

FCC Part 15.247; LP0002-2018

RSS-247 Issue 2, Feb 2017; RSS-Gen Issue 5, Feb 2019

TEST REPORT

For

Cisco Systems, Inc.

125 West Tasman Dr., San Jose, CA 95134, USA

FCC ID: LDKAX5122118 IC: 2461N-AX5122118

Report Type :	Original Report	
Product Type :	Cisco Catalyst 9130AX Series Wi-Fi 6 Access Points	
Product Name :	For FCC: C9130AXI-B For Canada: C9130AXI-A For Taiwan: C9130AXI-T	
Report Number :	RLK190621001-00E	
Report Date :	2019/08/30	
Reviewed By :	Zeus Chen Zeus Chen	

Prepared By:

Bay Area Compliance Laboratories Corp.(Linkou Laboratory) No.6, Wende 2Rd., Guishan Dist., Taoyuan City 33382, Taiwan (R.O.C.) Tel. (886-3)396-1072 Fax.(886-3)396-1027 www.bacl.com.tw

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan).

Revision History

Revision Report Number		Issue Date	Description
1.0	RLK190621001-00E	2019/08/30	Original Report

TABLE OF CONTENTS

1	GEN	IERAL INFORMATION	4
	1.1 1.2 1.3	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
	1.4 1.5	MEASUREMENT UNCERTAINTY	5
2	SYS	TEM TEST CONFIGURATION	6
	2.1 2.2 2.3 2.4	TEST CHANNELS AND DESCRIPTION OF WORST TEST CONFIGURATION	7 8
3	SUN	MARY OF TEST RESULTS	10
4	FCC	§15.203, RSS-GEN AND LP0002 SEC 2.2- ANTENNA REQUIREMENTS	11
	4.1 4.2	APPLICABLE STANDARD	
5 E		§15.207, §15.407 (B), RSS-GEN SEC 8.8 AND LP0002 SEC 2.3 - AC LINE CONDUC	
	5.1 5.2 5.3 5.4 5.5	APPLICABLE STANDARD	12 13 13
6 S	FC0 EC 3.10	\$ \$15.209, \$15.205, \$15.247(D), \$2.1053, RSS-GEN SEC 8.9, 8.10, RSS-247 SEC 5.5 A), 2.7 AND 2.8 – SPURIOUS UNWANTED EMISSIONS	AND LP0002 18
	6.1 6.2 6.3 6.4	APPLICABLE STANDARD EUT SETUP AND TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS	20 22 22

1 General Information

1.1 Product Description for Equipment under Test (EUT)

Applicant	Cisco Systems, Inc. 125 West Tasman Dr., San Jose, CA 95134, USA
Manufacturer	Cisco Systems, Inc. 125 West Tasman Dr., San Jose, CA 95134, USA
Brand(Trade) Name	Cisco
Product (Equipment)	Cisco Catalyst 9130AX Series Wi-Fi 6 Access Points
Model Name	For FCC: C9130AXI-B For Canada: C9130AXI-A For Taiwan: C9130AXI-T
Frequency Range	802.11b/g/n HT20/ax HE20: 2412-2462 MHz BLE: 2402-2480 MHz
Received Date	Jun. 21, 2019.
Date of Test	Jun. 21, 2019 ~ Aug. 26, 2019
Modulation Type	IEEE 802.11b : DSSS IEEE 802.11g/n HT20/ax HE20: OFDM BLE mode: GFSK
Related Submittal(s)/Grant(s)	FCC Part 15.407 UNII with FCC ID: LDKAX5122118 ISEDC RSS-247: UNII IC: 2461N-AX5122118

^{*}All measurement and test data in this report was gathered from production sample serial number: KWC2317002 (Assigned by BACL-LK)

1.2 Operation Condition of EUT

Power Operation (Voltage Range)	 ☑ DC Type ☑ PoE: 30W Brand Name: Cisco Model: SB-PWR-INJ2 I/P: 100-240Vac,50/60Hz, 0.67A O/P: 55Vdc,0.6A ☐ By Power Core
------------------------------------	--

Page 4 of 34

1.3 Objective and Test Methodology

The Objective of this Test Report was to document the compliance of the Cisco System, Inc. Appliance (Model: For FCC: C9130AXI-B; For Canada: C9130AXI-A, For Taiwan: C9130AXI-T) to the requirements of the following Standards:

- -Part 2, Subpart J, Part 15 Subparts A and Part 15 Subparts E of the Federal Communication Commission's rules.
- -ANSI C63.10-2013 "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- -KDB 662911 D01 Multiple Transmitter Output v02r01.
- -KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.
- -RSS-247 Issue 2, Feb 2017 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.
- -RSS-Gen Issue 5, Feb 2019 General Requirements for Compliance of Radio Apparatus.
- -LP0002 Low-power Radio-frequency Devices Technical Regulations.

1.4 Measurement Uncertainty

Parameter	Expanded Measurement uncertainty
RF output power with Power Meter	± 0.55 dB
Occupied Channel Bandwidth	± 4.45 %
RF Conducted test with Spectrum	± 1.45 dB
AC Power Line Conducted Emission	± 2.66 dB
Radiated Below 1G	± 3.57 dB
Radiated Above 1G-18G	± 4.29 dB
Radiated Above 18G-40G	± 4.67 dB

1.5 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Taiwan) to collect test data is located on No.6, Wende 2Rd., Guishan Dist., Taoyuan City 33382, Taiwan (R.O.C.).

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database. The FCC Registration No.: 0027578244. Designation No.: TW3546. The Test Firm Registration No.: 181430.

Page 5 of 34

2 System Test Configuration

2.1 Test Channels and Description of Worst Test Configuration

The system was configured for testing in testing mode which was provided by manufacturer.

No special accessory, No modification was made to the EUT and No special equipment used during test.

• For Wi-Fi 2.4G mode:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	-	-
6	2437	-	-
7	2442	-	-

For 802.11b/g/n HT20/ax HE20 modes: Channel 1, 6 and 11 were tested.

