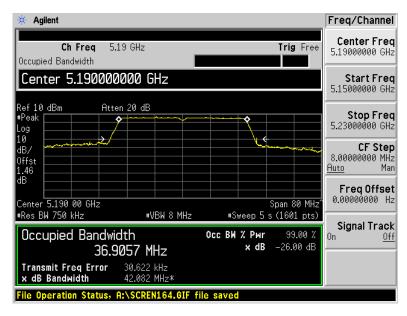

FCC ID: LDKDX6500736

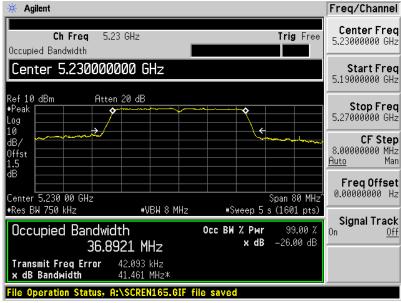
99% and 26dB Bandwidth for 802.11AN (HT20)


Frequency	Data Rate	99% Bandwidth	26dB
(MHz)	(Mbps)	(MHz)	Bandwidth
			(MHz)
5180	MO	17.971	20.542
5200	MO	17.964	20.546
5240	MO	17.979	20.508


Graphical Test Results for 802.11A (HT20):

FCC ID: LDKDX6500736





99% and 26dB Bandwidth for 802.11AN (HT40)

Frequency (MHz)	Data Rate (Mbps)	99% Bandwidth (MHz)	26dB Bandwidth (MHz)
5190	13.5	36.906	42.082
5230	13.5	36.892	41.461

Graphical Test Results for 802.11A (HT40):

Page No: 14 of 71

FCC ID: LDKDX6500736

Peak Output Power

15.407: For the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The smallest 26dB bandwidth for all channels is 20.7 MHz. The maximum conducted output power is calculated as 4dBm+10*log(20.7MHz) = 17dBm

The maximum supported antenna gain is 6dBi. The peak correlated gain for each mode is listed in the table below. See the Theory of Operation for details on the correlated gain for each mode.

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units.

Power Spectral Density

15.407: For the band 5.15-5.25 GHz, the peak power spectral density shall not exceed 4 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum supported antenna gain is 6dBi. The peak correlated gain for each mode is listed in the table below. See the Theory of Operation for details on the correlated gain for each mode.

The "Measure and add 10 log(N) dB technique", where N is the number of outputs, is used for measuring in-band Power Spectral Density. With this technique, spectrum measurements are performed at each output of the device, and the quantity 10 log(1) (or 0dB) is added to the worst case spectrum value before comparing to the emission limit.

Page No: 15 of 71

FCC ID: LDKDX6500736

Connect the antenna port(s) to the spectrum analyzer input. Place the radio in continuous transmit mode. Configure the spectrum analyzer as shown below.

Enable "Channel Power" function of analyzer

Center Frequency: Frequency from table below

Span: 20 MHz (must be greater than 26dB bandwidth, adjust as necessary)

Ref Level Offset: Correct for attenuator and cable loss.

Reference Level: 20 dBm Attenuation: 20 dB

Sweep Time: 100ms, Single sweep

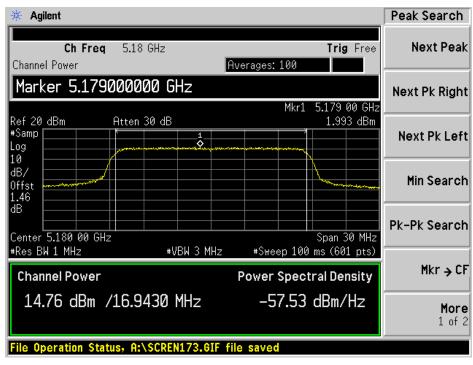
Resolution Bandwidth: 1 MHz
Video Bandwidth: 3 MHz
Detector: Sample

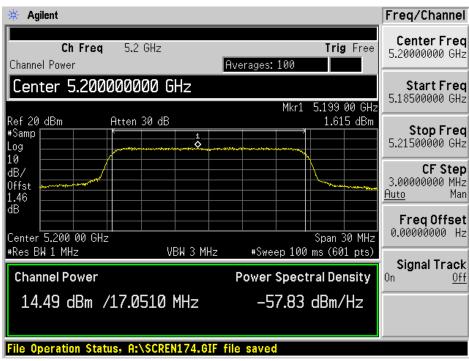
Trace: Trace Average 100 traces in Power Averaging Mode

