# Test Report C1101-4PLTEPW with ISR-AP1101AC-x

Cisco 802.11ac Dual Band Access Points

FCC ID: LDKC11011757

# 5150-5250 MHz

Against the following Specifications:

CFR47 Part 15.407



**Cisco Systems** 170 West Tasman Drive San Jose, CA 95134

| CMR                                 |                             |
|-------------------------------------|-----------------------------|
| Author: Chris Blair                 | Approved By: Gerard Thorpe  |
| Tested By: Chris Blair, Dennis Thai | Title: Manager, Engineering |
|                                     | Revision: See Doc Central   |

This report replaces any previously entered test report under EDCS – 12062325. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

Page No: 1 of 59

This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

| SECTION 1: OVERVIEW                                         | 3  |
|-------------------------------------------------------------|----|
| SECTION 2: ASSESSMENT INFORMATION                           | 4  |
| 2.1 General                                                 | 4  |
| 2.2 DATE OF TESTING                                         |    |
| 2.3 Report Issue Date                                       |    |
| 2.4 TESTING FACILITIES                                      |    |
| 2.5 Equipment Assessed (EUT)                                |    |
| 2.6 EUT DESCRIPTION                                         |    |
| SECTION 3: RESULT SUMMARY                                   | 9  |
| 3.1 Results Summary Table                                   | 9  |
| SECTION 4: SAMPLE DETAILS                                   | 11 |
| 4.1 Sample Details                                          | 11 |
| TRAFFIC GENERATORS                                          |    |
| 4.2 System Details                                          |    |
| 4.3 MODE OF OPERATION DETAILS                               | 11 |
| APPENDIX A: EMISSION TEST RESULTS                           | 13 |
| CONDUCTED TEST SETUP DIAGRAM                                | 13 |
| TARGET MAXIMUM CHANNEL POWER                                | 13 |
| A.2 MAXIMUM CONDUCTED OUTPUT POWER/ POWER SPECTRAL DENSITY  |    |
| A.3 CONDUCTED SPURIOUS EMISSIONS                            |    |
| A.4 CONDUCTED BAND EDGE                                     |    |
| APPENDIX B: EMISSION TEST RESULTS                           | 40 |
| RADIATED EMISSION SETUP DIAGRAM-BELOW 1G                    |    |
| B.1 RADIATED SPURIOUS EMISSIONS                             |    |
| B.2 RADIATED EMISSIONS 30MHZ TO 1GHZ                        |    |
| B.3 AC CONDUCTED EMISSIONS                                  |    |
| APPENDIX C: LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST | 53 |
| APPENDIX E: ABBREVIATION KEY AND DEFINITIONS                | 58 |

Page No: 2 of 59

### Section 1: Overview

The samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

Specifications:

CFR47 Part 15.407

Applicable measurement guidance:

- ANSI C63.10:2013
- KDB 789033 D02 General UNII Test Procedures New Rules v01r03
- KDB 662911 D01 Multiple Transmitter Output v02r01

Page No: 3 of 59

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

## **Section 2: Assessment Information**

### 2.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature15°C to 35°C (54°F to 95°F)Atmospheric Pressure860mbar to 1060mbar (25.4" to 31.3")Humidity10% to 75\*%

All AC testing was performed at one or more of the following supply voltages:
 110V 60 Hz (+/-20%)

#### **Units of Measurement**

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB] The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss..

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Page No: 4 of 59

Measurement Uncertainty Values

| voltage and power measurements    | ± 2 dB     |
|-----------------------------------|------------|
| conducted EIRP measurements       | ± 1.4 dB   |
| radiated measurements             | ± 3.2 dB   |
| frequency measurements            | ± 2.4 10-7 |
| temperature measurements          | ± 0.54°    |
| humidity measurements             | ± 2.3%     |
| DC and low frequency measurements | ± 2.5%     |

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

| 30 MHz - 300 MHz   | +/- 3.8 dB |
|--------------------|------------|
| 300 MHz - 1000 MHz | +/- 4.3 dB |
| 1 GHz - 10 GHz     | +/- 4.0 dB |
| 10 GHz - 18GHz     | +/- 5.2 dB |
| 18GHz - 26.5GHz    | +/- 4.1 dB |
| 26.5GHz - 40GHz    | +/- 3.9 dB |

Conducted emissions (expanded uncertainty, confidence interval 95%)

| 30 MHz – 40GHz | +/- 0.38 dB |
|----------------|-------------|
|----------------|-------------|

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

Page No: 5 of 59



#### 2.2 Date of testing

21-Dec-17 - 17-Apr-18

### 2.3 Report Issue Date

25-Apr-18

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled.

### 2.4 Testing facilities

This assessment was performed by:

### **Testing Laboratory**

Cisco Systems, Inc., 125 West Tasman Drive San Jose, CA 95134, USA

### **Registration Numbers for Industry Canada**

| Cisco System Site       | Address                    | Site Identifier    |  |
|-------------------------|----------------------------|--------------------|--|
| Building P, 10m Chamber | 125 West Tasman Dr         | Company #: 2461N-2 |  |
|                         | San Jose, CA 95134         |                    |  |
| Building P, 5m Chamber  | 125 West Tasman Dr         | Company #: 2461N-1 |  |
|                         | San Jose, CA 95134         |                    |  |
| Building I, 5m Chamber  | 285 W. Tasman Drive        | Company #: 2461M-1 |  |
|                         | San Jose, California 95134 |                    |  |

### **Test Engineers**

Chris Blair, Marie Higa

### 2.5 Equipment Assessed (EUT)

C1101-4PLTEPW with embedded WiFi modem: ISR-AP1101AC-x.

Page No: 6 of 59

#### 2.6 EUT Description

C1101-4PLTEPW with ISR-AP1101AC-x is Enterprise/MSP/M2M next generation low end router with the unified platform GE WAN, next generation Wave 2 802.11a/g/n/ac WLAN, and next generation LTE WWAN on Polaris IOS XE. It supports the following 5G WLAN modes:

802.11a - Non HT20, One Antenna, 6 to 54 Mbps, 1ss 802.11a - Non HT20, Two Antennas, 6 to 54 Mbps, 1ss

802.11a - Non HT20 Beam Forming, Two Antennas, 6 to 54 Mbps, 1ss

802.11n/ac - HT/VHT20, One Antenna, M0 to M7, M0.1 to M9.1, 1ss 802.11n/ac - HT/VHT20, Two Antennas, M0 to M7, M0.1 to M9.1, 1ss 802.11n/ac - HT/VHT20, Two Antennas, M8 to M15, M0.2, M9.2, 2ss

802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M0 to M7, M0.1 to M9.1, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M8 to M15, M0.2, M9.2, 2ss

802.11n/ac - HT/VHT20 STBC, Two Antennas, M0 to M7, M0.1 to M9.1, 1ss

802.11a - Non HT40, One Antenna, 6 to 54 Mbps, 1ss 802.11a - Non HT40, Two Antennas, 6 to 54 Mbps, 1ss

802.11n/ac - HT/VHT40, One Antenna, M0 to M7, M0.1 to M9.1, 1ss 802.11n/ac - HT/VHT40, Two Antennas, M0 to M7, M0.1 to M9.1, 1ss 802.11n/ac - HT/VHT40, Two Antennas, M8 to M15, M0.2, M9.2, 2ss

802.11n/ac - HT/VHT40 Beam Forming, Two Antennas, M0 to M7, M0.1 to M9.1, 1ss 802.11n/ac - HT/VHT40 Beam Forming, Two Antennas, M8 to M15, M0.2, M9.2, 2ss

802.11n/ac - HT/VHT40 STBC, Two Antennas, M0 to M7, M0.1 to M9.1, 1ss

802.11a - Non HT80, One Antenna, 6 to 54 Mbps, 1ss 802.11a - Non HT80, Two Antennas, 6 to 54 Mbps, 1ss

802.11n/ac - HT/VHT80, One Antenna, M0.1 to M9.1, 1ss 802.11n/ac - HT/VHT80, Two Antennas, M0.1 to M9.1, 1ss 802.11n/ac - HT/VHT80, Two Antennas, M0.2 to M9.2, 2ss

802.11n/ac - HT/VHT80 Beam Forming, Two Antennas, M0.1 to M9.1, 1ss 802.11n/ac - HT/VHT80 Beam Forming, Two Antennas, M0.2 to M9.2, 2ss

802.11n/ac - HT/VHT80 STBC, Two Antennas, M0.1 to M9.1

The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst case data for all modes. Data is recorded at the lowest supported data rate for each mode.

The following antennas are supported by this product series. The data included in this report represent the worst case data for all antennas.

Page No: 7 of 59

| Frequency | Part Number      | Antenna Type  | Antenna<br>Gain<br>(dBi) |
|-----------|------------------|---------------|--------------------------|
|           | ANTS2M1-CCF34-EH | Internal PIFA | 2.14/4                   |
| 2.4G/5G   |                  |               |                          |
| 2.40/30   |                  |               |                          |
|           |                  |               |                          |

Page No: 8 of 59

### Section 3: Result Summary

## 3.1 Results Summary Table

### **Conducted emissions**

| Basic Standard                         | Technical Requirements / Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Result |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| FCC 15.407                             | <ul> <li>99% &amp; 26 dB Bandwidth:<br/>The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW.</li> <li>The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass   |
| FCC 15.407                             | <ul> <li>Output Power:</li> <li>15.407: (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).</li> <li>(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.</li> </ul> | Pass   |
| FCC 15.407                             | <b>Power Spectral Density:</b><br>15.407 The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass   |
| FCC 15.407                             | <b>Conducted Spurious Emissions / Band-Edge:</b><br>For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.25 GHz band shall not exceed an EIRP of -27dBm/MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pass   |
| FCC 15.407<br>FCC 15.209<br>FCC 15.205 | <b>Restricted band:</b><br>Unwanted emissions falling within the restricted bands, as defined in FCC 15.205 (a) must also comply with the radiated emission limits specified in FCC 15.209 (a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass   |

Page No: 9 of 59

| Basic Standard           | Technical Requirements / Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| FCC 15.209<br>FCC 15.205 | <b>TX Spurious Emissions:</b><br>Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the filed strength limits table in this section.                                                                                                                                                                                                                                                                                            | Pass |
| FCC 15.207               | AC conducted Emissions:<br>Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries. | Pass |

Radiated Emissions (General requirements)

\* MPE calculation is recorded in a separate report

Page No: 10 of 59

## **Section 4: Sample Details**

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing.

### 4.1 Sample Details

| Sample<br>No. | Equipment Details                                    | Manufacturer              | Hardware<br>Rev.                 | Firmware<br>Rev.                             | Software<br>Rev.                                                                         | Serial<br>Number |
|---------------|------------------------------------------------------|---------------------------|----------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------|------------------|
| S01           | C1101-4PLTEPW with<br>ISR-AP1101AC-x wifi<br>adapter | Cisco Systems             | P1B<br>(WiFi<br>adapter =<br>P2) | e1c63a0b<br>b171f78c5<br>800c1478<br>007abc1 | 8.4.1.10                                                                                 | FOC2131026Q      |
| S02*          | ADP-66CR B                                           | Delta                     | 01                               | NA                                           | NA                                                                                       | DAB2110G3CH      |
| S03           | C1101-4PLTEPW with<br>ISR-AP1101AC-x wifi<br>adapter | Cisco Systems             | P2B<br>(WiFi<br>adapter =<br>P2) | e1c63a0b<br>b171f78c5<br>800c1478<br>007abc1 | 8.4.1.10                                                                                 | FOC2147556Z      |
| S04           | P-LTE-VZ pluggable<br>LTE/GPS module                 | Cisco Systems             | P2                               | NA                                           | NA                                                                                       | FOC215217QC      |
| S05           | ADP-66CR B                                           | Delta                     | 01                               | NA                                           | NA                                                                                       | DAB2122G378      |
| S06           | C1101-4PLTEPW with<br>ISR-AP1101AC-x wifi<br>adapter | Cisco Systems             | P2                               | 2.0                                          | c1100-univers<br>alk9_ias.BLD_<br>POLARIS_DE<br>V_LATEST_20<br>171209_00181<br>9.SSA.bin | FGL220490Y0      |
| S07           | ADP-66CR B                                           | Delta<br>Electronics Inc. | 01                               | n/a                                          | n/a                                                                                      | DAB2122G3CZ      |
| S08           | P-LTE-EA                                             | Cisco Systems             | P2                               | n/a                                          | n/a                                                                                      | FOC215217LF      |
| S09           | Power Splitter<br>ZB8PD-2-S+                         | Cisco Systems             | n/a                              | n/a                                          | n/a                                                                                      | n/a              |
| S10           | Laptop81C3                                           | Lenova Yoga               | n/a                              | n/a                                          | n/a                                                                                      | MP1C6AA7         |

#### **Traffic Generators**

| Sample<br>No. | CIS No    | Model<br>Number | Manufacturer    | Description.                        |
|---------------|-----------|-----------------|-----------------|-------------------------------------|
| S11           | CIS055442 | XM2             | Ixia            | IP Performance Monitor              |
| S12           | CIS047262 | CMW500          | Rohde & Schwarz | Wideband Radio Communication Tester |

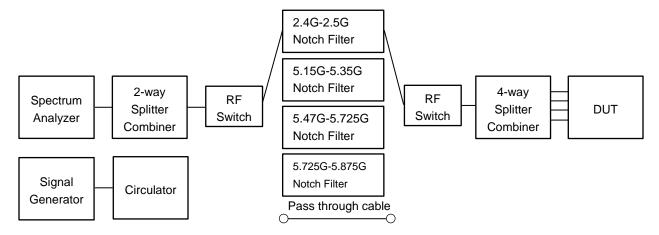
### 4.2 System Details

| System # | Description     | Samples                           |
|----------|-----------------|-----------------------------------|
| 1        | Conducted tests | S01, S02                          |
| 2        | RSE             | S03, S04, S05                     |
| 3        | AC CE           | S06, S07, S08, S09, S10, S11, S12 |

### 4.3 Mode of Operation Details

Page No: 11 of 59

| Mode# | Description             | Comments                                              |
|-------|-------------------------|-------------------------------------------------------|
| 1     | Continuous Transmitting | Continuous Transmitting, max duty cycle, dfstool menu |
| 2     | Continuous Receiving    | For Rx RSE, dfstool menu                              |
| 3     | Idle                    | WiFi adapter on for CE on AC lines (IOS)              |


Applicable measurement guidance:

- ANSI C63.10:2013
- KDB 789033 D02 General UNII Test Procedures New Rules v01r03
- KDB 662911 D01 Multiple Transmitter Output v02r01

Page No: 12 of 59

## Appendix A: Emission Test Results

# Conducted Test Setup Diagram



# Target Maximum Channel Power

The following table details the maximum supported Total Channel Power for all operating modes.

|                                              | Maxim           | Maximum Channel Power<br>(dBm) |      |  |  |  |  |
|----------------------------------------------|-----------------|--------------------------------|------|--|--|--|--|
|                                              | Frequency (MHz) |                                |      |  |  |  |  |
| Operating Mode                               | 5180            | 5220                           | 5240 |  |  |  |  |
| Non HT/VHT20, 6 to 54 Mbps                   | 18              | 19                             | 19   |  |  |  |  |
| Non HT/VHT20 Beam Forming, 6 to 54 Mbps      | 17              | 19                             | 19   |  |  |  |  |
| HT/VHT20, M0 to M15                          | 17              | 19                             | 19   |  |  |  |  |
| HT/VHT20 Beam Forming, M0 to M15             | 17              | 19                             | 19   |  |  |  |  |
| HT/VHT20 STBC, M0 to M7                      | 17              | 19                             | 19   |  |  |  |  |
|                                              | 5190            | 5230                           |      |  |  |  |  |
| Non HT/VHT40, 6 to 54 Mbps                   | 16              | 19                             |      |  |  |  |  |
| HT/VHT40, M0 to M15                          | 16              | 19                             |      |  |  |  |  |
| HT/VHT40 Beam Forming, M0 to M15             | 16              | 19                             |      |  |  |  |  |
| HT/VHT40 STBC, M0 to M7                      | 16              | 19                             |      |  |  |  |  |
|                                              | 5210            |                                |      |  |  |  |  |
| Non VHT80, 6 to 54 Mbps                      | 14              |                                |      |  |  |  |  |
| VHT80, M0 to M9, M0 to M9 1-2ss              | 15              |                                |      |  |  |  |  |
| VHT80 Beam Forming, M0 to M9, M0 to M9 1-2ss | 15              |                                |      |  |  |  |  |
| VHT80 STBC, M0 to M9 1ss                     | 15              |                                |      |  |  |  |  |

# A.1 99% and 26dB Bandwidth

**FCC 15.407** The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW.

The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.

