Radio Test Report

ISR-1100 Series

C1111-4PWB, C1111-8PWB, C1111-8PLTEEAWB

FCC ID: LDKC11111696

5150-5250 MHz

Against the following Specifications:

CFR47 Part 15.407

Cisco Systems 170 West Tasman Drive San Jose, CA 95134

Author: Johanna Knudsen Tested By: Johanna Knudsen

Approved By: Gerard Thorpe Title: Manager, Engineering - EMC & Standards Operations Revision: See EDCS

This report replaces any previously entered test report under EDCS – **11779333**. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. Test Report Template EDCS# 1526148

Page No: 1 of 76

uluiu cisco

This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

SECTION 1: OVI	ERVIEW	3
1.1 Test Summ	ARY	3
SECTION 2: ASS	SESSMENT INFORMATION	4
2.1 GENERAL 2.2 UNITS OF MI 2.3 DATE OF TES	EASUREMENT TING (INITIAL SAMPLE RECEIPT DATE TO LAST DATE OF TESTING)	4 4 6
2.4 REPORT ISSU 2.5 TESTING FAC 2.6 EQUIPMENT 2.7 EUT DESCR	je date illities Assessed (EUT) iption	6 6 6 7
SECTION 3: RE	SULT SUMMARY	8
3.1 RESULTS SU	MMARY TABLE	8
SECTION 4: SAM	IPLE DETAILS	12
APPENDIX A:	EMISSION TEST RESULTS	
A.1DUTYA.299% AIA.3MAXIMA.4POWERA.5CONDUA.6CONDU	CYCLE ND 26DB BANDWIDTH IUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY JCTED SPURIOUS EMISSIONS JCTED BAND EDGE	13 20 23 28 28 33 42
APPENDIX B:	EMISSION TEST RESULTS	47
RADIATED EMIS B.1 RADIA B.2 RADIA B.3 AC CO	sion Setup Diagram-Below 1G ted Spurious Emissions ted Emissions 30MHz to 1GHz nducted Emissions	47 48 59 62
APPENDIX C:	LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST	65
APPENDIX D:	ABBREVIATION KEY AND DEFINITIONS	71
APPENDIX E:	PHOTOGRAPHS OF TEST SETUPS	71
APPENDIX F:	SOFTWARE USED TO PERFORM TESTING	73
APPENDIX G:	TEST PROCEDURES	74
APPENDIX H:	SCOPE OF ACCREDITATION (A2LA CERTIFICATE NUMBER 1178-01)	75
APPENDIX I:	TEST ASSESSMENT PLAN	76
APPENDIX J: W	VORST CASE JUSTIFICATION	76

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

Section 1: Overview

1.1 Test Summary

The samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

Specifications

CFR47 Part 15.407

Page No: 3 of 76

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Radio Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature	15°C to 35°C (54°F to 95°F)
Atmospheric Pressure	860mbar to 1060mbar (25.4" to 31.3")
Humidity	10% to 75*%

 All AC testing was performed at one or more of the following supply voltages: 110V 60 Hz (+/-20%)

2.2 Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB]

The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss..

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Page No: 4 of 76

Measurement Uncertainty Values

voltage and power measurements	± 2 dB
conducted EIRP measurements	± 1.4 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7
temperature measurements	± 0.54°.
humidity measurements	± 2.3%
DC and low frequency measurements	± 2.5%.

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

30 MHz – 40GHz	+/- 0.38 dB
----------------	-------------

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

Page No: 5 of 76

2.3 Date of testing (initial sample receipt date to last date of testing)

27-JUN-2017 to 19-APR-2018

2.4 Report Issue Date

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled

2.5 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc. 125 West Tasman Drive (Building P) San Jose, CA 95134 USA

Headquarters

Cisco Systems, Inc., 170 West Tasman Drive San Jose, CA 95134, USA

Registration Numbers for Industry Canada

Cisco System Site	Site Identifier		
Building P, 10m Chamber	Company #: 2461N-2		
Building P, 5m Chamber	Company #: 2461N-1		
Building I, 5m Chamber	Company #: 2461M-1		

Test Engineers

Johanna Knudsen, Jose Aguirre, Marie Higa

2.6 Equipment Assessed (EUT)

C1111-4PW with ISR-AP1100AC-B

Page No: 6 of 76

2.7 EUT Description

The Cisco ISR-AP1100AC Wi-Fi module supports the following modes of operation. The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst case data for all modes.

802.11a - Non HT20, One Antenna, 6 to 54 Mbps, 1ss 802.11a - Non HT20, Two Antennas, 6 to 54 Mbps, 1ss

802.11a - Non HT20 Beam Forming, Two Antennas, 6 to 54 Mbps, 1ss

802.11n/ac - HT/VHT20, One Antenna, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Two Antennas, M8 to M15, 2ss

802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M8 to M15, 2ss

802.11n/ac - HT/VHT20 STBC, Two Antennas, M0 to M7, 2ss

802.11a - Non HT40, One Antenna, 6 to 54 Mbps, 1ss 802.11a - Non HT40, Two Antennas, 6 to 54 Mbps, 1ss

802.11n/ac - HT/VHT40, One Antenna, M0 to M7, 1ss 802.11n/ac - HT/VHT40, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT40, Two Antennas, M8 to M15, 2ss

802.11n/ac - HT/VHT40 Beam Forming, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT40 Beam Forming, Two Antennas, M8 to M15, 2ss

802.11n/ac - HT/VHT40 STBC, Two Antennas, M0 to M7, 2ss

802.11a - Non HT80, One Antenna, 6 to 54 Mbps, 1ss 802.11a - Non HT80, Two Antennas, 6 to 54 Mbps, 1ss

802.11ac - VHT80, One Antenna, M0 to M9 1ss 802.11ac - VHT80, Two Antennas, M0 to M9 1ss 802.11ac - VHT80, Two Antennas, M0 to M9 2ss

802.11ac - VHT80 Beam Forming, Two Antennas, M0 to M9 1ss 802.11ac - VHT80 Beam Forming, Two Antennas, M0 to M9 2ss

802.11ac - VHT80 STBC, Two Antennas, M0 to M9 2ss

The following antennas are supported by this product series. The data included in this report represent the worst case data for all antennas.

Frequency	Part Number	Antenna Type	Antenna Gain (dBi)
2.4 / 5 GHz	2x2 Internal	AP Omni	2 / 4

Page No: 7 of 76

3.1 Results Summary Table

Conducted emissions

Basic Standard	Technical Requirements / Details	Result
FCC 15.407	 99% & 26 dB Bandwidth: The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW. The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission. 	Pass

cisco

Page No: 8 of 76

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

FCC 15.407	Output Power : (1) For the band 5.15-5.25 GHz.	
	(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBiIf transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output powershall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).	Pass
	(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	
	(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 WFixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.	
	(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	

FCC 15.407	Power Spectral Density	Pass
	15.407	
	(i) For an outdoor access point operating in the band 5.15-5.25 GHzthe maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).	
	(ii) For an indoor access point operating in the band 5.15-5.25 GHz the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	
	(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.	
	(iv) For mobile and portable client devices in the 5.15-5.25 GHz bandthe maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	
FCC 15.407	Conducted Spurious Emissions / Band-Edge : For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27dBm/MHz	Pass
FCC 15.407	Restricted band:	Pass
FCC 15.209 FCC 15.205	Unwanted emissions falling within the restricted bands, as defined in FCC 15.205 (a) must also comply with the radiated emission limits specified in FCC 15.209 (a)	

Page No: 10 of 76

Basic Standard	Technical Requirements / Details	Result		
FCC 15.209 FCC 15.205	TX Spurious Emissions: Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the field strength limits table in this section.	Pass		
FCC 15.207	AC Conducted Emissions: Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.	Pass		

Radiated Emissions (General requirements)

Page No: 11 of 76

Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing. Please also refer to the "Justification for worst Case test Configuration" section of this report for further details on the selection of EUT samples.

4.1 Sample Details

Sample No.	Equipment Details	Manufacturer	Hardware Rev.	Firmware Rev.	Software Rev.	Serial Number
S01	C1111-4PW (TSN-M-P2A)	Cisco Systems, Inc	74-114193-01 03	NA	NA	FGL211421YH (board: FOC21124R20)
S02	AC/DC Adapter ADP-66CR B	Delta Electronics, Inc	341-100346-01 A0	NA	NA	DAB2110G3CH
S03	C1111-4PW (TSN-M-P2A)	Cisco Systems, Inc	74-114193-01 03	NA	NA	FGL211522GR (board: FOC21136DF1)
S04	C1111-8PLTEW (TSN-H)	Cisco Systems, Inc	74-111526-01	NA	NA	FGL2123915E (board: FOC21193P24)
S05	C1111-8PLTEEAWB (TSN-H)	Cisco Systems, Inc	74-111526-01	NA	NA	FGL2123915D
S06	ADP-150BR B	Delta Electronics	341-100399-01	NA	NA	DAB2205X02C

4.2 System Details

System #	Description	Samples
1	Conducted Testing: EUT + Power Supply	S01, S02
2	Conducted Testing: EUT + Power Supply	S02, S03
3	RSE Testing: EUT + Power Supply	S02, S03
4	RSE Testing: EUT + Power Supply	S02, S04
5	AC Power Conducted Emissions: EUT + Power Supply	S05, S06

4.3 Mode of Operation Details

Mode#	Description	Comments
1	Conducted Testing	Continuous TX mode.
		Image version 8.4.100.1
2	Radiated Testing	Continuous TX mode.
		Image version 8.4.100.1
3	AC Conducted Emissions	Wi-Fi operating in TX mode

Page No: 12 of 76

Appendix A: Emission Test Results

A.1 Duty Cycle

Duty Cycle Test Requirement

From KDB 789033 D02 General UNII Test Procedures New Rules v01r04

B. Duty Cycle (x), Transmission Duration (T), and Maximum Power Control Level

1. All measurements are to be performed with the EUT transmitting at 100 percent duty cycle at its maximum power control level; however, if 100 percent duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, *T*, are required for each tested mode of operation.

Duty Cycle Test Method

From KDB 789033 D02 General UNII Test Procedures New Rules v01r04:

B. Duty Cycle (x), Transmission Duration (T), and Maximum Power Control Level

The zero-span mode on a spectrum analyzer or EMI receiver, if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq EBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in section II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

Duty Cycle Test Information

Tested By :	Date of testing:
Johanna Knudsen	July 7 th , 2017

Test Result : N/A

Test Equipment

See Appendix C for list of test equipment

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
1	Conducted Testing: EUT + AC/DC Adapter	S01 and S02	V	

Page No: 13 of 76

Duty Cycle Data Table

Duty Cycle table and screen captures are shown below for power/psd modes.