Integration BW: =99 % BW from 99% Bandwidth Data

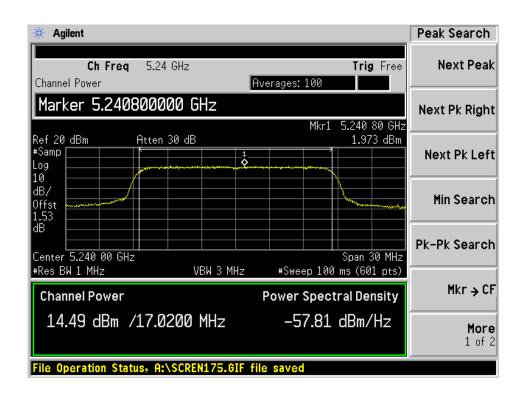
After averaging 100 traces of the transmitter waveform on the spectrum analyzer, record the spectrum analyzer Channel Power. Perform a Marker Peak Search function, and record this value as the Power Spectral Density.

Peak Output Power for 11a:


Frequency (MHz)	Data Rate (Mbps)	Peak Output Power (dBm)	` '	Margin (dB)
5180	6	14.76	17	-2.24
5200	6	14.49	17	-2.51
5240	6	14.49	17	-2.51

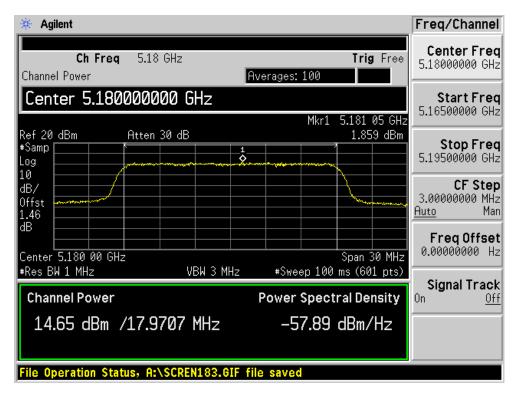

Power Spectral Density for 11a:

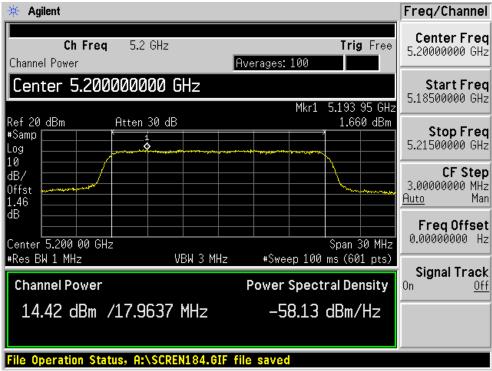
Frequency (MHz)	Data Rate (Mbps)	Peak Power Spectral Density (dBm/MHz)	Limit (dBm)	Margin (dB)
5180	6	1.993	4	-2.007
5200	6	1.615	4	-2.385
5240	6	1.973	4	-2.027



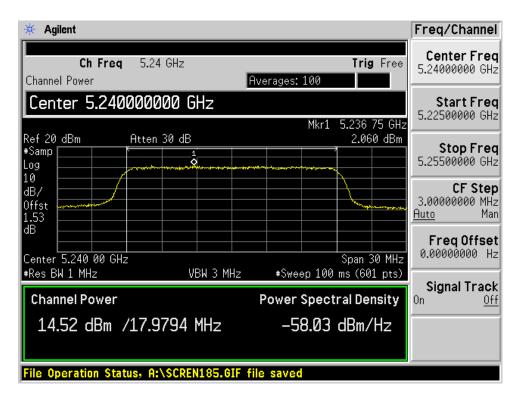
Graphical Test Results for 802.11a:

Peak Output Power for 802.11an (HT20):


Frequency (MHz)	Data Rate (Mbps)	Peak Output Power (dBm)		Margin (dB)	
5180	MO	14.65	17	-2.35	
5200	M0	14.42	17	-2.58	
5240	M0	14.52	17	-2.48	