## **Test Procedure**

Ref. ANSI C63.10: 2013 Section 6.9.3

#### 99% BW and EBW (-26dB)

Test Procedure

1. Set the radio in the continuous transmitting mode.

2. Allow the trace to stabilize.

- 3. Setting the x-dB bandwidth mode to -26dB and OBW power function to 99% within the measurement set up function.
- 4. Select the automatic OBW measurement function of an instrument to perform bandwidth measurement.
- 5. Capture graphs and record pertinent measurement data.

Ref. ANSI C63.10: 2013 Section 6.9.3

 99% BW and EBW (-26dB)

 Test parameters

 Span = 1.5 x to 5.0 times OBW

 RBW = approx. 1% to 5% of the OBW

 VBW ≥ 3 x RBW

 Detector = Peak or where practical sample shall be used

 Trace = Max. Hold

| System<br>Number | Description | Samples | System under test | Support<br>equipment |
|------------------|-------------|---------|-------------------|----------------------|
|                  | EUT         | S01     | $\mathbf{\nabla}$ |                      |
| 1                | Support     | S02     |                   | $\checkmark$         |

| Tested By : | Date of testing:      |
|-------------|-----------------------|
| Chris Blair | 21-Dec-17 - 05-Jan-18 |
|             |                       |

Test Result : PASS

See Appendix C for list of test equipment

Page No: 14 of 59

| Frequency                                                                                                  |                                 | Data Rate                                                                                                                                                                                                                          | 26dB BW | 99% BW |
|------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| (MHz)                                                                                                      | Mode                            | (Mbps)                                                                                                                                                                                                                             | (MHz)   | (MHz)  |
| 5190                                                                                                       | Non HT/VHT20, 6 to 54 Mbps      | 6                                                                                                                                                                                                                                  | 20.7    | 17.214 |
| 5160                                                                                                       | HT/VHT20, M0 to M15             | m0                                                                                                                                                                                                                                 | 21.5    | 18.215 |
|                                                                                                            |                                 |                                                                                                                                                                                                                                    |         |        |
| E100                                                                                                       | Non HT/VHT40, 6 to 54 Mbps      | 6                                                                                                                                                                                                                                  | 40.0    | 35.457 |
| 5190                                                                                                       | HT/VHT40, M0 to M15             | m0                                                                                                                                                                                                                                 | 40.2    | 36.019 |
|                                                                                                            |                                 |                                                                                                                                                                                                                                    |         |        |
| 5010                                                                                                       | Non VHT80, 6 to 54 Mbps         | 6                                                                                                                                                                                                                                  | 83.3    | 75.731 |
| Frequency (MHz)         5180         5190         5210         5220         5220         5220         5220 | VHT80, M0 to M9, M0 to M9 1-2ss | m0x1                                                                                                                                                                                                                               | 83.6    | 75.843 |
|                                                                                                            |                                 |                                                                                                                                                                                                                                    |         |        |
| 5000                                                                                                       | Non HT/VHT20, 6 to 54 Mbps      | 6                                                                                                                                                                                                                                  | 22.0    | 17.385 |
| 5220                                                                                                       | HT/VHT20, M0 to M15             | m0                                                                                                                                                                                                                                 | 23.1    | 18.347 |
|                                                                                                            |                                 |                                                                                                                                                                                                                                    |         |        |
| 5000                                                                                                       | Non HT/VHT40, 6 to 54 Mbps      | 6                                                                                                                                                                                                                                  | 40.0    | 35.622 |
| 5230                                                                                                       | HT/VHT40, M0 to M15             | (Mbps)         (MHz)           6         20.7           m0         21.5           6         40.0           m0         40.2           6         83.3           m0x1         83.6           6         22.0           m0         23.1 | 43.1    | 36.299 |
|                                                                                                            |                                 |                                                                                                                                                                                                                                    |         |        |
| 5240                                                                                                       | Non HT/VHT20, 6 to 54 Mbps      | 6                                                                                                                                                                                                                                  | 22.0    | 17.386 |
| 5240                                                                                                       | HT/VHT20, M0 to M15             | m0                                                                                                                                                                                                                                 | 21.9    | 18.341 |

Page No: 15 of 59

| 📕 Keysight Spectrum Analyzer - Occupied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BW          |                                                |             |                           |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------|-------------|---------------------------|-----------------|
| XIRL RF 50Ω DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CORREC      | SENSE:INT                                      |             |                           | Frequency       |
| Center Freq 5.18000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 GHz       | Center Freq: 5.180000000 GHz<br>Trig: Free Run | Radio Sto   | i: None                   | ricqueriey      |
| NFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | #IFGain:Low | #Atten: 20 dB                                  | Radio De    | vice: BTS                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                |             |                           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                |             |                           |                 |
| 15 dB/div Ref 20.00 dE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                                |             |                           |                 |
| 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                | ~           |                           | Center Fred     |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                                | \           |                           | 5.180000000 GH  |
| -25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                                | 1 Maria     |                           |                 |
| and the second s |             |                                                |             | Part of the second second |                 |
| -40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                                |             |                           |                 |
| -55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                                |             |                           |                 |
| -70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                                |             |                           |                 |
| -85.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                                |             |                           |                 |
| -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                |             |                           |                 |
| -115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                |             |                           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                |             |                           |                 |
| Center 5.18 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                |             | an 40 MHz                 | CF Step         |
| #Res BW 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | #VBW 3 MHz                                     | #S          | weep 5 s                  | 4.000000 MHz    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Total Power                                    | 22.1 dBm    |                           | <u>Auto</u> Mar |
| Occupied Bandwic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                                | 22.1 aBm    |                           |                 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.214 MH    | Z                                              |             |                           | Freq Offset     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                |             |                           | 0 Hz            |
| Transmit Freq Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -82.075 kl  | Hz % of OBW Pov                                | ver 99.00 % |                           | 011             |
| x dB Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.69 MI    | Hz x dB                                        | -26.00 dB   |                           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                |             |                           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                |             |                           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                |             |                           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                |             |                           |                 |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                | STATUS      |                           |                 |

# 26dB / 99% Bandwidth, 5180 MHz, Non HT/VHT20 Beam Forming, 6 to 54 Mbps

Page No: 16 of 59

# A.2 Maximum Conducted Output Power/ Power Spectral Density

**15.407** (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

### **Test Procedure**

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r03

| Output Power               |                                                                                             |
|----------------------------|---------------------------------------------------------------------------------------------|
| Test Procedure             |                                                                                             |
| 1. Set the radio in the co | ontinuous transmitting mode at full power                                                   |
| 2. Compute power by in     | tegrating the spectrum across the EBW (or alternatively entire 99% OBW) of the signal using |
| the instrument's band po   | ower measurement function. The integration shall be performed using the spectrum analyzer   |
| band-power measureme       | ent function with band limits set equal to the EBW or the OBW band edges.                   |
| 3. Capture graphs and r    | ecord pertinent measurement data.                                                           |
|                            |                                                                                             |
| Ref. KDB 789033 D02 (      | General UNII Test Procedures New Rules v01r03                                               |

ANSI C63.10: 2013 section 12.3.2.2 Method SA-1

Output Power

Test parameters

Span = >1.5 times the OBW

RBW = 1MHz
VBW ≥ 3 x RBW

Sweep = Auto couple

Detector = sample

Trace = Trace Average 100

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. (See ANSI C63.10 section 14.3.2.2)

| System<br>Number | Description | Samples | System under test | Support<br>equipment |
|------------------|-------------|---------|-------------------|----------------------|
|                  | EUT         | S01     | $\mathbf{\nabla}$ |                      |
| 1                | Support     | S02     |                   | $\checkmark$         |

| Tested By :        | Date of testing:      |
|--------------------|-----------------------|
| Chris Blair        | 21-Dec-17 - 05-Jan-18 |
| Test Result : PASS |                       |

See Appendix C for list of test equipment

Page No: 18 of 59

### Maximum Output Power

| Frequency (MHz) | Mode                                    | Tx Paths      | Correlated Antenna<br>Gain (dBi) | Tx 1 Max Power<br>(dBm) | Tx 2 Max Power<br>(dBm) | Total Tx Channel<br>Power (dBm) | Limit (dBm) | Margin (dB) |
|-----------------|-----------------------------------------|---------------|----------------------------------|-------------------------|-------------------------|---------------------------------|-------------|-------------|
|                 | Non HT/VHT20, 6 to 54 Mbps              | 1             | 4                                | 16.2                    |                         | 16.2                            | 29.8        | 13.6        |
|                 | Non HT/VHT20, 6 to 54 Mbps              | 2             | 4                                | 15.5                    | 14.8                    | 18.2                            | 29.8        | 11.6        |
|                 | Non HT/VHT20 Beam Forming, 6 to 54 Mbps | 2             | 7                                | 14.6                    | 13.9                    | 17.3                            | 28.8        | 11.5        |
|                 | HT/VHT20, M0 to M7                      | 1             | 4                                | 15.4                    |                         | 15.4                            | 29.8        | 14.4        |
| 5180            | HT/VHT20, M0 to M7                      | 2             | 4                                | 14.5                    | 13.9                    | 17.2                            | 29.8        | 12.6        |
| 5               | HT/VHT20, M8 to M15                     | 2             | 4                                | 14.5                    | 13.9                    | 17.2                            | 29.8        | 12.6        |
|                 | HT/VHT20 Beam Forming, M0 to M7         | 2             | 7                                | 13.5                    | 12.9                    | 16.2                            | 28.8        | 12.6        |
|                 | HT/VHT20 Beam Forming, M8 to M15        | 2             | 4                                | 14.5                    | 13.9                    | 17.2                            | 29.8        | 12.6        |
|                 | HT/VHT20 STBC, M0 to M7                 | 2             | 4                                | 14.5                    | 13.9                    | 17.2                            | 29.8        | 12.6        |
|                 |                                         |               |                                  |                         |                         |                                 |             |             |
|                 | Non HT/VHT40, 6 to 54 Mbps              | 1             | 4                                | 13.0                    |                         | 13.0                            | 29.8        | 16.8        |
|                 | Non HT/VHT40, 6 to 54 Mbps              | 2             | 4                                | 13.0                    | 12.2                    | 15.6                            | 29.8        | 14.2        |
|                 | HT/VHT40, M0 to M7                      | 1             | 4                                | 13.4                    |                         | 13.4                            | 29.8        | 16.4        |
| 06              | HT/VHT40, M0 to M7                      | 2             | 4                                | 13.4                    | 12.6                    | 16.0                            | 29.8        | 13.8        |
| 5190            | HT/VHT40, M8 to M15                     | 2             | 4                                | 13.4                    | 12.6                    | 16.0                            | 29.8        | 13.8        |
|                 | HT/VHT40 Beam Forming, M0 to M7         | 2             | 7                                | 11.4                    | 10.6                    | 14.0                            | 28.8        | 14.8        |
|                 | HT/VHT40 Beam Forming, M8 to M15        | 2             | 4                                | 13.4                    | 12.6                    | 16.0                            | 29.8        | 13.8        |
|                 | HT/VHT40 STBC, M0 to M7                 | 2             | 4                                | 13.4                    | 12.6                    | 16.0                            | 29.8        | 13.8        |
|                 |                                         |               |                                  |                         |                         |                                 |             |             |
|                 | Non VHT80, 6 to 54 Mbps                 | 1             | 4                                | 12.8                    |                         | 12.8                            | 29.2        | 16.4        |
|                 | Non VHT80, 6 to 54 Mbps                 | 2             | 4                                | 11.8                    | 10.9                    | 14.4                            | 29.2        | 14.8        |
|                 | VHT80, M0 to M9 1ss                     | 1             | 4                                | 12.5                    |                         | 12.5                            | 29.2        | 16.7        |
| 5210            | VHT80, M0 to M9 1ss                     | 2             | 4                                | 12.5                    | 11.7                    | 15.1                            | 29.2        | 14.0        |
| 52              | VHT80, M0 to M9 2ss                     | 2             | 4                                | 12.5                    | 11.7                    | 15.1                            | 29.2        | 14.0        |
|                 | VHT80 Beam Forming, M0 to M9 1ss        | 2             | 7                                | 9.4                     | 8.7                     | 12.1                            | 28.2        | 16.1        |
|                 | VHT80 Beam Forming, M0 to M9 2ss        | 2             | 4                                | 12.5                    | 11.7                    | 15.1                            | 29.2        | 14.0        |
|                 | VHT80 STBC, M0 to M9 1ss                | 2             | 4                                | 12.5                    | 11.7                    | 15.1                            | 29.2        | 14.0        |
|                 |                                         |               |                                  |                         |                         |                                 |             |             |
|                 | Non HT/VHT20, 6 to 54 Mbps              | 1             | 4                                | 16.3                    |                         | 16.3                            | 29.8        | 13.5        |
|                 | Non HT/VHT20, 6 to 54 Mbps              | 2             | 4                                | 16.3                    | 15.8                    | 19.1                            | 29.8        | 10.7        |
|                 | Non HT/VHT20 Beam Forming, 6 to 54 Mbps | 2             | 7                                | 16.3                    | 15.8                    | 19.1                            | 28.8        | 9.7         |
| 5220            | HT/VHT20, M0 to M7                      | 1             | 4                                | 16.3                    |                         | 16.3                            | 29.8        | 13.5        |
| 52              | HT/VHT20, M0 to M7                      | 2             | 4                                | 16.3                    | 15.8                    | 19.1                            | 29.8        | 10.7        |
|                 | HT/VHT20, M8 to M15                     | 2             | 4                                | 16.3                    | 15.8                    | 19.1                            | 29.8        | 10.7        |
|                 | HT/VHT20 Beam Forming, M0 to M7         | 2             | 7                                | 16.3                    | 15.8                    | 19.1                            | 28.8        | 9.7         |
|                 | HT/VHT20 Beam Forming, M8 to M15        | 2             | 4                                | 16.3                    | 15.8                    | 19.1                            | 29.8        | 10.7        |
|                 | Page                                    | <b>Jo</b> . 1 | 9 of 59                          |                         |                         |                                 |             |             |