Mada	Data Data	On-time	Total Time	Duty Cycle	Correction Factor
Mode	Data Rate	(ms)	(ms)	(%)	(ab)
NonHT20	6Mbps	2.064	2.13872	96.5	0.2
HT20	M0	5.008	5.09307	98.3	0.1
VHT20	M8	2.528	2.61407	96.7	0.1
NonHT40	6Mbps	2.064	2.14238	96.3	0.2
HT40	M0	2.431	2.5222	96.4	0.2
VHT40	M8	3.628	3.7261	97.4	0.1
NonHT80	6Mbps	2.063	2.14406	96.2	0.2
VHT80	M0X1	3.352	4.0531	82.7	0.8
VHT80	M0X2	3.906	4.6093	84.7	0.7

Page No: 14 of 76

Duty Cycle Data Screenshots

20MHz Bandwidth, 6Mbps

20MHz Bandwidth, M0

🔆 Agilent 15:41:38 Jul 7, 201	7	Marker
Ref 20 dBm #Atten 30 #Peak 18	∆ Mkr2 85.07 µs BB – 5.35 dB and tana , thata, tana data a tana data tana data a	Select Marker
Log A B Philipping and the second sec	n eer op niet in die en jijg van de de huit oor in de de gedie de fangte yn oerde jijg de de de de gedie gedie In eer op niet in die eerste gedie de	Normal
Marker A		Delta
^{₽₽₳vg} -5.35 dB		Delta Pair (Tracking Ref) Ref∆
Center 5.180 000 GHz Res BW 8 MHz Marker Trace Type	Span 0 Hz #VBW 8 MHz Sweep 6.007 ms (8192 pts) X Axis Amplitude	Span Pair Span <u>Center</u>
1R (1) Time 1 _Δ (1) Time 2R (1) Time 2 _Δ (1) Time	190.8 µs 9.72 dBm 5.008 ms -7.22 dB 5.199 ms -36.09 dBm 85.07 µs -5.35 dB	Off
		More 1 of 2
Copyright 2000-2008 Agilen	t Technologies	

Page No: 15 of 76

20MHz Bandwidth, M8

40MHz Bandwidth, 6Mbps

Page No: 16 of 76

40MHz Bandwidth, M0

cisco

40MHz Bandwidth, M8

🔆 Agilent 15:58:08	Jul 7, 2017			Marker
Ref 20 dBm #Peak	#Atten 30 dB	et dag dag menergi ing teng teng teng teng menergi ing teng	یµ 13.81 ∆ Mkr2 Mkr2 Mkr2 ⊿ –13.88 dB مرابع المالية	Select Marker 1 <u>2</u> 3 4
Log 10 dB/ 2R	in a second the second seco	<mark>la f_{al} de Angeles de Carago de Ang</mark> elo <mark>de e</mark>	<mark>) _entrik kal (bilitik et) perioketta den ikaten pilik, eden er</mark>	Normal
* *				Delta
#PAvg				Delta Pair (Tracking Ref) Ref <u>∆</u>
Center 5.190 000 G Res BW 8 MHz	iHz #	VBW 8 MHz	Span 0 Hz Sweep 4 ms (8192 pts)	Span Pair Span Center
Marker Trace 1R (1) 1Δ (1) 2R (1) 2Δ (1)	Type Time Time Time Time	X Axis 294.9 µs 3.628 ms 202.6 µs 91.81 µs	Amplitude -6.33 dBm 8.73 dB -25.01 dBm -13.88 dB	Off
				More 1 of 2
Copyright 2000-20	008 Agilent	lechnologies		

Page No: 17 of 76

* Agilent 16:01:55 Jul 7, 2017 Marker ∆ Mkr2 – 81.06 µs Select Marker Ref 20 dBm *Atten 30 dB -19.34 dB 2 3 #Peak Log 1 R 10 han Allin haland telling filling in the list alle been de steret gebreer begeerte de te " - W Normal dB/ 2 R Delta Delta Pair (Tracking Ref) #PAvg Ref Center 5.190 000 GHz Res BW 8 MHz Span 0 Hz Span Pair #VBW 8 MHz Sweep 4 ms (8192 pts) Span Center X Axis 711.4 µs 2.063 ms 628.4 µs Amplitude 2.01 dBm -1.64 dB Type Time Time Time Marker Trace (1) (1) (1) (1) 1R 1∆ 2R 2∆ Off -29.63 dBm 81.06 µs Time -19.34 dB More 1 of 2 Copyright 2000-2008 Agilent Technologies

80MHz Bandwidth, 6Mbps

80MHz Bandwidth, M0X1

Page No: 18 of 76

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

4

Δ

80MHz Bandwidth, M0X2

cisco

Page No: 19 of 76

99% and 26dB Bandwidth Test Requirement

For the FCC:

There is no requirement for the value of bandwidth. Power measurements are made using the 99% Bandwidth as the integration bandwidth.

99% and 26dB Bandwidth Test Procedure

The 99-percent occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 % of the total mean power of the given emission. Measurement of the 99-percent occupied bandwidth is required only as a condition for using the optional band-edge measurement techniques described in section II.G.3.d). Measurements of 99-percent occupied bandwidth may also optionally be used in lieu of the EBW to define the minimum frequency range over which the spectrum is integrated when measuring maximum conducted output power as described in section II.E. However, the EBW must be measured to determine bandwidth dependent limits on maximum conducted output power in accordance with 15.407(a).

Ref. KDB 789033 Section D. 99 Percent Occupied Bandwidth

99% BW

Test Parameters

1. Set center frequency to the nominal EUT channel center frequency.

2. Set span = 1.5 times to 5.0 times the OBW.

3. Set RBW = 1% to 5% of the OBW

4. Set VBW \geq 3 \cdot RBW

5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.6. Use the 99 % power bandwidth function of the instrument (if available).

Ref KDB 789033 in Section C. Measurement Bandwidth, Section 1

26 BW

Test parameters

X dB BW = -26dB (using the OBW function of the spectrum analyzer)

Emission Bandwidth (EBW)

a) Set RBW = approximately 1% of the emission bandwidth.

b) Set the VBW > RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

Page No: 20 of 76

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
2	Conducted testing: EUT + AC/DC Adapter	S02 and S03	V	

Test Equipment

See Appendix C for list of test equipment

Tested By :	Date of testing:
Jose Aguirre	22-Sep-17 - 23-Sep-17
Test Result : PASS	

99% and 26dB Bandwidth Data Table

Frequency (MHz)	Mode	Data Rate (Mbps)	26dB BW (MHz)	99% BW (MHz)		
5400	Non HT20, 6 to 54 Mbps	6	20.7	17.226		
0816	HT/VHT20, M0 to M15	m0	21.4	18.194		
5100	Non HT40, 6 to 54 Mbps	6	39.7	35.502		
5190	HT/VHT40, M0 to M15	m0	40.2	36.025		
5040	Non HT80, 6 to 54 Mbps	6	83.6	75.700		
5210	VHT80, M0 to M9, M0 to M9 1-1ss	m0x1	83.5	75.820		
5000	Non HT20, 6 to 54 Mbps		22.3	17.368		
5220	HT/VHT20, M0 to M15	m0	21.7	18.318		
5000	Non HT40, 6 to 54 Mbps	6	40.0	35.710		
5230	HT/VHT40, M0 to M15	m0	46.7	36.333		
5240	Non HT20, 6 to 54 Mbps	6	22.2	17.445		
5240	HT/VHT20, M0 to M15	m0	23.2	18.381		

Page No: 21 of 76

99% and 26dB Bandwidth Data Screenshot

Keysight Spectrum Analyzer - Occupied BV	N	(Prototype	(Prototype - Limited Sale Allowed)			- d 🖬
D2 RL PF S0 Ω DC Center Freq 5.180000000 NFE NFE 16 dB/dB/	CORREC GHZ #IFGain:Low	SENSE:INT Center Freq: 5.1800000 Trig: Free Run #Atten: 16 dB	000 GHz	Radio Std: I Radio Devic	None :e: BTS	Frequency
Log Ref Low Low <thlow< th=""> <thlow< th=""> <thlow< th=""></thlow<></thlow<></thlow<>				······		Center Freq 5.18000000 GHz
-110 -115 Center 5.18 GHz #Res BW 1 MHz		#VBW 3 MHz		Span #Sw	40 MHz veep 5 s	CF Step 4.000000 MHz Auto Man
Occupied Bandwidt	Total Po	wer 21.	9 dBm			
Transmit Freq Error x dB Bandwidth	-43.004 kH 20.90 MH	z % of OB\ lz x dB	W Power 9 -26	9.00 % 6.00 dB		Freq Offset 0 Hz
MSG			STAT	JS		

cisco

26dB / 99% Bandwidth, 5180 MHz, Non HT20, 6 to 54 Mbps

Page No: 22 of 76

A.3 Maximum Conducted Output Power

Maximum Conducted Output Power Test Requirement

15.407 General technical requirements, (a) Power limits: (1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. ... If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. ...Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Maximum Conducted Output Power Test Procedure

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r04

A151 C03.10. 2015	
Maximum Conducted Output Power	
Test Due es duns	

Test Procedure

1. Set the radio in the continuous transmitting mode at full power

2. Compute power by integrating the spectrum across the EBW (or alternatively entire 99% OBW) of the signal using the instrument's band power measurement function. The integration shall be performed using the spectrum analyzer band-power measurement function with band limits set equal to the EBW or the OBW band edges.

3. Capture graphs and record pertinent measurement data.

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r04

Page No: 23 of 76

2. Measurement using a Spectrum Analyzer or EMI Receiver (SA), (d) Method SA-2 **Maximum Conducted Output Power** Test parameters Method SA-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction). (i) Measure the duty cycle, x, of the transmitter output signal as described in section II.B. (ii) Set span to encompass the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal. (iii) Set RBW = 1 MHz. (iv) Set VBW \geq 3 MHz. (v) Number of points in sweep ≥ 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.) (vi) Sweep time = auto. (vii) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode. (viii) Do not use sweep triggering. Allow the sweep to "free run". (ix) Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed to ensure that the average accurately represents the true average over the on and off periods of the transmitter. (x) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth)

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. ANSI C63.10 section 14.3.2.2

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
2	Conducted Testing: EUT + AC/DC Adapter	S02 and S03	Ŋ	

Tested By :	Date of testing:
Jose Aguirre	22-Sep-17 - 23-Sep-17
Test Result : PASS	

See Appendix C for list of test equipment

Page No: 24 of 76

Maximum Output Power

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Tx 2 Max Power (dBm)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	4	15.0		15.0	29.8	14.8
	Non HT20, 6 to 54 Mbps	2	4	14.1	13.6	16.9	29.8	12.9
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	12.3	11.8	15.1	28.8	13.7
0	HT/VHT20, M0 to M7	1	4	14.0		14.0	29.8	15.8
518(HT/VHT20, M0 to M7	2	4	13.1	12.7	15.9	29.8	13.9
LC)	HT/VHT20, M8 to M15	2	4	13.1	12.7	15.9	29.8	13.9
	HT/VHT20 Beam Forming, M0 to M7	2	7	12.2	11.7	15.0	28.8	13.8
	HT/VHT20 Beam Forming, M8 to M15	2	4	13.1	12.7	15.9	29.8	13.9
	HT/VHT20 STBC, M0 to M7	2	4	13.1	12.7	15.9	29.8	13.9
	Non HT40, 6 to 54 Mbps	1	4	12.9		12.9	29.8	16.9
	Non HT40, 6 to 54 Mbps	2	4	11.8	11.4	14.6	29.8	15.2
	HT/VHT40, M0 to M7	1	4	12.3		12.3	29.8	17.5
06	HT/VHT40, M0 to M7	2	4	12.3	11.8	15.1	29.8	14.7
51	HT/VHT40, M8 to M15	2	4	12.3	11.8	15.1	29.8	14.7
	HT/VHT40 Beam Forming, M0 to M7	2	7	10.3	9.8	13.1	28.8	15.7
	HT/VHT40 Beam Forming, M8 to M15	2	4	12.3	11.8	15.1	29.8	14.7
	HT/VHT40 STBC, M0 to M7	2	4	12.3	11.8	15.1	29.8	14.7
			-				-	
	Non HT80, 6 to 54 Mbps	1	4	12.2		12.2	29.0	16.8
	Non HT80, 6 to 54 Mbps	2	4	11.2	10.6	13.9	29.0	15.1
	VHT80, M0 to M9 1ss	1	4	11.8		11.8	29.0	17.2
10	VHT80, M0 to M9 1ss	2	4	10.9	10.4	13.7	29.0	15.3
52	VHT80, M0 to M9 2ss	2	4	10.9	10.4	13.7	29.0	15.3
	VHT80 Beam Forming, M0 to M9 1ss	2	7	7.8	7.3	10.6	28.0	17.4
	VHT80 Beam Forming, M0 to M9 2ss	2	4	10.9	10.4	13.7	29.0	15.3
	VHT80 STBC, M0 to M9 1ss	2	4	10.9	10.4	13.7	29.0	15.3
	Non HT20, 6 to 54 Mbps	1	4	15.7		15.7	29.8	14.1
	Non HT20, 6 to 54 Mbps	2	4	15.7	14.9	18.3	29.8	11.5
0	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	15.7	14.9	18.3	28.8	10.5
522	HT/VHT20, M0 to M7	1	4	15.5		15.5	29.8	14.3
2,	HT/VHT20, M0 to M7	2	4	15.5	14.8	18.2	29.8	11.6
	HT/VHT20, M8 to M15	2	4	15.5	14.8	18.2	29.8	11.6
	HT/VHT20 Beam Forming, M0 to M7	2	7	15.5	14.8	18.2	28.8	10.6