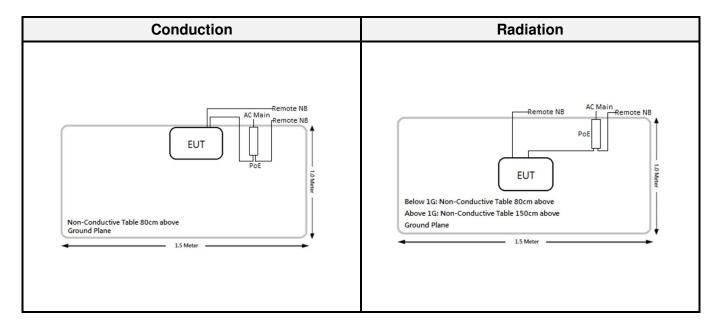
For BLE mode:

Channel	Channel Frequency (MHz)		Frequency (MHz)
0	2402	20	2442
1	2404		
2	2406		1
3	2408	37	2476
		38	2478
12	2426	39	2480

For BLE modes: Channel 0, 12 and 39 were tested.

Radiated below 1G were tested worst output power mode.

Page 6 of 34


2.2 Support Equipment List and External Cable List

No.	Description	Manufacturer	Model Number	BSMI	FCC ID / DoC
Α	Notebook PC*2	DELL	Latitude E5470	R33002	DoC

No.	Cable Description	Length (m)	From	То
1	LAN Cable	Non- Shielded	EUT	NB
2	LAN Cable	Non- Shielded	EUT	PoE
3	LAN Cable	Non- Shielded	NB	PoE

Page 7 of 34

2.3 Block Diagram of Test Setup

Modulation Used for Conformance Test						
Configuration NTX Data Rate Worst Data Rate						
802.11b mode 4		1-11 Mbps	1 Mbps			
802.11g mode	4/1(ChillWave)	6-54 Mbps	6 Mbps			
802.11n HT 20 mode 4		MCS 0-7	MCS 0			
802.11ax HE 20 mode 4		MCS 0-7	MCS 0			
BLE mode 1		125 kbps-1 Mbps	1 Mbps			

Worst Case of Power Setting						
EUT Exercise Software			Command			
Configuration	NTX	Low CH Mid CH High CH				
802.11b mode	4	17	17	17		
802.11g mode	4/1(ChillWave)	17	17	17		
802.11n HT 20 mode	4	17	17	17		
802.11ax HE 20 mode	4	17	17	17		
BLE mode	1	5	5	5		

Page 8 of 34

2.4 Duty Cycle

According to KDB 558074 D01 15.247 Meas Guidance v05r02:

All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum power transmission duration, T, are required for each tested mode of operation.

Configuration	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Factor (dB)
802.11b mode	0.96	1.17	92.10	0.36
802.11g mode	1.43	1.56	82.26	0.85
802.11n HT 20 mode	5.43	5.75	96.11	0.17
802.11ax HE 20 mode	5.45	5.74	95.73	0.19
BLE mode	-	1	100	0
ChillWave mode 802.11g	-	-	100	0

*Note: Duty Factor = 10*log (1/Duty cycle)

Page 9 of 34

3 Summary of Test Results

FCC/ISEDC/NCC Rules	Description of Test	Result
§15.247(i), §1.1317, §2.1091 ISEDC RSS-102 LP0002 Sec 5.20.2	Maximum Permissible Exposure (MPE)	Note ¹
FCC §15.203 ISEDC RSS-Gen Sec 6.8 LP0002-2018 Sec 2.2 and 3.10.1.3	Antenna Requirement	Compliance
FCC §15.207 ISEDC RSS-Gen Sec 8.8 LP0002-2018 Sec 2.3	AC Line Conducted Emissions	Compliance
FCC §15.205, §15.209, §15.247(d) ISEDC RSS-Gen Sec 8.9 and 8.10 ISEDC RSS-247 Sec 5.5 LP0002-2018 Sec 3.10, 2.7 and 2.8	Spurious Unwanted Emission	Compliance
FCC §15.247(a)(2) ISEDC RSS-247 Sec 5.2 ISEDC RSS-Gen Sec 6.7 LP0002 Sec 3.10.1.6	Emission Bandwidth	Note ²
FCC §15.247(b)(3) ISED RSS-247 Sec5.4(d) LP0002 Sec 3.10.1.2	Maximum Output Power	Note ²
FCC §2.1051, §15.247(d) ISEDC RSS-247 Sec 5.5 LP0002 Sec 3.10.1.5	Band Edge	Note ²
FCC §15.247(e) ISEDC RSS-247 Sec 5.2(b) LP0002 Sec 3.10.1.6(2)(b)	Power Spectral Density	Note ²

Note¹: RF Exposure evaluation was recorded in a separate report in this filing.

Note²: Compliance test data was recorded in a separate reports, please refer to Test Report: EDCS-17873174, EDCS-17873187, EDCS-17873175.

Page 10 of 34

4 FCC §15.203, RSS-Gen and LP0002 Sec 2.2- Antenna Requirements

4.1 Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna does not exceed 6dBi

4.2 Antenna List and Details

Radio	Item	Manufacturer	Antenna Type	Antenna Gain
BLE	BLE	Cisco	Internal antenna	4 dBi
	Wi-Fi 2.4G Chain 0	Cisco	Internal antenna	4 dBi
	Wi-Fi 2.4G Chain 1	Cisco	Internal antenna	4 dBi
	Wi-Fi 2.4G Chain 2	Cisco	Internal antenna	4 dBi
VOD	Wi-Fi 2.4G Chain 3	Cisco	Internal antenna	4 dBi
XOR	Wi-Fi 5G Chain 0	Cisco	Internal antenna	6 dBi
	Wi-Fi 5G Chain 1	Cisco	Internal antenna	6 dBi
	Wi-Fi 5G Chain 2	Cisco	Internal antenna	6 dBi
	Wi-Fi 5G Chain 3	Cisco	Internal antenna	6 dBi
	Wi-Fi 5G Chain 4	Cisco	Internal antenna	6 dBi
Danalan	Wi-Fi 5G Chain 5	Cisco	Internal antenna	6 dBi
Regular	Wi-Fi 5G Chain 6	Cisco	Internal antenna	6 dBi
	Wi-Fi 5G Chain 7	Cisco	Internal antenna	6 dBi
Ch:ll	Wi-Fi 2.4G	Cisco	Internal antenna	5 dBi
Chillwave	Wi-Fi 5G	Cisco	Internal antenna	6 dBi