Page No: 19 of 59

|      | HT/VHT20 STBC, M0 to M7                 | 2 | 4 | 16.3 | 15.8 | 19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.8 | 10.7 |
|------|-----------------------------------------|---|---|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
|      |                                         |   |   |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |
|      | Non HT/VHT40, 6 to 54 Mbps              | 1 | 4 | 16.3 |      | 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.8 | 13.5 |
|      | Non HT/VHT40, 6 to 54 Mbps              | 2 | 4 | 16.3 | 15.5 | 18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.8 | 10.9 |
|      | HT/VHT40, M0 to M7                      | 1 | 4 | 16.6 |      | 16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.8 | 13.2 |
| 5230 | HT/VHT40, M0 to M7                      | 2 | 4 | 16.6 | 16.0 | 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.8 | 10.5 |
| 52   | HT/VHT40, M8 to M15                     | 2 | 4 | 16.6 | 16.0 | 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.8 | 10.5 |
|      | HT/VHT40 Beam Forming, M0 to M7         | 2 | 7 | 16.6 | 16.0 | 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.8 | 9.5  |
|      | HT/VHT40 Beam Forming, M8 to M15        | 2 | 4 | 16.6 | 16.0 | 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.8 | 10.5 |
|      | HT/VHT40 STBC, M0 to M7                 | 2 | 4 | 16.6 | 16.0 | 16.3       29.8       13         5.5       18.9       29.8       10         16.6       29.8       13         6.0       19.3       29.8       10         6.0       19.3       29.8       10         6.0       19.3       29.8       10         6.0       19.3       29.8       10         6.0       19.3       29.8       10         6.0       19.3       29.8       10         6.0       19.3       29.8       10         6.0       19.3       29.8       10         6.0       19.3       29.8       10         6.0       19.3       29.8       10         6.2       19.4       29.8       10         6.2       19.4       29.8       10         6.2       19.4       29.8       10         6.2       19.4       29.8       10         6.2       19.4       29.8       10         6.2       19.4       29.8       10         6.2       19.4       29.8       10         6.2       19.4       29.8       10         6.2       19.4 <t< td=""><td>10.5</td></t<> | 10.5 |      |
|      |                                         |   |   |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |
|      | Non HT/VHT20, 6 to 54 Mbps              | 1 | 4 | 16.6 |      | 16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.8 | 13.2 |
|      | Non HT/VHT20, 6 to 54 Mbps              | 2 | 4 | 16.6 | 16.2 | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.8 | 10.4 |
|      | Non HT/VHT20 Beam Forming, 6 to 54 Mbps | 2 | 7 | 16.6 | 16.2 | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.8 | 9.4  |
| 0    | HT/VHT20, M0 to M7                      | 1 | 4 | 16.6 |      | 16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.8 | 13.2 |
| 5240 | HT/VHT20, M0 to M7                      | 2 | 4 | 16.6 | 16.2 | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.8 | 10.4 |
| LC)  | HT/VHT20, M8 to M15                     | 2 | 4 | 16.6 | 16.2 | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.8 | 10.4 |
|      | HT/VHT20 Beam Forming, M0 to M7         | 2 | 7 | 16.6 | 16.2 | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.8 | 9.4  |
|      | HT/VHT20 Beam Forming, M8 to M15        | 2 | 4 | 16.6 | 16.2 | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.8 | 10.4 |
|      | HT/VHT20 STBC, M0 to M7                 | 2 | 4 | 16.6 | 16.2 | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.8 | 10.4 |

սիսիւ

cisco

Page No: 20 of 59

## Maximum Transmit Output Power, 5240 MHz, Non HT/VHT20 Beam Forming, 6 to 54 Mbps



Radio Std: None Center Freg 5.24000 000 GHz Avg|Hold: 100/100 Radio Device: BTS 5.2418 G 5.5725 di Ref 30.00 dBn **→**<sup>1</sup> Center Free 5.240 Center 5.24 GHz Res BW 1 MHz Span 40 MHz #Sweep 100 ms CFS #VBW 3 MHz Channel Power **Power Spectral Density** Freq Off 16.20 dBm / 21.98 MHz -57.22 dBm /Hz

Antenna B

Page No: 21 of 59

Power Spectral Density

| Frequency (MHz) | Mode                                    | Tx Paths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Correlated Antenna<br>Gain (dBi) | Tx 1 PSD (dBm/MHz) | Tx 2 PSD (dBm/MHz) | Total PSD (dBm/MHz) | Limit (dBm/MHz) | Margin (dB) |
|-----------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------|--------------------|---------------------|-----------------|-------------|
|                 | Non HT/VHT20, 6 to 54 Mbps              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                | 5.5                |                    | 5.5                 | 16.8            | 11.3        |
|                 | Non HT/VHT20, 6 to 54 Mbps              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                | 4.8                | 4.1                | 7.5                 | 15.8            | 8.3         |
|                 | Non HT/VHT20 Beam Forming, 6 to 54 Mbps | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                | 3.6                | 3.2                | 6.4                 | 15.8            | 9.4         |
| 0               | HT/VHT20, M0 to M7                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                | 4.4                |                    | 4.4                 | 16.8            | 12.4        |
| 5180            | HT/VHT20, M0 to M7                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                | 3.3                | 2.8                | 6.1                 | 15.8            | 9.7         |
| 2               | HT/VHT20, M8 to M15                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                | 3.3                | 2.8                | 6.1                 | 16.8            | 10.7        |
|                 | HT/VHT20 Beam Forming, M0 to M7         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                | 2.6                | 1.9                | 5.3                 | 15.8            | 10.5        |
|                 | HT/VHT20 Beam Forming, M8 to M15        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                | 3.3                | 2.8                | 6.1                 | 16.8            | 10.7        |
|                 | HT/VHT20 STBC, M0 to M7                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                | 3.3                | 2.8                | 6.1                 | 16.8            | 10.7        |
|                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                    |                    |                     |                 |             |
|                 | Non HT/VHT40, 6 to 54 Mbps              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                | 0.6                |                    | 0.6                 | 16.8            | 16.2        |
|                 | Non HT/VHT40, 6 to 54 Mbps              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                | 0.6                | -0.5               | 3.1                 | 15.8            | 12.7        |
|                 | HT/VHT40, M0 to M7                      | Image       Image <th< td=""><td>17.1</td></th<> | 17.1                             |                    |                    |                     |                 |             |
| 06              | HT/VHT40, M0 to M7                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                | -0.3               | -1.3               | 2.2                 | 15.8            | 13.6        |
| 51              | HT/VHT40, M8 to M15                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                | -0.3               | -1.3               | 2.2                 | 16.8            | 14.6        |
|                 | HT/VHT40 Beam Forming, M0 to M7         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                | -2.3               | -3.3               | 0.2                 | 15.8            | 15.6        |
|                 | HT/VHT40 Beam Forming, M8 to M15        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                | -0.3               | -1.3               | 2.2                 | 16.8            | 14.6        |
|                 | HT/VHT40 STBC, M0 to M7                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                | -0.3               | -1.3               | 2.2                 | 16.8            | 14.6        |
|                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                    |                    |                     |                 |             |
|                 | Non VHT80, 6 to 54 Mbps                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                | -4.0               |                    | -4.0                | 16.2            | 20.2        |
|                 | Non VHT80, 6 to 54 Mbps                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                | -5.1               | -5.4               | -2.2                | 15.2            | 17.4        |
|                 | VHT80, M0 to M9 1ss                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                | -5.0               |                    | -5.0                | 16.2            | 21.2        |
| 5210            | VHT80, M0 to M9 1ss                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                | -5.0               | -5.3               | -2.1                | 15.2            | 17.3        |
| 52              | VHT80, M0 to M9 2ss                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                | -5.0               | -5.3               | -2.1                | 16.2            | 18.3        |
|                 | VHT80 Beam Forming, M0 to M9 1ss        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                | -7.8               | -8.3               | -5.0                | 15.2            | 20.2        |
|                 | VHT80 Beam Forming, M0 to M9 2ss        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                | -5.0               | -5.3               | -2.1                | 16.2            | 18.3        |
|                 | VHT80 STBC, M0 to M9 1ss                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                | -5.0               | -5.3               | -2.1                | 16.2            | 18.3        |
|                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                    |                    |                     |                 |             |
|                 | Non HT/VHT20, 6 to 54 Mbps              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  | 5.5                |                    | 5.5                 | 16.8            | 11.3        |
|                 | Non HT/VHT20, 6 to 54 Mbps              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                | 5.5                | 5.3                | 8.4                 | 15.8            | 7.4         |
| 0               | Non HT/VHT20 Beam Forming, 6 to 54 Mbps | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                | 5.5                | 5.3                | 8.4                 | 15.8            | 7.4         |
| 5220            | HT/VHT20, M0 to M7                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                | 5.2                |                    | 5.2                 | 16.8            | 11.6        |
| ц)<br>Ц)        | HT/VHT20, M0 to M7                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                | 5.2                | 4.9                | 8.1                 | 15.8            | 7.7         |
|                 | HT/VHT20, M8 to M15                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                | 5.2                | 4.9                | 8.1                 | 16.8            | 8.7         |
|                 | HT/VHT20 Beam Forming, M0 to M7         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                | 5.2                | 4.9                | 8.1                 | 15.8            | 7.7         |

Page No: 22 of 59

|      | HT/VHT20 Beam Forming, M8 to M15        | 2 | 4 | 5.2 | 4.9 | 8.1 | 16.8 | 8.7  |
|------|-----------------------------------------|---|---|-----|-----|-----|------|------|
|      | HT/VHT20 STBC, M0 to M7                 | 2 | 4 | 5.2 | 4.9 | 8.1 | 16.8 | 8.7  |
|      |                                         | _ |   | _   |     | _   | _    | _    |
|      | Non HT/VHT40, 6 to 54 Mbps              | 1 | 4 | 3.5 |     | 3.5 | 16.8 | 13.3 |
|      | Non HT/VHT40, 6 to 54 Mbps              | 2 | 7 | 3.5 | 3.1 | 6.3 | 15.8 | 9.5  |
|      | HT/VHT40, M0 to M7                      | 1 | 4 | 3.0 |     | 3.0 | 16.8 | 13.8 |
| 5230 | HT/VHT40, M0 to M7                      | 2 | 7 | 3.0 | 2.3 | 5.7 | 15.8 | 10.1 |
| 52   | HT/VHT40, M8 to M15                     | 2 | 4 | 3.0 | 2.3 | 5.7 | 16.8 | 11.1 |
|      | HT/VHT40 Beam Forming, M0 to M7         | 2 | 7 | 3.0 | 2.3 | 5.7 | 15.8 | 10.1 |
|      | HT/VHT40 Beam Forming, M8 to M15        | 2 | 4 | 3.0 | 2.3 | 5.7 | 16.8 | 11.1 |
|      | HT/VHT40 STBC, M0 to M7                 | 2 | 4 | 3.0 | 2.3 | 5.7 | 16.8 | 11.1 |
|      |                                         |   |   |     |     |     |      |      |
|      | Non HT/VHT20, 6 to 54 Mbps              | 1 | 4 | 5.7 |     | 5.7 | 16.8 | 11.1 |
|      | Non HT/VHT20, 6 to 54 Mbps              | 2 | 7 | 5.7 | 5.6 | 8.7 | 15.8 | 7.1  |
|      | Non HT/VHT20 Beam Forming, 6 to 54 Mbps | 2 | 7 | 5.7 | 5.6 | 8.7 | 15.8 | 7.1  |
| 0    | HT/VHT20, M0 to M7                      | 1 | 4 | 5.4 |     | 5.4 | 16.8 | 11.4 |
| 5240 | HT/VHT20, M0 to M7                      | 2 | 7 | 5.4 | 5.4 | 8.4 | 15.8 | 7.4  |
| 4    | HT/VHT20, M8 to M15                     | 2 | 4 | 5.4 | 5.4 | 8.4 | 16.8 | 8.4  |
|      | HT/VHT20 Beam Forming, M0 to M7         | 2 | 7 | 5.4 | 5.4 | 8.4 | 15.8 | 7.4  |
|      | HT/VHT20 Beam Forming, M8 to M15        | 2 | 4 | 5.4 | 5.4 | 8.4 | 16.8 | 8.4  |
|      | HT/VHT20 STBC, M0 to M7                 | 2 | 4 | 5.4 | 5.4 | 8.4 | 16.8 | 8.4  |

սիսիւ

Page No: 23 of 59

# Power Spectral Density, 5240 MHz, Non HT/VHT20, 6 to 54 Mbps

|           | Trig: Free Run | 000000 GHz<br>Avg Hold: 100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Radio Std: None<br>Radio Device: BTS                                                                                        | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Briten: 10 0D  | Mkr1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| /         |                | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             | Center Free<br>5.240000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Spap (0 MHz                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #Sweep 100 ms                                                                                                               | CF Step<br>4.000000 MH:<br><u>Auto</u> Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| / 30.11 M |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                             | Freq Offse<br>0 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | m m            | D GHz<br>#rGalstow<br>#rGalstow<br>#weight of the second sec | Center Prez: 5:2000000 of Hz<br>#FGehtLow<br>Tig: Pres Run<br>ZATER: 20 dB<br>MKr1<br>m<br>SVBW 3 MHz<br>Power Spectral Den | Center Prez: 6:20000000 of Hz<br>BrGaltLow<br>Tig: Pres Run<br>AugiHati: 00100<br>BAtter: 20 dB<br>Mkrt 15:2000<br>Mkrt 5:7369 dBm<br>5:7369 dBm<br>3:769 dBm<br>5:7369 dBm<br>5:7569 |

| Center Free              | q 5.240000000 C | GCRREC<br>GHZ<br>RFGain:Low | SENSE: INT<br>Center Freq: 5.2400<br>Trig: Free Run<br>#Atten: 20 dB | Avg Hold: 1 | 100/100    | Radio Std        |                      | Frequency                       |
|--------------------------|-----------------|-----------------------------|----------------------------------------------------------------------|-------------|------------|------------------|----------------------|---------------------------------|
| 15 dB/div                | Ref 30.00 dBm   |                             |                                                                      |             | М          | kr1 5.24<br>5.57 | 18 GHz<br>25 dBm     |                                 |
| Log<br>15.0<br>0.00      |                 |                             |                                                                      |             |            |                  |                      | Center Fre<br>5.240000000 GP    |
| -15.0<br>-30.0<br>-45.0  |                 |                             |                                                                      |             | <b>A A</b> |                  |                      |                                 |
| 60.0<br>75.0             |                 |                             |                                                                      |             |            |                  |                      |                                 |
| -105                     |                 |                             |                                                                      |             |            |                  |                      |                                 |
| Center 5.24<br>#Res BW 1 |                 |                             | #VBW 3 M                                                             | Hz          |            |                  | n 40 MHz<br>p 100 ms | CF Sto<br>4.000000 MI<br>Auto M |
| Channe                   | Power           |                             | Powe                                                                 | r Spectra   | I Dens     | sity             |                      |                                 |
| 16                       | 6.20 dBm /      | 21.98 MH                    | z                                                                    | -57.22 (    | dBm        | /Hz              |                      | Freq Offs<br>0                  |
|                          |                 |                             |                                                                      |             |            |                  |                      |                                 |
|                          |                 |                             |                                                                      |             |            |                  |                      |                                 |
| 193                      |                 |                             |                                                                      |             | STATU      | 15               |                      |                                 |

Antenna B

Page No: 24 of 59

Antenna A

# A.3 Conducted Spurious Emissions

**15.407** (b) *Undesirable emission limits*. Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits: (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

### **Test Procedure**

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r03 ANSI C63.10: 2013

#### **Conducted Spurious Emissions**

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode. Use the procedures in KDB 789033 D02 General UNII Test Procedures New Rules v01r03 to substitute conducted measurements in place of radiated measurements.