Page No: 25 of 76

	HT/VHT20 Beam Forming, M8 to M15	2	4	15.5	14.8	18.2	29.8	11.6
	HT/VHT20 STBC, M0 to M7	2	4	15.5	14.8	18.2	29.8	11.6
	Non HT40, 6 to 54 Mbps	1	4	15.3		15.3	29.8	14.5
	Non HT40, 6 to 54 Mbps	2	4	15.3	14.5	17.9	29.8	11.9
	HT/VHT40, M0 to M7	1	4	15.5		15.5	29.8	14.3
30	HT/VHT40, M0 to M7	2	4	15.5	14.9	18.2	29.8	11.6
52	HT/VHT40, M8 to M15	2	4	15.5	14.9	18.2	29.8	11.6
	HT/VHT40 Beam Forming, M0 to M7	2	7	15.5	14.9	18.2	28.8	10.6
	HT/VHT40 Beam Forming, M8 to M15	2	4	15.5	14.9	18.2	29.8	11.6
	HT/VHT40 STBC, M0 to M7	2	4	15.5	14.9	18.2	29.8	11.6
	Non HT20, 6 to 54 Mbps	1	4	15.5		15.5	29.8	14.3
	Non HT20, 6 to 54 Mbps	2	4	15.5	15.0	18.3	29.8	11.5
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	15.5	15.0	18.3	28.8	10.5
0	HT/VHT20, M0 to M7	1	4	15.5		15.5	29.8	14.3
524(HT/VHT20, M0 to M7	2	4	15.5	15.0	18.3	29.8	11.5
L)	HT/VHT20, M8 to M15	2	4	15.5	15.0	18.3	29.8	11.5
	HT/VHT20 Beam Forming, M0 to M7	2	7	15.5	15.0	18.3	28.8	10.5
	HT/VHT20 Beam Forming, M8 to M15	2	4	15.5	15.0	18.3	29.8	11.5
	HT/VHT20 STBC, M0 to M7	2	4	15.5	15.0	18.3	29.8	11.5

Page No: 26 of 76

Maximum Transmit Output Power, 5220 MHz, Non HT20 Beam Forming, 6 to 54 Mbps

Center Freq	5.220000000 GH	Certa	Free 5.2000000	0 GHz vg/tuke: 100/100	Radio Sal Nova Radio Device 873	Preparety
d steas	Ref 30.00 dBm			Mkrt	5.2159333 GHz 4.0719 dBm	
		******				Center Frei 5.22000000 G-0
Center 5.22 #Res BW 11	GH2 BH2		VBW 3 MHz		Span 40 MHz #Sweep 100 ms	CF Ster 4.000000 MH Auto War
Channel 14.	Power 91 dBm / 22	25 MHz	Power S	9ectral Den 3.56 dBn	sity 1 /Hz	Freq Offse SH
which is a second s				316	4	

Antenna B

Page No: 27 of 76

A.4 Power Spectral Density

Power Spectral Density Test Requirement

15.407 General technical requirements, (a) Power limits: (1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz ... the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(ii) For an indoor access point operating in the band 5.15-5.25 GHz... the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz...the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Power Spectral Density Test Procedure

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r04 F. Maximum Power Spectral Density (PSD)

Power Spectral Density

Test Procedure The rules requires "maximum power spectral density" measurements where the intent is to measure the maximum value of the time average of the power spectral density measured during a period of continuous transmission. 1. Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power…". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)

2. Use the peak search function on the instrument to find the peak of the spectrum and record its value.

3. Make the following adjustments to the peak value of the spectrum, if applicable: a) If Method SA-2 or SA-2 Alternative was used, add $10 \log(1/x)$, where x is the duty cycle, to the peak of the spectrum.

b) If Method SA-3 Alternative was used and the linear mode was used in step II.E.2.g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.

Page No: 28 of 76

4. The result is the Maximum PSD over 1 MHz reference bandwidth.

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r04

2. Measurement using a Spectrum Analyzer or EMI Receiver (SA), (d) Method SA-2

Power Spectral Density

Test parameters

Method SA-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction). (i) Measure the duty cycle, x, of the transmitter output signal as described in section II.B.

(ii) Set span to encompass the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(iii) Set RBW = 1 MHz.

(iv) Set VBW \geq 3 MHz.

(v) Number of points in sweep ≥ 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

(vi) Sweep time = auto.

(vii) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

(viii) Do not use sweep triggering. Allow the sweep to "free run".

(ix) Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed to ensure that the average accurately represents the true average over the on and off periods of the transmitter.

(x) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth)

F. Maximum Power Spectral Density (PSD)

2. Use the peak search function on the instrument to find the peak of the spectrum and record its value.

3. Make the following adjustments to the peak value of the spectrum, if applicable: a) If Method SA-2 or SA-2 Alternative was used, add $10 \log(1/x)$, where x is the duty cycle, to the peak of the spectrum.

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. ANSI C63.10 section 14.3.2.2

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
2	Conducted Testing: EUT + AC/DC Adapter	S02 and S03	\square	

Tested By :	Date of testing:
Jose Aguirre	22-Sep-17 - 23-Sep-17
Test Result · PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 29 of 76

Power Spectral Density

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/MHz)	Tx 2 PSD (dBm/MHz)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	4	4.4		4.4	16.8	12.4
	Non HT20, 6 to 54 Mbps	2	7	3.5	3.1	6.3	15.8	9.5
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	1.7	1.1	4.4	15.8	11.4
0	HT/VHT20, M0 to M7	1	4	2.9		2.9	16.8	13.9
518	HT/VHT20, M0 to M7	2	7	2.2	1.6	4.9	15.8	10.9
4,	HT/VHT20, M8 to M15	2	4	2.2	1.6	4.9	16.8	11.9
	HT/VHT20 Beam Forming, M0 to M7	2	7	1.3	0.6	4.0	15.8	11.8
	HT/VHT20 Beam Forming, M8 to M15	2	4	2.2	1.6	4.9	16.8	11.9
	HT/VHT20 STBC, M0 to M7	2	4	2.2	1.6	4.9	16.8	11.9
					-			
	Non HT40, 6 to 54 Mbps	1	4	0.1		0.1	16.8	16.7
	Non HT40, 6 to 54 Mbps	2	7	-0.9	-1.4	1.9	15.8	13.9
	HT/VHT40, M0 to M7	1	4	-1.6		-1.6	16.8	18.4
90	HT/VHT40, M0 to M7	2	7	-1.6	-1.7	1.4	15.8	14.4
51	HT/VHT40, M8 to M15	2	4	-1.6	-1.7	1.4	16.8	15.4
	HT/VHT40 Beam Forming, M0 to M7	2	7	-3.5	-3.9	-0.7	15.8	16.5
	HT/VHT40 Beam Forming, M8 to M15	2	4	-1.6	-1.7	1.4	16.8	15.4
	HT/VHT40 STBC, M0 to M7	2	4	-1.6	-1.7	1.4	16.8	15.4
					-	-		
	Non HT80, 6 to 54 Mbps	1	4	-4.4		-4.4	16.0	20.4
	Non HT80, 6 to 54 Mbps	2	7	-5.4	-6.1	-2.7	15.0	17.7
	VHT80, M0 to M9 1ss	1	4	-5.0		-5.0	16.0	21.0
10	VHT80, M0 to M9 1ss	2	7	-6.4	-6.9	-3.6	15.0	18.6
52	VHT80, M0 to M9 2ss	2	4	-6.4	-6.9	-3.6	16.0	19.6
	VHT80 Beam Forming, M0 to M9 1ss	2	7	-9.3	-9.7	-6.5	15.0	21.5
	VHT80 Beam Forming, M0 to M9 2ss	2	4	-6.4	-6.9	-3.6	16.0	19.6
	VHT80 STBC, M0 to M9 1ss	2	4	-6.4	-6.9	-3.6	16.0	19.6
					-	-		
	Non HT20, 6 to 54 Mbps	1	4	4.8		4.8	16.8	12.0
	Non HT20, 6 to 54 Mbps	2	7	4.8	4.1	7.5	15.8	8.3
20	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	4.8	4.1	7.5	15.8	8.3
52	HT/VHT20, M0 to M7	1	4	4.7		4.7	16.8	12.1
	HT/VHT20, M0 to M7	2	7	4.7	3.9	7.3	15.8	8.5
	HT/VHT20, M8 to M15	2	4	4.7	3.9	7.3	16.8	9.5

Page No: 30 of 76

	HT/VHT20 Beam Forming, M0 to M7	2	7	4.7	3.9	7.3	15.8	8.5
	HT/VHT20 Beam Forming, M8 to M15	2	4	4.7	3.9	7.3	16.8	9.5
	HT/VHT20 STBC, M0 to M7	2	4	4.7	3.9	7.3	16.8	9.5
	Non HT40, 6 to 54 Mbps	1	4	3.0		3.0	16.8	13.8
	Non HT40, 6 to 54 Mbps	2	7	3.0	2.3	5.7	15.8	10.1
	HT/VHT40, M0 to M7	1	4	1.9		1.9	16.8	14.9
30	HT/VHT40, M0 to M7	2	7	1.9	1.4	4.7	15.8	11.1
52	HT/VHT40, M8 to M15	2	4	1.9	1.4	4.7	16.8	12.1
	HT/VHT40 Beam Forming, M0 to M7	2	7	1.9	1.4	4.7	15.8	11.1
	HT/VHT40 Beam Forming, M8 to M15	2	4	1.9	1.4	4.7	16.8	12.1
	HT/VHT40 STBC, M0 to M7	2	4	1.9	1.4	4.7	16.8	12.1
	Non HT20, 6 to 54 Mbps	1	4	4.7		4.7	16.8	12.1
	Non HT20, 6 to 54 Mbps	2	7	4.7	4.4	7.6	15.8	8.2
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	4.7	4.4	7.6	15.8	8.2
	HT/VHT20, M0 to M7	1	4	4.4		4.4	16.8	12.4
24(HT/VHT20, M0 to M7	2	7	4.4	4.1	7.3	15.8	8.5
L()	HT/VHT20, M8 to M15	2	4	4.4	4.1	7.3	16.8	9.5
	HT/VHT20 Beam Forming, M0 to M7	2	7	4.4	4.1	7.3	15.8	8.5
	HT/VHT20 Beam Forming, M8 to M15	2	4	4.4	4.1	7.3	16.8	9.5
	HT/VHT20 STBC, M0 to M7	2	4	4.4	4.1	7.3	16.8	9.5

Page No: 31 of 76

Power Spectral Density, 5240 MHz, Non HT20, 6 to 54 Mbps

Antenna B

Page No: 32 of 76

A.5 Conducted Spurious Emissions

Conducted Spurious Emissions Test Requirement

15.407(b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.
 (7) The provisions of §15.205 apply to intentional radiators operating under this section.

(8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Use formula below to substitute conducted measurements in place of radiated measurements

E[dBµV/m] = EIRP[dBm] - 20 log(d[meters]) + 104.77, where E = field strength and d = 3 meter

1) Average Plot, Limit= -41.25 dBm eirp

2) Peak plot, Limit = -21.25 dBm eirp

KDB 789033 D02 General UNII Test Procedures New Rules v01r04

2. Unwanted Emissions that fall Outside of the Restricted Bands

c) At frequencies above 1000 MHz, use the procedure for maximum emissions described in section II.G.5., "Procedure for Unwanted Maximum Unwanted Emissions Measurements Above 1000 MHz."

§ 15.407(b)(1)-(3) specifies that emissions outside of the respective U-NII bands are subject to a maximum emission limit of -27 dBm/MHz. § 15.407(b)(4) provides two requirement options for devices that operate in the 5.725 - 5.85 GHz band. If the option specified in § 15.407(b)(4)(ii) is exercised, then the procedures specified in Clause 11.11 of ANSI C63.10-2013 and/or in Section 11.0 of KDB Publication 558074 shall be utilized. In general, an out-of-band emission that complies with both the peak and average power limits of § 15.209 is not required to also satisfy the -27 dBm/MHz or -17 dBm/MHz maximum emission limit.

Conducted Spurious Emissions Test Procedure

Ref. 789033 D02 General UNII Test Procedures New Rules v01r04

Conducted Spurious Emissions

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode. Use the procedures in KDB 789033 D02 General UNII Test Procedures New Rules v01 to substitute conducted measurements in place of radiated measurements.