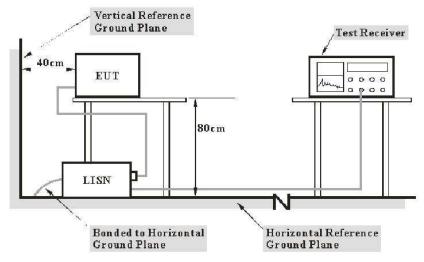
The EUT has an internal antenna arrangement, which was permanently attached, fulfill the requirement of this section.

Page 11 of 34

5 FCC §15.207, §15.407 (b), RSS-Gen Sec 8.8 and LP0002 Sec 2.3 - AC Line Conducted Emissions

5.1 Applicable Standard

According to FCC §15.407(b) (6), RSS-Gen Sec 8.8 and LP0002 Sec 2.3.


Any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Channel	Conducted Limit (dBuV)			
Channel	Quasi-Peak	Average		
0.15-0.5	66 to 56 Note 1	56 to 46 Note 2		
0.5-5	56	46		
5-30	60	50		

Note 1: Decreases with the logarithm of the frequency. Note 2: A linear average detector is required

5.2 EUT Setup and Test Procedure

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz. During the conducted emission test, the EMI test receiver was set with the following configurations

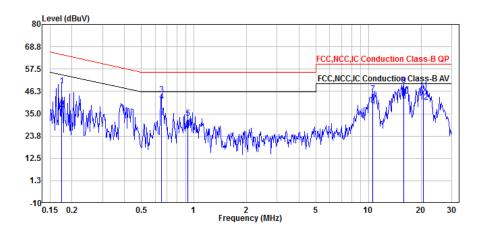
Frequency Range	Receiver RBW	
150 kHz - 30 MHz	9 kHz	

During the conducted emission test, the adapter was connected to the outlet of the LISN. Maximizing procedure was performed on the six (6) highest emissions of the EUT. All data was recorded in the Quasi-peak and average detection mode.

5.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.			
	Conduction Room							
LISN	Rohde & Schwarz	ENV216	101612	2019/02/21	2020/02/20			
LISN	Rohde & Schwarz	ENV216	101248	2019/06/26	2020/06/25			
EMI Test Receiver	Rohde & Schwarz	ESR7	101419	2018/10/23	2019/10/22			
Pulse Limiter	Rohde & Schwarz	ESH3Z2	TXZEM104	2018/08/03	2019/08/02			
RF Cable	EMEC	EM-CB5D	001	2019/07/01	2020/06/30			
Software	AUDIX	E3	LKCO01	N.C.R	N.C.R			

^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).


5.4 Test Environmental Conditions

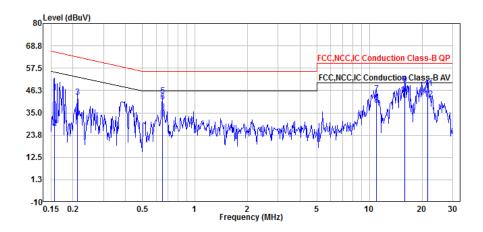
Temperature:	20-25 ℃	Relative Humidity:	45-55 %
ATM Pressure:	1010 hPa	Test Engineer:	Ray Huang
Test Date:	2019-08-27		

Page 13 of 34

5.5 AC Line Conducted Emission Test Plot and Data

Mode: AC 120V/60 Hz, Co-location (2.4G+BLE), Line

		Read			Limit	0ver	
	Freq	Level	Level	Factor	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dBuV	dB	
1	0.175	29.33	49.19	19.86	64.74	-15.55	QP
2	0.175	17.41	37.27	19.86	54.74	-17.47	Average
3	0.650	24.81	44.70	19.89	56.00	-11.30	QP
4	0.650	21.30	41.19	19.89	46.00	-4.81	Average
5	0.923	12.87	32.76	19.89	56.00	-23.24	QP
6	0.923	7.59	27.48	19.89	46.00	-18.52	Average
7	10.564	25.05	45.15	20.10	60.00	-14.85	QP
8	10.564	19.27	39.37	20.10	50.00	-10.63	Average
9	15.987	29.22	49.37	20.15	60.00	-10.63	QP
10	15.987	23.95	44.10	20.15	50.00	-5.90	Average
11	20.630	26.50	46.68	20.18	60.00	-13.32	QP
12	20.630	20.92	41.10	20.18	50.00	-8.90	Average


Note:

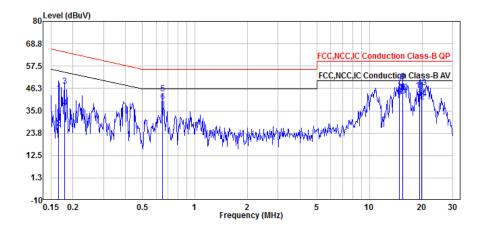
Level = Read Level + Factor

Over Limit (Margin) = Level - Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

Mode: AC 120V/60 Hz, Co-location (2.4G+BLE), Neutral

		Read			Limit	0ver	
	Freq	Level	Level	Factor	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dBuV	——dB	
1	0.157	25.57	45.44	19.87	65.60	-20.16	QP
2	0.157	7.64	27.51	19.87	55.60	-28.09	Average
3	0.213	23.04	42.90	19.86	63.09	-20.19	QP
4	0.213	12.68	32.54	19.86	53.09	-20.55	Average
5	0.650	23.70	43.59	19.89	56.00	-12.41	QP
6	0.650	20.64	40.53	19.89	46.00	-5.47	Average
7	10.994	24.44	44.57	20.13	60.00	-15.43	QP
8	10.994	18.74	38.87	20.13	50.00	-11.13	Average
9	15.987	29.41	49.60	20.19	60.00	-10.40	QP
10	15.987	24.17	44.36	20.19	50.00	-5.64	Average
11	21.640	27.33	47.55	20.22	60.00	-12.45	QP
12	21.640	21.58	41.80	20.22	50.00	-8.20	Average


Note:

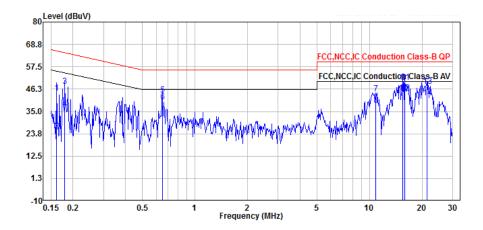
Level = Read Level + Factor

Over Limit (Margin) = Level - Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

Mode: AC 110V/60 Hz, Co-location (2.4G+BLE), Line

		Read			Limit	0ver	
	Freq	Level	Level	Factor	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dBuV	dB	
1	0.165	24.24	44.11	19.87	65.21	-21.10	QP
2	0.165	6.63	26.50	19.87	55.21	-28.71	Average
3	0.179	27.45	47.31	19.86	64.54	-17.23	QP
4	0.179	16.62	36.48	19.86	54.54	-18.06	Average
5	0.650	23.73	43.62	19.89	56.00	-12.38	QP
6	0.650	19.79	39.68	19.89	46.00	-6.32	Average
7	14.881	27.39	47.53	20.14	60.00	-12.47	QP
8	14.881	21.94	42.08	20.14	50.00	-7.92	Average
9	15.485	29.55	49.69	20.14	60.00	-10.31	QP
10	15.485	24.16	44.30	20.14	50.00	-5.70	Average
11	19.356	25.35	45.52	20.17	60.00	-14.48	QP
12	19.356	19.48	39.65	20.17	50.00	-10.35	Average
13	19.983	26.67	46.84	20.17	60.00	-13.16	QP
14	19.983	21.20	41.37	20.17	50.00	-8.63	Average


Note:

Level = Read Level + Factor

Over Limit (Margin) = Level – Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

Mode: AC 110V/60 Hz, Co-location (2.4G+BLE), Neutral

		Kead			Limit	Over	
	Freq	Level	Level	Factor	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dBuV	——dB	
1	0.161	24.60	44.47	19.87	65.40	-20.93	QP
2	0.161	5.49	25.36	19.87	55.40	-30.04	Average
3	0.180	27.78	47.64	19.86	64.48	-16.84	QP
4	0.180	16.56	36.42	19.86	54.48	-18.06	Average
5	0.650	23.34	43.23	19.89	56.00	-12.77	QP
6	0.650	19.92	39.81	19.89	46.00	-6.19	Average
7	10.906	23.74	43.87	20.13	60.00	-16.13	QP
8	10.906	18.15	38.28	20.13	50.00	-11.72	Average
9	15.485	29.69	49.87	20.18	60.00	-10.13	QP
10	15.485	24.17	44.35	20.18	50.00	-5.65	Average
11	15.987	29.42	49.61	20.19	60.00	-10.39	QP
12	15.987	24.08	44.27	20.19	50.00	-5.73	Average
13	21.298	27.40	47.62	20.22	60.00	-12.38	QP
14	21.298	21.68	41.90	20.22	50.00	-8.10	Average

Note:

Level = Read Level + Factor

Over Limit (Margin) = Level – Limit Line

 $Factor = (LISN, ISN, PLC \ or \ current \ probe) \ Factor + Cable \ Loss + Attenuator$

6 FCC §15.209, §15.205, §15.247(d), §2.1053, RSS-Gen Sec 8.9, 8.10, RSS-247 Sec 5.5 and LP0002 Sec 3.10, 2.7 and 2.8 – Spurious Unwanted Emissions

6.1 Applicable Standard

According to FCC §15.247 (d), LP0002 Sec 3.10,. ISED RSS-247 Sec 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c). (7) The provisions of §15.205 apply to intentional radiators operating under this section.

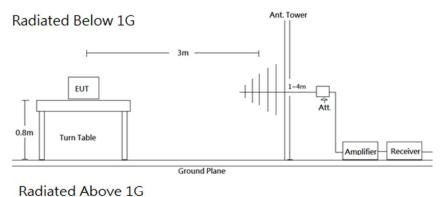
As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1MHz.

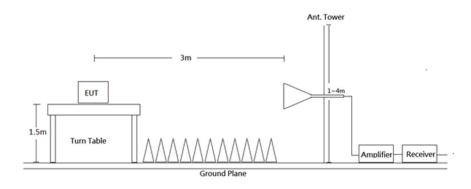
Page 18 of 34

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	13.36-13.41	399.9-410	4.5-5.15
0.495-0.505	16.42-16.423	608-614	5.35-5.46
2.1735-2.1905	16.69475-16.69525	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6

As per NCC Section 2.7,


MHz	MHz	MHz	
0.090 - 0.110	167.72 - 173.20	3260.0 - 3267.0	
0.490 - 0.510	240.00 - 285.00	3332.0 - 3339.0	
2.172 - 2.198	322.00 - 335.40	3345.8 - 3358.0	
3.013 - 3.033	399.90 - 410.00	3500.0 - 4400.0	
4.115 - 4.198	608.00 - 614.00	4500.0 - 5250.0	
5.670 - 5.690	703.00 - 748.00	5350.0 - 5460.0	
6.200 - 6.300	758.00 - 803.00	7250.0 - 7750.0	
8.230 - 8.400	825.00 - 915.00	8025.0 - 8500.0	
12.265 - 12.600	930.00 - 1240.0	9000.0 - 9200.0	
13.340 - 13.430	1300.0 - 1427.0	9300.0 - 9500.0	
14.965 - 15.020	1435.0 - 1626.5	10600 - 12700	
16.700 - 16.755	1660.0 - 1785.0	13250 - 13400	
19.965 - 20.020	1805.0 - 1880.0	14470 - 14500	
25.500 - 25.700	1885.0 - 1900.0	15350 - 16200	
37.475 - 38.275	1905.0 - 1985.0	17700 - 21400	
73.500 - 75.400	2010.0 - 2025.0	22010 - 23120	
108.00 - 138.00	2110.0 - 2170.0	23600 - 24000	
149.90 - 150.05	2200.0 - 2300.0	31200 - 31800	
156.70 - 156.90	2310.0 - 2390.0	36430 - 36500	
162.01 - 167.17	2483.5 - 2900.0	Above 38600	


As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

6.2 EUT Setup and Test Procedure

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part 15.209 and FCC 15.247 Limits.

The system was investigated from 30 MHz to 26.5 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10.

Frequency Range	RBW	VBW	Detector	Duty cycle	Measurement method
30-1000 MHz	120 kHz	/	QP	-	QP
Above 1 GHz	1 MHz	3 MHz	PK	-	PK
	1 MHz	3 MHz	RMS	>98%	Ave
	1 MHz	1/T	PK	<98%	Ave

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations. All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

Page 21 of 34

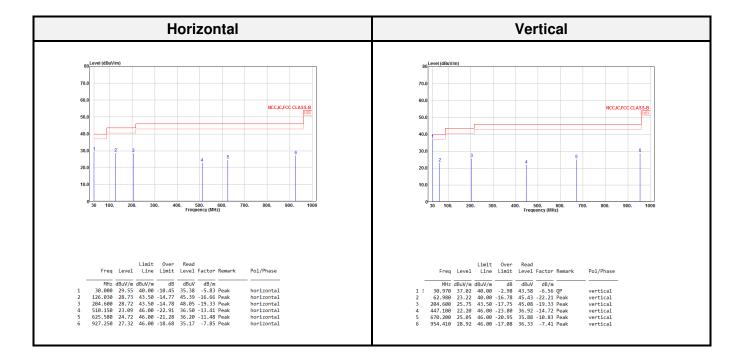
6.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.	
	966A Room					
Active Loop Antenna	ETS-Lindgren	6502	00035796	2019/03/12	2020/03/11	
Bilog Antenna with 6 dB Attenuator	Sunol & Mini-Circuits	JB6/UNAT-6+	A050115/15542_01	2018/12/11	2019/12/10	
Horn Antenna	EMCO	SAS-571	1983	2019/04/30	2020/04/29	
Horn Antenna	ETS-Lindgren	3116	62638	2018/08/29	2019/08/28	
Preamplifier	Sonoma	310N	130601	2018/09/20	2019/09/19	
Preamplifier	EM Electronics Corp.	EM01G18G	060698	2019/04/12	2020/04/11	
Microware Preamplifier	EM Electronics Corporatino	EM18G40G	060656	2019/01/11	2020/01/10	
EMI Test Receiver	Rohde & Schwarz	ESR7	101419	2018/10/23	2019/10/22	
Spectrum Analyzer	Rohde & Schwarz	FSV40	101204	2019/07/04	2020/07/03	
Microflex Cable	UTIFLEX	UFB197C-1-2362- 70U-70U	225756-001	2019/07/01	2020/06/30	
Microflex Cable	UTIFLEX	UFA210A-1-3149- 300300	MFR64639 226389- 001	2018/11/19	2019/11/18	
Microflex Cable	ROSNOL	K1K50-UP0264- K1K50-450CM	160309-1	2019/03/04	2020/03/03	
Microflex Cable	ROSNOL	K1K50-UP0264- K1K50-80CM	160309-2	2019/01/16	2020/01/15	
Turn Table	Champro	TT-2000	060772-T	N.C.R	N.C.R	
Antenna Tower	Champro	AM-BS-4500-B	060772-A	N.C.R	N.C.R	
Controller	Champro	EM1000	60772	N.C.R	N.C.R	
Software	AUDIX	E3	LKCO01	N.C.R	N.C.R	

^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing
Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result
could be traceable to the International System of Units (SI).

6.4 Test Environmental Conditions

Temperature:	20-25 ℃	Relative Humidity:	45-55 %
ATM Pressure:	ATM Pressure: 1014hPa		Leo Chang
Test Date:	2019-06-19~2019-08-06	-	-


Page 22 of 34

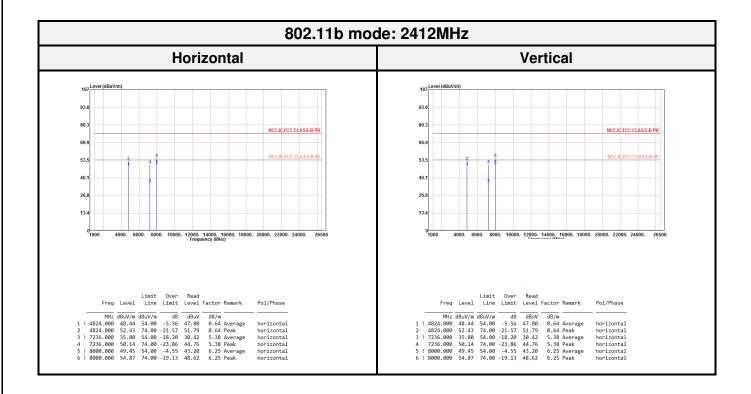
6.5 Radiated Emission Test Plot and Data

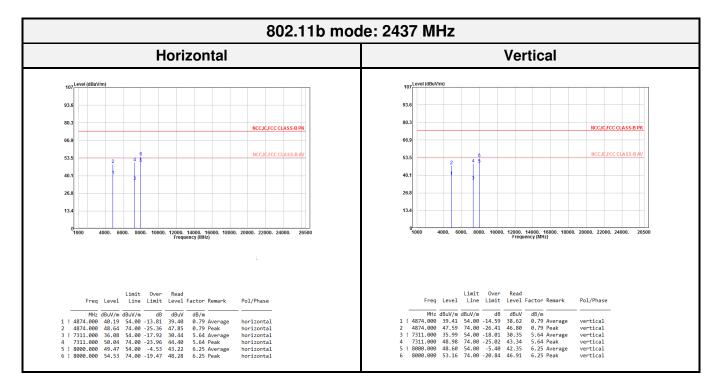
Wi-Fi 2.4G mode - 4TX

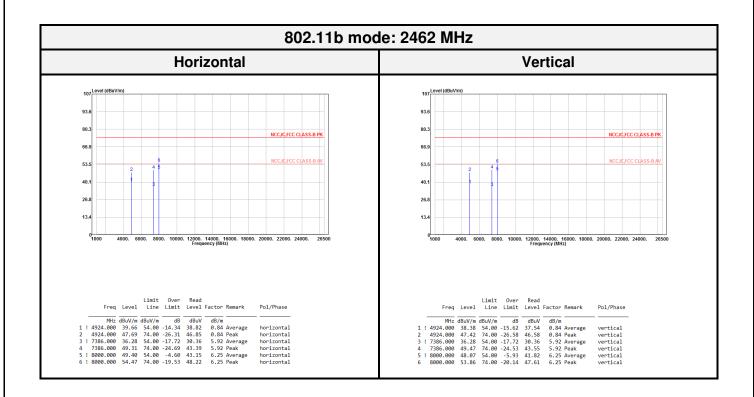
Transmitting mode (Pre-scan with three orthogonal axis, and worse case as Z axis)

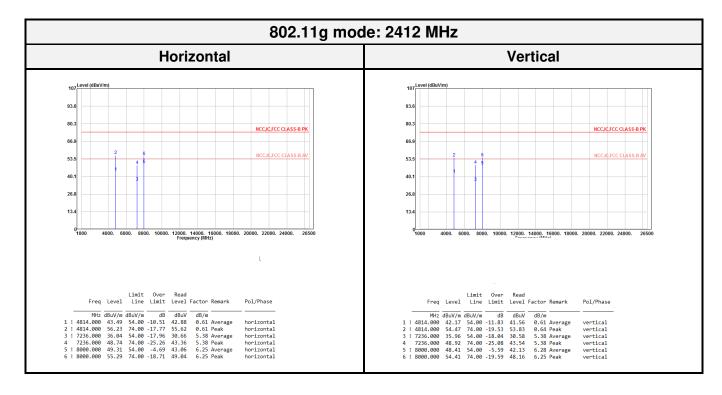
Below 1G (30 MHz-1 GHz) test the output power worst mode

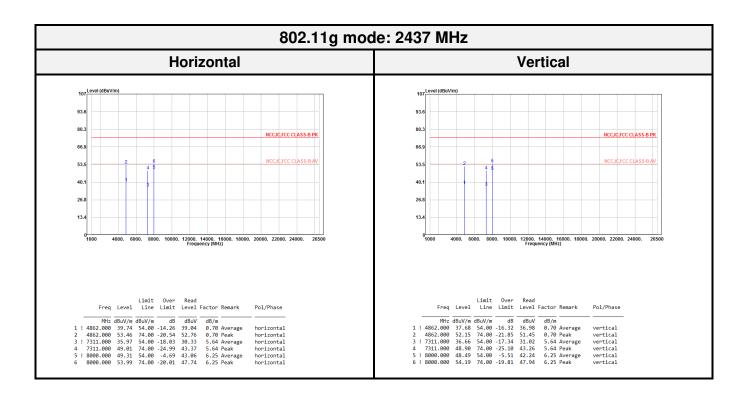
Result = Reading + Correct Factor

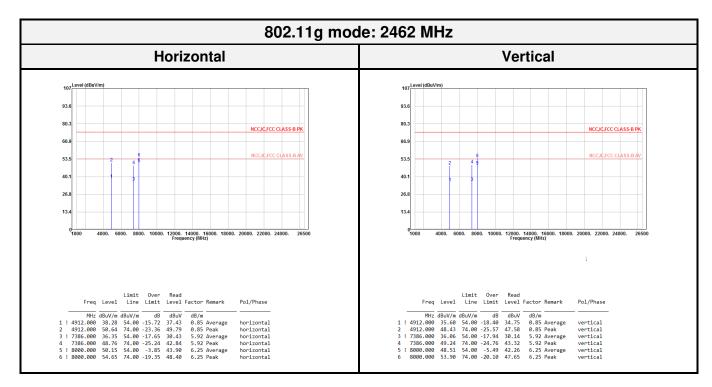

Margin = Result - Limit

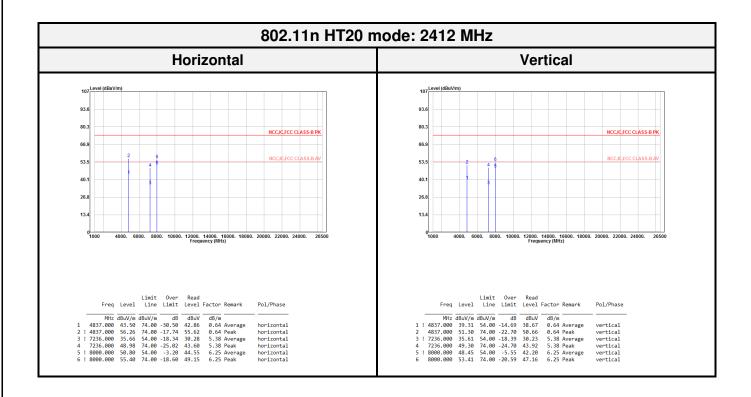

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

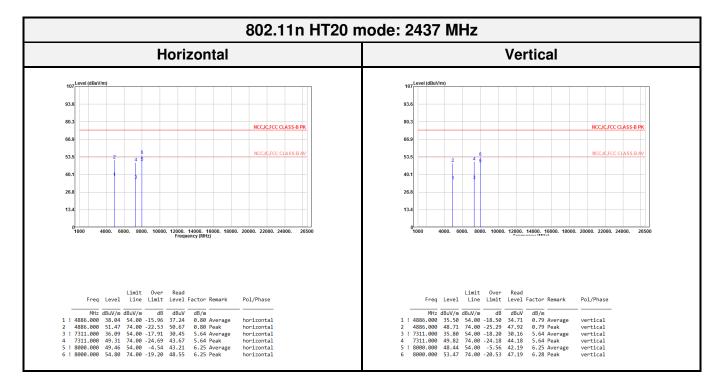

Spurious emissions more than 20 dB below the limit were not reported

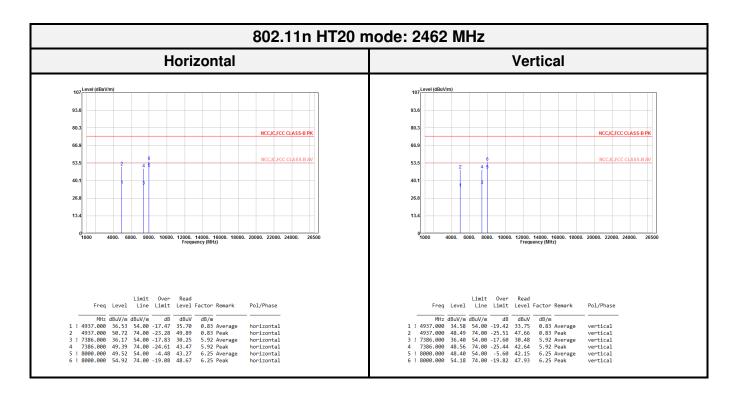

Wi-Fi 2.4G mode - 4TX

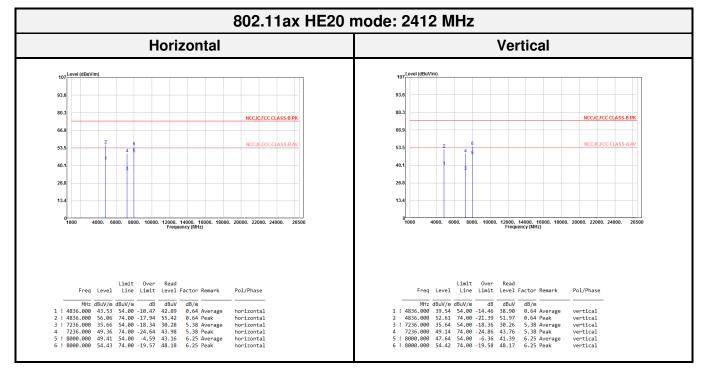

Above 1G (1 GHz-26.5 GHz):

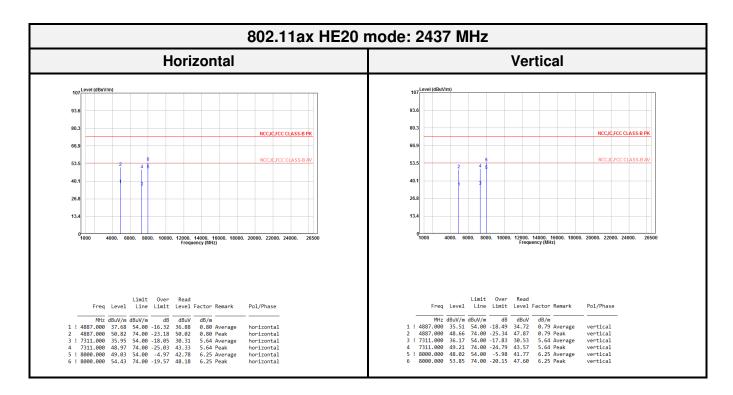


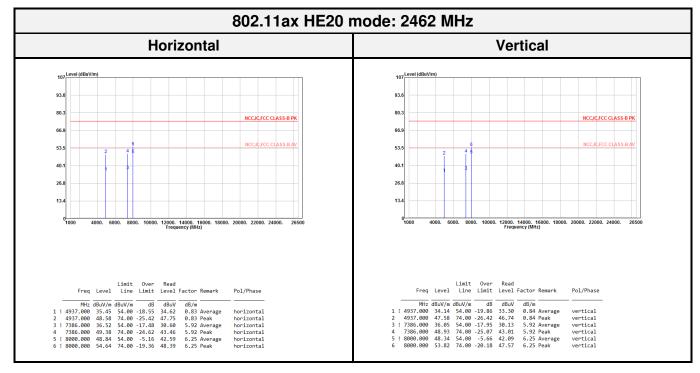


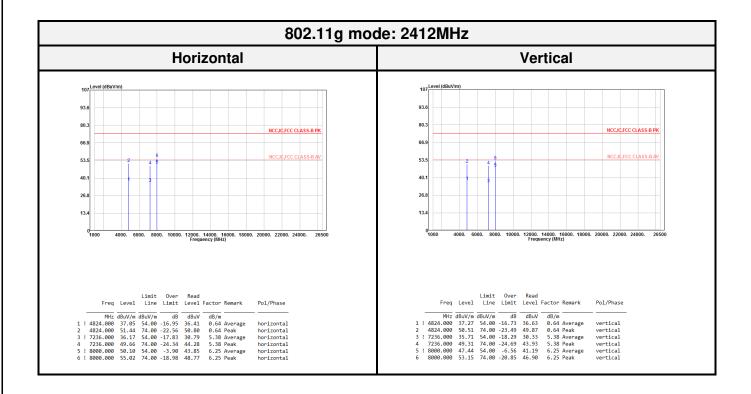


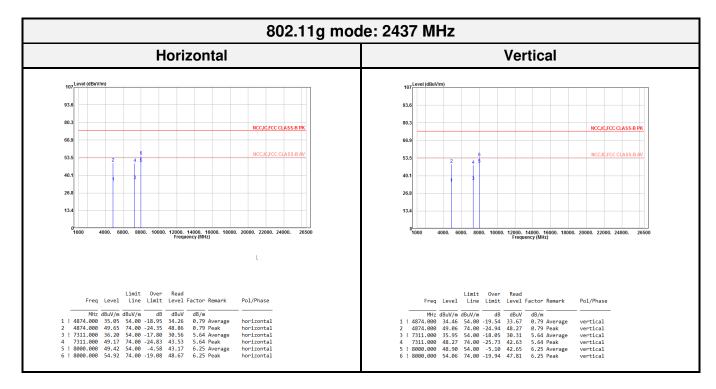


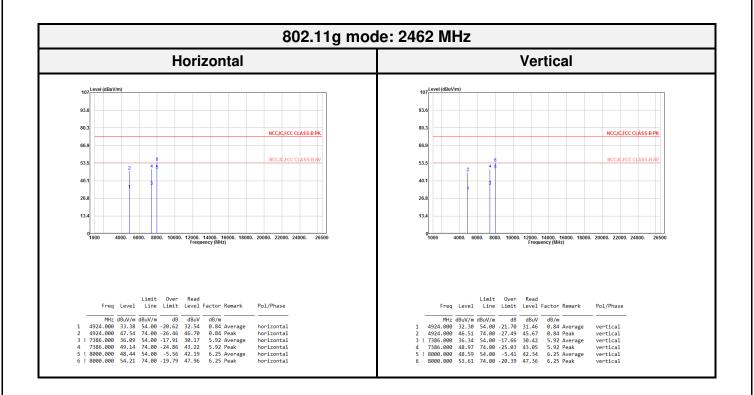






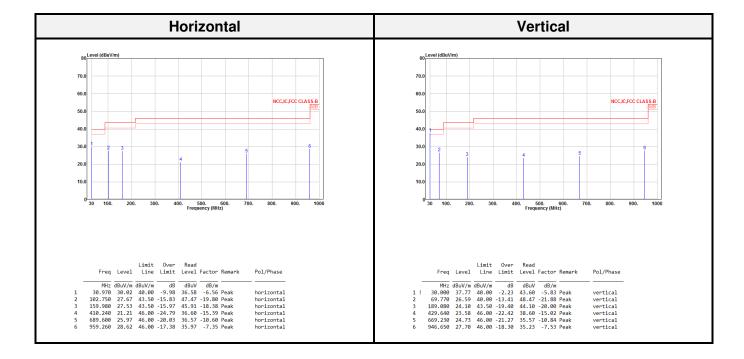






ChillWave mode -

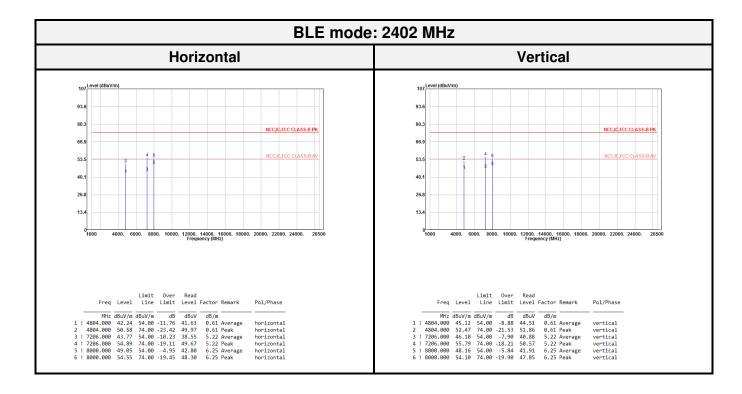
Above 1G (1 GHz-26.5 GHz):

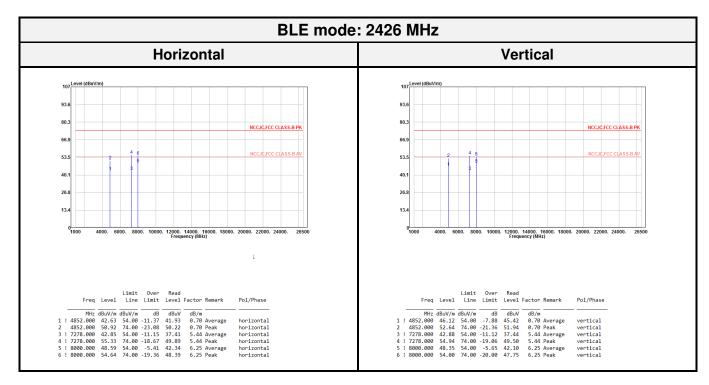


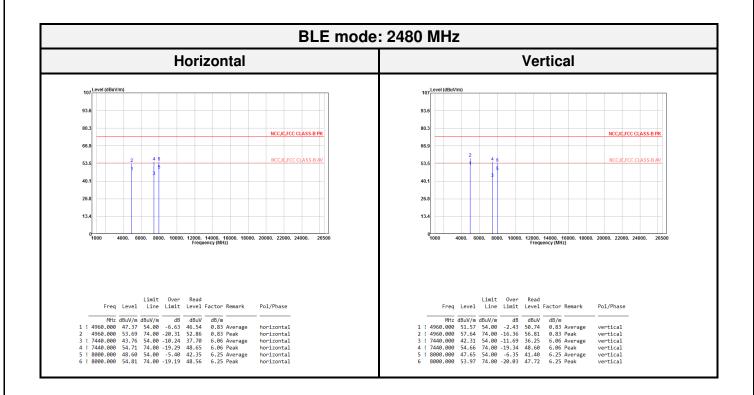
BLE mode

Transmitting mode (Pre-scan with three orthogonal axis, and worse case as Z axis)

Below 1G (30 MHz-1 GHz) test the output power worst mode


Result = Reading + Correct Factor


Margin = Result - Limit


Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

Spurious emissions more than 20 dB below the limit were not reported

Above 1G (1 GHz-26.5 GHz):

---- END OF REPORT ----