cisco

Radio Test Report

ISR-1100 Series

C1111-4PWB, C1111-8PWB, C1111-8PLTEEAWB

FCC ID: LDKC11111696

5725-5850 MHz

Against the following Specifications:

CFR47 Part 15.407

Cisco Systems 170 West Tasman Drive San Jose, CA 95134

Author: Johanna Knudsen Approved By: Gerard Thorpe Title: Manager, Engineering - EMC & Standards Operations Tested By: Johanna Knudsen Revision: See EDCS

This report replaces any previously entered test report under EDCS – **11779337**. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. Test Report Template EDCS# 1526152.

Page No: 1 of 81

This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

SECTIO	N 1: OVI	ERVIEW	3
1.1 Te	ST SUMM	NRY	3
SECTIO	N 2: ASS	ESSMENT INFORMATION	4
		EASUREMENT	
		TING (INITIAL SAMPLE RECEIPT DATE TO LAST DATE OF TESTING)	
		IE DATE	
		XILITIES	
		Assessed (EUT) ption	
		SULT SUMMARY	
		MMARY TABLE	
SECTIO	N 4: SAN	IPLE DETAILS	
APPEND	OIX A:	EMISSION TEST RESULTS	11
A.1	DUTY	CYCLE	11
A.2	6dB I	BANDWIDTH	
A.3		ND 26DB BANDWIDTH	
A.4		UM CONDUCTED OUTPUT POWER	
A.5		SPECTRAL DENSITY	
A.6		CTED SPURIOUS EMISSIONS	
A.7		JCTED BAND EDGE	
APPEND		EMISSION TEST RESULTS	
B.1		TED SPURIOUS EMISSIONS	
B.2		тед Emissions 30MHz то 1GHz	
B.3	AC Co	NDUCTED EMISSIONS	65
APPEND	OIX C:	LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST	68
APPEND	DIX D:	ABBREVIATION KEY AND DEFINITIONS	
APPEND	DIX E:	PHOTOGRAPHS OF TEST SETUPS	77
APPEND	DIX F:	SOFTWARE USED TO PERFORM TESTING	78
APPEND	DIX G:	TEST PROCEDURES	79
APPEND	DIX H:	SCOPE OF ACCREDITATION (A2LA CERTIFICATE NUMBER 1178-01)	80
APPEND	DIX I:	TEST ASSESSMENT PLAN	81
APPEND	DIX J: W	ORST CASE JUSTIFICATION	81

Page No: 2 of 81

Section 1: Overview

1.1 Test Summary

The samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

specifications

CFR47 Part 15.407

Page No: 3 of 81

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Radio Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).

d) All testing was performed under the following environmental conditions:

Temperature	15°C to 35°C (54°F to 95°F)
Atmospheric Pressure	860mbar to 1060mbar (25.4" to 31.3")
Humidity	10% to 75*%

1.All AC testing was performed at one or more of the following supply voltages:

110V 60 Hz (+/-20%)

2.2 Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB]

The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss.

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Page No: 4 of 81

Measurement Uncertainty Values

voltage and power measurements	± 2 dB
conducted EIRP measurements	± 1.4 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7
temperature measurements	± 0.54°.
humidity measurements	± 2.3%
DC and low frequency measurements	± 2.5%.

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

30 MHz – 40GHz	+/- 0.38 dB
----------------	-------------

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

Page No: 5 of 81

2.3 Date of testing (initial sample receipt date to last date of testing)

27-JUN-2017 to 19-APR-2018

2.4 Report Issue Date

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled

2.5 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc. 125 West Tasman Drive (Building P) San Jose, CA 95134 USA

Headquarters

Cisco Systems, Inc., 170 West Tasman Drive San Jose, CA 95134, USA

Registration Numbers for Industry Canada

Cisco System Site	Site Identifier
Building P, 10m Chamber	Company #: 2461N-2
Building P, 5m Chamber	Company #: 2461N-1
Building I, 5m Chamber	Company #: 2461M-1

Test Engineers

Johanna Knudsen, Marie Higa

2.6 Equipment Assessed (EUT)

C1111-4PW with ISR-AP1100AC-B

Page No: 6 of 81

2.7 EUT Description

The Cisco ISR-AP1100AC Wi-Fi module supports the following modes of operation. The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst case data for all modes.

802.11a - Non HT20, One Antenna, 6 to 54 Mbps, 1ss 802.11a - Non HT20, Two Antennas, 6 to 54 Mbps, 1ss

802.11a - Non HT20 Beam Forming, Two Antennas, 6 to 54 Mbps, 1ss

802.11n/ac - HT/VHT20, One Antenna, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Two Antennas, M8 to M15, 2ss

802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M8 to M15, 2ss

802.11n/ac - HT/VHT20 STBC, Two Antennas, M0 to M7, 2ss

802.11a - Non HT40, One Antenna, 6 to 54 Mbps, 1ss 802.11a - Non HT40, Two Antennas, 6 to 54 Mbps, 1ss

802.11n/ac - HT/VHT40, One Antenna, M0 to M7, 1ss 802.11n/ac - HT/VHT40, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT40, Two Antennas, M8 to M15, 2ss

802.11n/ac - HT/VHT40 Beam Forming, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT40 Beam Forming, Two Antennas, M8 to M15, 2ss

802.11n/ac - HT/VHT40 STBC, Two Antennas, M0 to M7, 2ss

802.11a - Non HT80, One Antenna, 6 to 54 Mbps, 1ss 802.11a - Non HT80, Two Antennas, 6 to 54 Mbps, 1ss

802.11ac - VHT80, One Antenna, M0 to M9 1ss 802.11ac - VHT80, Two Antennas, M0 to M9 1ss 802.11ac - VHT80, Two Antennas, M0 to M9 2ss

802.11ac - VHT80 Beam Forming, Two Antennas, M0 to M9 1ss 802.11ac - VHT80 Beam Forming, Two Antennas, M0 to M9 2ss

802.11ac - VHT80 STBC, Two Antennas, M0 to M9 2ss

The following antennas are supported by this product series. The data included in this report represent the worst case data for all antennas.

Frequency	Part Number	Antenna Type	Antenna Gain (dBi)
2.4 / 5 GHz	2x2 Internal	AP Omni	2/4

Page No: 7 of 81

Section 3: Result Summary

3.1 Results Summary Table

Conducted emissions Basic **Technical Requirements / Details** Result Standard FCC 15 407 6dB Bandwidth (e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of Pass U-NII devices shall be at least 500 kHz. FCC 15.407 99% & 26 dB Bandwidth: Pass The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW. The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission. Output Power: FCC 15.407 (3) For the band 5.725-5.85 GHz, the maximum conducted output power Pass over the frequency band of operation shall not exceed 1 W. ... If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. FCC 15 407 **Power Spectral Density** Pass (3) For the band 5.725-5.85 GHz... the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.

Page No: 8 of 81

cisco

FCC 15.407	Conducted Spurious Emissions / Band-Edge: (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.	Pass
FCC 15.407 FCC 15.205 FCC 15.209	Restricted band : Unwanted emissions must comply with the general field strength limits set	Pass
FCC 15.209	forth in §15.209. (7) The provisions of §15.205 apply to intentional radiators operating under this section.	

Radiated Emissions (General requirements)

Basic Standard	Technical Requirements / Details	Result
FCC 15.407 FCC 15.205 FCC 15.209	TX Spurious Emissions: Unwanted emissions must comply with the general field strength limits set forth in §15.209. (7) The provisions of §15.205 apply to intentional radiators operating under this section.	Pass
FCC 15.207	AC conducted Emissions: Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.	Pass

Page No: 9 of 81

Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing. Please also refer to the "Justification for worst Case test Configuration" section of this report for further details on the selection of EUT samples.

4.1 Sample Details

Sample No.	Equipment Details	Manufacturer	Hardware Rev.	Firmware Rev.	Software Rev.	Serial Number
S01	C1111-4PW (TSN-M-P2A)	Cisco Systems, Inc	74-114193-01 03	NA	NA	FGL211421YH (board: FOC21124R20)
S02	AC/DC Adapter ADP-66CR B	Delta Electronics, Inc	341-100346-01 A0	NA	NA	DAB2110G3CH
S03	C1111-4PW (TSN-M-P2A)	Cisco Systems, Inc	74-114193-01 03	NA	NA	FGL211522GR (board: FOC21136DF1)
S04	C1111-8PLTEW (TSN-H)	Cisco Systems, Inc	74-111526-01	NA	NA	FGL2123915E (board: FOC21193P24)
S05	C1111-8PLTEEAWB (TSN-H)	Cisco Systems, Inc	74-111526-01	NA	NA	FGL2123915D
S06	ADP-150BR B	Delta Electronics	341-100399-01	NA	NA	DAB2205X02C

4.2 System Details

System #	Description	Samples
1	Conducted Testing: EUT + Power Supply	S01, S02
2	Conducted Testing: EUT + Power Supply	S02, S03
3	RSE Testing: EUT + Power Supply	S02, S03
4	RSE Testing: EUT + Power Supply	S02, S04
5	AC Power Conducted Emissions: EUT + Power Supply	S05, S06

4.3 Mode of Operation Details

Mode#	Description	Comments
1	Conducted Testing	Continuous TX mode. Image version 8.4.100.1
2	Radiated Testing	Continuous TX mode. Image version 8.4.100.1
3	AC Conducted Emissions	Wi-Fi operating in TX mode

Page No: 10 of 81

Appendix A: Emission Test Results

A.1 Duty Cycle

Duty Cycle Test Requirement

From KDB 789033 D02 General UNII Test Procedures New Rules v01r04

B. Duty Cycle (x), Transmission Duration (T), and Maximum Power Control Level 1. All measurements are to be performed with the EUT transmitting at 100 percent duty cycle at its maximum power control level; however, if 100 percent duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, *T*, are required for each tested mode of operation.

Duty Cycle Test Method

From KDB 789033 D02 General UNII Test Procedures New Rules v01r04:

B. Duty Cycle (x), Transmission Duration (T), and Maximum Power Control Level

The zero-span mode on a spectrum analyzer or EMI receiver, if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq EBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in section II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

Duty Cycle Test Information

Tested By :	Date of testing:
Johanna Knudsen	July 7 th , 2017
Test Result : N/A	

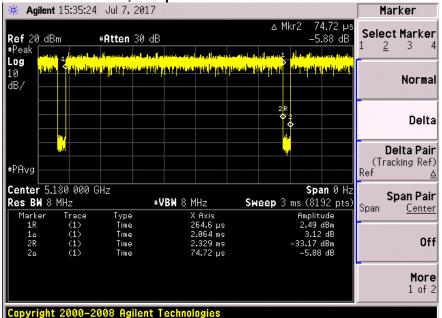
Test Equipment

See Appendix C for list of test equipment

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
1	Conducted Testing: EUT + AC/DC Adapter	S01 and S02	R	

Duty Cycle Data Table

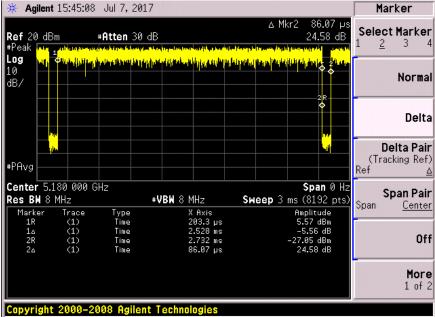

Duty Cycle table and screen captures are shown below for power/psd modes.

Mode	Data Rate	On-time (ms)	Total Time (ms)	Duty Cycle (%)	Correction Factor (dB)
NonHT20	6Mbps	2.064	2.13872	96.5	0.2
HT20	M0	5.008	5.09307	98.3	0.1
VHT20	M8	2.528	2.61407	96.7	0.1
NonHT40	6Mbps	2.064	2.14238	96.3	0.2
HT40	M0	2.431	2.5222	96.4	0.2
VHT40	M8	3.628	3.7261	97.4	0.1
NonHT80	6Mbps	2.063	2.14406	96.2	0.2
VHT80	M0X1	3.352	4.0531	82.7	0.8
VHT80	M0X2	3.906	4.6093	84.7	0.7

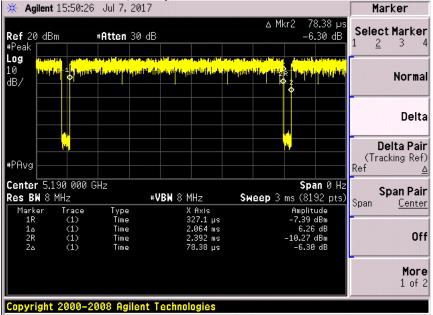
Page No: 12 of 81

Duty Cycle Data Screenshots

20MHz Bandwidth, 6Mbps

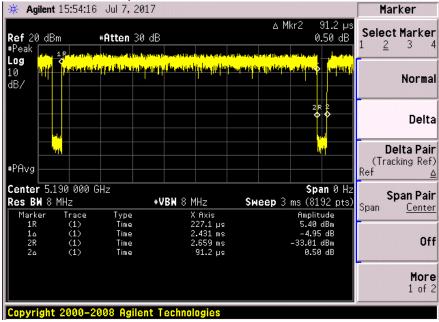


20MHz Bandwidth, M0


🔆 Agilent 15:41:38	Jul 7, 2017			Marker
*Peak 1R	Atten 30 dB		∆ Mkr2 85.07 µs –5.35 dB مربعي المدر المراسطين	Select Marker
Log 10 dB/	n halan dag ba hada atti yeri	an printer afficiency provide the formula of the state of th	<mark>anit di malandin s</mark> a dalah serahar	Normal
Marker 🛆			2F 02 04	Delta
-85.06666 #PAvg -5.35 dE				Delta Pair (Tracking Ref) Ref <u>∆</u>
Center 5.180 000 GH Res BW 8 MHz	#		Span 0 Hz 6.007 ms (8192 pts)	Span Pair Span <u>Center</u>
Marker Trace 1R (1) 1Δ (1) 2R (1) 2Δ (1)	Type Time Time Time Time	X Axis 190.8 µs 5.008 ms 5.199 ms 85.07 µs	Amplitude 9.72 dBm -7.22 dB -36.09 dBm -5.35 dB	Off
				More 1 of 2
Copyright 2000-20	08 Agilent 1	Cechnologies		

Page No: 13 of 81

20MHz Bandwidth, M8



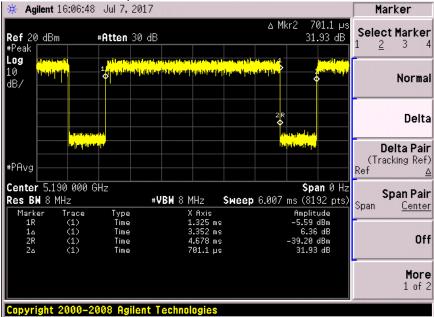
40MHz Bandwidth, 6Mbps

Page No: 14 of 81

40MHz Bandwidth, M0

cisco

40MHz Bandwidth, M8


🔆 Agilent 15:58:08 Jul 7, 2017		Marker
Ref 20 dBm +Atten 30 dB +Peak	∆ Mkr2 91.81 µs −13.88 dB	Select Marker 1 <u>2</u> 3 4
Log 10 dB/ 	<mark>i i na se de la compansa de la compa</mark>	Normal
		Delta
*PAvg		Delta Pair (Tracking Ref) Ref <u>∆</u>
	Span 0 Hz 8 MHz Sweep 4 ms (8192 pts)	Span Pair Span Center
Marker Trace Type 1R (1) Time 1a (1) Time 2R (1) Time 2a (1) Time	X Axis Amplitude 294.9 µs –6.33 dBm 3.628 ms 8.73 dB 202.6 µs –25.01 dBm 91.81 µs –13.88 dB	Off
Copyright 2000-2008 Agilent Tec	chnologies	More 1 of 2

Page No: 15 of 81

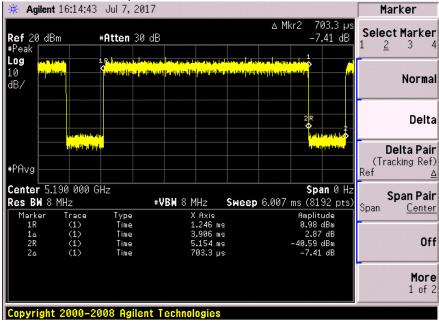
* Agilent 16:01:55 Jul 7, 2017 Marker ∆ Mkr2 – 81.06 µs Select Marker Ref 20 dBm *Atten 30 dB -19.34 dB 2 3 #Peak Log 1 R 10 han Allin Jahre telling filling in the list alle been de steret gebreer begeerte de te 1-41 Normal dB/ 2 R Delta Delta Pair (Tracking Ref) #PAvg Ref Center 5.190 000 GHz Res BW 8 MHz Span 0 Hz Span Pair #VBW 8 MHz Sweep 4 ms (8192 pts) Span Center X Axis 711.4 µs 2.063 ms 628.4 µs Amplitude 2.01 dBm -1.64 dB Type Time Time Time Marker Trace (1) (1) (1) (1) 1R 1∆ 2R 2∆ Off -29.63 dBm 81.06 µs Time -19.34 dB More 1 of 2

Copyright 2000-2008 Agilent Technologies

80MHz Bandwidth, M0X1

Page No: 16 of 81

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential


80MHz Bandwidth, 6Mbps

....... cisco

4

Δ

80MHz Bandwidth, M0X2

cisco

Page No: 17 of 81

A.2 6dB Bandwidth

6dB Bandwidth Test Requirement

15.407 e

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz

6dB Bandwidth Test Procedure

From KDB 789033 D02 General UNII Test Procedures New Rules v01r04

Section C. Bandwidth Measurement

6 BW

Test Procedure

- 1. Set the radio in the continuous transmitting mode.
- 2. Allow the trace to stabilize.
- 3. Setting the x-dB bandwidth mode to -6dB within the measurement set up function.
- 4. Select the automatic OBW measurement function of an instrument to perform bandwidth measurement.
- 5. Capture graphs and record pertinent measurement data.

From KDB 789033 D02 General UNII Test Procedures New Rules v01r04

Section C. Bandwidth Measurement

6 BW

Test parameters

2. Minimum Emission Bandwidth for the band 5.725-5.85 GHz

a) Set RBW = 100 kHz.

b) Set the video bandwidth (VBW) \ge 3 × RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

6dB Bandwidth Test Information

Tested By :	Date of testing:
Johanna Knudsen	July 21 st , 2017
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 18 of 81

Samples, Sy	vstems, and Modes	
System		

System Number	Description	Samples	System under test	Support equipment
2	Conducted Testing: EUT + AC/DC Adapter	S02 and S03	\square	

6dB Bandwidth Data Table

Frequency (MHz)	Mode	Data Rate (Mbps)	6dB BW (MHz)	Limit (kHz)	Margin (MHz)
5745	NonHT20	6Mbps	16.329	500	15829
	HT20	M0	17.600	500	17100
	HT20	M8	17.551	500	17051

5765	NonHT20	6Mbps	16.342	500	15842
	HT20	M0	17.571	500	17071
	HT20	M8	17.589	500	17089

5785	NonHT20	6Mbps	16.343	500	15843
	HT20	M0	17.633	500	17133
	HT20	M8	17.575	500	17075

5805	NonHT20	6Mbps	16.314	500	15814
	HT20	M0	17.594	500	17094
	HT20	M8	17.542	500	17042

	NonHT20	6Mbps	16.328	500	15828
5825	HT20	M0	17.553	500	17053
	HT20	M8	17.550	500	17050

5745/5765	NonHT40	6Mbps	31.398	500	30898
	HT40	M0	35.124	500	34624
	HT40	M8	35.068	500	34568

ſ	5785/5805	NonHT40	6Mbps	31.264	500	30764
		HT40	M0	33.814	500	33314
		HT40	M8	35.105	500	34605

Page No: 19 of 81

uluulu cisco

5745/5765	NonHT80	6Mbps	73.891	500	73391
5785/5805	VHT80	M0x1	75.927	500	75427
	VHT80	M0x2	75.922	500	75422

Page No: 20 of 81

Agilent 09:13:04 Jul 21, 2017	Meas Setup
Ch Freq 5.745 GHz Trig Fre	Avg Number
Occupied Bandwidth	On <u>Off</u>
Sweep Time 3.276 ms	Avg Mode
	Exp Repeat
Ref 15.84 dBm	Max Hold
	<u>On</u> Off
dB/ when the second sec	Occ BW % Pwr 99.00 %
14.2	
dB	OBW Span
Center 5.745 000 GHz Span 30 M	Hz 30.0000000 MHz
#Res BW 100 kHz #VBW 300 kHz Sweep 3.276 ms (8192 pt	
Occupied Bandwidth Occ BW % Pwr 99.00 3	x dB −6.00 dB
16.4030 MHz × dB -6.00 df	
Transmit Freq Error -11.399 kHz	Optimize
x dB Bandwidth 16.329 MHz	Ref Level
Copyright 2000–2008 Agilent Technologies	

6dB Bandwidth, 5745MHz, NonHT20, 6 Mbps

Page No: 21 of 81

99% and 26dB Bandwidth Test Requirement

There is no requirement for the value of bandwidth.

However, the 26dB BW (EBW) is used to calculate the power limits in 15.407 (a) (2). Power measurements are made using the 99% Bandwidth as the integration bandwidth.

99% and 26dB Bandwidth Test Procedure

The 99-percent occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 % of the total mean power of the given emission. Measurement of the 99-percent occupied bandwidth is required only as a condition for using the optional band-edge measurement techniques described in section II.G.3.d). Measurements of 99-percent occupied bandwidth may also optionally be used in lieu of the EBW to define the minimum frequency range over which the spectrum is integrated when measuring maximum conducted output power as described in section II.E. However, the EBW must be measured to determine bandwidth dependent limits on maximum conducted output power in accordance with 15.407(a).

From KDB 789033 D02 General UNII Test Procedures New Rules v01r04 Section D. 99 Percent Occupied Bandwidth

99% BW

Test Parameters

1. Set center frequency to the nominal EUT channel center frequency.

2. Set span = 1.5 times to 5.0 times the OBW.

3. Set RBW = 1% to 5% of the OBW

4. Set VBW ≥ 3 · RBW

5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

6. Use the 99 % power bandwidth function of the instrument (if available).

From KDB 789033 D02 General UNII Test Procedures New Rules v01r04

Section C. Measurement Bandwidth, Section 1

26 BW

Test parameters

X dB BW = -26dB (using the OBW function of the spectrum analyzer)

Emission Bandwidth (EBW)

a) Set RBW = approximately 1% of the emission bandwidth.

b) Set the VBW > RBW.

c) Detector = Peak.

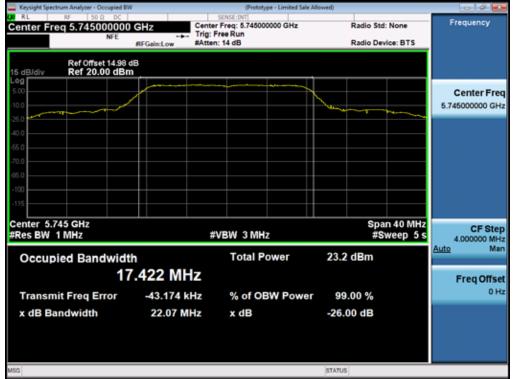
d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

Page No: 22 of 81

Samples, Systems, and Modes

System Number	Description	Samples	System under test			
2	Conducted Testing: EUT + AC/DC Adapter	S02 and S03	N			


Tested By :	Date of testing:
Johanna Knudsen	August 23 rd , 2017
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

99% and 26dB Bandwidth Data Table

Frequency (MHz)	Mode	Data Rate (Mbps)	26dB BW (MHz)	99% BW (MHz)
5745	Non HT20, 6 to 54 Mbps		22.1	17.422
5745	HT/VHT20, M0 to M15	m0	23.3	18.370
F7FF	Non HT40, 6 to 54 Mbps	6	40.0	35.720
5755	HT/VHT40, M0 to M15	m0	47.1	36.323
E 7 7 E	Non HT80, 6 to 54 Mbps	6	103.3	75.978
5775	VHT80, M0 to M9, M0 to M9 1-1ss	m0x1	100.4	76.265
5705	Non HT20, 6 to 54 Mbps	6	28.4	17.541
5785	HT/VHT20, M0 to M15	m0	24.0	18.493
E 70E	Non HT40, 6 to 54 Mbps	6	65.8	35.901
5795	HT/VHT40, M0 to M15	m0	59.1	36.474
5005	Non HT20, 6 to 54 Mbps	6	32.8	17.637
5825	HT/VHT20, M0 to M15	m0	24.5	18.528

cisco

26dB / 99% Bandwidth, 5745 MHz, NonHT20, 6-54Mbps

Page No: 24 of 81

A.4 Maximum Conducted Output Power

Maximum Conducted Output Power Test Requirement

15.407 a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Maximum Conducted Output Power Test Procedure

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r04

ANSI C63.10: 2013

Maximum Conducted Output Power

Test Procedure

1. Set the radio in the continuous transmitting mode at full power

2. Compute power by integrating the spectrum across the EBW (or alternatively entire 99% OBW) of the signal using the instrument's band power measurement function. The integration shall be performed using the spectrum analyzer band-power measurement function with band limits set equal to the EBW or the OBW band edges.

3. Capture graphs and record pertinent measurement data.

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r04

2. Measurement using a Spectrum Analyzer or EMI Receiver (SA), (d) Method SA-2

Maximum Conducted Output Power

Test parameters

Method SA-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction). (i) Measure the duty cycle, x, of the transmitter output signal as described in section II.B.

(ii) Set span to encompass the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(iii) Set RBW = 1 MHz.

(iv) Set VBW \geq 3 MHz.

(v) Number of points in sweep ≥ 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

(vi) Sweep time = auto.

(vii) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

(viii) Do not use sweep triggering. Allow the sweep to "free run".

(ix) Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed to ensure that the average accurately represents the true average over the on and off periods of the transmitter.

(x) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the

Page No: 25 of 81

EBW (or occupied bandwidth)

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. ANSI C63.10 section 14.3.2.2

Maximum Conducted Output Power Test Information

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
2	Conducted Testing: EUT + AC/DC Adapter	S02 and S03	N	

Tested By :	Date of testing:
Johanna Knudsen	August 23 rd , 2017
Test Result : PASS	·

Test Equipment

See Appendix C for list of test equipment

Page No: 26 of 81

Maximum Conducted Output Power Data Table

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Tx 2 Max Power (dBm)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	4	14.8		14.8	29.8	15.0
	Non HT20, 6 to 54 Mbps	2	4	14.8	14.7	17.8	29.8	12.0
	Non HT20, 6 to 54 Mbps 1 4 14.8 14.8 14.8 Non HT20, 6 to 54 Mbps 2 4 14.8 14.7 17.8 2 Non HT20, 6 to 54 Mbps 2 7 14.8 14.7 17.8 2 Non HT20, 6 to 54 Mbps 2 7 14.8 14.7 17.8 2 HT/VHT20, M0 to M7 1 4 14.8 14.7 17.8 2 HT/VH720, M0 to M7 2 4 14.8 14.7 17.8 2 HT/VH720, M0 to M7 2 7 14.8 14.7 17.8 2 HT/VH720, M0 to M7 2 7 14.8 14.7 17.8 2 HT/VH720, M0 to M7 2 4 14.8 14.7 17.8 2 HT/VH720 STBC, M0 to M7 2 4 14.8 14.7 17.8 2 Non HT40, 6 to 54 Mbps 1 4 14.8 14.7 17.8 2 HT/VH40, M0 to M7 1 4 <td>28.8</td> <td>11.0</td>	28.8	11.0					
10	HT/VHT20, M0 to M7	1	4	14.8		14.8	29.8	15.0
574	HT/VHT20, M0 to M7	2	4	14.8	14.7	17.8	29.8	12.0
LC)	HT/VHT20, M8 to M15	2	4	14.8	14.7	17.8	29.8	12.0
	HT/VHT20 Beam Forming, M0 to M7	2	7	14.8	14.7	17.8	28.8	11.0
	HT/VHT20 Beam Forming, M8 to M15	2	4	14.8	14.7	17.8	29.8	12.0
	HT/VHT20 STBC, M0 to M7	2	4	14.8	14.7	17.8	29.8	12.0
	Non HT40, 6 to 54 Mbps	1	4	14.4		14.4	29.8	15.4
	Non HT40, 6 to 54 Mbps	2	4	14.4	14.3	17.4	29.8	12.4
	HT/VHT40, M0 to M7	1	4	14.8		14.8	29.8	15.0
55	HT/VHT40, M0 to M7	2	4	14.8	14.7	17.8	29.8	12.0
57	HT/VHT40, M8 to M15	2	4	14.8	14.7	17.8	29.8	12.0
	HT/VHT40 Beam Forming, M0 to M7	2	7	14.8	14.7	17.8	28.8	11.0
	HT/VHT40 Beam Forming, M8 to M15	2	4	14.8	14.7	17.8	29.8	12.0
	HT/VHT40 STBC, M0 to M7	2	4	14.8	14.7	17.8	29.8	12.0
	Non HT80, 6 to 54 Mbps	1	4	14.6		14.6	29.2	14.6
	Non HT80, 6 to 54 Mbps	2	4	14.6	14.6	17.6	29.2	11.6
	VHT80, M0 to M9 1ss	1	4	14.2		14.2	29.2	15.0
75	VHT80, M0 to M9 1ss	2	4	14.2	14.2	17.2	29.2	12.0
57	VHT80, M0 to M9 2ss	2	4	14.2	14.2	17.2	29.2	12.0
	VHT80 Beam Forming, M0 to M9 1ss	2	7	14.2	14.2	17.2	28.2	11.0
	VHT80 Beam Forming, M0 to M9 2ss	2	4	14.2	14.2	17.2	29.2	12.0
	VHT80 STBC, M0 to M9 1ss	2	4	14.2	14.2	17.2	29.2	12.0
	Non HT20, 6 to 54 Mbps	1	4	14.9		14.9	29.8	14.9
	Non HT20, 6 to 54 Mbps	2	4	14.9	14.7	17.8	29.8	12.0
85	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	14.9	14.7	17.8	28.8	11.0
57	HT/VHT20, M0 to M7	1	4	14.9		14.9	29.8	14.9
	HT/VHT20, M0 to M7	2	4	14.9	14.8	17.9	29.8	11.9
	HT/VHT20, M8 to M15	2	4	14.9	14.8	17.9	29.8	11.9
	Page No: 27 o	f 81						

Page No: 27 of 81

	HT/VHT20 Beam Forming, M0 to M7	2	7	14.9	14.8	17.9	28.8	10.9
	HT/VHT20 Beam Forming, M8 to M15	2	4	14.9	14.8	17.9	29.8	11.9
	HT/VHT20 STBC, M0 to M7	2	4	14.9	14.8	17.9	29.8	11.9
	Non HT40, 6 to 54 Mbps	1	4	14.7		14.7	29.8	15.1
	Non HT40, 6 to 54 Mbps	2	4	14.7	14.7	17.7	29.8	12.1
	HT/VHT40, M0 to M7	1	4	15.1		15.1	29.8	14.7
5795	HT/VHT40, M0 to M7	2	4	15.1	15.1	18.1	29.8	11.7
57	HT/VHT40, M8 to M15	2	4	15.1	15.1	18.1	29.8	11.7
	HT/VHT40 Beam Forming, M0 to M7	2	7	15.1	15.1	18.1	28.8	10.7
	HT/VHT40 Beam Forming, M8 to M15	2	4	15.1	15.1	18.1	29.8	11.7
	HT/VHT40 STBC, M0 to M7	2	4	15.1	15.1	18.1	29.8	11.7
	Non HT20, 6 to 54 Mbps	1	4	15.2		15.2	29.8	14.6
	Non HT20, 6 to 54 Mbps	2	4	15.2	15.4	18.3	29.8	11.5
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	15.2	15.4	18.3	28.8	10.5
ы	HT/VHT20, M0 to M7	1	4	15.2		15.2	29.8	14.6
5825	HT/VHT20, M0 to M7	2	4	15.2	15.4	18.3	29.8	11.5
4)	HT/VHT20, M8 to M15	2	4	15.2	15.4	18.3	29.8	11.5
	HT/VHT20 Beam Forming, M0 to M7	2	7	15.2	15.4	18.3	28.8	10.5
	HT/VHT20 Beam Forming, M8 to M15	2	4	15.2	15.4	18.3	29.8	11.5
	HT/VHT20 STBC, M0 to M7	2	4	15.2	15.4	18.3	29.8	11.5

Page No: 28 of 81

cisco

Maximum Conducted Output Power, 5825 MHz, NonHT20 BF, 6-54Mbps

Antenna A

Antenna B

Page No: 29 of 81

A.5 Power Spectral Density

Power Spectral Density Test Requirement

15.407

(3) For the band 5.725-5.85 GHz...the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(5) The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

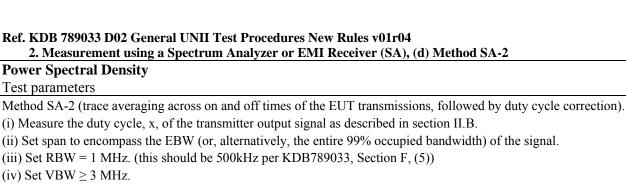
Power Spectral Density Test Procedure

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r04 F. Maximum Power Spectral Density (PSD)

Power Spectral Density

The rules requires "maximum power spectral density" measurements where the intent is to measure the maximum value of the time average of the power spectral density measured during a period of continuous transmission. 1. Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power…". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)

2. Use the peak search function on the instrument to find the peak of the spectrum and record its value.


3. Make the following adjustments to the peak value of the spectrum, if applicable: a) If Method SA-2 or SA-2 Alternative was used, add $10 \log(1/x)$, where x is the duty cycle, to the peak of the spectrum.

b) If Method SA-3 Alternative was used and the linear mode was used in step II.E.2.g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.

4. The result is the Maximum PSD over 1 MHz reference bandwidth.

5. For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz.

Page No: 30 of 81

(v) Number of points in sweep ≥ 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

(vi) Sweep time = auto.

Test parameters

(vii) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

(viii) Do not use sweep triggering. Allow the sweep to "free run".

(ix) Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed to ensure that the average accurately represents the true average over the on and off periods of the transmitter.

(x) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth)

F. Maximum Power Spectral Density (PSD)

2. Use the peak search function on the instrument to find the peak of the spectrum and record its value.

3. Make the following adjustments to the peak value of the spectrum, if applicable: a) If Method SA-2 or SA-2 Alternative was used, add $10 \log(1/x)$, where x is the duty cycle, to the peak of the spectrum.

5.... For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz.

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. ANSI C63.10 section 14.3.2.2

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
2	Conducted Testing: EUT + AC/DC Adapter	S02 and S03	R	

Tested By :	Dates of testing:
Johanna Knudsen	December 14 th , 2017 - December 18 th , 2017

Test Result : PASS

Test Equipment

See Appendix C for list of test equipment

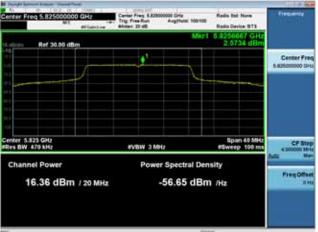
Page No: 31 of 81

cisco

Power Spectral Density Data Table

	Tower Opectral Density Data Table							
Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/500kHz)	Tx 2 PSD (dBm/500kHz)	Total PSD (dBm/500kHz)	Limit (dBm/500kHz)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	4	2.3		2.3	29.8	27.5
	Non HT20, 6 to 54 Mbps	2	7	2.3	1.7	5.0	28.8	23.8
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	2.3	1.7	5.0	28.8	23.8
10	HT/VHT20, M0 to M7	1	4	2.0		2.0	29.8	27.8
5745	HT/VHT20, M0 to M7	2	7	2.0	1.8	4.9	28.8	23.9
2 L	HT/VHT20, M8 to M15	2	4	2.0	1.8	4.9	29.8	24.9
	HT/VHT20 Beam Forming, M0 to M7	2	7	2.0	1.8	4.9	28.8	23.9
	HT/VHT20 Beam Forming, M8 to M15	2	4	2.0	1.8	4.9	29.8	24.9
	HT/VHT20 STBC, M0 to M7	2	4	2.0	1.8	4.9	29.8	24.9
	Non HT40, 6 to 54 Mbps	1	4	-0.2		-0.2	29.8	30.0
	Non HT40, 6 to 54 Mbps	2	7	-0.2	-0.1	2.9	28.8	25.9
	HT/VHT40, M0 to M7	1	4	-1.0		-1.0	29.8	30.8
55	HT/VHT40, M0 to M7	2	7	-1.0	-1.1	2.0	28.8	26.8
5755	HT/VHT40, M8 to M15	2	4	-1.0	-1.1	2.0	29.8	27.8
	HT/VHT40 Beam Forming, M0 to M7	2	7	-1.0	-1.1	2.0	28.8	26.8
	HT/VHT40 Beam Forming, M8 to M15	2	4	-1.0	-1.1	2.0	29.8	27.8
	HT/VHT40 STBC, M0 to M7	2	4	-1.0	-1.1	2.0	29.8	27.8
	Non HT80, 6 to 54 Mbps	1	4	-4.1		-4.1	29.2	33.3
	Non HT80, 6 to 54 Mbps	2	7	-4.1	-4.1	-1.1	28.2	29.3
	VHT80, M0 to M9 1ss	1	4	-4.6		-4.6	29.2	33.8
775	VHT80, M0 to M9 1ss	2	7	-4.6	-5.1	-1.8	28.2	30.0
57	VHT80, M0 to M9 2ss	2	4	-4.6	-5.1	-1.8	29.2	31.0
	VHT80 Beam Forming, M0 to M9 1ss	2	7	-4.6	-5.1	-1.8	28.2	30.0
	VHT80 Beam Forming, M0 to M9 2ss	2	4	-4.6	-5.1	-1.8	29.2	31.0
	VHT80 STBC, M0 to M9 1ss	2	4	-4.6	-5.1	-1.8	29.2	31.0
	Non HT20, 6 to 54 Mbps	1	4	2.1		2.1	29.8	27.7
	Non HT20, 6 to 54 Mbps	2	7	2.1	2.1	5.1	28.8	23.7
5785	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	2.1	2.1	5.1	28.8	23.7
57	HT/VHT20, M0 to M7	1	4	1.7		1.7	29.8	28.1
	HT/VHT20, M0 to M7	2	7	1.7	2.0	4.9	28.8	23.9
	HT/VHT20, M8 to M15	2	4	1.7	2.0	4.9	29.8	24.9
	Page No: 32 of 81							

Page No: 32 of 81


cisco

	HT/VHT20 Beam Forming, M0 to M7	2	7	1.7	2.0	4.9	28.8	23.9
	HT/VHT20 Beam Forming, M8 to M15	2	4	1.7	2.0	4.9	29.8	24.9
	HT/VHT20 STBC, M0 to M7	2	4	1.7	2.0	4.9	29.8	24.9
	Non HT40, 6 to 54 Mbps	1	4	0.2		0.2	29.8	29.6
	Non HT40, 6 to 54 Mbps	2	7	0.2	0.4	3.3	28.8	25.5
	HT/VHT40, M0 to M7	1	4	-0.7		-0.7	29.8	30.5
95	HT/VHT40, M0 to M7	2	7	-0.7	-0.5	2.4	28.8	26.4
57	HT/VHT40, M8 to M15	2	4	-0.7	-0.5	2.4	29.8	27.4
	HT/VHT40 Beam Forming, M0 to M7	2	7	-0.7	-0.5	2.4	28.8	26.4
	HT/VHT40 Beam Forming, M8 to M15	2	4	-0.7	-0.5	2.4	29.8	27.4
	HT/VHT40 STBC, M0 to M7	2	4	-0.7	-0.5	2.4	29.8	27.4
	Non HT20, 6 to 54 Mbps	1	4	2.1		2.1	29.8	27.7
	Non HT20, 6 to 54 Mbps	2	7	2.1	2.6	5.4	28.8	23.4
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	2.1	2.6	5.4	28.8	23.4
ю	HT/VHT20, M0 to M7	1	4	1.7		1.7	29.8	28.1
5825	HT/VHT20, M0 to M7	2	7	1.7	2.0	4.9	28.8	23.9
5	HT/VHT20, M8 to M15	2	4	1.7	2.0	4.9	29.8	24.9
	HT/VHT20 Beam Forming, M0 to M7	2	7	1.7	2.0	4.9	28.8	23.9
	HT/VHT20 Beam Forming, M8 to M15	2	4	1.7	2.0	4.9	29.8	24.9
	HT/VHT20 STBC, M0 to M7	2	4	1.7	2.0	4.9	29.8	24.9

Page No: 33 of 81

Power Spectral Density, 5825 MHz, Non HT20, 6 to 54 Mbps

cisco

Antenna B

Page No: 34 of 81

A.6 Conducted Spurious Emissions

Conducted Spurious Emissions Test Requirement

15.407

(b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(4) For transmitters operating in the 5.725-5.85 GHz band:

(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge.

(ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.

- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.
- (7) The provisions of §15.205 apply to intentional radiators operating under this section.

Conducted Spurious Emissions Test Procedure

From KDB 789033 D02 General UNII Test Procedures New Rules v01r04 ANSI C63.10: 2013

Conducted Spurious Emissions

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Use the peak marker function to determine the maximum spurs amplitude level.

5. Out-of-band and spurious emissions tests are performed on each output individually without summing or adding $10 \log(N)$ since the measurements are made relative to the in-band emissions on the individual outputs. The worst case output is recorded.

6. Capture graphs and record pertinent measurement data.

Ref. 789033 D02 General UNII Test Procedures New Rules

ANSI C63.10: 2013 Section 12.7.6 (Peak), Section 12.7.7.2 (Method AD)

Conducted Spurious Emissions				
Test parameters				
Peak	Average			
Span = 30 MHz to 26.5 GHz / 26.5 GHz to 40 GHz	Span = 30 MHz to 26.5 GHz / 26.5 GHz to 40 GHz			
RBW = 1 MHz	RBW = 1 MHz			
$VBW \ge 3 MHz$	$VBW \ge 3 MHz$			
Sweep = Auto couple	Sweep = Auto couple			

Page No: 35 of 81

Detector = Peak	Detector = RMS
Trace = Max Hold.	Power Averaging

Add the max antenna gain + ground reflection factor (4.7 dB for frequencies between 30 MHz and 1000 MHz, and 0 dB for frequencies > 1000 MHz).

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
1	Conducted Testing: EUT + AC/DC Adapter	S01 and S02	Ŋ	

Tested By :	Date of testing:
Johanna Knudsen	August 1 st , 2017 – August 2 nd , 2017
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 36 of 81

Conducted Spurious Emissions Data Tables - Peak

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Conducted Spur TX path 1 (dBm/MHz)	Conducted Spur TX path 2 (dBm/MHz)	Total Conducted Spur (dBm/MHz)	Limit (dBm)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	4	-44.56		-40.56	-21.5	19.06
	Non HT20, 6 to 54 Mbps	2	4	-44.56	-43.7	-37.10	-21.5	15.60
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-44.56	-43.7	-34.10	-21.5	12.60
10	HT/VHT20, M0 to M7	1	4	-46.3		-42.30	-21.5	20.80
5745	HT/VHT20, M0 to M7	2	4	-46.3	-44.64	-38.38	-21.5	16.88
~~	HT/VHT20, M8 to M15	2	4	-44.56	-46.29	-38.33	-21.5	16.83
	HT/VHT20 Beam Forming, M0 to M7	2	7	-46.3	-44.64	-35.38	-21.5	13.88
	HT/VHT20 Beam Forming, M8 to M15	2	4	-44.56	-46.29	-38.33	-21.5	16.83
	HT/VHT20 STBC, M0 to M7	2	4	-46.3	-44.64	-38.38	-21.5	16.88
	Non HT40, 6 to 54 Mbps	1	4	-45.93		-41.93	-21.5	20.43
	Non HT40, 6 to 54 Mbps	2	4	-45.93	-46.31	-39.11	-21.5	17.61
	HT/VHT40, M0 to M7	1	4	-44.93		-40.93	-21.5	19.43
5755	HT/VHT40, M0 to M7	2	4	-44.93	-45.26	-38.08	-21.5	16.58
2	HT/VHT40, M8 to M15	2	4	-45.41	-46.34	-38.84	-21.5	17.34
	HT/VHT40 Beam Forming, M0 to M7	2	7	-44.93	-45.26	-35.08	-21.5	13.58
	HT/VHT40 Beam Forming, M8 to M15	2	4	-45.41	-46.34	-38.84	-21.5	17.34
	HT/VHT40 STBC, M0 to M7	2	4	-44.93	-45.26	-38.08	-21.5	16.58
			4	45 50	r	44.70	00.05	10.50
	Non HT80, 6 to 54 Mbps	1	4	-45.78	45.0	-41.78	-22.25	19.53
	Non HT80, 6 to 54 Mbps	2	4	-45.78	-45.2	-38.47	-22.25	16.22
75	VHT80, M0 to M9 1ss	1	4	-45.15	46.24	-41.15	-22.25	18.90
5775	VHT80, M0 to M9 1ss	2 2	4	-45.15	-46.31	-38.68	-22.25	16.43
	VHT80, M0 to M9 2ss		4 7	-45.9	-45.95	-38.91	-22.25	16.66
	VHT80 Beam Forming, M0 to M9 1ss	2		-45.15	-46.31	-35.68	-22.25	13.43
	VHT80 Beam Forming, M0 to M9 2ss	2	4	-45.9	-45.95	-38.91	-22.25	16.66

Page No: 37 of 81

	VHT80 STBC, M0 to M9 1ss	2	4	-45.15	-46.31	-38.68	-22.25	16.43
	Non HT20, 6 to 54 Mbps	1	4	-44.69		-40.69	-21.5	19.19
	Non HT20, 6 to 54 Mbps	2	4	-44.69	-46.24	-38.39	-21.5	16.89
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-44.69	-46.24	-35.39	-21.5	13.89
10	HT/VHT20, M0 to M7	1	4	-47.43		-43.43	-21.5	21.93
5785	HT/VHT20, M0 to M7	2	4	-47.43	-45.87	-39.57	-21.5	18.07
L)	HT/VHT20, M8 to M15	2	4	-46.96	-45.92	-39.40	-21.5	17.90
	HT/VHT20 Beam Forming, M0 to M7	2	7	-47.43	-45.87	-36.57	-21.5	15.07
	HT/VHT20 Beam Forming, M8 to M15	2	4	-46.96	-45.92	-39.40	-21.5	17.90
	HT/VHT20 STBC, M0 to M7	2	4	-47.43	-45.87	-39.57	-21.5	18.07
	Non HT40, 6 to 54 Mbps	1	4	-45.65		-41.65	-21.5	20.15
	Non HT40, 6 to 54 Mbps	2	4	-45.65	-45.31	-38.47	-21.5	16.97
	HT/VHT40, M0 to M7	1	4	-43.98		-39.98	-21.5	18.48
5795	HT/VHT40, M0 to M7	2	4	-43.98	-46.26	-37.96	-21.5	16.46
57	HT/VHT40, M8 to M15	2	4	-46.77	-45.7	-39.19	-21.5	17.69
	HT/VHT40 Beam Forming, M0 to M7	2	7	-43.98	-46.26	-34.96	-21.5	13.46
	HT/VHT40 Beam Forming, M8 to M15	2	4	-46.77	-45.7	-39.19	-21.5	17.69
	HT/VHT40 STBC, M0 to M7	2	4	-43.98	-46.26	-37.96	-21.5	16.46
	Non HT20, 6 to 54 Mbps	1	4	-45.75		-41.75	-21.5	20.25
	Non HT20, 6 to 54 Mbps	2	4	-45.75	-45.07	-38.39	-21.5	16.89
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-45.75	-45.07	-35.39	-21.5	13.89
10	HT/VHT20, M0 to M7	1	4	-45.18		-41.18	-21.5	19.68
5825	HT/VHT20, M0 to M7	2	4	-45.18	-45.04	-38.10	-21.5	16.60
4	HT/VHT20, M8 to M15	2	4	-44.88	-46.68	-38.68	-21.5	17.18
	HT/VHT20 Beam Forming, M0 to M7	2	7	-45.18	-45.04	-35.10	-21.5	13.60
	HT/VHT20 Beam Forming, M8 to M15	2	4	-44.88	-46.68	-38.68	-21.5	17.18
	HT/VHT20 STBC, M0 to M7	2	4	-45.18	-45.04	-38.10	-21.5	16.60

Page No: 38 of 81

Conducted Spurious Emissions Data Tables - Average

Non HT20, 6 to 54 Mbps 1 4 -54.34 -50.34 -41.5 8.84 Non HT20, 6 to 54 Mbps 2 4 -54.34 -54.29 -47.30 -41.5 5.86 Non HT20, 6 to 54 Mbps 2 7 -54.34 -54.29 -44.30 -41.5 5.86 Mbps 2 7 -54.34 -54.29 -44.30 -41.5 5.86 HT/VHT20, M0 to M7 1 4 -54.39 -50.39 -41.5 8.86 HT/VHT20, M0 to M7 2 4 -54.39 -54.1 -47.23 -41.5 5.73 HT/VHT20, M8 to M15 2 4 -54.39 -54.1 -47.23 -41.5 5.73 HT/VHT20, M8 to M15 2 4 -54.39 -54.1 -44.23 -41.5 5.73 HT/VHT20 Beam Forming, M0 to M7 2 4 -54.39 -54.1 -47.23 -41.5 5.73 HT/VHT20 STBC, M0 to M7 2 4 -54.17 -50.17 -41.5 5.63	Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Conducted Spur TX path 1 (dBm/MHz)	Conducted Spur TX path 2 (dBm/MHz)	Total Conducted Spur (dBm/MHz)	Limit (dBm)	Margin (dB)
Non HT20 Beam Forming, 6 to 54 2 7 -54.34 -54.29 -44.30 -41.5 2.86 HT/VHT20, M0 to M7 1 4 -54.39 -50.39 -41.5 8.89 HT/VHT20, M0 to M7 2 4 -54.39 -54.1 -47.23 -41.5 8.89 HT/VHT20, M0 to M7 2 4 -54.39 -54.1 -47.23 -41.5 5.73 HT/VHT20, M8 to M15 2 4 -54.39 -54.1 -47.23 -41.5 5.73 HT/VHT20 Beam Forming, M0 to M7 2 7 -54.39 -54.1 -44.23 -41.5 6.03 HT/VHT20 Beam Forming, M8 to M15 2 4 -54.39 -54.1 -44.23 -41.5 5.73 HT/VHT20 Beam Forming, M8 to M15 2 4 -54.39 -54.1 -47.23 -41.5 5.63 HT/VHT20 STBC, M0 to M7 2 4 -54.37 -55.17 -41.5 8.67 Non HT40, 6 to 54 Mbps 1 4 -54.17 -50.17 -4		Non HT20, 6 to 54 Mbps	1					-41.5	8.84
Mbps		Non HT20, 6 to 54 Mbps	2	4	-54.34	-54.29	-47.30	-41.5	5.80
Non HT40, 6 to 54 Mbps 1 4 -54.17 -47.23 -41.5 5.73 HT/VHT20, M0 to M7 2 4 -54.41 -54.68 -47.53 -41.5 6.03 HT/VHT20, M8 to M15 2 4 -54.41 -54.68 -47.53 -41.5 6.03 HT/VHT20 Beam Forming, M0 to M7 2 7 -54.39 -54.1 -44.23 -41.5 6.03 HT/VHT20 Beam Forming, M8 to M15 2 4 -54.39 -54.68 -47.52 -41.5 6.03 HT/VHT20 STBC, M0 to M7 2 4 -54.39 -54.1 -47.23 -41.5 5.73 HT/VHT20 STBC, M0 to M7 2 4 -54.39 -54.1 -47.23 -41.5 5.63 Non HT40, 6 to 54 Mbps 1 4 -54.17 -50.17 -41.5 8.67 Non HT40, M0 to M7 1 4 -54.17 -54.12 -47.13 41.5 5.63 HT/VHT40, M0 to M7 2 4 -54.36 -54.3 -			2	7	-54.34	-54.29	-44.30	-41.5	2.80
HT/VHT20, M8 to M15 2 4 -54.41 -54.68 -47.53 -41.5 6.03 HT/VHT20 Beam Forming, M0 to M7 2 7 -54.39 -54.1 -44.23 -41.5 2.73 HT/VHT20 Beam Forming, M8 to M15 2 4 -54.39 -54.68 -47.52 -41.5 6.03 HT/VHT20 Beam Forming, M8 to M15 2 4 -54.39 -54.68 -47.52 -41.5 6.03 HT/VHT20 STBC, M0 to M7 2 4 -54.39 -54.1 -47.23 -41.5 5.73 Non HT40, 6 to 54 Mbps 1 4 -54.17 -50.17 -41.5 8.63 Non HT40, 6 to 54 Mbps 1 4 -54.17 -50.17 -41.5 8.63 HT/VHT40, M0 to M7 1 4 -54.36 -50.36 -41.5 8.63 HT/VHT40, M0 to M7 2 4 -54.36 -54.3 -47.32 -41.5 5.63 HT/VHT40, M8 to M15 2 4 -54.36 -54.3 -47.32 -41.5 </td <td>2</td> <td>HT/VHT20, M0 to M7</td> <td>1</td> <td>4</td> <td>-54.39</td> <td></td> <td>-50.39</td> <td>-41.5</td> <td>8.89</td>	2	HT/VHT20, M0 to M7	1	4	-54.39		-50.39	-41.5	8.89
HT/VHT20 Beam Forming, M0 to M7 2 7 -54.39 -54.1 -44.23 -41.5 2.73 HT/VHT20 Beam Forming, M8 to M15 2 4 -54.39 -54.68 -47.52 -41.5 6.02 HT/VHT20 STBC, M0 to M7 2 4 -54.39 -54.68 -47.52 -41.5 6.02 HT/VHT20 STBC, M0 to M7 2 4 -54.39 -54.1 -47.23 -41.5 5.73 VI Non HT40, 6 to 54 Mbps 1 4 -54.17 -50.17 -41.5 8.67 Non HT40, 6 to 54 Mbps 2 4 -54.17 -50.17 -41.5 8.67 HT/VHT40, M0 to M7 1 4 -54.17 -50.12 -47.13 -41.5 5.63 HT/VHT40, M0 to M7 2 4 -54.36 -50.36 -41.5 8.86 HT/VHT40, M8 to M15 2 4 -54.36 -54.3 -47.32 -41.5 5.63 HT/VHT40, M8 to M15 2 4 -54.07 -54.17 -47.11	574	HT/VHT20, M0 to M7	2	4	-54.39	-54.1	-47.23	-41.5	5.73
Non HT40, 6 to 54 Mbps 1 4 -54.36 -47.52 -41.5 6.02 HT/VHT20 STBC, M0 to M7 2 4 -54.39 -54.68 -47.52 -41.5 6.02 HT/VHT20 STBC, M0 to M7 2 4 -54.39 -54.1 -47.23 -41.5 5.73 HT/VHT20 STBC, M0 to M7 2 4 -54.39 -54.1 -47.23 -41.5 5.73 HT/VHT20 STBC, M0 to M7 2 4 -54.17 -50.17 -41.5 8.67 Non HT40, 6 to 54 Mbps 1 4 -54.17 -50.17 -41.5 8.67 Non HT40, M0 to M7 1 4 -54.17 -54.12 -47.13 -41.5 5.63 HT/VHT40, M0 to M7 1 4 -54.36 -54.3 -47.32 -41.5 5.83 HT/VHT40, M8 to M15 2 4 -54.07 -54.17 -47.11 -41.5 5.63 HT/VHT40 Beam Forming, M0 to M7 2 7 -54.36 -54.3 -44.32 -41.5 <t< td=""><td></td><td>HT/VHT20, M8 to M15</td><td>2</td><td>4</td><td>-54.41</td><td>-54.68</td><td>-47.53</td><td>-41.5</td><td>6.03</td></t<>		HT/VHT20, M8 to M15	2	4	-54.41	-54.68	-47.53	-41.5	6.03
Non HT40, 6 to 54 Mbps 1 4 -54.39 -54.1 -47.23 -41.5 5.73 Non HT40, 6 to 54 Mbps 1 4 -54.17 -50.17 -41.5 8.67 Non HT40, 6 to 54 Mbps 2 4 -54.17 -50.17 -41.5 8.67 Non HT40, 6 to 54 Mbps 2 4 -54.17 -54.12 -47.13 -41.5 8.67 Non HT40, 6 to 54 Mbps 2 4 -54.17 -54.12 -47.13 -41.5 8.67 HT/VHT40, M0 to M7 1 4 -54.36 -54.32 -41.5 8.86 HT/VHT40, M0 to M7 2 4 -54.36 -54.33 -47.32 -41.5 5.63 HT/VHT40, M8 to M15 2 4 -54.07 -54.17 -47.11 -41.5 5.63 HT/VHT40 Beam Forming, M0 to M7 2 7 -54.36 -54.33 -44.32 -41.5 2.83 HT/VHT40 Beam Forming, M8 to M15 2 4 -54.07 -54.17 -47.11 -41.5		HT/VHT20 Beam Forming, M0 to M7	2	7	-54.39	-54.1	-44.23	-41.5	2.73
Non HT40, 6 to 54 Mbps 1 4 -54.17 -50.17 -41.5 8.67 Non HT40, 6 to 54 Mbps 2 4 -54.17 -54.12 -47.13 -41.5 5.63 HT/VHT40, M0 to M7 1 4 -54.36 -50.36 -41.5 5.63 HT/VHT40, M0 to M7 2 4 -54.36 -54.3 -47.32 -41.5 5.63 HT/VHT40, M0 to M7 2 4 -54.36 -54.3 -47.32 -41.5 5.63 HT/VHT40, M0 to M7 2 4 -54.36 -54.3 -47.32 -41.5 5.63 HT/VHT40, M8 to M15 2 4 -54.36 -54.3 -47.32 -41.5 5.63 HT/VHT40, M8 to M15 2 4 -54.07 -54.17 -47.11 -41.5 5.63 HT/VHT40 Beam Forming, M0 to M7 2 7 -54.36 -54.3 -44.32 -41.5 2.63 HT/VHT40 Beam Forming, M8 to M15 2 4 -54.07 -54.17 -47.11 -41		HT/VHT20 Beam Forming, M8 to M15	2	4	-54.39	-54.68	-47.52	-41.5	6.02
Non HT40, 6 to 54 Mbps 2 4 -54.17 -54.12 -47.13 -41.5 5.65 HT/VHT40, M0 to M7 1 4 -54.36 -50.36 -41.5 8.86 HT/VHT40, M0 to M7 2 4 -54.36 -54.3 -47.32 -41.5 5.82 HT/VHT40, M0 to M7 2 4 -54.36 -54.3 -47.32 -41.5 5.82 HT/VHT40, M8 to M15 2 4 -54.36 -54.37 -47.31 -41.5 5.62 HT/VHT40 Beam Forming, M0 to M7 2 7 -54.36 -54.37 -47.32 -41.5 5.62 HT/VHT40 Beam Forming, M0 to M7 2 7 -54.36 -54.37 -47.32 -41.5 5.62 HT/VHT40 Beam Forming, M8 to M15 2 4 -54.07 -54.37 -44.32 -41.5 5.62 HT/VHT40 Beam Forming, M8 to M15 2 4 -54.07 -54.17 -41.5 5.62		HT/VHT20 STBC, M0 to M7	2	4	-54.39	-54.1	-47.23	-41.5	5.73
Non HT40, 6 to 54 Mbps 2 4 -54.17 -54.12 -47.13 -41.5 5.65 HT/VHT40, M0 to M7 1 4 -54.36 -50.36 -41.5 8.86 HT/VHT40, M0 to M7 2 4 -54.36 -54.3 -47.32 -41.5 5.82 HT/VHT40, M0 to M7 2 4 -54.36 -54.3 -47.32 -41.5 5.82 HT/VHT40, M8 to M15 2 4 -54.36 -54.37 -47.31 -41.5 5.62 HT/VHT40 Beam Forming, M0 to M7 2 7 -54.36 -54.37 -47.32 -41.5 5.62 HT/VHT40 Beam Forming, M0 to M7 2 7 -54.36 -54.37 -47.32 -41.5 5.62 HT/VHT40 Beam Forming, M8 to M15 2 4 -54.07 -54.37 -44.32 -41.5 5.62 HT/VHT40 Beam Forming, M8 to M15 2 4 -54.07 -54.17 -41.5 5.62		r	r	r					
HT/VHT40, M0 to M7 1 4 -54.36 -50.36 -41.5 88.6 HT/VHT40, M0 to M7 2 4 -54.36 -54.3 -47.32 -41.5 58.8 HT/VHT40, M0 to M7 2 4 -54.36 -54.3 -47.32 -41.5 58.8 HT/VHT40, M8 to M15 2 4 -54.07 -54.17 -47.11 -41.5 5.62 HT/VHT40 Beam Forming, M0 to M7 2 7 -54.36 -54.3 -44.32 -41.5 2.82 HT/VHT40 Beam Forming, M8 to M15 2 4 -54.07 -54.17 -41.5 5.62									8.67
HT/VHT40, M0 to M7 2 4 -54.36 -54.3 -47.32 -41.5 5.82 HT/VHT40, M8 to M15 2 4 -54.07 -54.17 -47.11 -41.5 5.82 HT/VHT40 Beam Forming, M0 to M7 2 7 -54.36 -54.3 -41.5 5.82 HT/VHT40 Beam Forming, M0 to M7 2 7 -54.36 -54.3 -44.32 -41.5 2.82 HT/VHT40 Beam Forming, M8 to M15 2 4 -54.07 -54.17 -47.11 -41.5 5.62		· · ·				-54.12			5.63
MT/VHT40, M8 to M15 2 4 -54.07 -54.17 -47.11 -41.5 5.62 HT/VHT40 Beam Forming, M0 to M7 2 7 -54.36 -54.3 -44.32 -41.5 2.82 HT/VHT40 Beam Forming, M8 to M15 2 4 -54.07 -54.17 -41.5 5.62									8.86
HT/VHT40 Beam Forming, M0 to M7 2 7 -54.36 -54.3 -44.32 -41.5 2.82 HT/VHT40 Beam Forming, M8 to M15 2 4 -54.07 -54.17 -47.11 -41.5 5.62	755								5.82
HT/VHT40 Beam Forming, M8 to M15 2 4 -54.07 -54.17 -47.11 -41.5 5.62	21				-54.07	-54.17	-47.11		5.61
		HT/VHT40 Beam Forming, M0 to M7		7	-54.36	-54.3	-44.32	-41.5	2.82
HT/VHT40 STBC, M0 to M7 2 4 -54.36 -54.3 -47.32 -41.5 5.82		HT/VHT40 Beam Forming, M8 to M15	2	4	-54.07	-54.17	-47.11	-41.5	5.61
		HT/VHT40 STBC, M0 to M7	2	4	-54.36	-54.3	-47.32	-41.5	5.82
		· · ·							8.03
		· · ·	2			-54.43			5.09
	2								8.19
	577				-54.44				5.15
VHT80, M0 to M9 2ss 2 4 -54.23 -54.27 -47.24 -42.25 4.99		· · · · · · · · · · · · · · · · · · ·							4.99
									2.15
VHT80 Beam Forming, M0 to M9 2ss 2 4 -54.23 -54.27 -47.24 -42.25 4.95		VHT80 Beam Forming, M0 to M9 2ss	2	4	-54.23	-54.27	-47.24	-42.25	4.99

Page No: 39 of 81

	VHT80 STBC, M0 to M9 1ss	2	4	-54.44	-54.38	-47.40	-42.25	5.15
		_						
	Non HT20, 6 to 54 Mbps	1	4	-53.90		-49.90	-41.5	8.40
	Non HT20, 6 to 54 Mbps	2	4	-53.90	-54.18	-47.03	-41.5	5.53
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-53.90	-54.18	-44.03	-41.5	2.53
2J	HT/VHT20, M0 to M7	1	4	-53.69		-49.69	-41.5	8.19
5785	HT/VHT20, M0 to M7	2	4	-53.69	-54.59	-47.11	-41.5	5.61
	HT/VHT20, M8 to M15	2	4	-54.12	-54.00	-47.05	-41.5	5.55
	HT/VHT20 Beam Forming, M0 to M7	2	7	-53.69	-54.59	-44.11	-41.5	2.61
	HT/VHT20 Beam Forming, M8 to M15	2	4	-54.12	-54.00	-47.05	-41.5	5.55
	HT/VHT20 STBC, M0 to M7	2	4	-53.69	-54.59	-47.11	-41.5	5.61
-					_			
	Non HT40, 6 to 54 Mbps	1	4	-54.18		-50.18	-41.5	8.68
	Non HT40, 6 to 54 Mbps	2	4	-54.18	-53.63	-46.89	-41.5	5.39
	HT/VHT40, M0 to M7	1	4	-54.12		-50.12	-41.5	8.62
95	HT/VHT40, M0 to M7	2	4	-54.12	-54.28	-47.19	-41.5	5.69
5795	HT/VHT40, M8 to M15	2	4	-54.05	-54.71	-47.36	-41.5	5.86
	HT/VHT40 Beam Forming, M0 to M7	2	7	-54.12	-54.28	-44.19	-41.5	2.69
	HT/VHT40 Beam Forming, M8 to M15	2	4	-54.05	-54.71	-47.36	-41.5	5.86
	HT/VHT40 STBC, M0 to M7	2	4	-54.12	-54.28	-47.19	-41.5	5.69
	Non HT20, 6 to 54 Mbps	1	4	-54.56		-50.56	-41.5	9.06
	Non HT20, 6 to 54 Mbps	2	4	-54.56	-54.4	-47.47	-41.5	5.97
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-54.56	-54.4	-44.47	-41.5	2.97
S	HT/VHT20, M0 to M7	1	4	-53.63		-49.63	-41.5	8.13
5825	HT/VHT20, M0 to M7	2	4	-53.63	-54.12	-46.86	-41.5	5.36
	HT/VHT20, M8 to M15	2	4	-54.31	-54.16	-47.22	-41.5	5.72
	HT/VHT20 Beam Forming, M0 to M7	2	7	-53.63	-54.12	-43.86	-41.5	2.36
	HT/VHT20 Beam Forming, M8 to M15	2	4	-54.31	-54.16	-47.22	-41.5	5.72
	HT/VHT20 STBC, M0 to M7	2	4	-53.63	-54.12	-46.86	-41.5	5.36

Page No: 40 of 81

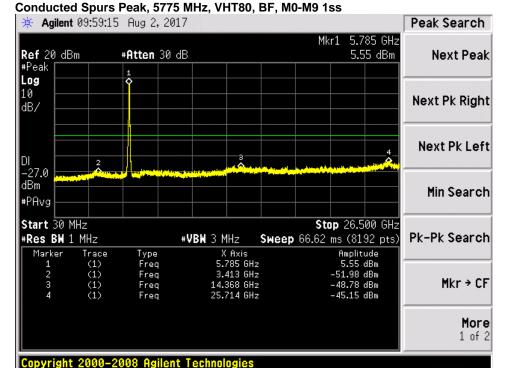
Conducted Spurs Average, All Antennas

🙀 Kaysight Spectrum Analyzer - Swept SA	CHARLES		type - Limited Sale Advand)	(000
Center Freq 29.00000000 NFE	0 GHz PNO: Fast	Trig: Free Run #Atten: 0 dB	#Avg Type: RMS Avg Hold: 125/125	TRACE 1 2 4 4 TYPE A WARMANNE DET A NANNEN	Frequency
Ref Offset 0.8 dB 10 dBildiy Ref -20.00 dBm			Mk	4 40.000 GHz -63.939 dBm	Auto Tune
20.11					Center Freq 29.00000000 GHz
60.0 60.0 70.0 0			um www		Start Freq 18.00000000 GHz
80.8 -500 -110					Stop Freq 40.00000000 GHz
Start 18.00 GHz #Res BW 1.0 MHz	#VBW	3.0 MHz*	Sweep 36.	Stop 40.00 GHz 67 ms (1001 pts)	CF Step 2.200000000 GHz Auto Mar
1 N 1 f 2 N 1 f 1 3 N 1 f 1	5 745 GHz 1 490 GHz 7 235 GHz 0 000 GHz	dBm dBm dBm -53.939 dBm	SACTON FORCTON WOTH	FUNCTION VALUE	Freq Offse 0 Hi
6 7 8 9 10					Scale Type
weo		*	STATUS		

Conducted Spurs Peak, All Antennas

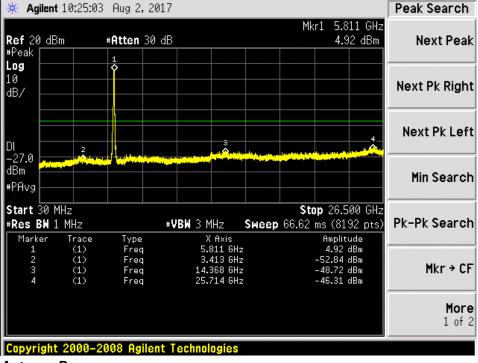
Page No: 41 of 81

🔆 Agilent 17:08	3:10 Aug 1, 2017	,		Peak Search
lef 20 dBm	#Atten 30 dE	3	Mkr1 5.821 GHz 3.659 dBm	Next Peal
+Avg - 0g -0 LØ 	\$ 			Next Pk Righ
			4	Next Pk Lef
-27.0 dBm #PAvg			<u> </u>	Min Searcl
Start 30 MHz #Res BW 1 MHz Marker Trac		VBW 3 MHz Sweep X Axis	Stop 26.500 GHz 80.27 ms (8192 pts) Amplitude	Pk-Pk Searcl
1 (1) 2 (1) 3 (1) 4 (1)	Freq Freq Freq	5.821 GHz 3.413 GHz 14.368 GHz 25.714 GHz	3.66 dBm -61.14 dBm -57.62 dBm -53.63 dBm	Mkr → CF
				More 1 of 2


Conducted Spurs Average, 5825 MHz, HT/VHT20, BF M0-M7

Antenna A

🔆 Agilent 09:12:53	3 Aug 2,2017		Peak Search
Ref 20 dBm #Avg	#Atten 30 dB	Mkr1 5.827 GH: 3.6종3 dBm	
Log 10 dB/	* 		Next Pk Right
		3	Next Pk Left
-27.0 dBm #PAvg			Min Search
Start 30 MHz #Res BW 1 MHz Marker Trace	# V	Stop 26.500 GH: BW 3 MHz Sweep 80.27 ms (8192 pts X Axis Amplitude	
1 (1) 2 (1) 3 (1) 4 (1)	Freq Freq Freq Freq	5.827 GHz 3.61 dBm 3.413 GHz -60.85 dBm 14.368 GHz -57.64 dBm 25.714 GHz -54.12 dBm	Mkr→CF
			More 1 of 2
Copyright 2000-2	2008 <mark>Agilent</mark> T	echnologies	


Antenna B

Page No: 42 of 81

սիսիս

Antenna A

Antenna B

Page No: 43 of 81

A.7 Conducted Band Edge

Conducted Band Edge Test Requirement

15.407

(b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(4) For transmitters operating in the 5.725-5.85 GHz band:

(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.

(ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2018.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.

(7) The provisions of §15.205 apply to intentional radiators operating under this section.

(8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits

KDB 789033 D02 General UNII Test Procedures New Rules v01r04

2. Unwanted Emissions that fall Outside of the Restricted Bands

c) At frequencies above 1000 MHz, use the procedure for maximum emissions described in section II.G.5., *"Procedure for Unwanted Maximum Unwanted Emissions Measurements Above 1000 MHz."*

15.407(b)(1)-(3) specifies that emissions outside of the respective U-NII bands are subject to a maximum emission limit of -27 dBm/MHz. § 15.407(b)(4) provides two requirement options for devices that operate in the 5.725 – 5.85 GHz band. If the option specified in § 15.407(b)(4)(ii) is exercised, then the procedures specified in Clause 11.11 of ANSI C63.10-2013 and/or in Section 11.0 of KDB Publication 558074 shall be utilized. In general, an out-of-band emission that complies with both the peak and average power limits of § 15.209 is not required to also satisfy the -27 dBm/MHz or -17 dBm/MHz maximum emission limit.

Conducted Band Edge Test Procedure

Ref. 789033 D02 General UNII Test Procedures New Rules v01r04

ANSI C63.10: 2013

Conducted Band Edge

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode. Use the procedures in KDB 789033 D02 General UNII Test Procedures New Rules v01r04 to substitute conducted measurements in place of radiated measurements.

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Record the marker. Also measure any emissions in the restricted bands.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level

Page No: 44 of 81

from the device. Summing is performed in linear power units. The worst case output is recorded. 6. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance.

- Also measure any emissions in the restricted bands
- 7. Capture graphs and record pertinent measurement data.

Ref. 789033 D02 General UNII Test Procedures New Rules

ANSI C63.10: 2013 Section 12.7.6 (Peak), Section 12.7.7.2 (Method AD)

Conducted Spurious Emissions	
Test parameters	
Peak	Average
Span = 30 MHz to 26.5 GHz / 26.5 GHz to 40 GHz	Span = 30 MHz to 26.5 GHz / 26.5 GHz to 40 GHz
RBW = 1 MHz	RBW = 1 MHz
$VBW \ge 3 MHz$	$VBW \ge 3 MHz$
Sweep = Auto couple	Sweep = Auto couple
Detector = Peak	Detector = RMS
Trace = Max Hold.	Power Averaging

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
2	Conducted Testing: EUT + AC/DC Adapter	S02 and S03	Ŋ	

Tested By :	Date of testing:
Johanna Knudsen	August 17 th , 2017

Test Result : PASS

Test Equipment

See Appendix C for list of test equipment

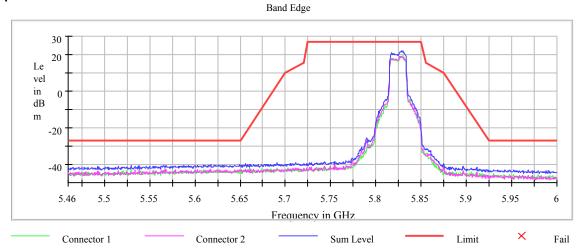
Page No: 45 of 81

Conducted Band Edge Data Tables – Peak

Frequency (MHz)	Mode	Tx Paths	Duty Cycle	Correlated Antenna Gain (dBi)	Total Conducted Band Edge (dBm/MHz) - EIRP	Total Conducted Band Edge - corrected for duty cycle (dBm/MHz) - EIRP	Limit (dBm)	Margin (dB)
5745	Non HT20, 6 to 54 Mbps	1	96.5	4	17	17.2	27	9.8
	Non HT20, 6 to 54 Mbps	2	96.5	4	20.4	20.6	27	6.4
	Non HT20 Beam Forming, 6 to 54 Mbps	2	96.5	7	20.6	20.8	27	6.2
	HT/VHT20, M0 to M7	1	98.3	4	18.2	18.3	27	8.7
	HT/VHT20, M0 to M7	2	98.3	4	20.7	20.8	27	6.2
	HT/VHT20, M8 to M15	2	96.7	4	21.3	21.4	27	5.6
	HT/VHT20 Beam Forming, M0 to M7	2	98.3	7	20.9	21.0	27	6.0
	HT/VHT20 Beam Forming, M8 to M15	2	96.7	4	21.3	21.4	27	5.6
5755	Non HT40, 6 to 54 Mbps	1	96.3	4	15.2	15.4	27	11.6
	Non HT40, 6 to 54 Mbps	2	96.3	4	18.2	18.4	27	8.6
	HT/VHT40, M0 to M7	1	96.4	4	14.5	14.7	27	12.3
	HT/VHT40, M0 to M7	2	96.4	4	17.5	17.7	27	9.3
	HT/VHT40, M8 to M15	2	97.4	4	17.6	17.7	27	9.3
	HT/VHT40 Beam Forming, M0 to M7	2	96.4	7	17.4	17.6	27	9.4
	HT/VHT40 Beam Forming, M8 to M15	2	97.4	4	17.7	17.8	27	9.2
			t		r	r	c	r
5775	Non HT80, 6 to 54 Mbps	1	96.2	4	-36.5	-36.3	-27	9.3
	Non HT80, 6 to 54 Mbps	2	96.2	4	-33.3	-33.1	-27	6.1
	VHT80, M0 to M9 1ss	1	82.7	4	-33.5	-32.7	-27	5.7
	VHT80, M0 to M9 1ss	2	82.7	4	-33.3	-32.5	-27	5.5
	VHT80, M0 to M9 2ss	2	84.7	4	-32.5	-31.8	-27	4.8
	VHT80 Beam Forming, M0 to M9 1ss	2	82.7	7	-33	-32.2	-27	5.2
]								
5795	Non HT40, 6 to 54 Mbps	1	96.3	4	15.4	15.6	27	11.4
	Non HT40, 6 to 54 Mbps	2	96.3	4	18.6	18.8	27	8.2
	HT/VHT40, M0 to M7	1	96.4	4	14.7	14.9	27	12.1
	HT/VHT40, M0 to M7	2	96.4	4	17.7	17.9	27	9.1
	HT/VHT40, M8 to M15	2	97.4	4	18	18.1	27	8.9

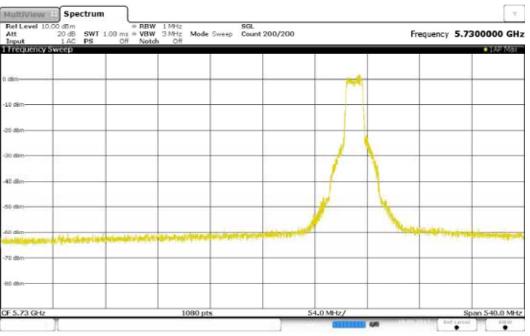
Page No: 46 of 81

	HT/VHT40 Beam Forming, M0 to M7	2	96.4	7	17.8	18.0	27	9.0
	HT/VHT40 Beam Forming, M8 to M15	2	97.4	4	18.1	18.2	27	8.8
5825	Non HT20, 6 to 54 Mbps	1	96.5	4	17.4	17.6	27	9.4
	Non HT20, 6 to 54 Mbps	2	96.5	4	21.4	21.6	27	5.4
	Non HT20 Beam Forming, 6 to 54 Mbps	2	96.5	7	20.9	21.1	27	5.9
	HT/VHT20, M0 to M7	1	98.3	4	18.3	18.4	27	8.6
	HT/VHT20, M0 to M7	2	98.3	4	21.7	21.8	27	5.2
	HT/VHT20, M8 to M15	2	96.7	4	21.9	22.0	27	5.0
	HT/VHT20 Beam Forming, M0 to M7	2	98.3	7	21.7	21.8	27	5.2
	HT/VHT20 Beam Forming, M8 to M15	2	96.7	4	21.8	21.9	27	5.1

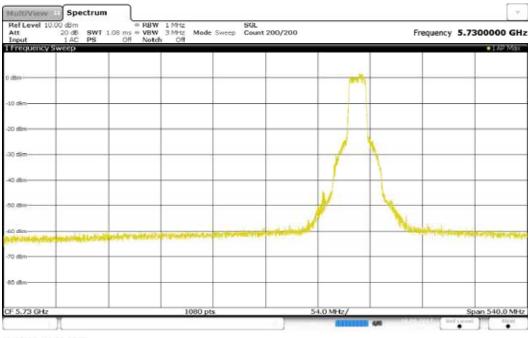

Page No: 47 of 81

Conducted Band Edge - Peak, 5825 MHz, HT/VHT20, M8-M15

Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
5828.408881	21.9	5.1	27.0	PASS
5829.907493	21.9	5.1	27.0	PASS
5828.908418	21.8	5.2	27.0	PASS
5829.407956	21.6	5.4	27.0	PASS
5827.909343	21.5	5.5	27.0	PASS
5826.410731	21.5	5.5	27.0	PASS
5827.409806	21.4	5.6	27.0	PASS
5826.910268	21.4	5.6	27.0	PASS
5825.911193	21.2	5.8	27.0	PASS
5830.407031	21.1	5.9	27.0	PASS
5830.906568	21.1	5.9	27.0	PASS
5817.419056	20.8	6.2	27.0	PASS
5816.919519	20.6	6.4	27.0	PASS
5818.917669	20.6	6.4	27.0	PASS
5818.418131	20.6	6.4	27.0	PASS


Measurements

Graphical Results

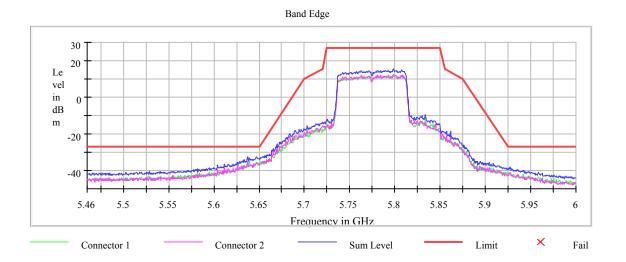

cisco

Page No: 48 of 81

02:02:53 18.08.2017

Antenna A

02:03:30 18.08.2017

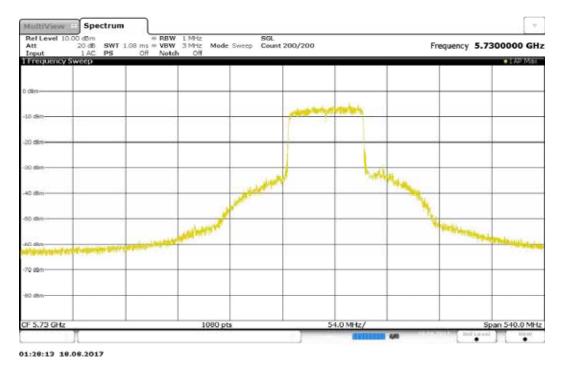

Antenna B

Page No: 49 of 81

Conducted Band Edge - Peak, 5775 MHz, VHT80, M0-M9, 2ss

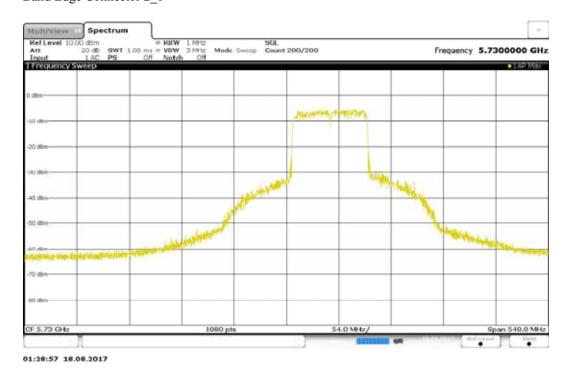
Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
5647.576318	-32.5	5.5	-27.0	PASS
5647.076781	-32.5	5.5	-27.0	PASS
5637.086031	-32.6	5.6	-27.0	PASS
5639.084181	-32.9	5.9	-27.0	PASS
5646.577243	-33.2	6.2	-27.0	PASS
5649.574468	-33.3	6.3	-27.0	PASS
5639.583719	-33.4	6.4	-27.0	PASS
5650.074006	-33.4	6.5	-26.9	PASS
5648.075856	-33.5	6.5	-27.0	PASS
5648.575393	-33.5	6.5	-27.0	PASS
5646.077706	-33.6	6.6	-27.0	PASS
5649.074931	-33.7	6.7	-27.0	PASS
5637.585569	-33.7	6.7	-27.0	PASS
5644.579093	-33.8	6.8	-27.0	PASS
5641.581869	-33.9	6.9	-27.0	PASS

Measurements



Page No: 50 of 81

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential


cisco

Band Edge Connector 1_0

cisco

Band Edge Connector 2_0

Page No: 51 of 81

Appendix B: Emission Test Results

B.1 Radiated Spurious Emissions

15.407(b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.(7) The provisions of §15.205 apply to intentional radiators operating under this section.

(8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits

Ref. ANSI C63.10: 2013 Section 12.7.6 (Peak), Section 12.7.7.2 (Method AD), and Section 6.6

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Radiated Spurious Emissions Test parameters	
Peak	Average
Span = 1-18GHz /18GHz-26.5GHz/26.5GHz-40GHz	Span = 1-18GHz /18GHz-26.5GHz/26.5GHz-40GHz
RBW = 1 MHz	RBW = 1 MHz
$VBW \ge 3 MHz$	$VBW \ge 3 MHz$
Sweep = Auto couple	Sweep = Auto couple
Detector = Peak	Detector = RMS
Trace = Max Hold.	Power Averaging

Terminate the access Point RF ports with 50 ohm loads.

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

Save 2 plots:1) Average Plot (Vertical and Horizontal), Limit= 54dBuV/m @3m 2) Peak plot (Vertical and Horizontal), Limit = 74dBuV/m @3m

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

This report represents the worst case data for all supported operating modes and antennas. There were no spurious emissions in the range 1-18GHz. Please note, the emission at 1.377GHz was investigated and was not caused by the radio. The emission was present when the radio was not transmitting. There were no significant emissions above 18GHz.

Page No: 52 of 81

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
3	Radiated Testing: EUT + AC/DC Adapter	S02 and S03	Ŋ	
4	Radiated Testing: EUT + AC/DC Adapter	S02 and S04	Ŋ	

Tested By :

Johanna Knudsen

Test Result : PASS

Test Equipment

See Appendix C for list of test equipment

Page No: 53 of 81

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

Date of testing:

July 26, 2017 - July 26, 2017

B.1.A Transmitter Radiated Spurious Emissions-Average

This report represents the worst case data for all supported operating modes and antennas. There were no spurious emissions in the range 1-18GHz. Please note, the emission at 1.377GHz was investigated and was not caused by the radio. The emission was present when the radio was not transmitting.

Peak Search	03:05:32:PM 34:26, 2017 TRACE 05:000 Trive 007	Type: RMS		Trig Free Run EAtten: 12 dB	DOD GHz PNO: Fast G	ker 1 5,74750000
NextPeak	kr1 5,748 GHz 90.80 dBµV	M			sμv	Ref 108.99 d
Next Pk Righ			1	•		
Q Next Pk Lef						
Marker Delta						
MkrCl	Stop 10.000 GHz 23.6 ms (1601 pts)	Sweep 2		W 3.0 MHz*	#VB	t 1.000 GHz s BW (CISPR) 1 MH
	FUNCTION VALUE	FUNCTION WOTH	/UNCTION	90.80 dBuV 63.59 dBuV	× 6.749 GHz	KODE, THE SEL
MkrRefLv				50.39 dBuV 44.77 dBuV	1.377 GHz 1.802 GHz 1.883 GHz	
Mon 1 of:						
-		Lestatue.		and the second se		

B.1.A.1 Radiated Transmitter Spurs, 5745 MHz, 6 to 54 Mbps, Average (1-18GHz)

Page No: 54 of 81

Peak Search	DIOG-12 PM Ad 26, 2017 THALE H CARACTER TYPE A NAMED AND DET A BUT P P 19	g Type: RMS	streamt Ig: Free Run Isten: 12 dB	PNO: Fast	781250000000
NextPea	1kr1 5.781 GHz 89.39 dBµV	N			Ref 108.99 dBµV
Next Pk Righ					
Q Next Pk Let					A*
Marker Det			*******		
MkrC	Stop 10.000 GHz 23.6 ms (1601 pts)	and the second	the second second second	#VBW	GHz ISPR) 1 MHz
Mkr→RefL	PUNCTION VALUE	FUNCTION WOTH	7 0.00 39 dBuV 73 dBuV 76 dBuV 40 dBuV	781 GHz 177 GHz 102 GHz 183 GHz	
Mor 1 of					
		Gatanus.			

B.1.A.2 Radiated Transmitter Spurs, 5785 MHz, 6 to 54 Mbps, Average (1-18GHz)

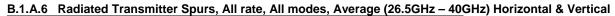
rker 1 16.75000000000	DRAZ DE DATA Trace/Det Trace/Det Select Trace	TRACE	Avg Type: RMS	23	100000000000000000000000000000000000000			
Eddy Ref 100.00 dBuV	16.750 GHz 38.83 dBµV		M				0.00 dBµV	Ref 10
	Clear Wr							
	1 Trace Avera	• ¹	¢ ³					2
	MaxHo							
ert 10.000 GHz es BW (CISPR) 1 MHz	op 18.000 GHz 0 ms (1601 pts) Min Ho	21.0 ms (16			W 3.0 MHz*	#VB	1 MHz	V (CISPR)
N 1 f 10.3	View/Blan Trace O	FUNCTION 9	FUNCTION WOTH	PUNCTION	38.83 dBµV 37.46 dBµV 38.28 dBµV	760 GHz 360 GHz 436 GHz	10	11
	Ma							

Page No: 55 of 81

	•		M	kr1 5.826 GHz 89.23 dBµV	Next Peak
					Next Pk Righ
				14.001854	Q Next Pk Let
					Marker Delt
#VBW 3.0) MHz"		Sweep 2	3.6 ms (1601 pts)	MkrC
377 GHz 60 602 GHz 60	3.76 dBuV 0.11 dBuV	RINCTION	FUNCTION WIGHT	RINETRN WALE	MkrRef Ly
					Mor 1 of
	826 GHz 88 377 GHz 65 502 GHz 66	377 GHz 63.76 dBuV 602 GHz 60.11 dBuV	7 BINCTION 826 GHz 69-23 dBuV 377 GHz 63.76 dBuV 502 GHz 50.11 dBuV	#VBW 3.0 MHz* Sweep 2 Finitian Runction Watch 825 GHz 89.23 dBuV 877 GHz 63.76 dBuV 60 11 dBuV	Y RINCTION RINCTION WIDTH RINCTION WIDTH 825 GHz 89.23 dBuV 89.23 dBuV 89.23 dBuV 377 GHz 83.76 dBuV 89.20 dBuV 89.20 dBuV 602 GHz 50.11 dBuV 89.29 dBuV 89.20 dBuV 803 GHz 45.29 dBuV 89.20 dBuV 89.20 dBuV

B.1.A.3 Radiated Transmitter Spurs, 5825 MHz, 6 to 54 Mbps, Average (1-18GHz)

larker 1 16.3850000000				g Type: RMS	TRAC		Peak Search
o dB/div Ref 100.00 dBµV				ľ	Akr1 16.3 39.6	85 GHz 3 dBµV	NextPeak
eg							Next Pk Righ
				3	1	M 10.000	Q Next Pk Lef
nn 00 00							Marker Delta
tart 10.000 GHz Res BW (CISPR) 1 MHz	#VB	W 3.0 MHz*		Sweep	Stop 18 21.0 ms (000 GHz 1601 pts)	MkrCF
	5,385 GHz	39.63 dBµV	PUNCTION	FUNCTION WOT	H FUNCTIO	I VALUE	1997012 00
	0.360 GHz 5.436 GHz	36.66 dBuV 37.47 dBuV					Mkr-Ref Lv
9							More 1 of 2


Page No: 56 of 81

There were no significant emissions above 18GHz.

B.1.A.5 Radiated Transmitter Spurs, All rate, All modes, Average (18GHz – 26.5GHz) Horizontal & Vertical


Page No: 57 of 81

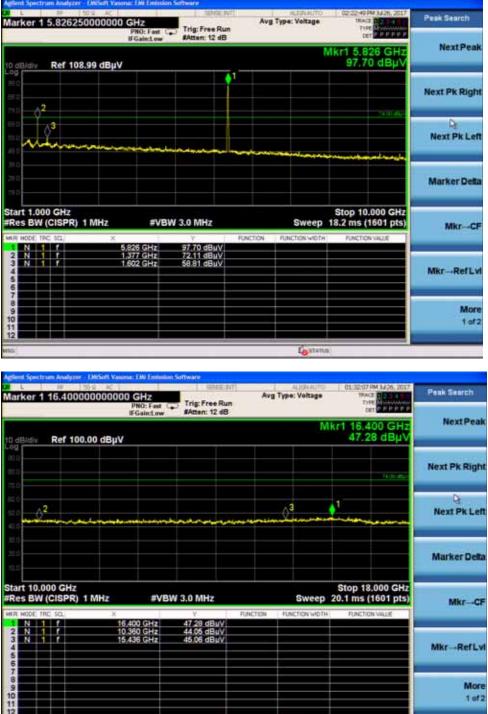
B.1.P Transmitter Radiated Spurious Emissions-Peak

This report represents the worst case data for all supported operating modes and antennas. There were no spurious emissions in the range 1-18GHz. Please note, the emission at 1.377GHz was investigated and was not caused by the radio. The emission was present when the radio was not transmitting.

	Fast C Trig: Free Run Man Matter: 12 dB	Avg Type: Voltage	10221-10294 Addm, 2017 IMACE 1027-0-017 THE 1027-0-017 Det 2019-0-027	Peak Search
dEldiv Ref 108.99 dBpV			Mkr1 5.742 GHz 98.11 dBµV	Next Peak
	^1			Next Pk Righ
and and a second	بالنوسية مستعم مراد	and the state of t		Q Next Pk Le
0 15 10				Marker Det
art 1.000 GHz tes BW (CISPR) 1 MHz MODE FRC SCL X	#VBW 3.0 MHz	Sweep Parction - Parction web	Stop 10.000 GHz 18.2 ms (1601 pts)	MkrC
N 1 F 57420 N 1 F 13770 N 1 F 18020	2Hz 72.37 dBuV			Mkr-+RefL
				Mor

B.1.P.1 Radiated Transmitter Spurs, 5745 MHz, 6 to 54 Mbps, Peak (1-18GHz)

Page No: 58 of 81


rker 1 5.781250000	PNO: Fast	Trig: Free Run	Avg Type: V	oltage	TRACE DESCRIPTION	Peak Search
dB/dw Ref 108.99 d	IFGaint.ow	#Atten: 12 dB		Mkr1	5.781 GHz 3.17 dBµV	NextPe
abidiv Ket 108.99 d	вни	t				0. 10. 10. 10. 10.
A2						Next Pk Rig
- A3						Par-
manne	- martel martel and	where we are a long				Next Pk Le
0						(10000000000000000000000000000000000000
D						Marker De
art 1.000 GHz les BW (CISPR) 1 MH	z #VB	W 3.0 MHz	s	Stop weep 18.2 m	10.000 GHz	
R MODE THE SEL	×	Y L			CTION VALUE	MkrC
	5.781 GHz 1.377 GHz 1.602 GHz	98.17 dBµV 72.21 dBµV 58.31 dBµV				
						Mkr-RefL
		-				
						Mo
				57471.5		Mo 1 d
			1	STATUS		
And Spectrum Analyzer - EMISed	ACCOLOR	n Safbeare		NAUTO 612	L27 PM 3426, 2017	1 of
And Spectrum Analyzer - EMISed	00000 GHz PNO: Fast	n Software Software Trig: Free Run AAtten; 12 dB	l Avg Type: Vi	NAUTO 612	L27PM MJ26, 2017 The PERSON Det PERSON	
Int Spectrum Analyzer - EMSia arker 1 16.49000000	AC DOODO GHZ PNO: Fest IFGain:Low	Trig: Free Run		alacito 61-3 bitage	TRACE DE CANT	1 of
Bent Spectrum Analyzer _ EMSd arker 1 16.49000000 gE/dw Ref 100.00 d	AC DOODO GHZ PNO: Fest IFGain:Low	Trig: Free Run		alacito 61-3 bitage	THACE DESIGNATION	1 d Peak Search
Ant Spectrum Analyzer _ EMSd arker 1 16.49000000	AC DOODO GHZ PNO: Fest IFGain:Low	Trig: Free Run		alacito 61-3 bitage	TRACE DE CAN	1 el Peak Search Next Pea
ent Spectrum Analyzer _ EMSd arker 1 16.49000000 dEldiv Ref 100.00 d	AC DOODO GHZ PNO: Fest IFGain:Low	Trig: Free Run		alacito 61-3 bitage	1990 GHz 20 dBµV	1 of Peak Search Next Pea
ent Spectrum Analyzer _ EMSd arker 1 16.49000000 dE/dtv Ref 100.00 d	AC DOODO GHZ PNO: Fest IFGain:Low	Trig: Free Run		alacito 61-3 bitage	1990 GHz 20 dBµV	1 el Peak Search Next Pea Next Pk Rigi
Arrit Spectrum Analyzer _ EMSd arker 1 16.49000000 dEldiv Ref 100.00 d	AC DOODO GHZ PNO: Fest IFGain:Low	Trig: Free Run	Avg Type: Vi	alacito 61-3 bitage	1990 GHz 20 dBµV	1 e Peak Search Next Pea Next Pk Rig
Arrit Spectrum Analyzer - EAKSel arker 1 16.49000000 CEIdiv Ref 100.00 d	AC DOODO GHZ PNO: Fest IFGain:Low	Trig: Free Run	Avg Type: Vi	alacito 61-3 bitage	1990 GHz 20 dBµV	1 e Plak Search Next Pe Next Pk Rig Next Pk Le
Intl Spectrum Analyzer EMES arker 1 16.49000000 Intel Spectrum Analyzer GE/div Ref 100.00 d GE/div Ref 100.00 d	AC DOODO GHZ PNO: Fest IFGain:Low	Trig: Free Run	Avg Type: Vi	Mkr111	1990 GHz 20 dBµV	1 e Plak Search Next Pe Next Pk Rig Next Pk Le
Bent Spectrum Avulyzer EMES arker 1 16.49000000 EMES GE/div Ref 100.00 d Res BW (CISPR) 1 MH	ACCOUNTS OF ACCOUN	Trig: Free Run	Avg Type: Vi	Mkr1 11 47	18.000 GHz	1 el Peski Search Next Per Next Pk Rigi Next Pk Le Marker Del
art 10.000 GHz Res BW (CISPR) 1 MH	20000 GHz PR0: Feat C IFGain.Low 2 #VB	Trig: Free Run #Atten: 12 dB	Avg Type: Vi	Mkr1 11 47	18.000 GHz	1 e Peak Search Next Per Next Pk Rig Next Pk Le Marker Del
Art 10.000 GHz es BW (CISPR) 1 MH	z #VB	Trig: Free Run #Atten: 12 dB	Avg Type: Vi	Mkr1 11 47	18.000 GHz	1 e Peak Search Next Per Next Pk Rig Next Pk Le Marker De
Arker 1 16.49000000	20000 GHz PR0: Feat C IFGaint.cw ВµV z #VB х 10.390 GHz	W 3.0 MHz	Avg Type: Vi	Mkr1 11 47	18.000 GHz	1 of Peak Search Next Pea

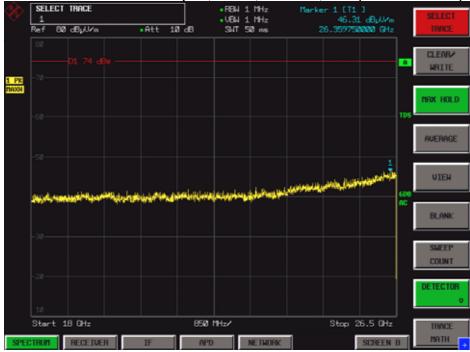
B.1.P.2 Radiated Transmitter Spurs, 5785 MHz, 6 to 54 Mbps, Peak (1-18GHz)

uluilu cisco

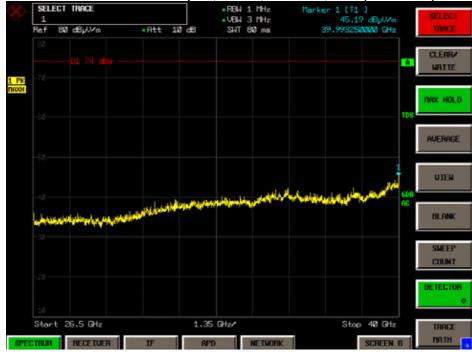
Page No: 59 of 81

STATLS

B.1.P.3 Radiated Transmitter Spurs, 5825 MHz, 6 to 54 Mbps, Peak (1-18GHz)


Page No: 60 of 81

CONTATUR.



There were no significant emissions above 18GHz.

B.1.P.6 Radiated Transmitter Spurs, All rate, All modes, Peak (26.5-40GHz) Vertical & Horizontal

Page No: 61 of 81

B.2 Radiated Emissions 30MHz to 1GHz

15.205 / 15.209

(7) The provisions of §15.205 apply to intentional radiators operating under this section.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.

Ref. ANSI C63.10: 2013 section 12.7 sec 6.5

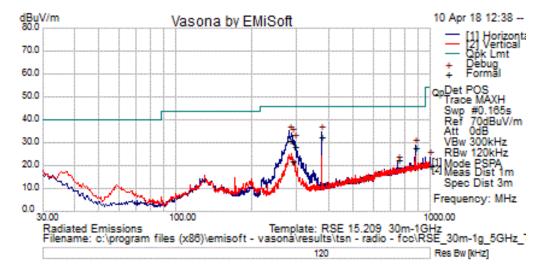
Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span:	30MHz – 1GHz
Reference Level:	80 dBuV
Attenuation:	10 dB
Sweep Time:	Coupled
Resolution Bandwidth:	100kHz
Video Bandwidth:	300kHz
Detector:	Quasi-Peak

Terminate the access Point RF ports with 50 ohm loads.

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

This report represents the worst case data for all supported operating modes and antennas.

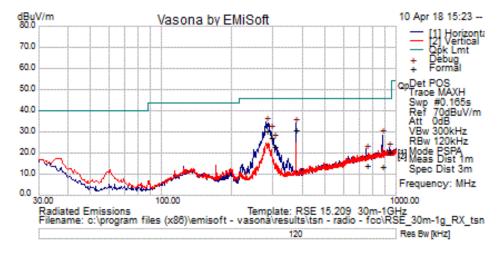

Samples, S	Samples, Systems, and Modes										
System	Description	Samples	System under	Support							
Number	Description	Samples	test	equipment							
4	Radiated Testing: EUT + AC/DC Adapter	S02 and S04	R								

Tested By :	Date of testing:
Johanna Knudsen	April 10 th , 2018- April 11 th , 2018
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 62 of 81



Transmitter Radiated Emission

Formal Data

No	Frequency MHz				Level dBuV/m	Measurement Type	Pol	•		Limit dBuV/m	•	Pass /Fail	Comments
1	280.072	25.7	1.4	3.9	31.0	Quasi Max	Н	109	328	46.0	-15.1	Pass	
2	286.363	16.5	1.4	3.8	21.8	Quasi Max	V	107	255	46.0	-24.2	Pass	
3	293.225	22.9	1.4	3.8	28.2	Quasi Max	Н	112	334	46.0	-17.9	Pass	
4	374.993	25.4	1.6	5.6	32.6	Quasi Max	Н	106	112	46.0	-13.4	Pass	
5	749.989	8.9	2.4	11.3	22.5	Quasi Max	Н	120	330	46.0	-23.5	Pass	
6	874.993	12.9	2.5	12.5	27.9	Quasi Max	Н	109	305	46.0	-18.1	Pass	

Page No: 63 of 81

Receiver Radiated Emission

FO	rma	al I	Da	ta	

					Level dBuV/m	Measurement Type				Limit dBuV/m	3	Pass /Fail	Comments
1	280.436	25.0	1.4	3.9	30.2	Quasi Max	Н	102	142	46.0	-15.8	Pass	
2	375.008	23.7	1.6	5.6	30.9	Quasi Max	Н	102	112	46.0	-15.1	Pass	
3	293.386	21.9	1.4	3.8	27.1	Quasi Max	Н	102	333	46.0	-18.9	Pass	
4	875.105	-1.6	2.5	12.5	13.4	Quasi Max	Н	102	297	46.0	-32.6	Pass	
5	302.719	17.8	1.4	3.9	23.2	Quasi Max	Н	102	339	46.0	-22.8	Pass	
6	937.490	4.4	2.6	13.2	20.2	Quasi Max	Н	102	359	46.0	-25.8	Pass	

cisco

Page No: 64 of 81

B.3 AC Conducted Emissions

FCC 15.207 (a)

Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.

Measurement Procedure Accordance with ANSI C64.10:2013 section 6.2

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span:	150 KHz – 30 MHz
Attenuation:	10 dB
Sweep Time:	Coupled
Resolution Bandwidth	: 9 KHz
Video Bandwidth:	30 KHz
Detector:	Quasi-Peak / Average

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
5	AC Power Conducted Emissions: EUT + Power Supply	S05 and S06	Ŋ	

Tested By :

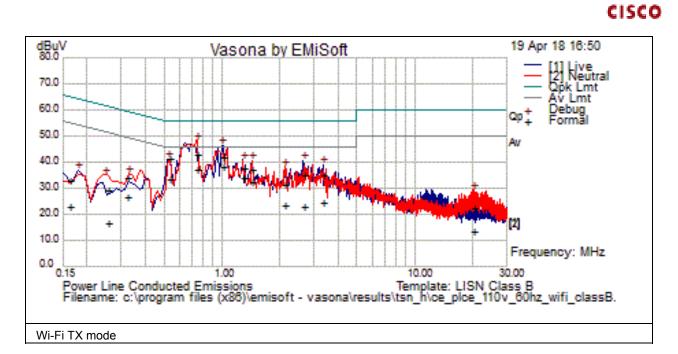
Marie Higa

Date of testing:

April 19, 2017 - April 19, 2017

Test Result : PASS

Test Equipment


See Appendix C for list of test equipment

Environmental Conditions:						
Temperature: (59 to 95)F	70.8 deg F					
Humidity: (10 to 75)%:	43.3%					
Comments:	No further comments					

Graphical Test Results

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Page No: 65 of 81

սիսիս

Test Results Table

No	Frequency	Raw	Cable	Factors	Level	Measurement	Line	Limit	Margin	Pass /Fail	Comments
	MHz	dBuV	Loss	dB	dBuV	Туре		dBuV	dB		
1	1.013	18.5	19.9	.0	38.4	Average	Live	46.0	-7.6	Pass	
2	.743	17.3	19.9	.0	37.3	Average	Neutral	46.0	-8.7	Pass	
3	1.284	13.9	19.9	.0	33.8	Average	Live	46.0	-12.2	Pass	
4	.539	13.6	19.9	.0	33.6	Average	Live	46.0	-12.4	Pass	
5	.743	22.9	19.9	.0	42.8	Quasi Peak	Neutral	56.0	-13.2	Pass	
6	1.434	12.3	19.9	.0	32.3	Average	Neutral	46.0	-13.7	Pass	
7	1.013	22.0	19.9	.0	42.0	Quasi Peak	Live	56.0	-14.0	Pass	
8	.539	21.4	19.9	.0	41.4	Quasi Peak	Live	56.0	-14.6	Pass	
9	1.284	17.7	19.9	.0	37.7	Quasi Peak	Live	56.0	-18.4	Pass	
10	1.434	17.4	19.9	.0	37.3	Quasi Peak	Neutral	56.0	-18.7	Pass	
11	2.652	15.1	20.0	.1	35.2	Quasi Peak	Live	56.0	-20.8	Pass	
12	3.363	15.0	20.0	.1	35.1	Quasi Peak	Live	56.0	-20.9	Pass	
13	3.363	4.3	20.0	.1	24.3	Average	Live	46.0	-21.7	Pass	
14	2.114	3.4	20.0	.1	23.4	Average	Neutral	46.0	-22.6	Pass	
15	.323	6.4	20.3	.1	26.7	Average	Neutral	49.6	-22.9	Pass	
16	2.652	2.9	20.0	.1	22.9	Average	Live	46.0	-23.1	Pass	
17	2.114	11.6	20.0	.1	31.6	Quasi Peak	Neutral	56.0	-24.4	Pass	
18	.323	13.9	20.3	.1	34.3	Quasi Peak	Neutral	59.6	-25.4	Pass	
19	.256	9.0	20.5	.1	29.6	Quasi Peak	Neutral	61.6	-32.0	Pass	
20	.163	2.2	21.0	.1	23.2	Average	Live	55.3	-32.1	Pass	
21	.163	12.1	21.0	.1	33.2	Quasi Peak	Live	65.3	-32.2	Pass	
22	.256	-4.0	20.5	.1	16.6	Average	Neutral	51.6	-34.9	Pass	

Page No: 66 of 81

				Factors dB		Measurement Type	-		Margin dB	Pass /Fail	Comments
23	20.118	-7.4	20.4	.2	13.2	Average	Neutral	50.0	-36.8	Pass	
24	20.118	2.0	20.4	.2	22.7	Quasi Peak	Neutral	60.0	-37.3	Pass	

Page No: 67 of 81

Appendix C: List of Test Equipment Used to perform the test

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due
55983	Keysight (Agilent/HP) / E8257D	PSG Analog Signal Generator	19-Oct-16	19-Oct-17
49527	Keysight (Agilent/HP) / N8990K-A38	2x4 Switch Matrix	13-Apr-17	13-Apr-18
40603	Keysight (Agilent/HP) / E4440A	Spectrum Analyzer 3Hz-26.5GHz	20-Oct-16	20-Oct-17
42629	Pasternack / PE6072	SMA 50 Ohm Termination	08 Mar 2017	08 Mar 2018
42624	Pasternack / PE6072	SMA 50 Ohm Termination	08 Mar 2017	08 Mar 2018
54016	HUBER + SUHNER / Sucoflex 102	RF Cable 2.4mm - N Type 18GHz	part of 49527	part of 49527
54015	HUBER + SUHNER / Sucoflex 102	RF Cable 2.4mm - N Type 18GHz	part of 49527	part of 49527
54014	HUBER + SUHNER / Sucoflex 102E	40GHz Cable K Connector	part of 49527	part of 49527

Equipment used for Conducted Tests (99%/26dB Bandwidth and 6dB Bandwidth)

Equipment used for Conducted Tests (Maximum Conducted Output Power)