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Record the marker. Also measure any emissions in the restricted bands.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level

Page No: 33 of 76

from the device. Summing is performed in linear power units. The worst case output is recorded. 6. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance.

ահահո

- Also measure any emissions in the restricted bands
- 7. Capture graphs and record pertinent measurement data.

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r04 Peak: KDB 789033 Section 5, Average (Method AD): KDB 789033 Section 6

Conducted Spurious Emissions Test parameters					
Peak	Average				
RBW = 1 MHz	RBW = 1 MHz				
$VBW \ge 3 MHz$	$VBW \ge 3 MHz$				
Sweep = Auto	Sweep = Auto				
Detector = Peak	Detector = RMS				
Trace = Max Hold.	Power Averaging				

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
2	Conducted Testing: EUT + AC/DC Adapter	S02 and S03	N	

Tested By :	Date of testing:
Jose Aguirre	22-Sep-17 - 23-Sep-17
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 34 of 76

ոլովո **CISCO**

Keysight Spect	rum Analyzer - S	wept SA						
Center Fre	RF 50		0 GHz	SENSE:1	INT #Av	g Type: RMS	TRACE 1 2 3 4 5 6	Frequency
10 dB/div	Ref Offset 0	NFE 0.8 dB 0 dBm	PNO: Fast IFGain:High	#Atten: 0 dB	in Avg	(Hold: 129/129	cr4 40.000 GHz -63.903 dBm	Auto Tune
-30.0 -40.0								Center Freq 29.000000000 GHz
-60.0 -70.0 -80.0							4	Start Freq 18.000000000 GHz
-90.0 -100 -110								Stop Freq 40.00000000 GHz
Start 18.00 GHz #Res BW 1.0 MHz #VBW				W 3.0 MHz*	Y FUNCTION		Stop 40.00 GHz 5.67 ms (1001 pts)	CF Step 2.20000000 GHz Auto Man
1 N 1 2 N 1 3 N 1 4 N 1 6	+	10 11 40	5.180 GHz 0.360 GHz 5.540 GHz 0.000 GHz	dBm dBm dBm -63.903 dBm				Freq Offset 0 Hz
7 8 9 10								Scale Type
MSG						STATUS		

Conducted Spurs Average Upper, All Antennas

Conducted Spurs Peak Upper, All Antennas

Page No: 35 of 76

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	4	-62.1		-58.1	-41.50	16.6
	Non HT20, 6 to 54 Mbps	2	4	-64.8	-64.0	-57.4	-41.50	15.9
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-64.5	-63.9	-54.2	-41.50	12.7
0	HT/VHT20, M0 to M7	1	4	-64.6		-60.6	-41.50	19.1
18(HT/VHT20, M0 to M7		4	-64.3	-63.9	-57.1	-41.50	15.6
5	HT/VHT20, M8 to M15	2	4	-64.3	-63.9	-57.1	-41.50	15.6
	HT/VHT20 Beam Forming, M0 to M7		7	-64.4	-63.8	-54.1	-41.50	12.6
	HT/VHT20 Beam Forming, M8 to M15	2	4	-64.3	-63.9	-57.1	-41.50	15.6
	HT/VHT20 STBC, M0 to M7	2	4	-64.3	-63.9	-57.1	-41.50	15.6
	Non HT40, 6 to 54 Mbps	1	4	-64.3		-60.3	-41.50	18.8
	Non HT40, 6 to 54 Mbps	2	4	-64.3	-64.3	-57.3	-41.50	15.8
	HT/VHT40, M0 to M7	1	4	-64.6		-60.6	-41.50	19.1
5190	HT/VHT40, M0 to M7	2	4	-64.6	-64.4	-57.5	-41.50	16.0
	HT/VHT40, M8 to M15	2	4	-64.6	-64.4	-57.5	-41.50	16.0
	HT/VHT40 Beam Forming, M0 to M7	2	7	-64.4	-64.5	-54.4	-41.50	12.9
	HT/VHT40 Beam Forming, M8 to M15	2	4	-64.6	-64.4	-57.5	-41.50	16.0
	HT/VHT40 STBC, M0 to M7	2	4	-64.6	-64.4	-57.5	-41.50	16.0
	Non HT80, 6 to 54 Mbps	1	4	-63.4		-59.4	-42.25	17.2
	Non HT80, 6 to 54 Mbps	2	4	-63.2	-63.2	-56.2	-42.25	13.9
	VHT80, M0 to M9 1ss		4	-63.8		-59.8	-42.25	17.6
10	VHT80, M0 to M9 1ss		4	-63.6	-63.7	-56.6	-42.25	14.4
52	VHT80, M0 to M9 2ss	2	4	-63.6	-63.7	-56.6	-42.25	14.4
	VHT80 Beam Forming, M0 to M9 1ss	2	7	-79.4	-79.4	-69.4	-42.25	27.1
	VHT80 Beam Forming, M0 to M9 2ss	2	4	-63.6	-63.7	-56.6	-42.25	14.4
	VHT80 STBC, M0 to M9 1ss	2	4	-63.6	-63.7	-56.6	-42.25	14.4
	Non HT20, 6 to 54 Mbps	1	4	-69.8		-65.8	-41.50	24.3
5220	Non HT20, 6 to 54 Mbps	2	4	-69.8	-73.3	-64.2	-41.50	22.7
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-69.8	-73.3	-61.2	-41.50	19.7
	HT/VHT20, M0 to M7		4	-69.7		-65.7	-41.50	24.2
	HT/VHT20, M0 to M7	2	4	-69.7	-73.6	-64.2	-41.50	22.7
	HT/VHT20, M8 to M15	2	4	-69.7	-73.6	-64.2	-41.50	22.7
	HT/VHT20 Beam Forming, M0 to M7	2	7	-69.7	-73.6	-61.2	-41.50	19.7

Page No: 36 of 76
	HT/VHT20 Beam Forming, M8 to M15	2	4	-69.7	-73.6	-64.2	-41.50	22.7
	HT/VHT20 STBC, M0 to M7	2	4	-69.7	-73.6	-64.2	-41.50	22.7
	Non HT40, 6 to 54 Mbps	1	4	-72.1		-68.1	-41.50	26.6
	Non HT40, 6 to 54 Mbps	2	4	-72.1	-73.1	-65.6	-41.50	24.1
	HT/VHT40, M0 to M7	1	4	-69.7		-65.7	-41.50	24.2
30	HT/VHT40, M0 to M7	2	4	-69.7	-71.0	-63.3	-41.50	21.8
52	HT/VHT40, M8 to M15	2	4	-69.7	-71.0	-63.3	-41.50	21.8
	HT/VHT40 Beam Forming, M0 to M7	2	7	-69.7	-71.0	-60.3	-41.50	18.8
	HT/VHT40 Beam Forming, M8 to M15	2	4	-69.7	-71.0	-63.3	-41.50	21.8
	HT/VHT40 STBC, M0 to M7	2	4	-69.7	-71.0	-63.3	-41.50	21.8
	Non HT20, 6 to 54 Mbps	1	4	-70.6		-66.6	-41.50	25.1
	Non HT20, 6 to 54 Mbps	2	4	-70.6	-72.0	-64.2	-41.50	22.7
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-70.6	-72.0	-61.2	-41.50	19.7
	HT/VHT20, M0 to M7	1	4	-70.7		-66.7	-41.50	25.2
24(HT/VHT20, M0 to M7	2	4	-70.7	-71.2	-63.9	-41.50	22.4
LC)	HT/VHT20, M8 to M15	2	4	-70.7	-71.2	-63.9	-41.50	22.4
	HT/VHT20 Beam Forming, M0 to M7	2	7	-70.7	-71.2	-60.9	-41.50	19.4
	HT/VHT20 Beam Forming, M8 to M15	2	4	-70.7	-71.2	-63.9	-41.50	22.4
	HT/VHT20 STBC, M0 to M7	2	4	-70.7	-71.2	-63.9	-41.50	22.4

Page No: 37 of 76

Conducted Spurs Average, 5180 MHz, HT/VHT20 Beam Forming, M0 to M7

Antenna A

Antenna B

Page No: 38 of 76

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	4	-57.7		-53.7	-21.50	32.2
	Non HT20, 6 to 54 Mbps	2	4	-57.4	-58.0	-50.7	-21.50	29.2
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-57.9	-58.1	-48.0	-21.50	26.5
	HT/VHT20, M0 to M7	1	4	-57.8		-53.8	-21.50	32.3
18(HT/VHT20, M0 to M7	2	4	-57.8	-57.3	-50.5	-21.50	29.0
сл ГС	HT/VHT20, M8 to M15	2	4	-57.8	-57.3	-50.5	-21.50	29.0
	HT/VHT20 Beam Forming, M0 to M7	2	7	-58.1	-57.0	-47.5	-21.50	26.0
	HT/VHT20 Beam Forming, M8 to M15	2	4	-57.8	-57.3	-50.5	-21.50	29.0
	HT/VHT20 STBC, M0 to M7	2	4	-57.8	-57.3	-50.5	-21.50	29.0
			-					
	Non HT40, 6 to 54 Mbps	1	4	-58.1		-54.1	-21.50	32.6
	Non HT40, 6 to 54 Mbps	2	4	-52.0	-52.3	-45.1	-21.50	23.6
	HT/VHT40, M0 to M7	1	4	-52.3		-48.3	-21.50	26.8
06	HT/VHT40, M0 to M7	2	4	-52.3	-52.4	-45.3	-21.50	23.8
51	HT/VHT40, M8 to M15	2	4	-52.3	-52.4	-45.3	-21.50	23.8
	HT/VHT40 Beam Forming, M0 to M7	2	7	-52.2	-51.5	-41.8	-21.50	20.3
	HT/VHT40 Beam Forming, M8 to M15	2	4	-52.3	-52.4	-45.3	-21.50	23.8
	HT/VHT40 STBC, M0 to M7	2	4	-52.3	-52.4	-45.3	-21.50	23.8
	Non HT80, 6 to 54 Mbps	1	4	-51.7		-47.7	-22.25	25.5
	Non HT80, 6 to 54 Mbps	2	4	-52.5	-51.9	-45.2	-22.25	22.9
	VHT80, M0 to M9 1ss	1	4	-51.5		-47.5	-22.25	25.3
9	VHT80, M0 to M9 1ss	2	4	-51.9	-50.2	-44.0	-22.25	21.7
52	VHT80, M0 to M9 2ss	2	4	-51.9	-50.2	-44.0	-22.25	21.7
	VHT80 Beam Forming, M0 to M9 1ss	2	7	-52.8	-52.0	-42.4	-22.25	20.1
	VHT80 Beam Forming, M0 to M9 2ss	2	4	-51.9	-50.2	-44.0	-22.25	21.7
	VHT80 STBC, M0 to M9 1ss	2	4	-51.9	-50.2	-44.0	-22.25	21.7
			-					
	Non HT20, 6 to 54 Mbps	1	4	-49.8		-45.8	-21.50	24.3
	Non HT20, 6 to 54 Mbps	2	4	-49.8	-51.6	-43.6	-21.50	22.1
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-49.8	-51.6	-40.6	-21.50	19.1
22(HT/VHT20, M0 to M7	1	4	-50.8		-46.8	-21.50	25.3
2	HT/VHT20, M0 to M7	2	4	-50.8	-51.9	-44.3	-21.50	22.8
	HT/VHT20, M8 to M15	2	4	-50.8	-51.9	-44.3	-21.50	22.8
	HT/VHT20 Beam Forming, M0 to M7	2	7	-50.8	-51.9	-41.3	-21.50	19.8

Page No: 39 of 76

	HT/VHT20 Beam Forming, M8 to M15	2	4	-50.8	-51.9	-44.3	-21.50	22.8
	HT/VHT20 STBC, M0 to M7	2	4	-50.8	-51.9	-44.3	-21.50	22.8
	Non HT40, 6 to 54 Mbps	1	4	-52.3		-48.3	-21.50	26.8
	Non HT40, 6 to 54 Mbps	2	4	-52.3	-52.5	-45.4	-21.50	23.9
	HT/VHT40, M0 to M7	1	4	-49.9		-45.9	-21.50	24.4
30	HT/VHT40, M0 to M7	2	4	-49.9	-49.4	-42.6	-21.50	21.1
52	HT/VHT40, M8 to M15	2	4	-49.9	-49.4	-42.6	-21.50	21.1
	HT/VHT40 Beam Forming, M0 to M7	2	7	-49.9	-49.4	-39.6	-21.50	18.1
	HT/VHT40 Beam Forming, M8 to M15	2	4	-49.9	-49.4	-42.6	-21.50	21.1
	HT/VHT40 STBC, M0 to M7	2	4	-49.9	-49.4	-42.6	-21.50	21.1
	Non HT20, 6 to 54 Mbps	1	4	-48.9		-44.9	-21.50	23.4
	Non HT20, 6 to 54 Mbps	2	4	-48.9	-49.4	-42.1	-21.50	20.6
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-48.9	-49.4	-39.1	-21.50	17.6
	HT/VHT20, M0 to M7	1	4	-49.0		-45.0	-21.50	23.5
24(HT/VHT20, M0 to M7	2	4	-49.0	-49.1	-42.0	-21.50	20.5
LC)	HT/VHT20, M8 to M15	2	4	-49.0	-49.1	-42.0	-21.50	20.5
	HT/VHT20 Beam Forming, M0 to M7	2	7	-49.0	-49.1	-39.0	-21.50	17.5
	HT/VHT20 Beam Forming, M8 to M15	2	4	-49.0	-49.1	-42.0	-21.50	20.5
	HT/VHT20 STBC, M0 to M7	2	4	-49.0	-49.1	-42.0	-21.50	20.5

Page No: 40 of 76

Conducted Spurs Peak, 5240 MHz, HT/VHT20 Beam Forming, M0 to M7

Antenna A

Antenna B

Page No: 41 of 76

A.6 Conducted Band Edge

Conducted Band Edge Test Requirement

15.407(b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.
(7) The provisions of §15.205 apply to intentional radiators operating under this section.