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Record the marker waveform peak to spur difference. Also measure any emissions in the restricted bands.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the

measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded.

6. Capture graphs and record pertinent measurement data.

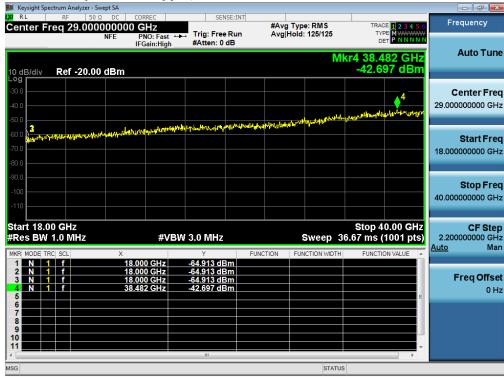
### Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r03

| ANSI C63.10: 2013 section 12.7.7.3 (average) & 12.7.6 (peak) |
|--------------------------------------------------------------|
| Conducted Spurious Emissions                                 |
| Test parameters                                              |
| Span = 30MHz to 18GHz / 18GHz to 40GHz                       |
| RBW = 1 MHz                                                  |
| VBW ≥ 3 x RBW for Peak, 1kHz for Average                     |
| Sweep = Auto couple                                          |
| Detector = Peak                                              |
| Trace = Max Hold.                                            |

| System<br>Number | Description | Samples | System under test | Support<br>equipment |
|------------------|-------------|---------|-------------------|----------------------|
|                  | EUT         | S01     | V                 |                      |
| 1                | Support     | S02     |                   | $\checkmark$         |

| Test Des It DAGO |                       |
|------------------|-----------------------|
| Chris Blair      | 21-Dec-17 - 05-Jan-18 |
| Tested By :      | Date of testing:      |

Test Result : PASS


See Appendix C for list of test equipment

Page No: 25 of 59

| 📕 Keysight Spectrum Analyzer - Swept SA   |                                                    |                                                  |            |             |           |                                        |                                                      |
|-------------------------------------------|----------------------------------------------------|--------------------------------------------------|------------|-------------|-----------|----------------------------------------|------------------------------------------------------|
| RL RF 50 Ω DC     Center Freq 29.00000000 | CORREC                                             | SENSE:INT                                        | #Avg Type  |             | TRAC      | E 1 2 3 4 5 6                          | Frequency                                            |
| 10 dB/div Ref -20.00 dBm                  | PNO: Fast +++ Tri                                  | ig: Free Run<br>tten: 0 dB                       | Avg Hold:  |             | r4 38.9   | 22 GHz                                 | Auto Tune                                            |
| -40.0                                     |                                                    |                                                  |            |             |           |                                        | Center Freq<br>29.000000000 GHz                      |
| -60.0<br>-70.0<br>-80.0                   |                                                    |                                                  |            |             |           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <b>Start Freq</b><br>18.000000000 GHz                |
| -90.0<br>-100<br>-110                     |                                                    |                                                  |            |             |           |                                        | <b>Stop Freq</b><br>40.000000000 GHz                 |
| Start 18.00 GHz<br>#Res BW 1.0 MHz        | #VBW 3.0                                           |                                                  |            | weep 36     | .67 ms (′ |                                        | <b>CF Step</b><br>2.200000000 GHz<br><u>Auto</u> Man |
| 2 N 1 f 11<br>3 N 1 f 11                  | 8.022 GHz -82.<br>8.022 GHz -82.<br>8.022 GHz -82. | Y FU<br>899 dBm<br>899 dBm<br>899 dBm<br>766 dBm | NCTION FUN | CTION WIDTH | FUNCTIO   | N VALUE                                | <b>Freq Offset</b><br>0 Hz                           |
| 7<br>8<br>9<br>10<br>11                   |                                                    |                                                  |            |             |           |                                        |                                                      |
| MSG                                       |                                                    |                                                  |            | STATUS      |           |                                        |                                                      |

### Conducted Spurs Average Upper, All Antennas

# Conducted Spurs Peak Upper, All Antennas



Page No: 26 of 59

| Frequency (MHz) | Mode                                    | Tx Paths | Correlated Antenna<br>Gain (dBi) | Tx 1 Spur Power<br>(dBm) | Tx 2 Spur Power<br>(dBm) | Total Conducted Spur<br>(dBm) | Limit (dBm) | Margin (dB) |
|-----------------|-----------------------------------------|----------|----------------------------------|--------------------------|--------------------------|-------------------------------|-------------|-------------|
|                 | Non HT/VHT20, 6 to 54 Mbps              | 1        | 4                                | -65.2                    |                          | -61.2                         | -41.45      | 19.8        |
|                 | Non HT/VHT20, 6 to 54 Mbps              | 2        | 4                                | -65.2                    | -67.1                    | -59.0                         | -41.45      | 17.6        |
|                 | Non HT/VHT20 Beam Forming, 6 to 54 Mbps | 2        | 7                                | -66.0                    | -67.0                    | -56.5                         | -41.45      | 15.0        |
|                 | HT/VHT20, M0 to M7                      | 1        | 4                                | -66.1                    | 0.10                     | -62.1                         | -41.45      | 20.7        |
| 5180            | HT/VHT20, M0 to M7                      | 2        | 4                                | -66.0                    | -67.1                    | -59.5                         | -41.45      | 18.1        |
| Ω,              | HT/VHT20, M8 to M15                     | 2        | 4                                | -66.0                    | -67.1                    | -59.5                         | -41.45      | 18.1        |
|                 | HT/VHT20 Beam Forming, M0 to M7         | 2        | 7                                | -66.0                    | -67.0                    | -56.5                         | -41.45      | 15.0        |
|                 | HT/VHT20 Beam Forming, M8 to M15        | 2        | 4                                | -66.0                    | -67.1                    | -59.5                         | -41.45      | 18.1        |
|                 | HT/VHT20 STBC, M0 to M7                 | 2        | 4                                | -66.0                    | -67.1                    | -59.5                         | -41.45      | 18.1        |
|                 |                                         |          |                                  |                          |                          |                               |             |             |
|                 | Non HT/VHT40, 6 to 54 Mbps              | 1        | 4                                | -66.2                    |                          | -62.2                         | -41.45      | 20.8        |
|                 | Non HT/VHT40, 6 to 54 Mbps              | 2        | 4                                | -66.2                    | -67.4                    | -59.7                         | -41.45      | 18.3        |
|                 | HT/VHT40, M0 to M7                      | 1        | 4                                | -66.5                    |                          | -62.5                         | -41.45      | 21.1        |
| 00              | HT/VHT40, M0 to M7                      | 2        | 4                                | -66.5                    | -67.5                    | -60.0                         | -41.45      | 18.5        |
| 5190            | HT/VHT40, M8 to M15                     | 2        | 4                                | -66.5                    | -67.5                    | -60.0                         | -41.45      | 18.5        |
|                 | HT/VHT40 Beam Forming, M0 to M7         | 2        | 7                                | -66.2                    | -67.5                    | -56.8                         | -41.45      | 15.3        |
|                 | HT/VHT40 Beam Forming, M8 to M15        | 2        | 4                                | -66.5                    | -67.5                    | -60.0                         | -41.45      | 18.5        |
|                 | HT/VHT40 STBC, M0 to M7                 | 2        | 4                                | -66.5                    | -67.5                    | -60.0                         | -41.45      | 18.5        |
|                 |                                         |          |                                  |                          |                          |                               |             |             |
|                 | Non VHT80, 6 to 54 Mbps                 | 1        | 4                                | -64.8                    |                          | -60.8                         | -42.10      | 18.7        |
|                 | Non VHT80, 6 to 54 Mbps                 | 2        | 4                                | -64.5                    | -66.1                    | -58.2                         | -42.10      | 16.1        |
|                 | VHT80, M0 to M9 1ss                     | 1        | 4                                | -65.0                    |                          | -61.0                         | -42.10      | 18.9        |
| 210             | VHT80, M0 to M9 1ss                     | 2        | 4                                | -65.0                    | -66.7                    | -58.8                         | -42.10      | 16.7        |
| 52              | VHT80, M0 to M9 2ss                     | 2        | 4                                | -65.0                    | -66.7                    | -58.8                         | -42.10      | 16.7        |
|                 | VHT80 Beam Forming, M0 to M9 1ss        | 2        | 7                                | -67.8                    | -68.8                    | -58.3                         | -42.10      | 16.2        |
|                 | VHT80 Beam Forming, M0 to M9 2ss        | 2        | 4                                | -65.0                    | -66.7                    | -58.8                         | -42.10      | 16.7        |
|                 | VHT80 STBC, M0 to M9 1ss                | 2        | 4                                | -65.0                    | -66.7                    | -58.8                         | -42.10      | 16.7        |
|                 |                                         |          | -                                |                          |                          |                               |             |             |
|                 | Non HT/VHT20, 6 to 54 Mbps              | 1        | 4                                | -64.6                    |                          | -60.6                         | -41.45      | 19.2        |
|                 | Non HT/VHT20, 6 to 54 Mbps              | 2        | 4                                | -64.6                    | -64.9                    | -57.7                         | -41.45      | 16.3        |
|                 | Non HT/VHT20 Beam Forming, 6 to 54 Mbps | 2        | 7                                | -64.6                    | -64.9                    | -54.7                         | -41.45      | 13.3        |
| 5220            | HT/VHT20, M0 to M7                      | 1        | 4                                | -64.8                    |                          | -60.8                         | -41.45      | 19.4        |
| 52              | HT/VHT20, M0 to M7                      | 2        | 4                                | -64.8                    | -65.1                    | -57.9                         | -41.45      | 16.5        |
|                 | HT/VHT20, M8 to M15                     | 2        | 4                                | -64.8                    | -65.1                    | -57.9                         | -41.45      | 16.5        |
|                 | HT/VHT20 Beam Forming, M0 to M7         | 2        | 7                                | -64.8                    | -65.1                    | -54.9                         | -41.45      | 13.5        |
|                 | HT/VHT20 Beam Forming, M8 to M15        | 2        | 4                                | -64.8                    | -65.1                    | -57.9                         | -41.45      | 16.5        |

Page No: 27 of 59

|      |                                         | • | 4 | 04.0  | 05.4  | 57.0  | 44.45  | 40.5 |
|------|-----------------------------------------|---|---|-------|-------|-------|--------|------|
|      | HT/VHT20 STBC, M0 to M7                 | 2 | 4 | -64.8 | -65.1 | -57.9 | -41.45 | 16.5 |
|      |                                         | - |   |       | -     |       |        |      |
|      | Non HT/VHT40, 6 to 54 Mbps              | 1 | 4 | -65.0 |       | -61.0 | -41.45 | 19.6 |
|      | Non HT/VHT40, 6 to 54 Mbps              | 2 | 4 | -65.0 | -67.0 | -58.9 | -41.45 | 17.4 |
|      | HT/VHT40, M0 to M7                      | 1 | 4 | -65.4 |       | -61.4 | -41.45 | 20.0 |
| 5230 | HT/VHT40, M0 to M7                      | 2 | 4 | -65.4 | -65.0 | -58.2 | -41.45 | 16.7 |
| 52   | HT/VHT40, M8 to M15                     | 2 | 4 | -65.4 | -65.0 | -58.2 | -41.45 | 16.7 |
|      | HT/VHT40 Beam Forming, M0 to M7         | 2 | 7 | -65.4 | -65.0 | -55.2 | -41.45 | 13.7 |
|      | HT/VHT40 Beam Forming, M8 to M15        | 2 | 4 | -65.4 | -65.0 | -58.2 | -41.45 | 16.7 |
|      | HT/VHT40 STBC, M0 to M7                 | 2 | 4 | -65.4 | -65.0 | -58.2 | -41.45 | 16.7 |
|      |                                         |   |   |       |       |       |        |      |
|      | Non HT/VHT20, 6 to 54 Mbps              | 1 | 4 | -65.1 |       | -61.1 | -41.45 | 19.7 |
|      | Non HT/VHT20, 6 to 54 Mbps              | 2 | 4 | -65.1 | -64.9 | -58.0 | -41.45 | 16.5 |
|      | Non HT/VHT20 Beam Forming, 6 to 54 Mbps | 2 | 7 | -65.1 | -64.9 | -55.0 | -41.45 | 13.5 |
|      | HT/VHT20, M0 to M7                      | 1 | 4 | -65.0 |       | -61.0 | -41.45 | 19.6 |
| 5240 | HT/VHT20, M0 to M7                      | 2 | 4 | -65.0 | -64.7 | -57.8 | -41.45 | 16.4 |
| LC)  | HT/VHT20, M8 to M15                     | 2 | 4 | -65.0 | -64.7 | -57.8 | -41.45 | 16.4 |
|      | HT/VHT20 Beam Forming, M0 to M7         | 2 | 7 | -65.0 | -64.7 | -54.8 | -41.45 | 13.4 |
|      | HT/VHT20 Beam Forming, M8 to M15        | 2 | 4 | -65.0 | -64.7 | -57.8 | -41.45 | 16.4 |
|      | HT/VHT20 STBC, M0 to M7                 | 2 | 4 | -65.0 | -64.7 | -57.8 | -41.45 | 16.4 |