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due
55109	Keysight (Agilent/HP)	N9030A-550 / PXA Signal Analyzer, 3Hz to 50GHz	29-Sep-17	29-Sep-18
55093	NATIONAL INSTRUMENTS	PXI-1042 / CHASSIS, PXI	Cal not Req'd	Cal not Req'd
56092	NATIONAL INSTRUMENTS	NAL INSTRUMENTS PXI-2796 / 40 GHz Dual 6x1 Multiplexer (SP6T) Cal not Req'd		Cal not Req'd
45384	Keysight (Agilent/HP)	N5182A / MXG Vector Signal Generator	10-Oct-17	10-Oct-18
54663	MEGAPHASE	F120-S1S1-48 / SMA Cable	3-Aug-17	3-Aug-18
55557	MINI-CIRCUITS	ZFSC-2-10G / SPLITTER, 2-10GHZ	27-Jul-17	27-Jul-18
51801	HUBER + SUHNER	Sucoflex101PE / 40 GHz Cable, K-Type	16 Nov 2016	16 Nov 2017
55365	PULSAR PS4-09-452/4S / SPLITTER 12-Apr-17		12-Apr-18	
55901	DYNAWAVE	SMSM-A2PH-018 / SMA Cable, 18 IN	10-Oct-16	10-Oct-17

Page No: 68 of 81

55892	DYNAWAVE	SMSM-A2PH-018 / SMA Cable, 18 IN	10-Oct-16	10-Oct-17
54677	MEGAPHASE	RA08-S1S1-12 / SMA Cable	3-Aug-17	3-Aug-18
54653	Micro-Tronics	BRM50702-02 / Band Reject Filter	3-Aug-17	3-Aug-18
54676	MEGAPHASE	RA08-S1S1-12 / SMA Cable	3-Aug-17	3-Aug-18
54674	MEGAPHASE	RA08-S1S1-12 / SMA Cable	3-Aug-17	3-Aug-18
54654	Micro-Tronics	BRC50703-02 / Notch Filter	3-Aug-17	3-Aug-18
54671	MEGAPHASE	RA08-S1S1-12 / SMA Cable	3-Aug-17	3-Aug-18
54675	MEGAPHASE	RA08-S1S1-12 / SMA Cable	3-Aug-17	3-Aug-18
54656	Micro-Tronics	BRC50705-02 / Notch Filter	3-Aug-17	3-Aug-18
54678	MEGAPHASE	RA08-S1S1-12 / SMA Cable	3-Aug-17	3-Aug-18
54670	MEGAPHASE	RA08-S1S1-12 / SMA Cable	3-Aug-17	3-Aug-18
54655	Micro-Tronics	BRC50704-02 / Notch Filter	3-Aug-17	3-Aug-18
54673	MEGAPHASE	RA08-S1S1-12 / SMA Cable	3-Aug-17	3-Aug-18
54662	MEGAPHASE	SF18-S1S1-36 / Coaxial Cable 36 inch	3-Aug-17	3-Aug-18
55586	AEROFLEX	BWS30-W2 / 30dB SMA Attenuator	3-Aug-17	3-Aug-18
54601	IXIA	XM100GE4CXP / Plug-In Module	Cal not Req'd	Cal not Req'd
54608	DITOM	D3C2060 / Splitter	14-Nov-16	14-Nov-17
55863	DYNAWAVE	SMSM-A2PH-012 / SMA Cable 12 IN	29 Sep 2016	29 Sep 2017

Page No: 69 of 81

42630	Pasternack / PE6072	SMA 50 Ohm Termination	08 Mar 2017	08 Mar 2018
42629	Pasternack / PE6072	SMA 50 Ohm Termination	08 Mar 2017	08 Mar 2018
54235	PASTERNACK / PE5011-1	PRESET TORQUE WRENCH, 8 IN/LBS	21-Feb-17	21-Feb-18
6335	LUFFT / 5063-33W	DIAL HYGROMETER	16 Aug 2017	16 Aug 2018

Equipment used for Conducted Tests (PSD)

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due
53614	Keysight (Agilent/HP) / N9030A-550	PXA Signal Analyzer, 3Hz to 50GHz	03-Apr-17	03-Apr-18
55094	NATIONAL INSTRUMENTS	PXI-1042 / CHASSIS, PXI	Cal not Req'd	Cal not Req'd
55106	Keysight (Agilent/HP)	N5182A / MXG Vector Signal Generator	07 Sep 2017	07 Sep 2018
55562	Megaphase / F120-S1S1-48	SMA Cable	27 Jul 2017	27 Jul 2018
54620	Megaphase / RA08-S1S1-12	SMA Cable	27 Jul 2017	27 Jul 2018
55368	Pulsar / PS4-09-452/4S	Splitter	12 Apr 2017	12 Apr 2018
54623	Megaphase / RA08-S1S1-18	SMA Cable	27 Jul 2017	27 Jul 2018
55565	Megaphase / F120-S1S1-36	SMA Cable	27 Jul 2017	27 Jul 2018
42630	Pasternack / PE6072	SMA 50 Ohm Termination	08 Mar 2017	08 Mar 2018
42629	Pasternack / PE6072	SMA 50 Ohm Termination	08 Mar 2017	08 Mar 2018
54235	PASTERNACK / PE5011-1	PRESET TORQUE WRENCH, 8 IN/LBS	21-Feb-17	21-Feb-18
6335	LUFFT / 5063-33W	DIAL HYGROMETER	16 Aug 2017	16 Aug 2018

Equipment used for Conducted Tests (Conducted Spurious Emissions)

40603	Keysight (Agilent/HP) / E4440A	Spectrum Analyzer 3Hz-26.5GHz	20-Oct-16	20-Oct-17	
-------	-----------------------------------	----------------------------------	-----------	-----------	--

Page No: 70 of 81

55965	DYNAWAVE / N-Type 12 in/lbs	Pre-Set Torque Wrench, 12 in/lbs	29-Sep-16	29-Sep-17
54235	PASTERNACK / PE5011-1	PRESET TORQUE WRENCH, 8 IN/LBS	21-Feb-17	21-Feb-18
42624	PASTERNACK / PE6072	SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
6335	LUFFT / 5063-33W	DIAL HYGROMETER	16 Aug 2017	16 Aug 2018

Equipment used for Conducted Tests (Conducted Band Edge)

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due
56085	ROHDE & SCHWARZ / TS8997/CL-2	Cable loss paths for TS8997 system II	8-Aug-17	8-Aug-18
56081	ROHDE & SCHWARZ / ESW44	EMI TEST RECEIVER, 44Ghz	23 May 2017	23 May 2018
56082	ROHDE & SCHWARZ / OSP-B157	OSP Module	2-Jun-17	2-Jun-18
56083	ROHDE & SCHWARZ / SMB100A03	SIGNAL GENERATOR 40GHz	20 Jun 2017	20 Jun 2018
56084	ROHDE & SCHWARZ / SMBV100A	Vector Signal Generator	06 Jun 2017	06 Jun 2018
42629	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42638	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42634	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42630	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
54235	PASTERNACK / PE5011-1	PRESET TORQUE WRENCH, 8 IN/LBS	21-Feb-17	21-Feb-18
6335	LUFFT / 5063-33W	DIAL HYGROMETER	16 Aug 2017	16 Aug 2018

Equipment used for Radiated Tests

Page No: 71 of 81

30MHz-1GHz

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due
45050	ROHDE & SCHWARZ / ESCI	EMI Test Receiver	16 Nov 2017	16 Nov 2018
56154	HUBER + SUHNER / Sucoflex 104PEA	Sucoflex N Type blue 7ft cable	18 Jan 2018	18 Jan 2019
20975	MICRO-COAX / UFB311A-0-1344-520520	Coaxial Cable-18Ghz	19-Feb-18	19-Feb-19
55936	HUBER + SUHNER / Sucoflex 106PEA	RF Type N Antenna Cable 18 GHz 8.5m	19-Oct-17	19-Oct-18
32806	SUNOL SCIENCES / JB1	Combination Antenna, 30MHz-2GHz	7-Jun-17	7-Jun-18
41929	NEWPORT / iBTHP-5-DB9	5 inch Temp/RH/Press Sensor w/20ft cable	28 Dec 2017	28 Dec 2018
27233	York	CNE V / Comparison Noise Emitter	Cal not Req'd	Cal not Req'd
35235	LUFKIN / HY1035CME	Tape measure	Cal not Req'd	Cal not Req'd
56330	PASTERNACK / PE5011-1	PRESET TORQUE WRENCH, 8 IN/LBS	28 Feb 2018	28 Feb 2019
42630	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-18	8-Mar-19
56112	PASTERNACK	PE6072 / SMA 50 Ohm Termination	1-Dec-17	1-Dec-18
56129	PASTERNACK	PE6072 / SMA 50 Ohm Termination	1-Dec-17	1-Dec-18

1GHz-18GHz

Page No: 72 of 81

56052	MITEQ	TTA1800-30-HG / SMA 18GHz Pre Amplifier	9-Feb-17	9-Feb-18
35618	Micro-Tronics / HPM50112-02	Notch Filter	26-Jun-17	26-Jun-18
21117	MICRO-COAX / UFB311A-0-2484-520520	Coaxial Cable-18Ghz	16-Aug-17	16-Aug-18
49563	HUBER + SUHNER / Sucoflex 106A	Coaxial Cable, 8m	21-Aug-17	21-Aug-18
25662	Micro-COAX / UFB311A-1-0840-504504	Coaxial Cable, 84.0 in. to 18GHz	21 Feb 2017	21 Feb 2018
36716	CISCO / RF Coaxial Cable-SMA	Radio Test Cable, SMA-SMA	13-Jan-17	13-Jan-18
36717	CISCO / RF Coaxial Cable-SMA	Radio Test Cable, SMA-SMA	13-Jan-17	13-Jan-18
32544	ETS Lindgren / 3117	Double Ridged Horn Antenna	12-Jul-17	12-Jul-18
45166	Stanley	33-428 / 26' TAPE MEASURE	Cal Not Req'd	Cal Not Req'd
34075	SCHAFFNER	RSG 2000 / Reference Spectrum Generator, 1-18GHz	Cal Not Req'd	Cal Not Req'd
4883	EMCO	3115 / Horn Antenna	Cal Not Req'd	Cal Not Req'd
8171	Keysight (Agilent/HP)	8491B Opt 010 / ATTENUATOR	26-Apr-17	26-Apr-18
47300	Keysight (Agilent/HP)	N9038A / EMI Receiver	28-Mar-17	28-Mar-18
54230	Newport	iBTHP-5-DB9 / 5 inch Temp/RH/Press Sensor w/20ft cable	11-Feb-17	11-Feb-18
42629	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42638	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42634	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42630	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18

Page No: 73 of 81

18GHz-40GHz

41979	CISCO / 1840	18-40GHz EMI Test Head/Verification Fixture	30-Aug-17	30-Aug-18
44940	ROHDE & SCHWARZ / ESU40	EMI RECEIVER, 40GHZ	14-Nov-16	11/14/2017
37236	JFW / 50CB-015	Control Box, GPIB	Cal Not Req'd	Cal Not Req'd
54230	Newport	iBTHP-5-DB9 / 5 inch Temp/RH/Press Sensor w/20ft cable	11-Feb-17	11-Feb-18
42629	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42638	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42634	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42630	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
54235	PASTERNACK / PE5011-1	PRESET TORQUE WRENCH, 8 IN/LBS	21-Feb-17	21-Feb-18
30486	Keysight (Agilent/HP)	E8257C / SIGNAL GENERATOR	15-Dec-16	15-Dec-17

Equipment used for AC Power Conducted Emissions

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due
CIS008496	Fischer Custom Communications / FCC-450B-2.4-N	Instrumentation Limiter	16-MAY-17	16-MAY-18
CIS018963	York / CNE V	Comparison Noise Emitter, 30 - 1000MHz	Cal Not Required	N/A
CIS035235	Lufkin / HY1035CME	5 Meter Tape Measure	Cal Not Required	N/A
CIS037229	Coleman / RG-223	25ft BNC cable	13-APR-18	13-APR-19
CIS037239	Rohde & Schwarz / ESCI	ESCI EMI Test Receiver	02-MAY-17	02-MAY-18

Page No: 74 of 81

CIS044023	Fischer Custom Communications / FCC-801-M2-32A	Power Line Coupling Decoupling Network	09-NOV-17	09-NOV-18
CIS045990	Fischer Custom Communications / F-090527-1009-1	Line Impedance Stabilization Network	15-JUN-17	15-JUN-18
CIS045991	Fischer Custom Communications / F-090527-1009-2	Lisn Adapter	15-JUN-17	15-JUN-18
CIS049479	Coleman / RG223	BNC 2ft Cable	05-MAR-18	05-MAR-19
CIS049531	TTE / H785-150K-50-21378	High Pass Filter	03-MAY-17	03-MAY-18
CIS049558	Bird / 5-T-MB	5W 50 Ohm BNC Termination 4GHz	10-AUG-17	10-AUG-18
CIS054231	Newport / iBTHP-5-DB9	5 inch Temp/RH/Press Sensor w/20ft cable	09-FEB-18	09-FEB-19

Page No: 75 of 81

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

Appendix D: Abbreviation Key and Definitions

The following table defines abbreviations used within this test report.

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	٥C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
TAP	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control System	Qp	Quasi Peak
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak
Cal	Calibration	kHz	Kilohertz (1x10 ³)
EN	European Norm	MHz	MegaHertz (1x10 ⁶)
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)
CISPR	International Special Committee on Radio Interference	Н	Horizontal
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization Network	dB	decibel
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³)
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)
L2	Line2	A	Amp
L3	Line 3	μA	Micro Amp (1x10 ⁻⁶)
DC	Direct Current	mS	Milli Second (1x10 ⁻³)
RAW	Uncorrected measurement value, as indicated by the measuring device	μS	Micro Second (1x10 ⁻⁶)
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)
SLCE	Signal Line Conducted Emissions	m	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
Ν	Neutral Line	R	Return
S	Supply	AC	Alternating Current

Appendix E: Photographs of Test Setups

Title: Radiated Emissions Configuration Photograph 30MHz-1GHz

Title: Radiated Emissions Configuration Photograph 1-18GHz

Title: Radiated Emissions Configuration Photograph 18-40GHz

Title: AC Power Conducted Emissions

Title: Conducted Setup (Band Edge)

Title: Conducted Setup (Bandwidth, Power, PSD)

Title: Conducted Setup (Conducted Spurious Emissions)

Page No: 77 of 81

Appendix F: Software Used to Perform Testing

TS8997 Test System, Software: WMS32 version 10.20 Radiated Spurious Emissions, Conducted Spurious Emissions, Software: EMIsoft Vasona, version 6.031 Conducted Power, Bandwidth, PSD: RF Automation Main

Page No: 78 of 81

Measurements were made in accordance with

- KDB 789033 D02 General UNII Test Procedures New Rules v01r04
- KDB 662911 MIMO
- ANSI C63.4 2014 Unintentional Radiators
- ANSI C63.10 2013 Intentional Radiators

Test procedures are summarized below:

FCC 5GHz Test Procedures	EDCS # 1445048	
FCC 5GHz RSE Test Procedures	EDCS # 1511600	

ri ini in cisco

Page No: 79 of 81

Appendix H: Scope of Accreditation (A2LA certificate number 1178-01)

The scope of accreditation of Cisco Systems, Inc. can be found on the A2LA web page at:

http://www.a2la.org/scopepdf/1178-01.pdf

Page No: 80 of 81

Appendix I: Test Assessment Plan

Compliance Test Plan (Excel) EDCS# 11811301

Target Power Tables EDCS# 11759869

Appendix J: Worst Case Justification

Test modes were determined from the Compliance Test Plan EDCS# 11811301.

All formal data can be found in EDCS# 11811303.

Page No: 81 of 81