(8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Use formula below to substitute conducted measurements in place of radiated measurements

E[dBµV/m] = EIRP[dBm] - 20 log(d[meters]) + 104.77, where E = field strength and d = 3 meter

1) Average Plot, Limit= -41.25 dBm eirp

2) Peak plot, Limit = -21.25 dBm eirp

KDB 789033 D02 General UNII Test Procedures New Rules v01r04

2. Unwanted Emissions that fall Outside of the Restricted Bands

c) At frequencies above 1000 MHz, use the procedure for maximum emissions described in section II.G.5., "Procedure for Unwanted Maximum Unwanted Emissions Measurements Above 1000 MHz."

§ 15.407(b)(1)-(3) specifies that emissions outside of the respective U-NII bands are subject to a maximum emission limit of -27 dBm/MHz. § 15.407(b)(4) provides two requirement options for devices that operate in the 5.725 – 5.85 GHz band. If the option specified in § 15.407(b)(4)(ii) is exercised, then the procedures specified in Clause 11.11 of ANSI C63.10-2013 and/or in Section 11.0 of KDB Publication 558074 shall be utilized. In general, an out-of-band emission that complies with both the peak and average power limits of § 15.209 is not required to also satisfy the -27 dBm/MHz or -17 dBm/MHz maximum emission limit.

Conducted Band Edge Test Procedure

Ref. 789033 D02 General UNII Test Procedures New Rules v01r04 ANSI C63.10: 2013

Conducted Spurious Emissions

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode. Use the procedures in KDB 789033 D02 General UNII Test Procedures New Rules v01 to substitute conducted measurements in place of radiated measurements.

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Record the marker. Also measure any emissions in the restricted bands.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured

Page No: 42 of 76

results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded. 6. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands

.......

7. Capture graphs and record pertinent measurement data.

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r04 Peak: KDB 789033 Section 5, Average (Method AD): KDB 789033 Section 6

Conducted Spurious Emissions						
Test parameters						
Peak	Average					
RBW = 1 MHz	RBW = 1 MHz					
$VBW \ge 3 MHz$	$VBW \ge 3 MHz$					
Sweep = Auto	Sweep = Auto					
Detector = Peak	Detector = RMS					
Trace = Max Hold.	Power Averaging					

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
2	Conducted testing: EUT + AC/DC Adapter	S02 and S03	Ŋ	

Tested By :	Date of testing:
Jose Aguirre	22-Sep-17 - 23-Sep-17
Test Result · PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 43 of 76

Conducted Band Edge Emissions Data Table – Average

Frequency (MHz)	Mode	Tx Paths	Duty Cycle	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Total Conducted Band Edge EIRP - corrected for duty cycle (dBm)	Limit (dBm)	Margin (dB)
5180	Non HT20, 6 to 54 Mbps	1	96.5	4	-45.6		-41.4	-41.25	0.2
	Non HT20, 6 to 54 Mbps	2	96.5	4	-48.7	-48.9	-41.6	-41.25	0.4
	Non HT20 Beam Forming, 6 to 54 Mbps	2	96.5	7	-54.3	-54.2	-44.0	-41.25	2.8
	HT/VHT20, M0 to M7	1	98.3	4	-48		-43.9	-41.25	2.7
	HT/VHT20, M0 to M7	2	98.3	4	-50.6	-50.4	-43.4	-41.25	2.2
	HT/VHT20, M8 to M15	2	96.7	4	-50.6	-50.4	-43.4	-41.25	2.1
	HT/VHT20 Beam Forming, M0 to M7	2	98.3	7	-53.9	-54	-43.8	-41.25	2.6
	HT/VHT20 Beam Forming, M8 to M15	2	96.7	4	-50.6	-50.4	-43.4	-41.25	2.1
	HT/VHT20 STBC, M0 to M7	2	98.3	4	-50.6	-50.4	-43.4	-41.25	2.2
							_		
5190	Non HT40, 6 to 54 Mbps	1	96.3	4	-46.7		-42.5	-41.25	1.3
	Non HT40, 6 to 54 Mbps	2	96.3	4	-49.7	-49.5	-42.4	-41.25	1.2
	HT/VHT40, M0 to M7	1	96.4	4	-49.3		-45.1	-41.25	3.9
	HT/VHT40, M0 to M7	2	96.4	4	-49.3	-48.2	-41.5	-41.25	0.3
	HT/VHT40, M8 to M15	2	97.4	4	-49.3	-48.2	-41.6	-41.25	0.3
	HT/VHT40 Beam Forming, M0 to M7	2	96.4	7	-53.2	-51.2	-41.9	-41.25	0.7
	HT/VHT40 Beam Forming, M8 to M15	2	97.4	4	-49.3	-48.2	-41.6	-41.25	0.3
	HT/VHT40 STBC, M0 to M7	2	96.4	4	-49.3	-48.2	-41.5	-41.25	0.3
5210	Non HT80, 6 to 54 Mbps	1	96.2	4	-48.6		-44.4	-41.25	3.2
	Non HT80, 6 to 54 Mbps	2	96.2	4	-50.4	-49	-42.4	-41.25	1.2
	VHT80, M0 to M9 1ss	1	82.7	4	-49.3		-44.5	-41.25	3.2
	VHT80, M0 to M9 1ss	2	82.7	4	-51.2	-48.7	-42.0	-41.25	0.7
	VHT80, M0 to M9 2ss	2	84.7	4	-51.2	-48.7	-42.1	-41.25	0.8
	VHT80 Beam Forming, M0 to M9 1ss	2	82.7	7	-54.6	-52.7	-42.7	-41.25	1.4
	VHT80 Beam Forming, M0 to M9 2ss	2	82.7	4	-51.2	-48.7	-42.0	-41.25	0.7
	VHT80 STBC, M0 to M9 1ss	2	82.7	4	-51.2	-48.7	-42.0	-41.25	0.7

Conducted Band Edge Emissions Data Table – Peak

Page No: 44 of 76

Frequency (MHz)	Mode	Tx Paths	Duty Cycle	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Total Conducted Band Edge EIRP - corrected for duty cycle (dBm)	Limit (dBm)	Margin (dB)
5180	Non HT20, 6 to 54 Mbps	1	96.5	4	-37.5		-33.3	-21.25	12.1
	Non HT20, 6 to 54 Mbps	2	96.5	4	-34.1	-39.5	-28.8	-21.25	7.6
	Non HT20 Beam Forming, 6 to 54 Mbps	2	96.5	7	-41.7	-46.5	-33.3	-21.25	12.1
	HT/VHT20, M0 to M7	1	98.3	4	-37.6		-33.5	-21.25	12.3
	HT/VHT20, M0 to M7	2	98.3	4	-38.6	-43.5	-33.3	-21.25	12.1
	HT/VHT20, M8 to M15	2	96.7	4	-38.6	-43.5	-33.2	-21.25	12.0
	HT/VHT20 Beam Forming, M0 to M7	2	98.3	7	-47.3	-45.2	-36.0	-21.25	14.8
	HT/VHT20 Beam Forming, M8 to M15	2	96.7	4	-38.6	-43.5	-33.2	-21.25	12.0
	HT/VHT20 STBC, M0 to M7	2	98.3	4	-38.6	-43.5	-33.3	-21.25	12.1
5190	Non HT40, 6 to 54 Mbps	1	96.3	4	-39.9		-35.7	-21.25	14.5
	Non HT40, 6 to 54 Mbps	2	96.3	4	-40	-39.9	-32.8	-21.25	11.5
	HT/VHT40, M0 to M7	1	96.4	4	-42		-37.8	-21.25	16.6
	HT/VHT40, M0 to M7	2	96.4	4	-42	-41.4	-34.5	-21.25	13.3
	HT/VHT40, M8 to M15	2	97.4	4	-42	-41.4	-34.6	-21.25	13.3
	HT/VHT40 Beam Forming, M0 to M7	2	96.4	7	-47.1	-41.1	-33.0	-21.25	11.7
	HT/VHT40 Beam Forming, M8 to M15	2	97.4	4	-42	-41.4	-34.6	-21.25	13.3
	HT/VHT40 STBC, M0 to M7	2	96.4	4	-42	-41.4	-34.5	-21.25	13.3
		1							
5210	Non HT80, 6 to 54 Mbps	1	96.2	4	-45.5		-41.3	-21.25	20.1
	Non HT80, 6 to 54 Mbps	2	96.2	4	-45.7	-41.5	-35.9	-21.25	14.7
	VHT80, M0 to M9 1ss	1	82.7	4	-41.9		-37.1	-21.25	15.8
	VHT80, M0 to M9 1ss	2	82.7	4	-44.6	-43.3	-36.1	-21.25	14.8
	VHT80, M0 to M9 2ss	2	84.7	4	-44.6	-43.3	-36.2	-21.25	14.9
	VHT80 Beam Forming, M0 to M9 1ss	2	82.7	7	-47.6	-46.5	-36.2	-21.25	14.9
	VHT80 Beam Forming, M0 to M9 2ss	2	82.7	4	-44.6	-43.3	-36.1	-21.25	14.8
	VHT80 STBC, M0 to M9 1ss	2	82.7	4	-44.6	-43.3	-36.1	-21.25	14.8

Conducted Band Edge Peak, 5180 MHz, 6Mbps, Non HT20

Page No: 45 of 76

Character Server Server In	Printer				Theory is a second seco	Press	ment in many	Calle Sta
Center Freq # \$10000000 CHrs	Trip Freedom	Ang Type Ling-Per	1100	in Pressoning	Center Freq 4.840000000 GHz	ter T Ing Franken	Ang Type Log-Pur Puri	Fischerry
Parter Ref 9.00 dBm		MKG	4.564 fl GHz 51.64 dBm	Auto Ture	ner 0.00 dBm		Mikr2 5.015 -51.0	Auto Turre S citilite
				Center Freq 484000000 Gro				Center Freq a patronom Grit
-	جروحان میرید	مورد شود سهد	mont	Start Freq 4 second Gra	en Destante (1000 Martine Dans) (see	-		Start Freq
				Shap Freq 1.10000000 Gro	41 42 41			Stop Freq 1. (possesso Sire
Start 4,5000 GHz Hites DW 1.0 MHz #VBs Introduction State	N 3.0 MHz	Sweep 1.	160 5, 1800 CH2 160 mis (601 pCs)	CF Bitsp as sociole serve dalla Ven	Start 4.5005 GH2 affes BW 1.8 MH2 mo east m. b	AVEW 3.0 MHz	Stop 5.11 Sweep 1,160 ms (100 GHZ CF Blap 101 FLS 101 FLS 101 FLS
	14			Frei Offset 3 Hz				Freq Offsat GHz
2 (1 m m m m m m m m m m m m m m m m m m				Scale Type				Bcate Type
		(Arrest)			-		- general -	

Conducted Band Edge Average, 5180 MHz, 6Mbps, nonHT20

Contraction in the			type- control last interest		1 14 100 10
Center Freq 4 84000	0000 Gills	The Printer	Alog Type RM3		Frequency
the first Ref 0.00 dt	and a second		Micro	Auto Turie	
					Certier Freq 4.84000000 DHz
41 41				¹⁴ و	Start Freq 430000000 Dru
					Bing Pres
Utart 4.5000 GHr RRes BW 1.0 MHz	NB.	W 100 Hz	tweep	Stop 5.1890 GHz 5.302 s (1001 pts)	CF Birpi M SCOOLS Mile
	131112	2322	actos Alectos dos	Pactorial -	FreqOffset 3 Hz
			Balte		Scale Type Ling Lin

Page No: 46 of 76

Appendix B: Emission Test Results

Testing Laboratory: Cisco Systems, Inc., 125 West Tasman Drive, San Jose, CA 95134, USA

cisco

Radiated Emission Setup Diagram-Below 1G

Page No: 47 of 76

B.1 Radiated Spurious Emissions

15.407(b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

(5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.