սիսիւ

cisco

Page No: 28 of 59

# Conducted Spurs Average, 5220 MHz, Non HT/VHT20 Beam Forming, 6 to 54 Mbps





Antenna B

Page No: 29 of 59

Antenna A

| Frequency (MHz) | Mode                                    | Tx Paths | Correlated Antenna<br>Gain (dBi) | Tx 1 Spur Power<br>(dBm) | Tx 2 Spur Power<br>(dBm) | Total Conducted Spur<br>(dBm) | Limit (dBm) | Margin (dB) |
|-----------------|-----------------------------------------|----------|----------------------------------|--------------------------|--------------------------|-------------------------------|-------------|-------------|
|                 | Non HT/VHT20, 6 to 54 Mbps              | 1        | 4                                | -54.8                    |                          | -50.8                         | -21.45      | 29.4        |
|                 | Non HT/VHT20, 6 to 54 Mbps              | 2        | 4                                | -54.7                    | -56.6                    | -48.5                         | -21.45      | 27.1        |
|                 | Non HT/VHT20 Beam Forming, 6 to 54 Mbps | 2        | 7                                | -55.4                    | -56.4                    | -45.9                         | -21.45      | 24.4        |
| 0               | HT/VHT20, M0 to M7                      | 1        | 4                                | -55.3                    |                          | -51.3                         | -21.45      | 29.9        |
| 5180            | HT/VHT20, M0 to M7                      | 2        | 4                                | -55.4                    | -56.0                    | -48.7                         | -21.45      | 27.2        |
| 2,              | HT/VHT20, M8 to M15                     | 2        | 4                                | -55.4                    | -56.0                    | -48.7                         | -21.45      | 27.2        |
|                 | HT/VHT20 Beam Forming, M0 to M7         | 2        | 7                                | -54.9                    | -56.5                    | -45.6                         | -21.45      | 24.2        |
|                 | HT/VHT20 Beam Forming, M8 to M15        | 2        | 4                                | -55.4                    | -56.0                    | -48.7                         | -21.45      | 27.2        |
|                 | HT/VHT20 STBC, M0 to M7                 | 2        | 4                                | -55.4                    | -56.0                    | -48.7                         | -21.45      | 27.2        |
|                 |                                         |          |                                  |                          |                          |                               |             |             |
|                 | Non HT/VHT40, 6 to 54 Mbps              | 1        | 4                                | -55.5                    |                          | -51.5                         | -21.45      | 30.1        |
|                 | Non HT/VHT40, 6 to 54 Mbps              | 2        | 4                                | -55.5                    | -56.8                    | -49.1                         | -21.45      | 27.6        |
|                 | HT/VHT40, M0 to M7                      | 1        | 4                                | -55.4                    |                          | -51.4                         | -21.45      | 30.0        |
| 5190            | HT/VHT40, M0 to M7                      | 2        | 4                                | -55.4                    | -56.6                    | -48.9                         | -21.45      | 27.5        |
| 51              | HT/VHT40, M8 to M15                     | 2        | 4                                | -55.4                    | -56.6                    | -48.9                         | -21.45      | 27.5        |
|                 | HT/VHT40 Beam Forming, M0 to M7         | 2        | 7                                | -55.2                    | -57.0                    | -46.0                         | -21.45      | 24.5        |
|                 | HT/VHT40 Beam Forming, M8 to M15        | 2        | 4                                | -55.4                    | -56.6                    | -48.9                         | -21.45      | 27.5        |
|                 | HT/VHT40 STBC, M0 to M7                 | 2        | 4                                | -55.4                    | -56.6                    | -48.9                         | -21.45      | 27.5        |
|                 |                                         |          |                                  |                          |                          |                               |             |             |
|                 | Non VHT80, 6 to 54 Mbps                 | 1        | 4                                | -52.2                    |                          | -48.2                         | -22.10      | 26.1        |
|                 | Non VHT80, 6 to 54 Mbps                 | 2        | 4                                | -53.1                    | -54.8                    | -46.9                         | -22.10      | 24.8        |
|                 | VHT80, M0 to M9 1ss                     | 1        | 4                                | -53.0                    |                          | -49.0                         | -22.10      | 26.9        |
| 210             | VHT80, M0 to M9 1ss                     | 2        | 4                                | -53.0                    | -55.3                    | -47.0                         | -22.10      | 24.9        |
| 52              | VHT80, M0 to M9 2ss                     | 2        | 4                                | -53.0                    | -55.3                    | -47.0                         | -22.10      | 24.9        |
|                 | VHT80 Beam Forming, M0 to M9 1ss        | 2        | 7                                | -54.9                    | -56.3                    | -45.5                         | -22.10      | 23.4        |
|                 | VHT80 Beam Forming, M0 to M9 2ss        | 2        | 4                                | -53.0                    | -55.3                    | -47.0                         | -22.10      | 24.9        |
|                 | VHT80 STBC, M0 to M9 1ss                | 2        | 4                                | -53.0                    | -55.3                    | -47.0                         | -22.10      | 24.9        |
|                 |                                         |          |                                  |                          |                          |                               |             |             |
|                 | Non HT/VHT20, 6 to 54 Mbps              | 1        | 4                                | -54.3                    |                          | -50.3                         | -21.45      | 28.9        |
|                 | Non HT/VHT20, 6 to 54 Mbps              | 2        | 4                                | -54.3                    | -53.8                    | -47.0                         | -21.45      | 25.6        |
|                 | Non HT/VHT20 Beam Forming, 6 to 54 Mbps | 2        | 7                                | -54.3                    | -53.8                    | -44.0                         | -21.45      | 22.6        |
| 5220            | HT/VHT20, M0 to M7                      | 1        | 4                                | -53.3                    |                          | -49.3                         | -21.45      | 27.9        |
| 52              | HT/VHT20, M0 to M7                      | 2        | 4                                | -53.3                    | -53.9                    | -46.6                         | -21.45      | 25.1        |
|                 | HT/VHT20, M8 to M15                     | 2        | 4                                | -53.3                    | -53.9                    | -46.6                         | -21.45      | 25.1        |
|                 | HT/VHT20 Beam Forming, M0 to M7         | 2        | 7                                | -53.3                    | -53.9                    | -43.6                         | -21.45      | 22.1        |
|                 | HT/VHT20 Beam Forming, M8 to M15        | 2        | 4                                | -53.3                    | -53.9                    | -46.6                         | -21.45      | 25.1        |

Page No: 30 of 59

|      |                                         |   |   |       |       | 10.0  | o      | 0.7.4 |
|------|-----------------------------------------|---|---|-------|-------|-------|--------|-------|
|      | HT/VHT20 STBC, M0 to M7                 | 2 | 4 | -53.3 | -53.9 | -46.6 | -21.45 | 25.1  |
|      |                                         | - | - | -     | -     | -     | -      | _     |
|      | Non HT/VHT40, 6 to 54 Mbps              | 1 | 4 | -53.7 |       | -49.7 | -21.45 | 28.3  |
|      | Non HT/VHT40, 6 to 54 Mbps              | 2 | 4 | -53.7 | -56.4 | -47.8 | -21.45 | 26.4  |
|      | HT/VHT40, M0 to M7                      | 1 | 4 | -53.8 |       | -49.8 | -21.45 | 28.4  |
| 5230 | HT/VHT40, M0 to M7                      | 2 | 4 | -53.8 | -53.4 | -46.6 | -21.45 | 25.1  |
| 52   | HT/VHT40, M8 to M15                     | 2 | 4 | -53.8 | -53.4 | -46.6 | -21.45 | 25.1  |
|      | HT/VHT40 Beam Forming, M0 to M7         | 2 | 7 | -53.8 | -53.4 | -43.6 | -21.45 | 22.1  |
|      | HT/VHT40 Beam Forming, M8 to M15        | 2 | 4 | -53.8 | -53.4 | -46.6 | -21.45 | 25.1  |
|      | HT/VHT40 STBC, M0 to M7                 | 2 | 4 | -53.8 | -53.4 | -46.6 | -21.45 | 25.1  |
|      |                                         |   |   |       |       |       |        |       |
|      | Non HT/VHT20, 6 to 54 Mbps              | 1 | 4 | -53.6 |       | -49.6 | -21.45 | 28.2  |
|      | Non HT/VHT20, 6 to 54 Mbps              | 2 | 4 | -53.6 | -53.7 | -46.6 | -21.45 | 25.2  |
|      | Non HT/VHT20 Beam Forming, 6 to 54 Mbps | 2 | 7 | -53.6 | -53.7 | -43.6 | -21.45 | 22.2  |
|      | HT/VHT20, M0 to M7                      | 1 | 4 | -54.2 |       | -50.2 | -21.45 | 28.8  |
| 5240 | HT/VHT20, M0 to M7                      | 2 | 4 | -54.2 | -53.7 | -46.9 | -21.45 | 25.5  |
| LC)  | HT/VHT20, M8 to M15                     | 2 | 4 | -54.2 | -53.7 | -46.9 | -21.45 | 25.5  |
|      | HT/VHT20 Beam Forming, M0 to M7         | 2 | 7 | -54.2 | -53.7 | -43.9 | -21.45 | 22.5  |
|      | HT/VHT20 Beam Forming, M8 to M15        | 2 | 4 | -54.2 | -53.7 | -46.9 | -21.45 | 25.5  |
|      | HT/VHT20 STBC, M0 to M7                 | 2 | 4 | -54.2 | -53.7 | -46.9 | -21.45 | 25.5  |

սիսիւ

cisco

Page No: 31 of 59

# Conducted Spurs Peak, 5220 MHz, HT/VHT20 Beam Forming, M0 to M7





Antenna B

Page No: 32 of 59

# A.4 Conducted Band Edge

**15.205 / 15.209** - Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). Use formula below to substitute conducted measurements in place of radiated measurements

E[dBµV/m] = EIRP[dBm] - 20 log(d[meters]) + 104.77, where E = field strength and d = 3 meter

1) Average Plot, Limit= -41.25 dBm eirp

2) Peak plot, Limit = -21.25 dBm eirp

### **Test Procedure**

Ref. ANSI C63.10: 2013

## **Conducted Bandedge**

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode. Use the procedures in ANSI C63.10: 2013 to substitute conducted measurements in place of radiated measurements.

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded.

6. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance.

Also measure any emissions in the restricted bands

7. Capture graphs and record pertinent measurement data.

Ref. ANSI C63.10: 2013 section 12.7.6 (peak) & 12.7.7.3 (average, Method VB-A (Alternative))

| Conducted Bandedge                        |
|-------------------------------------------|
| Test parameters restricted Band           |
| RBW = 1 MHz                               |
| VBW ≥ 3 x RBW for Peak, 100Hz for Average |
| Sweep = Auto couple                       |
| Detector = Peak                           |
| Trace = Max Hold.                         |
|                                           |

| System<br>Number | Description | Samples | System under test | Support<br>equipment |  |  |
|------------------|-------------|---------|-------------------|----------------------|--|--|
|                  | EUT         | S01     | V                 |                      |  |  |
| 1                | Support     | S02     |                   | $\checkmark$         |  |  |

| Tested By :        | Date of testing:      |  |  |  |  |
|--------------------|-----------------------|--|--|--|--|
| Chris Blair        | 21-Dec-17 - 05-Jan-18 |  |  |  |  |
| Test Result : PASS |                       |  |  |  |  |

See Appendix C for list of test equipment

Page No: 33 of 59

| Frequency (MHz) | Mode                                    | Tx Paths | Correlated<br>Antenna Gain (dBi) | Tx 1 Bandedge<br>Level (dBm) | Tx 2 Bandedge<br>Level (dBm) | Total Tx Bandedge<br>Level (dBm) | Limit (dBm) | Margin (dB) |
|-----------------|-----------------------------------------|----------|----------------------------------|------------------------------|------------------------------|----------------------------------|-------------|-------------|
|                 | Non HT/VHT20, 6 to 54 Mbps              | 1        | 4                                | -46.0                        |                              | -42.0                            | -41.45      | 0.6         |
|                 | Non HT/VHT20, 6 to 54 Mbps              | 2        | 4                                | -48.1                        | -49.7                        | -41.8                            | -41.45      | 0.4         |
|                 | Non HT/VHT20 Beam Forming, 6 to 54 Mbps | 2        | 7                                | -50.8                        | -52.6                        | -41.6                            | -41.45      | 0.1         |
|                 | HT/VHT20, M0 to M7                      | 1        | 4                                | -47.4                        |                              | -43.4                            | -41.45      | 2.0         |
| 5180            | HT/VHT20, M0 to M7                      | 2        | 4                                | -50.3                        | -52.1                        | -44.1                            | -41.45      | 2.6         |
| 5               | HT/VHT20, M8 to M15                     | 2        | 4                                | -50.3                        | -52.1                        | -44.1                            | -41.45      | 2.6         |
|                 | HT/VHT20 Beam Forming, M0 to M7         | 2        | 7                                | -53.2                        | -54.8                        | -43.9                            | -41.45      | 2.5         |
|                 | HT/VHT20 Beam Forming, M8 to M15        | 2        | 4                                | -50.3                        | -52.1                        | -44.1                            | -41.45      | 2.6         |
|                 | HT/VHT20 STBC, M0 to M7                 | 2        | 4                                | -50.3                        | -52.1                        | -44.1                            | -41.45      | 2.6         |
|                 |                                         |          |                                  |                              |                              |                                  | -           |             |
|                 | Non HT/VHT40, 6 to 54 Mbps              | 1        | 4                                | -48.5                        |                              | -44.5                            | -41.45      | 3.1         |
|                 | Non HT/VHT40, 6 to 54 Mbps              | 2        | 4                                | -48.5                        | -51.1                        | -42.6                            | -41.45      | 1.1         |
|                 | HT/VHT40, M0 to M7                      | 1        | 4                                | -48.3                        |                              | -44.3                            | -41.45      | 2.9         |
| 5190            | HT/VHT40, M0 to M7                      | 2        | 4                                | -48.3                        | -49.7                        | -41.9                            | -41.45      | 0.5         |
| 51              | HT/VHT40, M8 to M15                     | 2        | 4                                | -48.3                        | -49.7                        | -41.9                            | -41.45      | 0.5         |
|                 | HT/VHT40 Beam Forming, M0 to M7         | 2        | 7                                | -52.8                        | -52.2                        | -42.5                            | -41.45      | 1.0         |
|                 | HT/VHT40 Beam Forming, M8 to M15        | 2        | 4                                | -48.3                        | -49.7                        | -41.9                            | -41.45      | 0.5         |
|                 | HT/VHT40 STBC, M0 to M7                 | 2        | 4                                | -48.3                        | -49.7                        | -41.9                            | -41.45      | 0.5         |
|                 |                                         |          | -                                | _                            |                              |                                  |             |             |
|                 | Non VHT80, 6 to 54 Mbps                 | 1        | 4                                | -48.5                        |                              | -44.5                            | -42.10      | 2.4         |
|                 | Non VHT80, 6 to 54 Mbps                 | 2        | 4                                | -49.8                        | -49.3                        | -42.5                            | -42.10      | 0.4         |
| 5210            | VHT80, M0 to M9 1ss                     | 1        | 4                                | -49.4                        |                              | -45.4                            | -42.10      | 3.3         |
|                 | VHT80, M0 to M9 1ss                     | 2        | 4                                | -49.4                        | -49.6                        | -42.5                            | -42.10      | 0.4         |
|                 | VHT80, M0 to M9 2ss                     | 2        | 4                                | -49.4                        | -49.6                        | -42.5                            | -42.10      | 0.4         |
|                 | VHT80 Beam Forming, M0 to M9 1ss        | 2        | 7                                | -53.9                        | -53.1                        | -43.5                            | -42.10      | 1.4         |
|                 | VHT80 Beam Forming, M0 to M9 2ss        | 2        | 4                                | -49.4                        | -49.6                        | -42.5                            | -42.10      | 0.4         |
|                 | VHT80 STBC, M0 to M9 1ss                | 2        | 4                                | -49.4                        | -49.6                        | -42.5                            | -42.10      | 0.4         |

Page No: 34 of 59

# Conducted Bandedge Average, 5180 MHz, Non HT/VHT20 Beam Forming, 6 to 54 Mbps



Antenna A

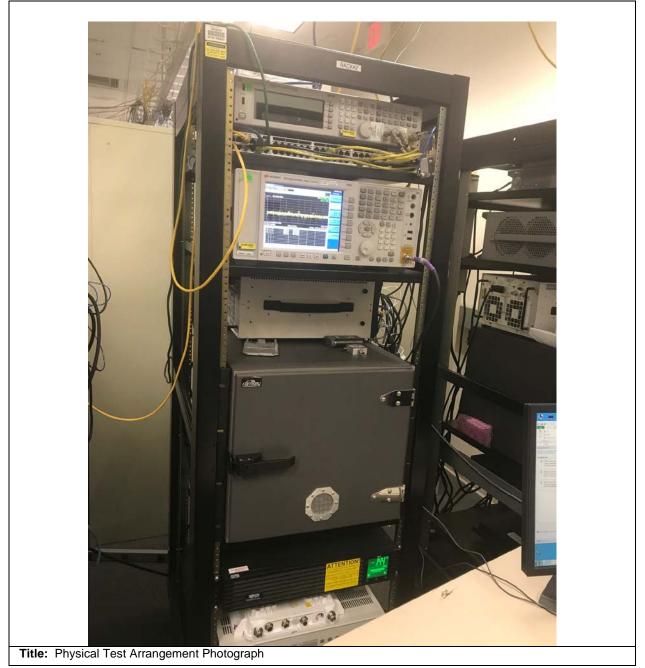



Antenna B

Page No: 35 of 59

| Frequency (MHz) | Mode                                    | Tx Paths | Correlated<br>Antenna Gain (dBi) | Tx 1 Bandedge<br>Level (dBm) | Tx 2 Bandedge<br>Level (dBm) | Total Tx Bandedge<br>Level (dBm) | Limit (dBm) | Margin (dB) |
|-----------------|-----------------------------------------|----------|----------------------------------|------------------------------|------------------------------|----------------------------------|-------------|-------------|
|                 | Non HT/VHT20, 6 to 54 Mbps              | 1        | 4                                | -35.1                        |                              | -31.1                            | -21.45      | 9.7         |
|                 | Non HT/VHT20, 6 to 54 Mbps              | 2        | 4                                | -35.9                        | -33.7                        | -27.7                            | -21.45      | 6.2         |
|                 | Non HT/VHT20 Beam Forming, 6 to 54 Mbps | 2        | 7                                | -40.2                        | -40.4                        | -30.3                            | -21.45      | 8.8         |
| 0               | HT/VHT20, M0 to M7                      | 1        | 4                                | -34.8                        |                              | -30.8                            | -21.45      | 9.4         |
| 5180            | HT/VHT20, M0 to M7                      | 2        | 4                                | -37.1                        | -40.6                        | -31.5                            | -21.45      | 10.0        |
| 5               | HT/VHT20, M8 to M15                     | 2        | 4                                | -37.1                        | -40.6                        | -31.5                            | -21.45      | 10.0        |
|                 | HT/VHT20 Beam Forming, M0 to M7         | 2        | 7                                | -38.8                        | -42.6                        | -30.3                            | -21.45      | 8.8         |
|                 | HT/VHT20 Beam Forming, M8 to M15        | 2        | 4                                | -37.1                        | -40.6                        | -31.5                            | -21.45      | 10.0        |
|                 | HT/VHT20 STBC, M0 to M7                 | 2        | 4                                | -37.1                        | -40.6                        | -31.5                            | -21.45      | 10.0        |
|                 |                                         |          |                                  |                              |                              |                                  |             |             |
|                 | Non HT/VHT40, 6 to 54 Mbps              | 1        | 4                                | -40.6                        |                              | -36.6                            | -21.45      | 15.2        |
|                 | Non HT/VHT40, 6 to 54 Mbps              | 2        | 4                                | -40.6                        | -44.0                        | -35.0                            | -21.45      | 13.5        |
|                 | HT/VHT40, M0 to M7                      | 1        | 4                                | -33.6                        |                              | -29.6                            | -21.45      | 8.2         |
| 06              | HT/VHT40, M0 to M7                      | 2        | 4                                | -33.6                        | -40.3                        | -28.8                            | -21.45      | 7.3         |
| 5190            | HT/VHT40, M8 to M15                     | 2        | 4                                | -33.6                        | -40.3                        | -28.8                            | -21.45      | 7.3         |
|                 | HT/VHT40 Beam Forming, M0 to M7         | 2        | 7                                | -43.4                        | -43.3                        | -33.3                            | -21.45      | 11.9        |
|                 | HT/VHT40 Beam Forming, M8 to M15        | 2        | 4                                | -33.6                        | -40.3                        | -28.8                            | -21.45      | 7.3         |
| ľ               | HT/VHT40 STBC, M0 to M7                 | 2        | 4                                | -33.6                        | -40.3                        | -28.8                            | -21.45      | 7.3         |
|                 |                                         |          |                                  |                              |                              |                                  |             |             |
|                 | Non VHT80, 6 to 54 Mbps                 | 1        | 4                                | -41.3                        |                              | -37.3                            | -22.10      | 15.2        |
|                 | Non VHT80, 6 to 54 Mbps                 | 2        | 4                                | -44.8                        | -43.8                        | -37.3                            | -22.10      | 15.2        |
| 5210            | VHT80, M0 to M9 1ss                     | 1        | 4                                | -38.6                        |                              | -34.6                            | -22.10      | 12.5        |
|                 | VHT80, M0 to M9 1ss                     | 2        | 4                                | -38.6                        | -39.6                        | -32.1                            | -22.10      | 10.0        |
|                 | VHT80, M0 to M9 2ss                     | 2        | 4                                | -38.6                        | -39.6                        | -32.1                            | -22.10      | 10.0        |
|                 | VHT80 Beam Forming, M0 to M9 1ss        | 2        | 7                                | -45.3                        | -43.6                        | -34.4                            | -22.10      | 12.3        |
|                 | VHT80 Beam Forming, M0 to M9 2ss        | 2        | 4                                | -38.6                        | -39.6                        | -32.1                            | -22.10      | 10.0        |
|                 | VHT80 STBC, M0 to M9 1ss                | 2        | 4                                | -38.6                        | -39.6                        | -32.1                            | -22.10      | 10.0        |

Page No: 36 of 59


#### Conducted Bandedge Peak, 5180 MHz, Non HT/VHT20, 6 to 54 Mbps



Center Freg 4.840000000 GHz #Avg Type: Log-Pw Avg[Hold: 100/100 Frig: Free Ru Auto Tu Ref 0.00 dBm Center Free 4.840 Start Fre StopFre Stop 5.1800 GH ep 1.160 ms (601 pts Start 4.5000 GHz #Res BW 1.0 MH CFS #VBW 3.0 MHz 5.150 0 GHz 4.829 8 GHz -33.684 di -46.623 di N 1 1 Freq Offs 01

Antenna B

Page No: 37 of 59

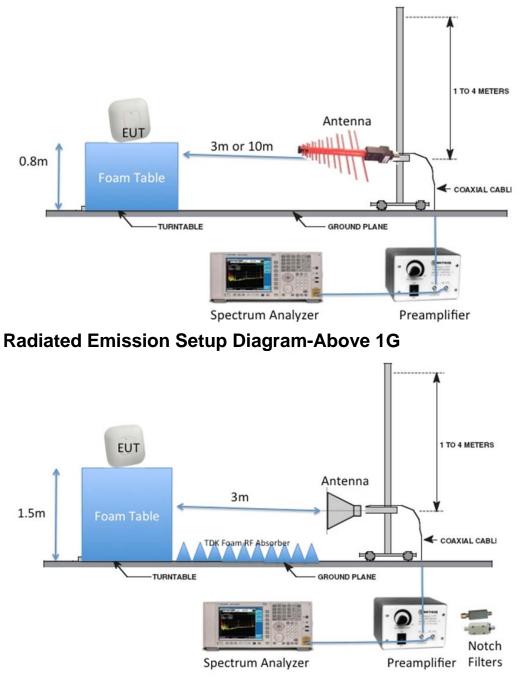


This is a dual band 2.4GHz / 5GHz device. All ports in this test set up photo are connected as all testing is automated. Section 2.6 of this test report given an overview of the different Tx antenna combinations used by this device.

Page No: 38 of 59

# cisco




This is a dual band 2.4GHz / 5GHz device. All ports in this test set up photo are connected as all testing is automated. Section 2.6 of this test report given an overview of the different Tx antenna combinations used by this device.

Page No: 39 of 59

#### **Appendix B: Emission Test Results**

Testing Laboratory: Cisco Systems, Inc., 125 West Tasman Drive, San Jose, CA 95134, USA

## **Radiated Emission Setup Diagram-Below 1G**



Page No: 40 of 59

## **B.1 Radiated Spurious Emissions**

FCC 15.205 / 15.407 Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Ref. ANSI C63.10: 2013 section 12.7.6 (peak) & 12.7.7.3 (average)

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

| Span:                 | 1GHz – 18 GHz/18GHz-26G/26GHz-40GHz |
|-----------------------|-------------------------------------|
| Reference Level:      | 80 dBuV                             |
| Sweep Time:           | Coupled                             |
| Resolution Bandwidth: | 1MHz                                |
| Video Bandwidth:      | 3 MHz                               |
| Detector:             | Peak, Average                       |
| Trace:                | Max Hold, Average                   |
|                       |                                     |

Terminate the access Point RF ports with 50 ohm loads.

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

Save 2 plots: 1) Average plot (Vertical and Horizontal), Limit= 54dBuV/m @3m 2) Peak plot (Vertical and Horizontal), Limit = 74dBuV/m @3m

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

This report represents the worst case data for all supported operating modes and antennas. There are no measurable emissions above 18 GHz.

| System<br>Number | Description | Samples  | System under test | Support<br>equipment |
|------------------|-------------|----------|-------------------|----------------------|
| 0                | EUT         | S03      | $\checkmark$      |                      |
| 2                | Support     | S04, S05 |                   | $\checkmark$         |

| Tested By :        | Date of testing:                                  |
|--------------------|---------------------------------------------------|
| Chris Blair        | 14-Feb-18 to 15-Feb-18 & 21-Feb-18 to 23-Feb-18 & |
|                    | 13-Mar-18 to 16-Mar-18.                           |
| Test Result : PASS |                                                   |

See Appendix C for list of test equipment

Page No: 41 of 59

## **B.1.A Transmitter Radiated Spurious Emissions-Average Worst Case**

|           |       |           | Spurious |          |        |
|-----------|-------|-----------|----------|----------|--------|
|           |       |           | Emission |          |        |
| Frequency |       |           | Level    | Limit    | Margin |
| (MHz)     | Mode  | Data Rate | (dBuV/m) | (dBuV/m) | (MHz)  |
| 5210      | VHT80 | M0.2      | 46.32    | 54       | 7.68   |

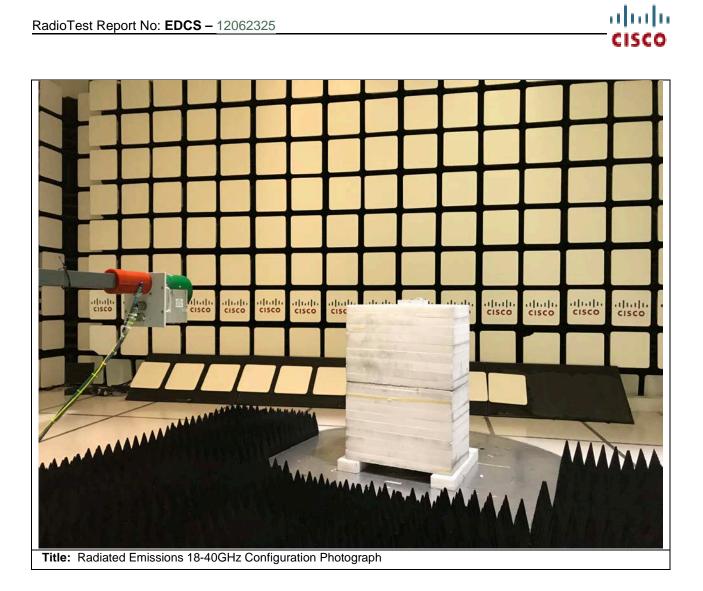
#### Average Radiated Transmitter Spurs, 5210 MHz, VHT80, M0.2, H (worst case for all channels/rates/modes)

| Agilent Spectrum Analyzer - EMiSoft Va |                              |                                |                             |                                               |               |
|----------------------------------------|------------------------------|--------------------------------|-----------------------------|-----------------------------------------------|---------------|
| Marker 1 5.24490000000                 |                              | SENSE:INT                      | ALIGNAUTO<br>#Avg Type: RMS | 02:45:23 PM Feb 23, 2018<br>TRACE 1 2 3 4 5 6 | Peak Search   |
| FAIL                                   | PNO: Fast ↔→→<br>IFGain:High | Trig: Free Run<br>#Atten: 0 dB | Avg Hold: 50/50             | TYPE A WWWWW<br>DET A P P P P P               |               |
|                                        | in Gam.mgn                   |                                | Mkr1                        | 5.244 900 GHz                                 | Next Peak     |
| 10 dB/div Ref 80.00 dBµV               | T                            |                                |                             | 63.666 dBµV                                   |               |
| Log<br>70.0 Trace 1 Fail               | 1                            |                                |                             |                                               |               |
| 60.0                                   |                              |                                |                             |                                               | Next Pk Right |
| 50.0                                   | _ <u>,</u> 2                 |                                |                             |                                               |               |
| 40.0                                   | <b>∂</b> <sup>2</sup>        |                                |                             | and the second second                         |               |
| 30.0                                   |                              |                                |                             |                                               | Next Pk Left  |
| 20.0                                   |                              |                                |                             |                                               |               |
| 10.0                                   |                              |                                |                             |                                               |               |
| 0.00                                   |                              |                                |                             |                                               | Marker Delta  |
| -10.0                                  |                              |                                |                             |                                               | Marker Della  |
|                                        |                              |                                |                             |                                               |               |
| Start 1.000 GHz<br>#Res BW 1.0 MHz     | #\/B\M                       | 3.0 MHz*                       | Sween A                     | Stop 18.000 GHz<br>2.7 ms (40001 pts)         |               |
|                                        | **D**                        |                                | CTION FUNCTION WIDTH        | FUNCTION VALUE                                | Mkr→CF        |
| 1 N 1 f 5.2                            | 44 900 GHz                   | 63.666 dBµV                    | CHON FUNCTION WIDTH         | FONCTION VALUE                                |               |
|                                        | 00 200 GHz<br>50 575 GHz     | 41.955 dBµV<br>46.320 dBµV     |                             |                                               |               |
| 4 5                                    |                              |                                |                             |                                               | Mkr→RefLvl    |
| 6                                      |                              |                                |                             |                                               |               |
| 8                                      |                              |                                |                             |                                               |               |
| 9                                      |                              |                                |                             |                                               | More          |
| 11                                     |                              |                                |                             |                                               | 1 of 2        |
| 12                                     |                              |                                |                             |                                               |               |
| MSG                                    |                              |                                | STATUS                      | 5                                             |               |

Page No: 42 of 59

## **B.1.P Transmitter Radiated Spurious Emissions-Peak Worst Case**


|           |      |           | Spurious |          |        |
|-----------|------|-----------|----------|----------|--------|
|           |      |           | Emission |          |        |
| Frequency |      |           | Level    | Limit    | Margin |
| (MHz)     | Mode | Data Rate | (dBuV/m) | (dBuV/m) | (MHz)  |
| 5230      | HT40 | MO        | 57.31    | 74       | 16.69  |


#### Peak Radiated Transmitter Spurs, 5230 MHz, HT40, M0, H (worst case for all channels/rates/modes)

| Agilent Spectrum Analyzer - EMiSoft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                                |                      |                                               |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------|----------------------|-----------------------------------------------|--------------|
| X L RF 50 Ω A0<br>Marker 2 17.192500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | SENSE:INT                      | ALIGN AUTO           | 05:13:08 PM Feb 22, 2018<br>TRACE 1 2 3 4 5 6 | Peak Search  |
| FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PNO: Fast<br>IFGain:High | Trig: Free Run<br>#Atten: 0 dB |                      | TYPE MWWWWW<br>DET PPPPP                      |              |
| 10 dB/div Ref 80.00 dBµ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IV                       |                                | Mkr2 1               | 7.192 500 GHz<br>57.31 dBµV                   | Next Peal    |
| -og<br>70.0<br>60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×1                       |                                |                      | 2                                             | Next Pk Righ |
| <ul> <li>A statistical distribution of the statistical distrestical distribution of the statistical distribution of the st</li></ul> |                          |                                |                      |                                               |              |
| 40.0<br>30.0<br>20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                                |                      |                                               | Next Pk Lei  |
| 10.0<br>0.00<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                                |                      |                                               | Marker Delt  |
| Start 1.000 GHz<br>Res BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | 3.0 MHz                        |                      | Stop 18.000 GHz<br>2.7 ms (40001 pts)         | Mkr→C        |
| 1 N 1 f 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×<br>.237 250 GHz        | 75.68 dBµV                     | CTION FUNCTION WIDTH | FUNCTION VALUE                                |              |
| 2 N 1 f 17<br>3 4<br>5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .192 500 GHz             | 57.31 dBµV                     |                      |                                               | Mkr→RefL     |
| 7 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                                |                      |                                               | Mor<br>1 of  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                                | STATUS               |                                               |              |

Page No: 43 of 59







Page No: 45 of 59

## **B.2 Radiated Emissions 30MHz to 1GHz**

FCC 15.209 / 15.205 / 15.407 Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

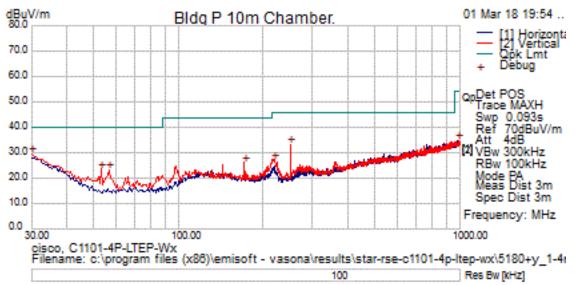
Ref. ANSI C63.10: 2013 section 6.5

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

| 30MHz – 1GHz                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 80 dBuV                                                                                                                                          |
| Coupled                                                                                                                                          |
| 100kHz                                                                                                                                           |
| 300kHz                                                                                                                                           |
| Peak for Pre-scan, Quasi-Peak                                                                                                                    |
| Compliance shall be determined using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak detection. |
|                                                                                                                                                  |

Terminate the access Point RF ports with 50 ohm loads.

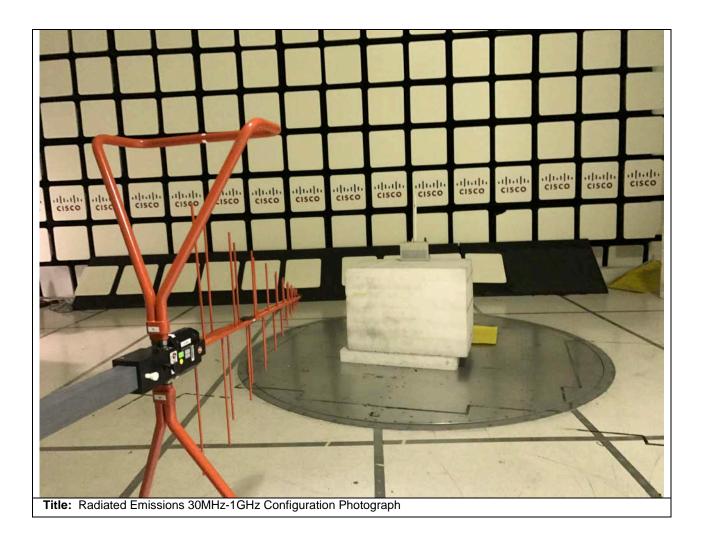
Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)


This report represents the worst case data for all supported operating modes and antennas.

| System<br>Number | Description | Samples  | System under test | Support<br>equipment |
|------------------|-------------|----------|-------------------|----------------------|
|                  | EUT         | S03      | V                 |                      |
| 2                | Support     | S04, S05 |                   | $\checkmark$         |

| Tested By :        | Date of testing: |  |  |  |  |
|--------------------|------------------|--|--|--|--|
| Chris Blair        | 01-Mar-18        |  |  |  |  |
| Test Result : PASS |                  |  |  |  |  |

See Appendix C for list of test equipment


Page No: 46 of 59



սիսիս

Test Results Table, Tx

| Frequency<br>(MHz) | Raw<br>(dBuV) | Cable<br>Loss |      | Level<br>(dBuV/m) | Measurement<br>Type |   |     | Azt<br>(Deg) | Limit<br>(dBuV/m) | Margin<br>(dB) | Pass/<br>Fail | Comments |
|--------------------|---------------|---------------|------|-------------------|---------------------|---|-----|--------------|-------------------|----------------|---------------|----------|
| 30.000             | 7.4           | .5            | 21.5 | 29.4              | Peak [Scan]         | V | 250 | 107          | 40.0              | -10.6          | Pass          |          |
| 250.069            | 20.3          | 1.3           | 11.6 | 33.2              | Peak [Scan]         | V | 100 | 292          | 46.0              | -12.8          | Pass          |          |
| 53.038             | 15.3          | .6            | 7.6  | 23.5              | Peak [Scan]         | V | 250 | 218          | 40.0              | -16.5          | Pass          |          |
| 56.675             | 14.9          | .6            | 7.5  | 23.0              | Peak [Scan]         | V | 100 | 14           | 40.0              | -17.0          | Pass          |          |
| 171.863            | 13.1          | 1.1           | 11.8 | 25.9              | Peak [Scan]         | V | 150 | 180          | 43.5              | -17.6          | Pass          |          |
| 219.150            | 15.2          | 1.2           | 10.8 | 27.2              | Peak [Scan]         | V | 150 | 292          | 46.0              | -18.8          | Pass          |          |
| 990.300            | 8.5           | 2.7           | 23.4 | 34.7              | Peak [Scan]         | V | 250 | 104          | 54.0              | -19.3          | Pass          |          |



Page No: 48 of 59

## **B.3 AC Conducted Emissions**

**FCC 15.207** Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.

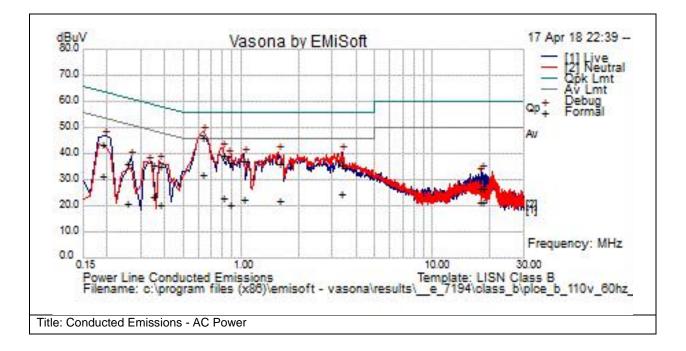
#### **Measurement Procedure**

Accordance with ANSI C63.10:2013 section 6.2

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

| Span:                 | 150 KHz – 30 MHz     |
|-----------------------|----------------------|
| Sweep Time:           | Coupled              |
| Resolution Bandwidth: | 9 KHz                |
| Video Bandwidth:      | 30 KHz               |
| Detector:             | Quasi-Peak / Average |

| System<br>Number | Description | Samples            | System under test | Support<br>equipment |
|------------------|-------------|--------------------|-------------------|----------------------|
| 2                | EUT         | S06, S07, S08      | $\mathbf{\nabla}$ |                      |
| 3                | Support     | S09, S10, S11, S12 |                   | $\mathbf{\nabla}$    |


| Tested By :        | Date of testing: |  |
|--------------------|------------------|--|
| Marie Higa         | 17-Apr-2018      |  |
| Test Result : PASS |                  |  |

See Appendix C for list of test equipment

#### **Graphical Test Results**

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Page No: 49 of 59



սիսիս

cisco

| Test | Results | Table |
|------|---------|-------|
|      |         |       |

| Frequency<br>(MHz) | Raw<br>(dBuV) | Cable<br>Loss | Factors<br>(dB) | Level<br>(dBuV/m) | Measurement<br>Type | Line | Limit<br>(dBuV/m) | Margin<br>(dB) | Pass/<br>Fail | Comments |
|--------------------|---------------|---------------|-----------------|-------------------|---------------------|------|-------------------|----------------|---------------|----------|
| 1.04               | 17            | 19.9          | 0               | 37                | Qp                  | L    | 56                | -19            | Pass          |          |
| 0.87839            | 16.5          | 19.9          | 0               | 36.5              | Qp                  | L    | 56                | -19.5          | Pass          |          |
| 1.575              | 16.3          | 19.9          | 0               | 36.3              | Qp                  | Ν    | 56                | -19.7          | Pass          |          |
| 0.190203           | 22.9          | 20.8          | 0.1             | 43.8              | Qp                  | L    | 64                | -20.2          | Pass          |          |
| 3.356              | 15.6          | 20            | 0.1             | 35.7              | Qp                  | Ν    | 56                | -20.3          | Pass          |          |
| 3.356              | 4.5           | 20            | 0.1             | 24.5              | Av                  | Ν    | 46                | -21.5          | Pass          |          |
| 0.190203           | 10.4          | 20.8          | 0.1             | 31.2              | Av                  | L    | 54                | -22.8          | Pass          |          |
| 0.379198           | 15.2          | 20.1          | 0               | 35.4              | Qp                  | Ν    | 58.3              | -22.9          | Pass          |          |
| 0.801426           | 3             | 19.9          | 0               | 23                | Av                  | Ν    | 46                | -23            | Pass          |          |
| 0.347604           | 15.6          | 20.2          | 0               | 35.8              | Qp                  | Ν    | 59                | -23.2          | Pass          |          |
| 1.04               | 2.3           | 19.9          | 0               | 22.3              | Av                  | L    | 46                | -23.7          | Pass          |          |
| 1.575              | 2.2           | 19.9          | 0               | 22.1              | Av                  | Ν    | 46                | -23.9          | Pass          |          |
| 0.253034           | 15.7          | 20.5          | 0               | 36.3              | Qp                  | L    | 61.7              | -25.4          | Pass          |          |
| 0.347604           | 3.4           | 20.2          | 0               | 23.6              | Av                  | Ν    | 49                | -25.4          | Pass          |          |
| 0.87839            | 0.2           | 19.9          | 0               | 20.2              | Av                  | L    | 46                | -25.8          | Pass          |          |
| 0.379198           | 0             | 20.1          | 0               | 20.2              | Av                  | Ν    | 48.3              | -28.1          | Pass          |          |
| 18.11              | 0.7           | 20.4          | 0.2             | 21.3              | Av                  | L    | 50                | -28.7          | Pass          |          |
| 17.536             | 0.6           | 20.4          | 0.2             | 21.2              | Av                  | L    | 50                | -28.8          | Pass          |          |
| 0.253034           | 0.5           | 20.5          | 0               | 21                | Av                  | L    | 51.7              | -30.6          | Pass          |          |

Page No: 50 of 59

| Frequency<br>(MHz) | Raw<br>(dBuV) |      | Factors<br>(dB) | Level<br>(dBuV/m) | Measurement<br>Type | Line | Limit<br>(dBuV/m) | Margin<br>(dB) | Pass/<br>Fail | Comments |
|--------------------|---------------|------|-----------------|-------------------|---------------------|------|-------------------|----------------|---------------|----------|
| 17.536             | 6.3           | 20.4 | 0.2             | 26.9              | Qp                  | L    | 60                | -33.1          | Pass          |          |
| 18.11              | 6             | 20.4 | 0.2             | 26.7              | Qp                  | L    | 60                | -33.3          | Pass          |          |

Page No: 51 of 59



uluulu cisco

Page No: 52 of 59

## **Appendix C: List of Test Equipment Used to perform the test**

| Test Equipment used for Radiated Emissions |                                     |                                          |                |                |           |  |  |
|--------------------------------------------|-------------------------------------|------------------------------------------|----------------|----------------|-----------|--|--|
| Equip#                                     | Manufacturer/ Model                 | Description                              | Last Cal       | Next Cal       | Test Item |  |  |
| CIS008447                                  | NSA 10m Chamber<br>Cisco            | NSA 10m Chamber                          | 17-Oct-17      | 17-Oct-18      | B.2       |  |  |
| CIS047410                                  | Keysight N9038A                     | MXE EMI Receiver                         | 31 Mar<br>2017 | 31 Mar<br>2018 | B.2       |  |  |
| CIS054013                                  | JB1<br>Sunol Sciences               | Combination Antenna,<br>30MHz-2GHz       | 15 Jun<br>2017 | 15 Jun<br>2018 | B.2       |  |  |
| CIS055936                                  | H+S Sucoflex 106PA                  | RF Type N Antenna Cable 18 GHz<br>8.5m   | 19 Oct<br>2017 | 19 Oct<br>2018 | B.2       |  |  |
| CIS020975                                  | UFB311A-0-1344-520520<br>Micro-Coax | RF Coaxial Cable, to 18GHz, 134.4 in     | 19-Feb-18      | 19-Feb-19      | B.2       |  |  |
| CIS056154                                  | H+S Sucoflex 104PEA                 | Sucoflex N Type blue 7ft cable           | 18 Jan<br>2018 | 18 Jan<br>2019 | B.2       |  |  |
| CIS041929                                  | iBTHP-5-DB9<br>Newport              | 5 inch Temp/RH/Press Sensor w/20ft cable | 28-Dec-17      | 28-Dec-18      | B.2       |  |  |
| CIS056037                                  | Stanley 33-428                      | 26' tape measure                         | NA             | NA             | B.2       |  |  |
| CIS033041                                  | Fluke 175                           | True RMS DMM                             | 01 Jun<br>2017 | 01 Jun<br>2018 | B.2       |  |  |
| CIS027233                                  | York CNE V                          | Comparison Noise Emitter                 | NA             | NA             | B.2       |  |  |
| CIS051688                                  | Dynawave 5400-9810-6251             | SMA 50 Ohm Termination 18GHz             | 29 Jun<br>2017 | 29 Jun<br>2018 | B.2       |  |  |
| CIS051690                                  | Dynawave 5400-9810-6251             | SMA 50 Ohm Termination 18GHz             | 02 Feb<br>2018 | 02 Feb<br>2019 | B.2       |  |  |
|                                            |                                     |                                          | I              | 1              | 1         |  |  |
| CIS032544                                  | ETS Lindgren 3117                   | Double Ridged Horn Antenna               | 12 Jul<br>2017 | 12 Jul<br>2018 | B.1       |  |  |
| CIS047286                                  | H+S Sucoflex 102E                   | 40GHz Cable K Connector                  | 08 Sep<br>2017 | 08 Sep<br>2018 | B.1       |  |  |
| CIS056054                                  | Miteq TTA1800-30-HG                 | SMA 18GHz Pre Amplifier                  | 09 Feb<br>2018 | 09 Feb<br>2019 | B.1       |  |  |
| CIS054393                                  | H+S Sucoflex 102                    | RF Cable 2.4mm - N Type 18GHz            | 27 Apr<br>2017 | 27 Apr<br>2018 | B.1       |  |  |
| CIS055936                                  | H+S Sucoflex 106PA                  | RF Type N Antenna Cable 18 GHz<br>8.5m   | 19 Oct<br>2017 | 19 Oct<br>2018 | B.1       |  |  |
| CIS020975                                  | Micro-coax<br>UFB311A-0-1344-520520 | Coaxial Cable-18Ghz                      | 19 Feb<br>2018 | 19 Feb<br>2019 | B.1       |  |  |
| CIS056154                                  | H+S Sucoflex 104PEA                 | Sucoflex N Type blue 7ft cable           | 18 Jan<br>2018 | 18 Jan<br>2019 | B.1       |  |  |
| CIS047410                                  | Keysight N9038A                     | MXE EMI Receiver                         | 31 Mar<br>2017 | 31 Mar<br>2018 | B.1       |  |  |
| CIS043124                                  | Above 1GHz Site Cal<br>Cisco        | Above 1GHz Cispr Site Verification       | 15 Jan<br>2018 | 15 Jan<br>2019 | B.1       |  |  |
| CIS08447                                   | Cisco NSA 10m Chamber               | NSA 10m Chamber                          | 17 Oct<br>2017 | 17 Oct<br>2018 | B.1       |  |  |
| CIS041929                                  | iBTHP-5-DB9                         | 5 inch Temp/RH/Press Sensor w/20ft cable | 28-Dec-17      | 28-Dec-18      | B.1       |  |  |

Page No: 53 of 59

| NA E             | NA NA          | B.1            |
|------------------|----------------|----------------|
| 10 May E<br>2018 | 3              | B.1            |
| 19 Oct E<br>2018 |                | B.1            |
| NA E             | NA NA          | B.1            |
| 26 Apr E<br>2018 | · · ·          | B.1            |
| NA E             | NA NA          | B.1            |
| 26 Sep E<br>2018 |                | B.1            |
| 06 Oct E<br>2018 |                | B.1            |
| 2018             | 2017 2018      | B.1            |
| 2018             | 2017 2018      | B.1            |
| 16 Aug E<br>2018 | 0 0            | B.1            |
| 18 Jan E<br>2019 |                | B.1            |
| 09 Feb E<br>2019 |                | B.1            |
| NA E             | NA NA          | B.1            |
| 09 Feb E<br>2019 |                | B.1            |
| 29 Jun E<br>2018 |                | B.1            |
| 2019             | 2018 2019      | B.1            |
| 01 Jun E<br>2018 |                | B.1            |
| -1               |                | <b>T</b>       |
| 15 Jan E<br>2019 |                | B.1            |
| 17 Oct E<br>2018 |                | B.1            |
|                  |                | B.1            |
| NA E             | NA NA          | B.1            |
|                  | 28 Feb 28 Feb  | B.1            |
| 19 Oct E         | 19 Oct 19 Oct  | B.1            |
|                  | 29 Jun 29 Jun  | B.1            |
|                  | 02 Feb 02 Feb  | B.1            |
|                  | 02 Feb<br>2018 | 02 Feb<br>2019 |

Page No: 54 of 59

| 38392     | Keysignt E8257D     | PSG Analog Signal Generator | 01 Aug | 01 Aug | B.1 |
|-----------|---------------------|-----------------------------|--------|--------|-----|
|           |                     |                             | 2017   | 2018   |     |
| 47299     | Keysight N9030A-544 | PXA Signal Analyzer         | 12 Oct | 12 Oct | B.1 |
|           |                     |                             | 2018   | 2018   |     |
| CIS041979 | 1840                | 18-40GHz EMI Test Head/     | 30 Aug | 30 Aug | B.1 |
|           | Cisco               | Verification Fixture        | 2017   | 2018   |     |

|           | Test Equipment used for AC Mains Conducted Emissions |                                           |                     |           |           |  |  |
|-----------|------------------------------------------------------|-------------------------------------------|---------------------|-----------|-----------|--|--|
| Equip#    | Manufacturer/ Model                                  | Description                               | Last Cal            | Next Cal  | Test Item |  |  |
| CIS008496 | Fischer Custom Communications<br>FCC-450B-2.4-N      | Instrumentation Limiter                   | 16-MAY-17           | 16-MAY-18 | B.3       |  |  |
| CIS018963 | York<br>CNE V                                        | Comparison Noise Emitter, 30 -<br>1000MHz | Cal Not<br>Required | N/A       | B.3       |  |  |
| CIS035235 | Lufkin<br>HY1035CME                                  | 5 Meter Tape Measure                      | Cal Not<br>Required | N/A       | B.3       |  |  |
| CIS037229 | Coleman<br>RG-223                                    | 25ft BNC cable                            | 13-APR-18           | 13-APR-19 | B.3       |  |  |
| CIS037239 | Rohde & Schwarz<br>ESCI                              | ESCI EMI Test Receiver                    | 02-MAY-17           | 02-MAY-18 | B.3       |  |  |
| CIS044023 | Fischer Custom Communications<br>FCC-801-M2-32A      | Power Line Coupling Decoupling Network    | 09-NOV-17           | 09-NOV-18 | B.3       |  |  |
| CIS045990 | Fischer Custom Communications<br>F-090527-1009-1     | Line Impedance Stabilization Network      | 15-JUN-17           | 15-JUN-18 | B.3       |  |  |
| CIS045991 | Fischer Custom Communications<br>F-090527-1009-2     | Lisn Adapter                              | 15-JUN-17           | 15-JUN-18 | B.3       |  |  |
| CIS049479 | Coleman<br>RG223                                     | BNC 2ft Cable                             | 05-MAR-18           | 05-MAR-19 | B.3       |  |  |
| CIS049531 | TTE<br>H785-150K-50-21378                            | High Pass Filter                          | 03-MAY-17           | 03-MAY-18 | B.3       |  |  |
| CIS049558 | Bird<br>5-T-MB                                       | 5W 50 Ohm BNC Termination 4GHz            | 10-AUG-17           | 10-AUG-18 | B.3       |  |  |
| CIS054231 | Newport<br>iBTHP-5-DB9                               | 5 inch Temp/RH/Press Sensor w/20ft cable  | 09-FEB-18           | 09-FEB-19 | B.3       |  |  |

Page No: 55 of 59

| <b>F</b>  | Manufacturer/Madal                             | Description                |                | Next Cel       | Test liem  |
|-----------|------------------------------------------------|----------------------------|----------------|----------------|------------|
| Equip#    | Manufacturer/ Model                            | Description                | Last Cal       | Next Cal       | Test Item  |
| CIS055094 | PXI-1042<br>National Instruments               | Chassis                    | Cal Not Requ   | uired          | A1 thru A4 |
| CIS055562 | MEGAPHASE F120-S1S1-48                         | SMA cable                  | 27 Jul 2017    | 27 Jul 2018    | A1 thru A4 |
| CIS055565 | MEGAPHASE F120-S1S1-36                         | SMA cable                  | 27 Jul 2017    | 27 Jul 2018    | A1 thru A4 |
| CIS054623 | MEGAPHASE RA08-S1S1-18                         | SMA cable                  | 27 Jul 2017    | 27 Jul 2018    | A1 thru A4 |
| CIS054624 | MEGAPHASE RA08-S1S1-18                         | SMA cable                  | 27 Jul 2017    | 27 Jul 2018    | A1 thru A4 |
| CIS054620 | MEGAPHASE RA08-S1S1-12                         | SMA cable                  | 27 Jul 2017    | 27 Jul 2018    | A1 thru A4 |
| CIS054610 | MEGAPHASE RA08-S1S1-12                         | SMA cable                  | 27 Jul 2017    | 27 Jul 2018    | A1 thru A4 |
| CIS055112 | Microtronics BRM50702-02                       | Band Reject Filter         | 27 Jul 2017    | 27 Jul 2018    | A1 thru A4 |
| CIS054621 | MEGAPHASE RA08-S1S1-18                         | SMA cable                  | 27 Jul 2017    | 27 Jul 2018    | A1 thru A4 |
| CIS054619 | MEGAPHASE RA08-S1S1-12                         | SMA cable                  | 27 Jul 2017    | 27 Jul 2018    | A1 thru A4 |
| CIS055353 | Microtronics BRC50703-02                       | Band Reject Filter         | 27 Jul 2017    | 27 Jul 2018    | A1 thru A4 |
| CIS054618 | MEGAPHASE RA08-S1S1-12                         | SMA cable                  | 27 Jul 2017    | 27 Jul 2018    | A1 thru A4 |
| CIS054617 | MEGAPHASE RA08-S1S1-12                         | SMA cable                  | 27 Jul 2017    | 27 Jul 2018    | A1 thru A4 |
| CIS054691 | Microtronics BRC50704-02                       | Band Reject Filter         | 27 Jul 2017    | 27 Jul 2018    | A1 thru A4 |
| CIS054616 | MEGAPHASE RA08-S1S1-12                         | SMA cable                  | 27 Jul 2017    | 27 Jul 2018    | A1 thru A4 |
| CIS054614 | MEGAPHASE RA08-S1S1-12                         | SMA cable                  | 27 Jul 2017    | 27 Jul 2018    | A1 thru A4 |
| CIS054693 | Microtronics BRC50705-02                       | Band Reject Filter         | 27 Jul 2017    | 27 Jul 2018    | A1 thru A4 |
| CIS054615 | MEGAPHASE RA08-S1S1-12                         | SMA cable                  | 27 Jul 2017    | 27 Jul 2018    | A1 thru A4 |
| CIS055368 | Pulsar PS4-09-452/4S                           | 4 Way Divider              | 12 Apr<br>2017 | 12 Apr<br>2018 | A1 thru A4 |
| CIS054686 | NI PXI-2796                                    | Multiplexer, 40 GHz 50 Ohm | NA             | NA             | A1 thru A4 |
| CIS053615 | National Instruments<br>N9030A-550<br>Keysight | PXA Signal Analyzer        | 04 Apr<br>2017 | 04 Apr<br>2018 | A1 thru A4 |

Page No: 56 of 59

| CIS056329 | Pasternack PE5019-1 | Torque wrench | 01 Mar<br>2017 | 01 Mar<br>2018 | A1 thru A4 |
|-----------|---------------------|---------------|----------------|----------------|------------|
|-----------|---------------------|---------------|----------------|----------------|------------|

սիսիս

cisco

Page No: 57 of 59

#### Appendix E: Abbreviation Key and Definitions

| Abbreviation | Description                                                               | Abbreviation | Description                        |
|--------------|---------------------------------------------------------------------------|--------------|------------------------------------|
| EMC          | Electro Magnetic Compatibility                                            | °F           | Degrees Fahrenheit                 |
| EMI          | Electro Magnetic Interference                                             | °C           | Degrees Celsius                    |
| EUT          | Equipment Under Test                                                      | Temp         | Temperature                        |
| ITE          | Information Technology Equipment                                          | S/N          | Serial Number                      |
| TAP          | Test Assessment Schedule                                                  | Qty          | Quantity                           |
| ESD          | Electro Static Discharge                                                  | emf          | Electromotive force                |
| EFT          | Electric Fast Transient                                                   | RMS          | Root mean square                   |
| EDCS         | Engineering Document Control<br>System                                    | Qp           | Quasi Peak                         |
| Config       | Configuration                                                             | Av           | Average                            |
| CIS#         | Cisco Number (unique identification number for Cisco test equipment)      | Pk           | Peak                               |
| Cal          | Calibration                                                               | kHz          | Kilohertz (1x10 <sup>3</sup> )     |
| EN           | European Norm                                                             | MHz          | MegaHertz (1x10 <sup>6</sup> )     |
| IEC          | International Electro technical<br>Commission                             | GHz          | Gigahertz (1x10 <sup>9</sup> )     |
| CISPR        | International Special Committee on Radio Interference                     | Н            | Horizontal                         |
| CDN          | Coupling/Decoupling Network                                               | V            | Vertical                           |
| LISN         | Line Impedance Stabilization                                              | dB           | decibel                            |
| PE           | Protective Earth                                                          | V            | Volt                               |
| GND          | Ground                                                                    | kV           | Kilovolt (1x10 <sup>3</sup> )      |
| L1           | Line 1                                                                    | μV           | Microvolt (1x10 <sup>-6</sup> )    |
| L2           | Line2                                                                     | А            | Amp                                |
| L3           | Line 3                                                                    | μA           | Micro Amp (1x10 <sup>-6</sup> )    |
| DC           | Direct Current                                                            | mS           | Milli Second (1x10 <sup>-3</sup> ) |
| RAW          | Uncorrected measurement value,<br>as indicated by the measuring<br>device | μS           | Micro Second (1x10 <sup>-6</sup> ) |
| RF           | Radio Frequency                                                           | μS           | Micro Second (1x10 <sup>-6</sup> ) |
| SLCE         | Signal Line Conducted Emissions                                           | m            | Meter                              |
| Meas dist    | Measurement distance                                                      | Spec dist    | Specification distance             |
| N/A or NA    | Not Applicable                                                            | SL           | Signal Line (or Telecom Line)      |
| Р            | Power Line                                                                | L            | Live Line                          |
| Ν            | Neutral Line                                                              | R            | Return                             |
| S            | Supply                                                                    | AC           | Alternating Current                |

### The following table defines abbreviations used within this test report.

Page No: 58 of 59

## End

Page No: 59 of 59