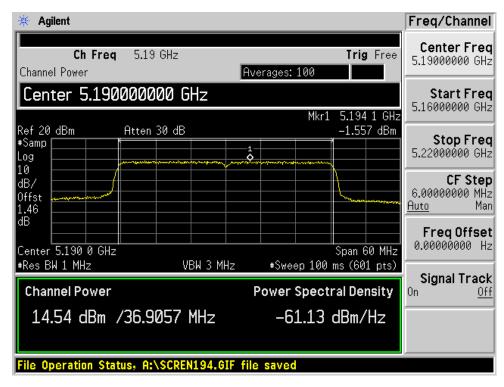

Power Spectral Density for 11a:

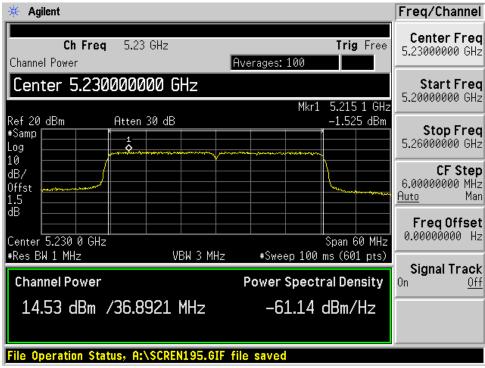
Frequency (MHz)	Data Rate (Mbps)	Peak Power Spectral Density (dBm/MHz)	Limit (dBm)	Margin (dB)
5180	MO	1.859	4	-2.141
5200	MO	1.66	4	-2.34
5240	MO	2.06	4	-1.94



Graphical Test Results for 802.11an (HT20):

Peak Output Power for 802.11an (HT40):


Frequency (MHz)	Data Rate (Mbps)	Peak Output Power (dBm)	` ′	Margin (dB)
5190	M0	14.54	17	-2.46
5230	M0	14.53	17	-2.47


Power Spectral Density for 802.11an (HT40):

Frequency (MHz)	Data Rate (Mbps)	Peak Power Spectral Density (dBm/MHz)	Limit (dBm)	Margin (dB)
5190	M0	-1.557	4	-5.557
5230	M0	-1.525	4	-5.525

Graphical Test Results for 802.11an (HT40):

FCC ID: LDKDX6500736

Peak Excursion

15.407: The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

Set the spectrum analyzer span to view the entire emission bandwidth. The largest difference between the following two traces must be <= 13 dB for all frequencies across the emission bandwidth.

Set the spectrum analyzer span to view the entire emission bandwidth. The largest difference between the following two traces must be <= 13 dB for all frequencies across the emission bandwidth.

1st Trace: (Peak)

Set Span to encompass the entire emission bandwidth of the signal.

RBW = 1 MHz. VBW = 3 MHz

Detector = Peak

Sweep = 10 s

Trace 1 = Max-hold

Ref Level Offset = correct for attenuator and cable loss

Ref Level = 20dBm

Atten = 10dBm

2nd Trace: (Average)

Trace 2 = clear right

Detector = Sample

Avg/VBW type = Pwr(RMS)

Average = 100

Sweep = single

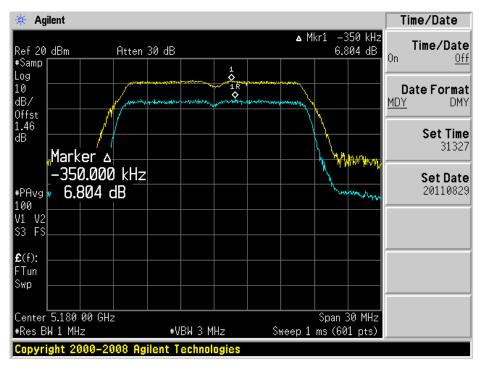
Set marker Deltas

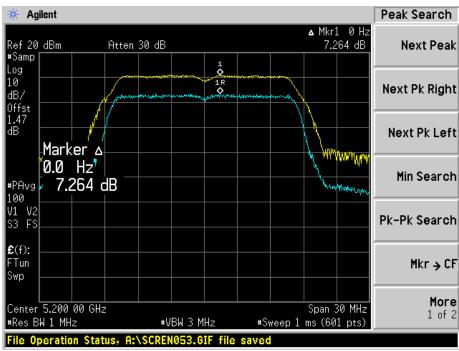
Trace 1 & Peak search

Marker Delta

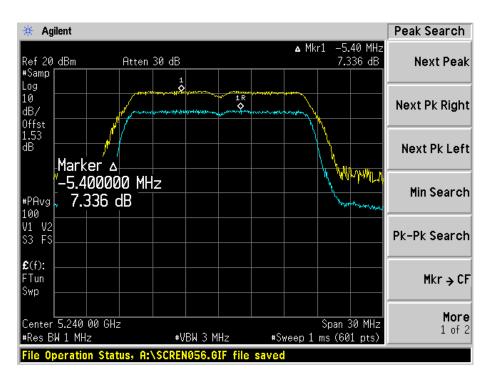
Trace 2 & Peak search

Record the difference between the Peak and Average Markers

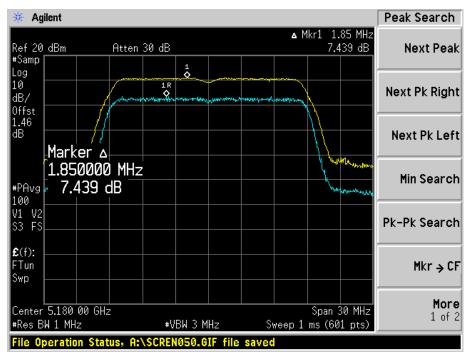

Results for 802.11a:

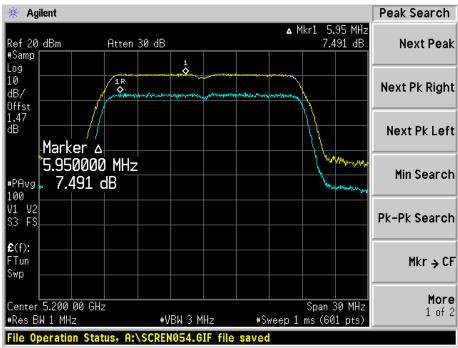

Frequency	Data Rate	Peak Excursion	Limit	Margin	
(MHz)	(Mbps)	(dB)	(dBm)	(dB)	
5180	6	6.804	13	-6.196	
5200	6	7.264	13	-5.736	
5240	6	7.336	13	-5.664	

Page No: 22 of 71

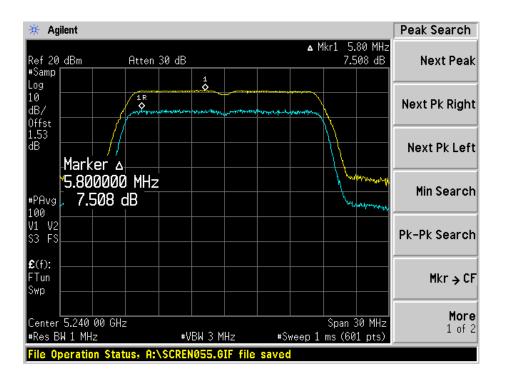

Graphical Test Results for 802.11a:

FCC ID: LDKDX6500736

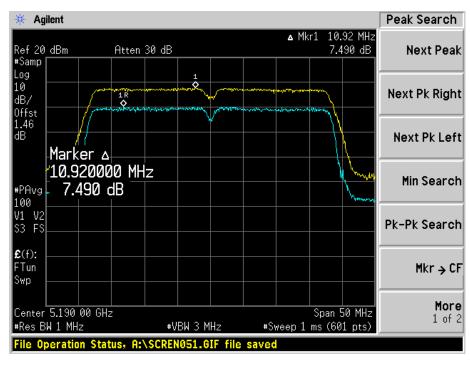


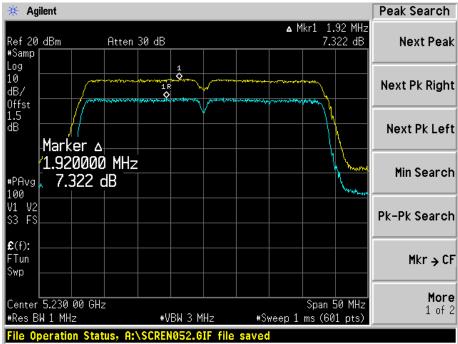

Peak Excursion Results for HT20:

Frequency (MHz)		Peak Excursion (dB)	Limit (dBm)	Margin (dB)	
5180	6.5	7.439	13	-5.561	
5200	6.5	7.491	13	-5.509	
5240	6.5	7.508	13	-5.492	


Graphical Test Results for 802.11an (HT20):

FCC ID: LDKDX6500736




Peak Excursion Results for HT40:

Frequency	Data	Peak	Limit	Margin
(MHz)	Rate	Excursion	(dBm)	(dB)
	(Mbps)	(dB)		
5190	13.5	7.49	13	-5.51
5230	13.5	7.322	13	-5.678

Graphical Test Results for 802.11an (HT40):

FCC ID: LDKDX6500736

Conducted Spurious Emissions:

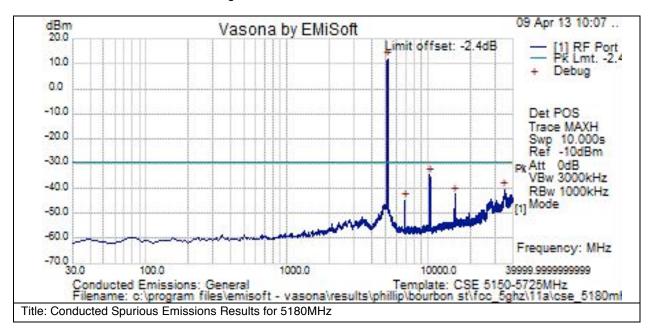
15.407: For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.

Connect the antenna port(s) to the spectrum analyzer input. Place the radio in continuous transmit mode. Configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

Span: 30 MHz-40 GHz

20 dBm Reference Level: Attenuation: 10 dB Sweep Time: 10 s Resolution Bandwidth: 1 MHz Video Bandwidth: 3 MHz Detector: Peak Trace: Single Marker: Peak

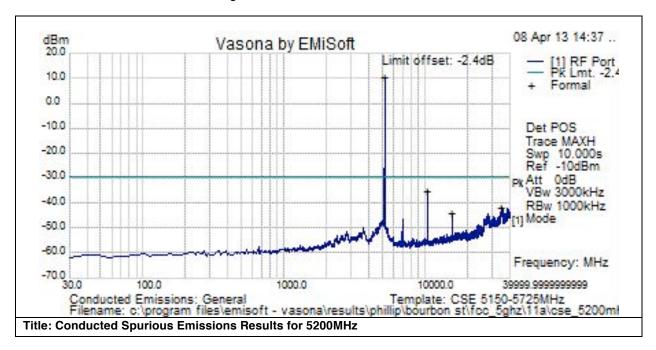
Record the marker waveform peak to spur difference


Page No: 28 of 71

FCC ID: LDKDX6500736

802.11A Graphical Test Results at 5180MHz:

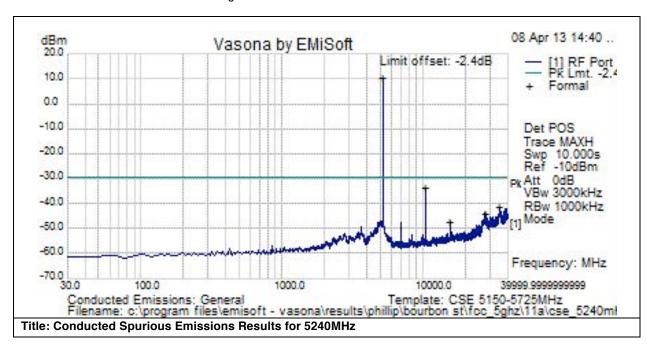
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBm	Cable Loss	Factors dB	Level dBm	Measurement Type	Line	Limit dBm	Margin dB	Pass /Fail	Comments
5178.405	-9.8	22	0	12.1	Pk	RF	-29.4	41.5	Fail	Tx Signal
10362.75	-55.3	20.9	0	-34.4	Pk	RF	-29.4	-5.1	Pass	
35234.5	-63.2	22.8	0	-40.4	Pk	RF	-29.4	-11	Pass	
15538.11	-63.4	21.3	0	-42.1	Pk	RF	-29.4	-12.7	Pass	
6903.525	-65.4	20.6	0	-44.8	Pk	RF	-29.4	-15.4	Pass	

802.11A Graphical Test Results at 5200MHz:

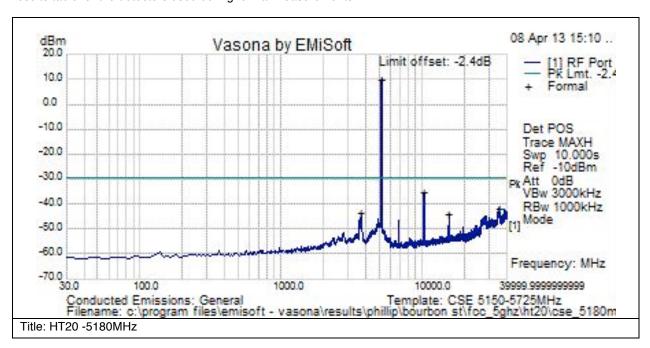
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBm	Cable Loss	Factors dB	Level dBm	Measurement Type	Line	Limit dBm	Margin dB	Pass /Fail	Comments
5205.36	-11.7	22	0	10.3	Pk	RF	-29.4	39.7	Fail	Tx Signal
10398.69	-56.1	20.9	0	-35.2	Pk	RF	-29.4	-5.8	Pass	
35207.5	-64.4	22.8	0	-41.6	Pk	RF	-29.4	-12.2	Pass	
15601.005	-65.6	21.3	0	-44.3	Pk	RF	-29.4	-14.9	Pass	

802.11A Graphical Test Results at 5240MHz:

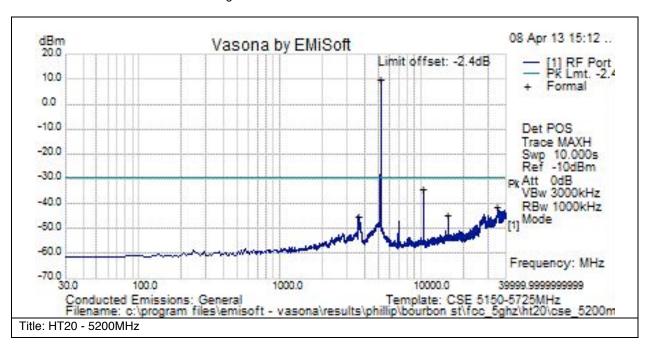
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements


Frequency MHz	Raw dBm	Cable Loss	Factors dB	Level dBm	Measurement Type	Line	Limit dBm	Margin dB	Pass /Fail	Comments
5241.3	-11.8	22	0	10.2	Pk	RF	-29.4	39.6	Fail	Tx Signal
10479.555	-54.7	20.9	0	-33.8	Pk	RF	-29.4	-4.4	Pass	
35173.75	-64.2	22.8	0	-41.4	Pk	RF	-29.4	-12	Pass	
27755.5	-66.2	22.2	0	-44	Pk	RF	-29.4	-14.6	Pass	
15717.81	-68.5	21.3	0	-47.2	Pk	RF	-29.4	-17.8	Pass	

Conducted Spurious Emissions Results for 802.11A - HT20 Mode:

Graphical Test Results for 5180MHz:

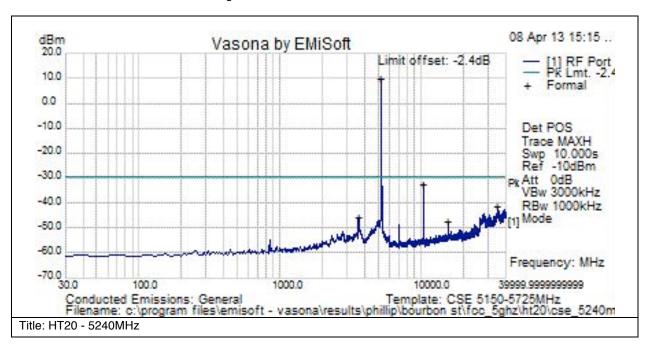
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBm	Cable Loss	Factors dB	Level dBm	Measurement Type	Line	Limit dBm	Margin dB	Pass /Fail	Comments
5178.405	-11.9	22	0	10.1	Pk	RF	-29.4	39.5	Fail	Tx Signal
10371.735	-56.1	20.9	0	-35.2	Pk	RF	-29.4	-5.8	Pass	
35504.5	-64.4	22.8	0	-41.6	Pk	RF	-29.4	-12.2	Pass	
3731.82	-65.1	21.5	0	-43.6	Pk	RF	-29.4	-14.2	Pass	
15547.095	-65.1	21.3	0	-43.8	Pk	RF	-29.4	-14.4	Pass	

Graphical Test Results for 5200MHz:

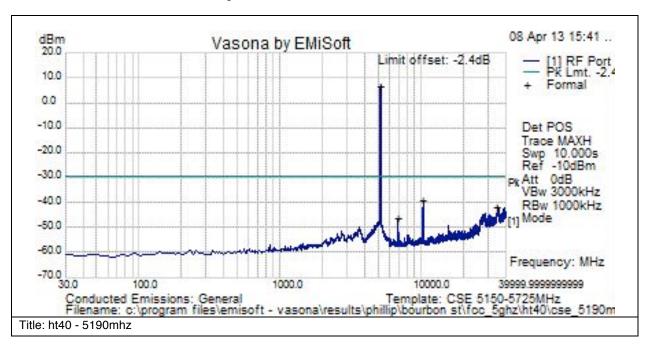
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBm	Cable Loss	Factors dB	Level dBm	Measurement Type	Line	Limit dBm	Margin dB	Pass /Fail	Comments
5196.375	-12.1	22	0	9.9	Pk	RF	-29.4	39.3	Fail	Tx Signal
10398.69	-55.2	20.9	0	-34.3	Pk	RF	-29.4	-4.9	Pass	
35221	-64.2	22.8	0	-41.4	Pk	RF	-29.4	-12	Pass	
15601.005	-66.1	21.3	0	-44.8	Pk	RF	-29.4	-15.4	Pass	
3606.163	-66.6	21.5	0	-45.1	Pk	RF	-29.4	-15.7	Pass	

Graphical Test Results for 5240MHz:

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

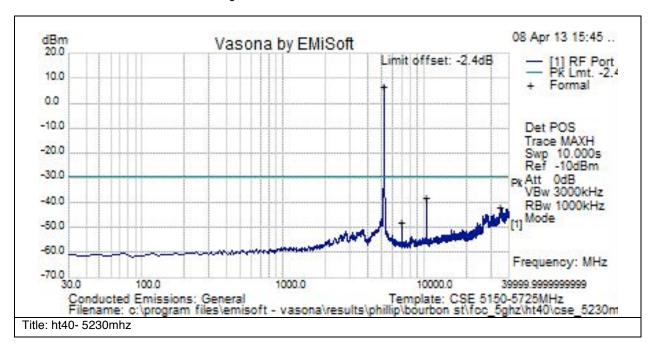

Frequency MHz	Raw dBm	Cable Loss	Factors dB	Level dBm	Measurement Type	Line	Limit dBm	Margin dB	Pass /Fail	Comments
5241.3	-12.2	22	0	9.8	Pk	RF	-29.4	39.2	Fail	Tx Signal
10479.555	-53.3	20.9	0	-32.4	Pk	RF	-29.4	-3	Pass	
35207.5	-64.3	22.8	0	-41.5	Pk	RF	-29.4	-12.1	Pass	
3624	-67.4	21.6	0	-45.9	Pk	RF	-29.4	-16.5	Pass	
15717.81	-68.8	21.3	0	-47.5	Pk	RF	-29.4	-18.1	Pass	

Conducted Spurious Emissions Results for 802.11A - HT40 Mode:

Graphical Test Results for 5190MHz:

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table


Frequency MHz	Raw dBm	Cable Loss	Factors dB	Level dBm	Measurement Type	Line	Limit dBm	Margin dB	Pass /Fail	Comments
5187.39	-15	22	0	6.9	Pk	RF	-29.4	36.3	Fail	Tx Signal
10380.72	-60	20.9	0	-39.2	Pk	RF	-29.4	-9.8	Pass	
35221	-64.5	22.8	0	-41.7	Pk	RF	-29.4	-12.3	Pass	
6921.495	-67	20.6	0	-46.3	Pk	RF	-29.4	-16.9	Pass	

Page No: 35 of 71

Graphical Test Results for 5230MHz:

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Frequency MHz	Raw dBm	Cable Loss	Factors dB	Level dBm	Measurement Type	Line	Limit dBm	Margin dB	Pass /Fail	Comments
5214.345	-15.3	22	0	6.7	Pk	RF	-29.4	36.1	Fail	Tx Signal
10461.585	-59	20.9	0	-38.1	Pk	RF	-29.4	-8.7	Pass	
35234.5	-64.7	22.8	0	-41.9	Pk	RF	-29.4	-12.5	Pass	
6975.405	-68.5	20.6	0	-47.9	Pk	RF	-29.4	-18.5	Pass	