(7) The provisions of §15.205 apply to intentional radiators operating under this section.

(8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Use formula below to substitute conducted measurements in place of radiated measurements

 $E[dB\mu V/m] = EIRP[dBm] - 20 \log(d[meters]) + 104.77$, where E = field strength and d = 3 meter

1) Average Plot, Limit= -41.25 dBm eirp 2) Peak plot, Limit = -21.25 dBm eirp

Ref. ANSI C63.10: 2013 Section 12.7.6 (Peak), Section 12.7.7.2 (Method AD), and Section 6.6

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Radiated Spurious Emissions							
Test parameters							
Peak	Average						
Span = 1-18GHz /18GHz-26.5GHz/26.5GHz-40GHz	Span = 1-18GHz /18GHz-26.5GHz/26.5GHz-40GHz						
RBW = 1 MHz	RBW = 1 MHz						
$VBW \ge 3 MHz$	$VBW \ge 3 MHz$						
Sweep = Auto couple	Sweep = Auto couple						
Detector = Peak	Detector = RMS						
Trace = Max Hold.	Power Averaging						

Terminate the access Point RF ports with 50 ohm loads.

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

Save 2 plots:1) Average Plot (Vertical and Horizontal), Limit= 54dBuV/m @3m2) Peak plot (Vertical and Horizontal), Limit = 74dBuV/m @3m

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

This report represents the worst case data for all supported operating modes and antennas. There were no spurious emissions in the range 1-18GHz. Please note, the emission at 1.377GHz was investigated and was not caused by the radio. The emission was present when the radio was not transmitting. There were no significant emissions above 18GHz.

Page No: 48 of 76

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
3	Radiated Testing: EUT + AC/DC Adapter	S02 and S03	N	
4	Radiated Testing: EUT + AC/DC Adapter	S02 and S04	N	

Tested By :

Johanna Knudsen

Test Result : PASS

Test Equipment

See Appendix C for list of test equipment

Date of testing:

July 26, 2017 - July 26, 2017

Page No: 49 of 76

B.1.A Transmitter Radiated Spurious Emissions-Average

This report represents the worst case data for all supported operating modes and antennas. There were no spurious emissions in the range 1-18GHz. Please note, the emission at 1.377GHz was investigated and was not caused by the radio. The emission was present when the radio was not transmitting.

	Λ	Akr1 5,185 GHz	NextPeak
1		94. 14 OBUV	
			Next Pk Righ
		1950	Next Pk Lef
		~~~~	Marker Dela
#VBW 3.0 MHz*	Sweep	Stop 10.000 GHz 23.6 ms (1601 pts)	MkrCF
у GHz 94.14 dBuV	UNCTION UNCTION WIDTH	FUNCTION VALUE	
GHz 63.64 GBuV GHz 50.62 dBuV GHz 45.77 dBuV			MkrRef Lv
			Mon tef
	#VBW 3.0 MHz* GHz 94.14 (88)/ GHz 65.45 (88)/ GHz 55.62 (88)/ GHz 45.77 (88)/	#VBW 3.0 MHz*     Sweep       Y     Ruschen     Ruschen       GHz     94.14 eBuV     Ruschen     Ruschen       GHz     95.05 eBuV     GHz     63.64 eBuV       GHz     45.77 eBuV     GHz     63.64 eBuV	Stop 10.000 GHz       #VBW 3.0 MHz*     Sweep 23.6 ms (1601 pts)       Y     Punction     Punction within       GHz     94.14 dBuV     Punction     Punction within       GHz     94.14 dBuV     Punction within     Punction within

#### B.1.A.1 Radiated Transmitter Spurs, 5180 MHz, 6 to 54 Mbps, Average (1-18GHz)



Page No: 50 of 76

ker 1 5.20187500000	PNO: Fast C	Trig: Free Run #Atten: 12 dB	#Avg Type: RMS	THE APPEND	Peak Search
Sidiv Ref 108.99 dBµ	/			Mkr1 5.202 GHz 94.19 dBµV	NextPeal
		1			Next Pk Rigi
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				600.45	Q Next Pk Let
					Marker Delt
t 1.000 GHz s BW (CISPR) 1 MHz	#VBW	/ 3.0 MHz*	Sweep	Stop 10.000 GHz 23.6 ms (1601 pts)	MkrC
400E THC SC.) 38	5.202 GHz 1.377 GHz 1.602 GHz 1.883 GHz	94.19 dBµV 62.89 dBµV 50.69 dBµV 44.64 dBµV	INCTON FUNCTION WIDTH	FUNCTION WALLE	MkrRefL
					Mar 1 of
			Containe		_

#### B.1.A.2 Radiated Transmitter Spurs, 5200 MHz, 6 to 54 Mbps, Average (1-18GHz)

cisco

11:25:37 4M 3.126, 201 Mess Setup May Type: RMS e/Hold Number 100 Trig: Free Run #Atten: 12 dB PNO: Fast 😱 Average/Hold Mkr1 16.350 GHz 39.67 dBµV 100 Ref 100.00 dBµV Average Typ Pwr (R Limits •1  $\Lambda^2$ 3 N dB Points 3.01 dB On Stop 18.000 GHz Start 10.000 GHz PhNoise Opt #Res BW (CISPR) 1 MHz #VBW 3.0 MHz* Sweep 21.0 ms (1601 pts) GHz 36.90 dBu 37.62 dBu ADC Dithe GH Mon 1 of 2 Contan.

Page No: 51 of 76

rker 4 5 23562500000	n cHz	Same in	204	a Type: RMS	12:17:30 PM 3.426, 201 TRACE 0 PM 3.426	Peak Search
rker 15.23502500000	PNO: Fast C	Trig: Free Run #Atten: 12 dB		a riper runs	CET APPPP	
dBldly Ref 108.99 dBu	v			٨	1kr1 5.236 GHz 92.93 dBµV	NextPeak
		•1				Next Pk Righ
					64.05.000	Next Pk Left
				********		Marker Delta
art 1.000 GHz es BW (CISPR) 1 MHz	#VB\	N 3.0 MHz*		Sweep	Stop 10.000 GHz 23.6 ms (1601 pts	MkrCF
HODE THE SEL X	5.235 GHz 1.377 GHz 1.602 GHz 1.883 GHz	92.93 dBµV 63.16 dBµV 50.30 dBµV 45.50 dBµV	FUNCTION	FUNCTION WIDTH	PUNCTION VALUE	Mkr→RefLv
						More 1 of 2

#### B.1.A.3 Radiated Transmitter Spurs, 5240 MHz, 6 to 54 Mbps, Average (1-18GHz)

սիսիս **CISCO** 

Averag	e/Hold Nu	mber 100	NO: Fast G	Trig: Free Run #Atten: 12 dB	#Av	g Type: RMS	11:27:39 AM 3.12 TRACE TYPE DET	6, 2017	Trace/Det
10 dBidiy	Ref 10	0.00 dBµV				M	kr3 15.436 ( 37.21 di	GHz BµV	select trace
00.0 00.0									Clear Write
100 (2.0 (2.0 410	2 ²					³	_1		C Trace Average
10.0 10.0									Max Hold
Start 10 #Res Bi	0.000 GHz W (CISPR)	1 MHz ×	#VBV	V 3.0 MHz"	FUNCTION	Sweep Runction worth	Stop 18.000 21.0 ms (1601	GHz pts)	Min Hold
1 2 3 4 5 6	1	16.36 10.36 15.43	6 GHz 10 GHz 16 GHz	39.69 dBuV 36.44 dBuV 37.21 dBuV					View/Blank Trace On
7 8 9 10 11 12									More 1 of 3
150						Co STATU	0	_	

Page No: 52 of 76



There were no significant emissions above 18GHz.

B.1.A.5 Radiated Transmitter Spurs, All rate, All modes, Average (18GHz – 26.5GHz) Horizontal & Vertical



#### B.1.A.6 Radiated Transmitter Spurs, All rate, All modes, Average (26.5GHz – 40GHz) Horizontal & Vertical



Page No: 53 of 76

#### **B.1.P Transmitter Radiated Spurious Emissions-Peak**

This report represents the worst case data for all supported operating modes and antennas. There were no spurious emissions in the range 1-18GHz. Please note, the emission at 1.377GHz was investigated and was not caused by the radio. The emission was present when the radio was not transmitting.

arker 1 5.1/3/500000	PNO: Fast C IEGaincl.nw	Trig: Free Run	Avg	I Type: Voltage	THE NO	
dEldiv Ref 108.99 dB	υV			4	101.83 dBµV	Next Peak
						Next Pk Right
¹⁰ 0 ²					74.00 #64	0
m	*****	anini liiten			والمحاوية والمحاولة المحاولة	Next Pk Left
10 10						Marker Delta
tart 1.000 GHz Res BW (CISPR) 1 MHz	#VB	W 3.0 MHz		Sweep	Stop 10.000 GHz 18.2 ms (1601 pts)	MkrCF
M HODE THE SQL 3	5.174 GHz 1.377 GHz 1.602 GHz	V 101.83 dBy/V 72.46 dBy/V 58.60 dBy/V	RUNCTION	RUNCTION WIDTH:	PUNCTION VALUE	Mkr→RefLvi
5789 9						More

#### B.1.P.1 Radiated Transmitter Spurs, 5180 MHz, 6 to 54 Mbps, Peak (1-18GHz)



Page No: 54 of 76

ker 1 5.20187	5000000 GHz PNO: Fast	Trig: Free Run	Avg Type: Voltage	TRACE DE CAN	Peak Search
_	#GainLow	#Atten: 12 dB		kr1 5 202 GHz	NextP
Bidiv Ref 108	.99 dBµV			101.21 dBµV	0
	المحدد المتقلق بلا	1			and the second
					Next Pk R
A ²				2100.000	
1,3					9
and					Next Pk
	an in a shirt water a shirt	and the second designed and th	and a second sec	manan	
					Marker
t 1.000 GHz				Stop 10.000 GHz	
s BW (CISPR)	I MHZ #VBW	/ 3.0 MHz	Sweep	8.2 ms (1601 pts)	Mkr-
MODE THC SCL	× 5.202 GHz	101.21 dBuV	NETION FUNCTION WIDTH	FUNCTION VALUE	
NIC	1.377 GHz 1.602 GHz	72.13 dBuV 58.51 dBuV			
	1.0004.00114				Mkr-Re
					-
					1
			Costanya		
d Spectrum Analyzer	EMSoft Vasuna: ENi Emission	Software	The sub-sub-sub-		
ker 1 16 5350	00000000 GHz	Server avri	Avg Type: Voltage	12:50:50 PM 3420, 2017	Peak Search
Vel 1 10,3330	DMO: East C	Trig: Free Run		TYPE Management	
Ker 1 10,3330	IFGaintLow	#Atten: 12 dB		DET	
Ker 1 10.5550	1FGain:Low	#Atten: 12 dB	Mk	r1 16.535 GHz	NextP
Bidly Ref 100	FGain:Low	#Atten: 12 dB	Mk	r1 16.535 GHz 46.91 dBµV	NextP
Bidly Ref 100	IFGaincLow	#Atten: 12 dB	Mk	r1 16.535 GHz 46.91 dBµV	NextP
Bidly Ref 100	iFGaintLow	#Atten: 12 dB	Mk	r1 16.535 GHz 46.91 dBµV	Next P
Bidly Ref 100	ifGancLaw	#Atten: 12 dB	Mk	r1 16.535 GHz 46.91 dBµV	Next P
Bidly Ref 100	ifGaincLow	#Atten: 12 dB	Mk	ст 16.535 GHz 46.91 dBµV	Next P Next Pk R
Bidly Ref 100	ifGaincLow	#Atten: 12 dB	Mk ⊘³	ti 16.535 GHz 46.91 dBµV	Next Pk R

#### B.1.P.2 Radiated Transmitter Spurs, 5200 MHz, 6 to 54 Mbps, Peak (1-18GHz)

IFGain:Low #Atten: 12 dB		DetPREPR	
	М	kr1 16.535 GHz 46.91 dBµV	NextPea
		7105-055	Next Pk Rig
an an an an article and		1 ¹	Next Pk Le
			Marker Del
#VBW 3.0 MHz	Sweep	Stop 18.000 GHz 20.1 ms (1601 pts)	MkrC
7	FUNCTION FUNCTION WEITH	FUNCTION VALUE	
535 GHz 45.91 dBuV 350 GHz 43,53 dBuV 436 GHz 44.05 dBuV			Mkr→RefL
			Mor
654	<b>#VBW 3.0 MHz</b> <b>#VBW 3.0 MHz</b> 35 GHz 45.91 dBuV 60 GHz 43.53 dBuV 36 GHz 44.05 dBuV	M #VBW 3.0 MHz Sweep #VBW 3.0 MHz Sweep 35 GHz 45.91 dBuV 60 GHz 43.53 dBuV 38 GHz 44.05 dBuV	Mkr1 16.535 GHz 46.91 dBµV       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       80000       710000       80000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       710000       7100000       710000

Page No: 55 of 76

Peak Search	12:04:46 PM 3.426, 2017 TRACE CONTINUES TYPE MULTINUES (25 P P P P P	Type: Voltage	Av	Trig: Free Run #Atten: 12 dB	D GHz PN0: Fast C	62500000	1 5.235	rker
NextPeak	kr1 5.236 GHz 101.08 dBµV	M			v	08.99 dBµ	Ref 1	iB/di
Next Pk Right				1				
D	NICH						0 ²	
Next Pk Left					mana	-	Line	~
Marker Delta								
MkrCF	Stop 10.000 GHz 8.2 ms (1601 pts)	Sweep 1		V 3.0 MHz	#VB	) 1 MHz	000 GHz W (CISPR	rt 1. Is Bi
	FUNCTION VALUE	FUNCTION WIDTH	FUNCTION	101.08 dBuV	5.236 GHz	X	TRC SQ.	HODE
Mkr-Ref Lv				71.84 dBµV 58.15 dBµV	1.377 GHz 1.602 GHz		1 :	NN
Mon								
1 of 2								
		Costatus.						_

#### B.1.P.3 Radiated Transmitter Spurs, 5240 MHz, 6 to 54 Mbps, Peak (1-18GHz)

cisco

Marker 1 16.535000000	000 GHz PNO: Fast C IFGainLow	Trig: Free Run #Atten: 12 dB	Avs	Type: Voltage	12:57:27 PM 3426, 2017 TRACE 12:57:27 TYPE Det 12:57:27 PM 3426, 2017	Trace/Det
10 dB/dly Ref 100.00 dB	μV			MI	45.67 dBµV	1
36.0 7010					1436.4942	Clear Write
			atomonada.	2 ³	• ¹	C Trace Averag
20.0 20.0 10.0						Max Hol
Start 10.000 GHz #Res BW (CISPR) 1 MHz	#VB	N 3.0 MHz		Sweep :	Stop 18.000 GHz 20.1 ms (1601 pts)	Min Hol
MUR MODE THE SQ. 1 N 1 F 2 N 1 F 3 N 1 F 4 5 6	16.535 GHz 10.350 GHz 15.436 GHz	45.67 dBuV 43.42 dBuV 45.95 dBuV	FUNCTION	FUNCTION WOTH	RINCTION VALUE	View/Blank Trace On
7 9 10						Mor 1 of

Page No: 56 of 76



There were no significant emissions above 18GHz.





B.1.P.6 Radiated Transmitter Spurs, All rate, All modes, Peak (26.5-40GHz) Vertical & Horizontal



Page No: 57 of 76



Page No: 58 of 76

#### B.2 Radiated Emissions 30MHz to 1GHz

#### 15.205 / 15.209

(7) The provisions of §15.205 apply to intentional radiators operating under this section.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.

Ref. ANSI C63.10: 2013 section 12.7 sec 6.5

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span:	30MHz – 1GHz
Reference Level:	80 dBuV
Attenuation:	10 dB
Sweep Time:	Coupled
Resolution Bandwidth:	100kHz
Video Bandwidth:	300kHz
Detector:	Quasi-Peak

Terminate the access Point RF ports with 50 ohm loads.

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

This report represents the worst case data for all supported operating modes and antennas.

Samples, Sy	stems, and Modes			
System	Decorintion	Samples	System under	Support
Number	Description	Samples	test	equipment
Δ	Radiated Testing: EUT	S02 and S04	2	
-	+ AC/DC Adapter		¥	

Tested By :	Date of testing:
Johanna Knudsen	April 10 th , 2018- April 11 th , 2018
Test Result : PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 59 of 76



#### **Transmitter Radiated Emission**

#### Formal Data

No	Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1	280.072	25.7	1.4	3.9	31.0	Quasi Max	Н	109	328	46.0	-15.1	Pass	
2	286.363	16.5	1.4	3.8	21.8	Quasi Max	V	107	255	46.0	-24.2	Pass	
3	293.225	22.9	1.4	3.8	28.2	Quasi Max	Н	112	334	46.0	-17.9	Pass	
4	374.993	25.4	1.6	5.6	32.6	Quasi Max	Н	106	112	46.0	-13.4	Pass	
5	749.989	8.9	2.4	11.3	22.5	Quasi Max	Н	120	330	46.0	-23.5	Pass	
6	874.993	12.9	2.5	12.5	27.9	Quasi Max	Н	109	305	46.0	-18.1	Pass	

cisco

Page No: 60 of 76



#### **Receiver Radiated Emission**

F	or	m	al	D	a	a	

No	Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV∕m	Margin dB	Pass /Fail	Comments
1	280.436	25.0	1.4	3.9	30.2	Quasi Max	Н	102	142	46.0	-15.8	Pass	
2	375.008	23.7	1.6	5.6	30.9	Quasi Max	Н	102	112	46.0	-15.1	Pass	
3	293.386	21.9	1.4	3.8	27.1	Quasi Max	Н	102	333	46.0	-18.9	Pass	
4	875.105	-1.6	2.5	12.5	13.4	Quasi Max	Н	102	297	46.0	-32.6	Pass	
5	302.719	17.8	1.4	3.9	23.2	Quasi Max	Н	102	339	46.0	-22.8	Pass	
6	937.490	4.4	2.6	13.2	20.2	Quasi Max	Н	102	359	46.0	-25.8	Pass	

cisco

Page No: 61 of 76

#### FCC 15.207 (a)

Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.

Measurement Procedure Accordance with ANSI C64.10:2013 section 6.2

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span:	150 KHz – 30 MHz
Attenuation:	10 dB
Sweep Time:	Coupled
Resolution Bandwidth:	9 KHz
Video Bandwidth:	30 KHz
Detector:	Quasi-Peak / Average

#### Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
5	AC Power Conducted Emissions: EUT + AC/DC Adapter	S05 and S06	N	

#### Tested By :

Marie Higa

#### Date of testing:

April 19, 2017 - April 19, 2017

#### **Test Result : PASS**

#### Test Equipment

See Appendix C for list of test equipment

Environmental Conditions:					
Temperature: (59 to 95)F	70.8 deg F				
Humidity: (10 to 75)%:	43.3%				
Comments:	No further comments				

#### **Graphical Test Results**

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Page No: 62 of 76



սիսիս

#### **Test Results Table**

No	Frequency	Raw	Cable	Factors	Level	Measurement	Line	Limit	Margin	Pass /Fail	Comments
	MHz	dBuV	Loss	dB	dBuV	Туре		dBuV	dB		
1	1.013	18.5	19.9	.0	38.4	Average	Live	46.0	-7.6	Pass	
2	.743	17.3	19.9	.0	37.3	Average	Neutral	46.0	-8.7	Pass	
3	1.284	13.9	19.9	.0	33.8	Average	Live	46.0	-12.2	Pass	
4	.539	13.6	19.9	.0	33.6	Average	Live	46.0	-12.4	Pass	
5	.743	22.9	19.9	.0	42.8	Quasi Peak	Neutral	56.0	-13.2	Pass	
6	1.434	12.3	19.9	.0	32.3	Average	Neutral	46.0	-13.7	Pass	
7	1.013	22.0	19.9	.0	42.0	Quasi Peak	Live	56.0	-14.0	Pass	
8	.539	21.4	19.9	.0	41.4	Quasi Peak	Live	56.0	-14.6	Pass	
9	1.284	17.7	19.9	.0	37.7	Quasi Peak	Live	56.0	-18.4	Pass	
10	1.434	17.4	19.9	.0	37.3	Quasi Peak	Neutral	56.0	-18.7	Pass	
11	2.652	15.1	20.0	.1	35.2	Quasi Peak	Live	56.0	-20.8	Pass	
12	3.363	15.0	20.0	.1	35.1	Quasi Peak	Live	56.0	-20.9	Pass	
13	3.363	4.3	20.0	.1	24.3	Average	Live	46.0	-21.7	Pass	
14	2.114	3.4	20.0	.1	23.4	Average	Neutral	46.0	-22.6	Pass	
15	.323	6.4	20.3	.1	26.7	Average	Neutral	49.6	-22.9	Pass	
16	2.652	2.9	20.0	.1	22.9	Average	Live	46.0	-23.1	Pass	
17	2.114	11.6	20.0	.1	31.6	Quasi Peak	Neutral	56.0	-24.4	Pass	
18	.323	13.9	20.3	.1	34.3	Quasi Peak	Neutral	59.6	-25.4	Pass	
19	.256	9.0	20.5	.1	29.6	Quasi Peak	Neutral	61.6	-32.0	Pass	
20	.163	2.2	21.0	.1	23.2	Average	Live	55.3	-32.1	Pass	
21	.163	12.1	21.0	.1	33.2	Quasi Peak	Live	65.3	-32.2	Pass	
22	.256	-4.0	20.5	.1	16.6	Average	Neutral	51.6	-34.9	Pass	

Page No: 63 of 76

Raw

dBuV

-7.4

2.0

20.4

.2

22.7

Quasi Peak Neutral

20.118

20.118

No

23

24

Frequency

MHz

	Cable	Factors	Level	Measurement	Line	Limit	Margin	Pass /Fail	Comments	]
	Loss	dB	dBuV	Туре		dBuV	dB			
ļ	20.4	.2	13.2	Average	Neutral	50.0	-36.8	Pass		

60.0

-37.3

Pass

tot to

Page No: 64 of 76



#### Appendix C: List of Test Equipment Used to perform the test

### Equipment used for Conducted Tests (99%/26dB Bandwidth, Maximum Conducted Output Power, PSD, Conducted Spurious Emissions, and Conducted Band Edge)

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due
55095	NATIONAL INSTRUMENTS / PXI-1042	CHASSIS, PXI	Cal not Req'd	Cal not Req'd
56090	NATIONAL INSTRUMENTS / PXI-2796	40 GHz Dual 6x1 Multiplexer (SP6T)	Cal not Req'd	Cal not Req'd
54346	Keysight (Agilent/HP) / N5182B	MXG X-Series RF Vector Signal Generator	27-Mar-17	27-Mar-18
53614	Keysight (Agilent/HP) / N9030A-550	PXA Signal Analyzer, 3Hz to 50GHz	3-Apr-17	3-Apr-18
54658	DITOM / D3C2060	Splitter	14 Nov 2016	14 Nov 2017
55558	MINI-CIRCUITS / ZFSC-2-10G	SPLITTER, 2-10GHZ	06 Jul 2017	06 Jul 2018
55870	Dynawave / SMSM-A2PH-024	SMA Cable, 24 IN	7-Oct-16	7-Oct-17
55868	Dynawave / SMSM-A2PH-024	SMA Cable, 24 IN	7-Oct-16	7-Oct-17
55858	Dynawave / SMSM-A2PH-012	SMA Cable, 12 IN	17-Aug-17	17-Aug-18
54606	Micro-Tronics / BRC50705-02	Notch Filter	17-Aug-17	17-Aug-18
55849	Dynawave / SMSM-A2PH-012	SMA Cable, 12 IN	17-Aug-17	17-Aug-18
55843	Dynawave / SMSM-A2PH-012	SMA Cable, 12 IN	17-Aug-17	17-Aug-18
49445	Micro-Tronics / BRC50704-02	Notch Filter	17-Aug-17	17-Aug-18
55844	Dynawave / SMSM-A2PH-012	SMA Cable, 12 IN	17-Aug-17	17-Aug-18

Page No: 65 of 76

55856	Dynawave / SMSM-A2PH-012	SMA Cable, 12 IN	17-Aug-17	17-Aug-18
35038	Micro-Tronics / BRC50703-02	Notch Filter	17-Aug-17	17-Aug-18
55848	Dynawave / SMSM-A2PH-012	SMA Cable, 12 IN	17-Aug-17	17-Aug-18
55846	Dynawave / SMSM-A2PH-012	SMA Cable, 12 IN	17-Aug-17	17-Aug-18
54603	Micro-Tronics / BRM50702-02	Band Reject Filter	17-Aug-17	17-Aug-18
55842	Dynawave / SMSM-A2PH-012	SMA Cable, 12 IN	17-Aug-17	17-Aug-18
55561	MEGAPHASE / F120-S1S1-48	SMA Cable	17-Aug-17	17-Aug-18
54635	MEGAPHASE / F120-S1S1-48	SMA Cable	17-Aug-17	17-Aug-18
55847	Dynawave / SMSM-A2PH-012	SMA Cable, 12 IN	17-Aug-17	17-Aug-18
55578	AEROFLEX / BWS20-W2	20dB SMA Attenuator	17-Aug-17	17-Aug-18
55582	AEROFLEX / BWS30-W2	30dB SMA Attenuator	17-Aug-17	17-Aug-18
55845	Dynawave / SMSM-A2PH-012	SMA Cable, 12 IN	17-Aug-17	17-Aug-18
42630	Pasternack / PE6072	SMA 50 Ohm Termination	08 Mar 2017	08 Mar 2018
42629	Pasternack / PE6072	SMA 50 Ohm Termination	08 Mar 2017	08 Mar 2018
54235	PASTERNACK / PE5011-1	PRESET TORQUE WRENCH, 8 IN/LBS	21-Feb-17	21-Feb-18
56062	Pulsar / PS4-09-452/4S	Splitter	12-Apr-17	12-Apr-18
6335	LUFFT / 5063-33W	DIAL HYGROMETER	16 Aug 2017	16 Aug 2018

Equipment used for Radiated Tests

30MHz-1GHz

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due

Page No: 66 of 76

45050	ROHDE & SCHWARZ / ESCI	EMI Test Receiver	16 Nov 2017	16 Nov 2018
56154	HUBER + SUHNER / Sucoflex 104PEA	Sucoflex N Type blue 7ft cable	18 Jan 2018	18 Jan 2019
20975	MICRO-COAX / UFB311A-0-1344-520520	Coaxial Cable-18Ghz	19-Feb-18	19-Feb-19
55936	HUBER + SUHNER / Sucoflex 106PEA	RF Type N Antenna Cable 18 GHz 8.5m	19-Oct-17	19-Oct-18
32806	SUNOL SCIENCES / JB1	Combination Antenna, 30MHz-2GHz	7-Jun-17	7-Jun-18
41929	NEWPORT / iBTHP-5-DB9	5 inch Temp/RH/Press Sensor w/20ft cable	28 Dec 2017	28 Dec 2018
27233	York	CNE V / Comparison Noise Emitter	Cal not Req'd	Cal not Req'd
35235	LUFKIN / HY1035CME	Tape measure	Cal not Req'd	Cal not Req'd
56330	PASTERNACK / PE5011-1	PRESET TORQUE WRENCH, 8 IN/LBS	28 Feb 2018	28 Feb 2019
42630	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-18	8-Mar-19
56112	PASTERNACK	PE6072 / SMA 50 Ohm Termination	1-Dec-17	1-Dec-18
56129	PASTERNACK	PE6072 / SMA 50 Ohm Termination	1-Dec-17	1-Dec-18

#### 1GHz-18GHz

56052	MITEQ	TTA1800-30-HG / SMA 18GHz Pre Amplifier	9-Feb-17	9-Feb-18
-------	-------	--------------------------------------------	----------	----------

Page No: 67 of 76

35618	Micro-Tronics / HPM50112-02	Notch Filter	26-Jun-17	26-Jun-18
21117	MICRO-COAX / UFB311A-0-2484-520520	Coaxial Cable-18Ghz	16-Aug-17	16-Aug-18
49563	HUBER + SUHNER / Sucoflex 106A	Coaxial Cable, 8m	21-Aug-17	21-Aug-18
25662	Micro-COAX / UFB311A-1-0840-504504	Coaxial Cable, 84.0 in. to 18GHz	21 Feb 2017	21 Feb 2018
36716	CISCO / RF Coaxial Cable-SMA	Radio Test Cable, SMA-SMA	13-Jan-17	13-Jan-18
36717	CISCO / RF Coaxial Cable-SMA	Radio Test Cable, SMA-SMA	13-Jan-17	13-Jan-18
32544	ETS Lindgren / 3117	Double Ridged Horn Antenna	12-Jul-17	12-Jul-18
45166	Stanley	33-428 / 26' TAPE MEASURE	Cal Not Req'd	Cal Not Req'd
34075	SCHAFFNER	RSG 2000 / Reference Spectrum Generator, 1-18GHz	Cal Not Req'd	Cal Not Req'd
4883	EMCO	3115 / Horn Antenna	Cal Not Req'd	Cal Not Req'd
8171	Keysight (Agilent/HP)	8491B Opt 010 / ATTENUATOR	26-Apr-17	26-Apr-18
47300	Keysight (Agilent/HP)	N9038A / EMI Receiver	28-Mar-17	28-Mar-18
54230	Newport	iBTHP-5-DB9 / 5 inch Temp/RH/Press Sensor w/20ft cable	11-Feb-17	11-Feb-18
42629	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42638	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42634	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42630	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
54235	PASTERNACK / PE5011-1	PRESET TORQUE WRENCH, 8 IN/LBS	21-Feb-17	21-Feb-18

Page No: 68 of 76

18GHz-40GHz

41979	CISCO / 1840	18-40GHz EMI Test Head/Verification Fixture 30-Aug-17		30-Aug-18
44940	ROHDE & SCHWARZ / ESU40	EMI RECEIVER, 40GHZ	14-Nov-16	11/14/2017
37236	JFW / 50CB-015	Control Box, GPIB	Cal Not Req'd	Cal Not Req'd
54230	Newport	iBTHP-5-DB9 / 5 inch Temp/RH/Press Sensor w/20ft cable	11-Feb-17	11-Feb-18
42629	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42638	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42634	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42630	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
54235	PASTERNACK / PE5011-1	PRESET TORQUE WRENCH, 8 IN/LBS	21-Feb-17	21-Feb-18
30486	Keysight (Agilent/HP)	E8257C / SIGNAL GENERATOR	15-Dec-16	15-Dec-17

#### Equipment used for AC Power Conducted Emissions

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due
CIS008496	Fischer Custom Communications / FCC-450B-2.4-N	Instrumentation Limiter	16-MAY-17	16-MAY-18
CIS018963	York / CNE V	Comparison Noise Emitter, 30 - 1000MHz	Cal Not Required	N/A
CIS035235	Lufkin / HY1035CME	5 Meter Tape Measure	Cal Not Required	N/A
CIS037229	Coleman / RG-223	25ft BNC cable	13-APR-18	13-APR-19
CIS037239	Rohde & Schwarz / ESCI	ESCI EMI Test Receiver	02-MAY-17	02-MAY-18
CIS044023	Fischer Custom Communications / FCC-801-M2-32A	Power Line Coupling Decoupling Network	09-NOV-17	09-NOV-18

Page No: 69 of 76

CIS045990	Fischer Custom Communications /	Line Impedance Stabilization Network	15-JUN-17	15-JUN-18
	F-090527-1009-1			
CIS045991	Fischer Custom Communications / F-090527-1009-2	Lisn Adapter	15-JUN-17	15-JUN-18
CIS049479	Coleman / RG223	BNC 2ft Cable	05-MAR-18	05-MAR-19
CIS049531	TTE / H785-150K-50-21378	High Pass Filter	03-MAY-17	03-MAY-18
CIS049558	Bird / 5-T-MB	5W 50 Ohm BNC Termination 4GHz	10-AUG-17	10-AUG-18
CIS054231	Newport / iBTHP-5-DB9	5 inch Temp/RH/Press Sensor w/20ft cable	09-FEB-18	09-FEB-19

Page No: 70 of 76

#### Appendix D: Abbreviation Key and Definitions

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	°C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
TAP	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control	Qp	Quasi Peak
	System		
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification	Pk	Peak
	number for Cisco test equipment)		
Cal	Calibration	kHz	Kilohertz (1x10 ³ )
EN	European Norm	MHz	MegaHertz (1x10 ⁶ )
IEC	International Electro technical	GHz	Gigahertz (1x10 ⁹ )
	Commission		
CISPR	International Special Committee on	Н	Horizontal
	Radio Interference		
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization	dB	decibel
	Network		
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³ )
L1	Line 1	μV	Microvolt (1x10 ⁻⁶ )
L2	Line2	А	Amp
L3	Line 3	μA	Micro Amp (1x10 ⁻⁶ )
DC	Direct Current	mS	Milli Second (1x10 ⁻³ )
RAW	Uncorrected measurement value,	μS	Micro Second (1x10 ⁻⁶ )
	as indicated by the measuring		
	device		
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶ )
SLCE	Signal Line Conducted Emissions	m	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
Ν	Neutral Line	R	Return
S	Supply	AC	Alternating Current

The following table defines abbreviations used within this test report.

Appendix E: Photographs of Test Setups

Title: Radiated Emissions Configuration Photograph 30MHz-1GHz

cisco

Title: Radiated Emissions Configuration Photograph 1-18GHz

Title: Radiated Emissions Configuration Photograph 18-40GHz

Title: AC Power Conducted Emissions

Title: Conducted Setup (Band Edge)

Title: Conducted Setup (Bandwidth, Power, PSD)

Title: Conducted Setup (Conducted Spurious Emissions)

Page No: 72 of 76


## **Appendix F: Software Used to Perform Testing**

Radiated Spurious Emissions, Software: EMIsoft Vasona, version 6.031 Conducted Power, Bandwidth, PSD, Conducted Band Edge, Conducted Spurious Emissions: RF Automation Main

Page No: 73 of 76

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential



Measurements were made in accordance with

- KDB 789033 D02 General UNII Test Procedures New Rules v01r04
- KDB 662911 MIMO
- ANSI C63.4 2014 Unintentional Radiators
- ANSI C63.10 2013 Intentional Radiators

Test procedures are summarized below:

FCC 5GHz Test Procedures	EDCS # 1445048
FCC 5GHz RSE Test Procedures	EDCS # 1511600

ri ini in cisco

Page No: 74 of 76



## Appendix H: Scope of Accreditation (A2LA certificate number 1178-01)

The scope of accreditation of Cisco Systems, Inc. can be found on the A2LA web page at:

http://www.a2la.org/scopepdf/1178-01.pdf

Page No: 75 of 76

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential



## Appendix I: Test Assessment Plan

Compliance Test Plan (Excel) EDCS# 11811301

Target Power Tables EDCS# 11759869

## Appendix J: Worst Case Justification

Test modes were determined from the Compliance Test Plan EDCS# 11811301.

All formal data can be found in EDCS# 11811303.

Page No: 76 of 76

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential