TEST REPORT of FCC PART 15 SUBPART E AND CANADA RSS-247

 \boxtimes New Application; \square Class I PC; \square Class II PC

Product :	UC Phone
Brand:	Cisco
Model:	CP-6861
Model Difference:	N/A
FCC ID:	LDK68612057
IC:	2461N-68612057
FCC Rule Part:	§15.407, Cat:NII
IC Rule Part:	RSS-247 issue 2: 2017
	RSS-Gen issue 5: 2018
Applicant:	Cisco Systems, Inc.
Address:	FCC: 170 West Tasman Dr. San Jose, CA
	95134, USA
	ISED: 125 West Tasman Dr. Bldg. P
	San Jose CA 95134 United States Of America

Test Performed by:

International Standards Laboratory

<LT Lab.> *Site Registration No. BSMI: SL2-IN-E-0013; MRA TW1036; TAF: 0997; IC: IC4067B-3; *Address: No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan *Tel : 886-3-407-1718; Fax: 886-3-407-1738

Report No.: **ISL-19LR087FE** Issue Date : **2019/05/21**

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

This report MUST not be used to claim product endorsement by TAF, NVLAP or any agency of the Government.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory Corp.

VERIFICATION OF COMPLIANCE

Applicant:	Cisco Systems, Inc.	
Product Description:	UC Phone	
Brand Name:	Cisco	
Model No.:	CP-6861	
Model Difference:	N/A	
FCC ID:	LDK68612057	
IC:	2461N-68612057	
Date of test:	2019/03/18 ~ 2019/05/17	
Date of EUT Received:	2019/03/18	

We hereby certify that:

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant,International Standards Laboratory Corp..

The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards.

Test By:	Barry Lee	Date:	2019/05/21
Prepared By:	Barry Lee / Senior Engineer Gigi Jeh	Date:	2019/05/21
Approved By:	Gigi Yeh / Senior Engineer	Date:	2019/05/21

Version

Version No. Date		Description
00	2016/09/13	Initial creation of document

Table of Contents

1.	GEN	ERAL INFORMATION	6
	1.1.	Product Description	6
	1.2.	Related Submittal(s) / Grant (s)	8
	1.3.	Test Methodology	8
	1.4.	Test Facility	8
	1.5.	Special Accessories	8
	1.6.	Equipment Modifications	8
2.	SYST	TEM TEST CONFIGURATION	9
	2.1.	EUT Configuration	9
	2.2.	EUT Exercise	9
	2.3.	Test Procedure	9
	2.4.	Configuration of Tested System	10
3.	SUM	MARY OF TEST RESULT	
4.	DES	CRIPTION OF TEST MODES	
5.	AC P	OWER LINE CONDUCTED EMISSION TEST	
	5.1.	Standard Applicable	
	5.2.	Measurement Equipment Used:	13
	5.3.	EUT Setup:	13
	5.4.	Measurement Procedure:	14
	5.5.	Measurement Result:	14
6.	OUT	PUT POWER / EIRP /SPECTRAL DENSITY MEASUREMENT	
	6.1.	Standard Applicable	17
	6.2.	Measurement Procedure	20
	6.3.	Measurement Equipment Used:	21
	6.4.	Measurement Equipment Used:	21
	6.5.	Measurement Result	
7.	26dB	/99% Emission Bandwidth Measurement	
	7.1.	Standard Applicable	42
	7.2.	Measurement Procedure	42
	7.3.	Measurement Equipment Used:	42
	7.4.	Test Set-up:	
	7.5.	Measurement Result	43
8.	6dB	EMISSION BANDWIDTH MEASUREMENT	
	8.1.	Standard Applicable	54
	8.2.	Measurement Procedure	54
	8.3.	Measurement Equipment Used:	54
	8.4.	Test Set-up:	54

FCC ID: LDK68612057 IC: 2461N-68612057

	8.5.	Measurement Result	
9.	Undes	sirable Emission – Radiated Measurement	64
	9.1.	Standard Applicable	
	9.2.	EUT Setup	
	9.3.	Measurement Procedure	
	9.4.	Test SET-UP (Block Diagram of Configuration)	
	9.5.	Measurement Equipment Used:	
	9.6.	Field Strength Calculation	71
	9.7.	Measurement Result	71
10.	TRAN	NSMISSION IN THE ABSENCE OF DATA	
	10.1.	Standard Applicable	
	10.2.	Result:	
11.	Frequ	ency Stability	127
	11.1.	Standard Applicable	
	11.2.	Result	
12.	Anten	na Requirement	
	12.1.	Standard Applicable	
	12.2.	Antenna Connected Construction	
13.	TPC a	and DFS Measurement	
	13.1.	TPC: Standard Applicable	
	13.2.	DFS: Standard Applicable	
	13.3.	Test Equipment Used:	
	13.4.	Test results	
PH	OTOG	RAPHS OF SET UP	144
PH	OTOG	RAPHS OF EUT	149

1. GENERAL INFORMATION

1.1. Product Description

General:

Product Name	UC Phone		
Brand Name	Cisco		
Model Name	CP-6861		
Model Difference	N/A		
RJ9 Port	Two provided for Data li	nk	
RJ45 Port	One provided for Data link		
AUX port	One provided for Data link		
DC jack	One provided		
Power Tolerance:	+/- 1 dB		
	5Vdc from Adapter		
Power Supply	Adapter: Asian Power Model: WB-10E05R		

IC RSS-Gen:

IC KSS-Gen:	
PMN (Product Marketing Name)	CP-6861
HVIN (Hardware Version Identification Number)	CP-6861
Product SW version	Cmterm-6861.11-2-4MPP-92_DEV
Product HW version	18051-1A
Radio SW version	N/A
Radio HW version	N/A
Test SoftWare Version	Tera Term File Version : 4.101.0.0
RF power setting in TEST SoftWare	802.11b #16 802.11g #14 802.11n20 #13 802.11n40 #14 802.11a #15 802.11HT20 #15 802.11HT40 #14

Measured Power Level

WLAN: 1TX/1RX

Wi-Fi	Frequency Range (MHz)	Channels	Peak / Average Rated Power	Modulation Technology
802.11b	2412 – 2462(DTS)	11	18.64Bm (PK)	DSSS
802.11g	2412 - 2462(DTS)	11	21.56dBm (PK)	
802.11n	HT20 2412 – 2462(DTS)	11	21.08dBm (PK)	-
(2.4G)	HT40 2422 – 2452(DTS)	7	21.72dBm (PK)	
	5150 – 5350(NII)	8	14.23dBm (AV)for FCC 15.00dBm (EIRP)for IC	
802.11a	5470 – 5725(NII)	11	14.20dBm(AV) 14.97dBm (EIRP)for IC	
	5725 – 5850(NII)	5	14.22dBm (AV) 14.99dBm (EIRP)for IC	
	HT20 5150 – 5350(NII)	8	14.12dBm (AV) 14.89dBm (EIRP)for IC	OFDM
	HT20 5470 – 5725(NII)	11	13.91dBm(AV) 14.68dBm (EIRP)for IC	
$902.11_{m}(5C)$	HT20 5725 – 5850(NII)	5	14.25dBm (AV) 15.02dBm (EIRP)for IC	
802.11n(5G)	HT40 5150 – 5350(NII)	4	13.92dBm (AV) 14.69dBm (EIRP)for IC	
	HT40 5470 – 5725(NII)	5	14.27dBm (AV) 15.04dBm (EIRP)for IC	
	HT40 5725 – 5850(NII)	2 14.01dBm (AV) 14.78dBm (EIRP)for IC		
Modulation ty	ype	CCK, DQPSK, DBPSK for DSSS 256QAM.64QAM. 16QAM, QPSK, BPSK for OFDM		
Antenna Desi	gnation	PIFA Antenna WiFi 2.4G Antenna : 2.44 dBi WiFi 5G Antenna : 0.71dBi		

The EUT is compliance with IEEE 802.11 a/b/g/n Standard.

This report applies for Wifi frequency band 5150 MHz– 5350 MHz, 5470MHz – 5725MHz, 5725 MHz– 5850 MHz

Remark: The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.2. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for <u>FCC ID: LDK68612057</u> filing to comply with Section 15.407 of the FCC Part 15, Subpart E Rules. and <u>IC: 2461N-68612057</u> filing to comply with Industry Canada RSS-247 issue 2: 2017.

1.3. Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.10: 2013 and RSS-Gen issue 5: 2018. Radiated testing was performed at an antenna to EUT distance 3 meters.

KDB Document: 789033 D02 General UNII Test Procedures New Rules v02r01

FCC 14-30 Revision UNII

594280 D02 U-NII Device Security v01r03

1.4. Test Facility

The measurement facilities used to collect the 3m Radiated Emission and AC power line conducted data are located on the address of International Standards Laboratory Corp. <LT Lab.> No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan which are constructed and calibrated to meet the FCC requirements in documents ANSI C63.10: 2013. FCC Registration Number is: 487532; Designation Number is: TW0997, Canada Registration Number: 4067B-4.

1.5. Special Accessories

Not available for this EUT intended for grant.

1.6. Equipment Modifications

Not available for this EUT intended for grant.

-9 of 143-

2. SYSTEM TEST CONFIGURATION

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

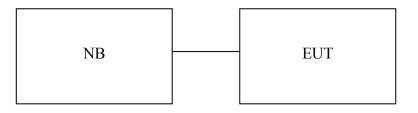
2.2. EUT Exercise

The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

2.3. Test Procedure

2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 6 of ANSI C63.10: 2013 and RSS-Gen issue 5: 2018. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR 16-1-1 Quasi-Peak and Average detector mode.


2.3.2 Radiated Emissions

The EUT is a placed on as turn table which is 0.8 m/1.5m(Frequency above 1GHz) above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes and measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." is still within the 3dB illumination BW of the measurement antenna. according to the requirements in Section 6 and 11 of ANSI C63.10: 2013

2.4. Configuration of Tested System

Fig. 2-1 Configuration of Tested System

Table 1-1 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/ Type No.	Series No.	Data Cable	Power Cord
1	NB	Lenovo	X220i	NA	Non-Shielding	Non-Shielding

3. SUMMARY OF TEST RESULT

FCC Rules	Description Of Test	Result	
§15.207	AC Power Line Conducted	Compliant	
RSS-Gen §7.2.4	Emission	Compliant	
§15.407(a)(2)	Output Power/ EIRP/ Spectral	Compliant	
RSS-247, 6.2	Density Measurement	Compliant	
§15.407(a)			
RSS-247, 6.2	26dB/99% Emission Bandwidth	Compliant	
RSS-Gen §4.6.3			
§15.407(e)			
RSS-247, 6.2.4	6dB Emission Bandwidth	Compliant	
RSS-Gen §4.6.3			
§15.407(b)	Undesirable Emission – Radiated	Compliant	
RSS-247, 6.2	Measurement	Compliant	
§15.407(c)	Transmission in case of Absence	Compliant	
RSS-247, 6.4(2)	of Information	Compliant	
§15.407(g)	Frequency Stability	Compliant	
§15.407(a)			
RSS-GEN 7.1.2,	Antenna Requirement	Compliant	
RSS-247 issue 8,§A8.4			
§15.407(d)	TDC and DEC Maagument	NT/A	
RSS-247, 6.3	TPC and DFS Measurement	N/A	
§15.407(i)	Device Security	Compliant	
RSS-247, 6.4(4)	Device Security	Compliant	

-12 of 143-

4. DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting mode is programmed.

5150MHz-5350MHz:

802.11 a mode: Channel lowest (5180MHz), Mid (5260MHz) and Highest (5320MHz) with 6Mbps data rate is chosen for testing.

802.11 n HT 20 mode: Channel lowest (5180MHz), Mid (5260MHz) and Highest (5320MHz) with 6.5Mbps data rate is chosen for testing.

802.11 n HT 40 mode: Channel lowest (5190MHz) and high (5230MHz) with 13.5Mbps data rate is chosen for testing.

5470MHz-5725MHz:

802.11a mode: Channel low (5500MHz), mid (5600MHz) and high (5700MHz) with 6Mbps lowest data rate are chosen for pre-test testing of radiated emissions.

802.11 n HT20: Channel low (5500MHz), mid (5600MHz) and high (5700MHz) with 6.5Mbps lowest data rate are chosen for pre-test testing of radiated emissions.

802.11 n HT40: Channel low (5510MHz), mid (5550MHz) and high (5670MHz) with 13.5Mbps lowest data rate are chosen for pre-test testing of radiated emissions.

5725MHz-5850MHz:

802.11a mode: Channel low (5745MHz), mid (5785MHz) and high (5825MHz) with 6Mbps lowest data rate are chosen for pre-test testing of radiated emissions.

802.11 n HT20: Channel low (5745MHz), mid (5785MHz) and high (5825MHz) with 6.5Mbps lowest data rate are chosen for pre-test testing of radiated emissions.

802.11 n HT40: Channel low (5755MHz) and high (5795MHz) with 13.5Mbps lowest data rate are chosen for pre-test testing of radiated emissions.

5. AC POWER LINE CONDUCTED EMISSION TEST

5.1. Standard Applicable

According to §15.207 and RSS-Gen §8.8, frequency range within 150KHz to 30MHz shall not exceed the Limit table as below.

Frequency range	Limits dB(uV)				
MHz	Quasi-peak Average				
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			
Note					
1. The lower limit shall apply at the	transition frequencies				

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

Conducted Emission Test Site									
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.				
TYPE		NUMBER	NUMBER	CAL.					
Conduction 04-3	WOKEN	CFD 300-NL	Conduction 04	08/30/2018	08/29/2019				
Cable			-3		00/2//2017				
EMI Receiver 18	Rohde &	ESCI	101392	05/16/2019	05/15/2020				
	Schwarz				03/13/2020				
LISN 18	ROHDE &	ENV216	101424	05/31/2019	05/30/2020				
	SCHWARZ				03/30/2020				
LISN 03	ROHDE &	ESH3-Z5	828874/010	07/22/2018	07/21/2019				
	SCHWARZ				0//21/2019				
Test Seftware	Fored	EZEMC			2.7/4				
Test Software	Farad	Ver:ISL-03A2	N/A	N/A	N/A				

5.2. Measurement Equipment Used:

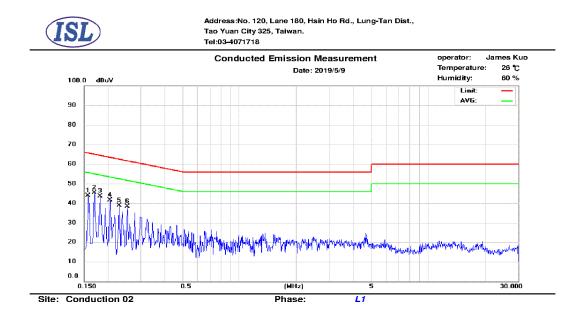
5.3. EUT Setup:

- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.10: 2013
- 2. The AC/DC Power adaptor of EUT was plug-in LISN. The EUT was placed flushed with the rear of the table.
- 3. The LISN was connected with 120Vac/60Hz power source.

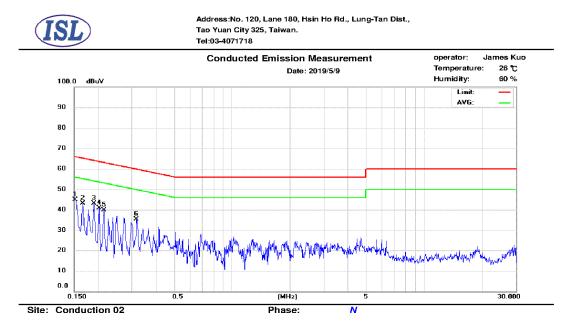
5.4. Measurement Procedure:

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

5.5. Measurement Result:


The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Note: Refer to next page for measurement data and plots.


AC POWER LINE CONDUCTED EMISSION TEST DATA

Operation Mode:	Operation Mode	Test Date:	2019/05/09
Test By:	Barry		

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.158	32.95	13.13	9.63	42.58	65.57	-22.99	22.76	55.57	-32.81
2	0.170	32.41	12.91	9.63	42.04	64.96	-22.92	22.54	54.96	-32.42
3	0.182	30.90	12.46	9.62	40.52	64.39	-23.87	22.08	54.39	-32.31
4	0.206	29.33	11.43	9.62	38.95	63.37	-24.42	21.05	53.37	-32.32
5	0.230	28.51	12.18	9.62	38.13	62.45	-24.32	21.80	52.45	-30.65
6	0.254	27.40	13.19	9.62	37.02	61.63	-24.61	22.81	51.63	-28.82

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.154	32.00	17.49	9.64	41.64	65.78	-24.14	27.13	55.78	-28.65
2	0.166	31.80	19.02	9.64	41.44	65.16	-23.72	28.66	55.16	-26.50
3	0.190	30.20	15.71	9.64	39.84	64.04	-24.20	25.35	54.04	-28.69
4	0.202	25.76	10.10	9.64	35.40	63.53	-28.13	19.74	53.53	-33.79
5	0.214	27.08	10.89	9.64	36.72	63.05	-26.33	20.53	53.05	-32.52
6	0.318	23.37	17.30	9.64	33.01	59.76	-26.75	26.94	49.76	-22.82

-17 of 143-

6. OUTPUT POWER / EIRP /SPECTRAL DENSITY MEASUREMENT

6.1. Standard Applicable

According to §15.407(a) Power limits:

- (1) For the band 5.15 5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power er spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

- (iv) For mobile and portable client devices in the 5.15 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25 5.35 GHz and 5.47 5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBiare used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725 5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

According to RSS-247

6.2.1 Frequency Band 5150-5250 MHz

The maximum e.i.r.p. shall not exceed 200 mW or $10 + 10 \log 10B$, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

6.2.2 Frequency Band 5250-5350 MHz

The maximum conducted output power shall not exceed 250 mW or $11 + 10 \log 10B$, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or $17 + 10 \log 10B$, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

6.2.3 Frequency Bands 5470-5600 MHz and 5650-5725 MHz

The maximum conducted output power shall not exceed 250 mW or $11 + 10 \log 10B$, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W

6.2.4 Frequency Band 5725-5850 MHz

The maximum conducted output power shall not exceed 1 W.

The power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint3 systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

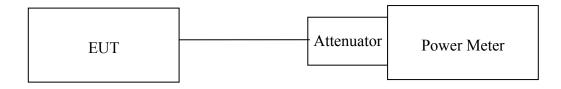
6.2. Measurement Procedure

For Output Power

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter
- 3. Record the max. reading.
- 4. Repeat above procedures until all frequency measured were complete.

For Power Spectral Density

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to Spectrum.
- 3. Set RBW=1MHz,VBW=3MHz, Span=50MHz (Base Mode), Sweep time = Auto, traces 100 sweeps of video averaging for 5150-5725MHz;
- 4. Set RBW=500KHz,VBW=1.5MHz, Span=60MHz (Base Mode), Sweep time = Auto, traces 100 sweeps of video averaging for 5725-5850MHz;
- 5. Record the max. reading.
- 6. Repeat above procedures until all frequency measured were complete.


Refer to section E3 of KDB Document: KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Conducted Emission Test Site									
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.				
ТҮРЕ		NUMBER	NUMBER	CAL.					
Power Meter 05	Anritsu	ML2495A	1116010	10/28/2018	10/27/2019				
Power Sensor 05	Anritsu	MA2411B	34NKF50	10/28/2018	10/27/2019				
Power Sensor 06	DARE	RPR3006W	13I00030SN O33	01/11/2019	01/10/2020				
Power Sensor 07	DARE	RPR3006W	13I00030SN O34	01/11/2019	01/10/2020				
Temperature Chamber	KSON	THS-B4H100	2287	02/19/2019	02/18/2020				
DC Power supply	ABM	8185D	N/A	01/10/2019	01/09/2020				
AC Power supply	EXTECH	CFC105W	NA	N/A	N/A				
Attenuator	Woken	Watt-65m3502	11051601	NA	NA				
Splitter	MCLI	PS4-199	12465	12/26/2017	12/25/2019				
Spectrum analyzer	keysight	N9010A	MY56070257	10/15/2018	10/14/2019				
Spectrum analyzer	R&S	FSP40	100116	01/10/2019	01/09/2020				
Test Software	DARE	Radiation Ver:2013.1.23	NA	NA	NA				

6.3. Measurement Equipment Used:

6.4. Measurement Equipment Used:

6.5. Measurement Result

Average Power Measurement for FCC:

802.11a

Mode	Channel	power (dBm)	limit(dBm)	result
	5180	14.23	23.97	pass
	5260	14.07	23.97	pass
	5320	14.11	23.97	pass
	5500	13.67	23.97	pass
802.11a	5600	14.2	23.97	pass
	5700	13.56	23.97	pass
	5745	14.13	30	pass
	5785	14.22	30	pass
	5825	13.13	30	pass

802.11n HT20

Mode	Channel	power (dBm)	limit(dBm)	result
	5180	14.12	23.97	pass
	5260	13.41	23.97	pass
	5320	14.03	23.97	pass
	5500	13.91	23.97	pass
802.11n HT20	5600	13.72	23.97	pass
	5700	13.24	23.97	pass
	5745	14.02	30	pass
	5785	13.92	30	pass
	5825	14.25	30	pass

802.11n HT40

Mode	Channel	power (dBm)	limit(dBm)	result
	5190	13.81	23.97	pass
	5270	13.92	23.97	pass
	5310	13.84	23.97	pass
802.11n HT40	5510	14.01	23.97	pass
802.1111 1140	5550	14.27	23.97	pass
	5670	14.19	23.97	pass
	5755	14.01	30	pass
	5795	13.97	30	pass

Average Power Measurement for ISED:

Mode	Channel	conducted power (dBm)	conducted power lim- it(dBm)	EIRP(dBm)	EIRP limit(dBm)
	5180	14.23	NA	15.00	23.01
	5260	14.07	23.97	14.84	30
	5320	14.11	23.97	14.88	30
	5500	13.67	23.97	14.44	30
802.11a	5600	14.20	23.97	14.97	30
	5700	13.56	23.97	14.33	30
	5745	14.13	30	14.90	NA
	5785	14.22	30	14.99	NA
	5825	13.13	30	13.90	NA

802.11n HT20

Mode	Freq(MHz)	conducted power (dBm)	conducted power lim- it(dBm)	EIRP(dBm)	EIRP limit(dBm)
	5180	14.12	NA	14.89	23.01
	5260	13.41	23.97	14.18	30
	5320	14.03	23.97	14.80	30
	5500	13.91	23.97	14.68	30
802.11n HT20	5600	13.72	23.97	14.49	30
	5700	13.24	23.97	14.01	30
	5745	14.02	30	14.79	NA
	5785	13.92	30	14.69	NA
	5825	14.25	30	15.02	NA

802.11n HT40

Mode	Freq(MHz)	conducted power (dBm)	conducted power lim- it(dBm)	EIRP(dBm)	EIRP limit(dBm)
	5190	13.81	NA	14.58	23.01
	5270	13.92	23.97	14.69	30
	5310	13.84	23.97	14.61	30
802.11n HT40	5510	14.01	23.97	14.78	30
оо <u>2.1111 п</u> 140	5550	14.27	23.97	15.04	30
	5670	14.19	23.97	14.96	30
	5755	14.01	30	14.78	NA
	5795	13.97	30	14.74	NA

802.11a Mode			
Frequency	RF Power Density	Maximum Limit	
MHz	Reading (dBm/MHz)	(dBm/MHz)	
5180	0.12	11	
5260	1.41	11	
5320	1.31	11	
5500	-0.81	11	
5600	-1.33	11	
5700	0.35	11	
Frequency MHz	RF Power Density Reading (dBm/500KHz)	Maximum Limit (dBm/500KHz)	
5745	-3.04	30	
5785	-2.96	30	
5825	-3.81	30	

Power Spectral Density Measurement for FCC:

802.11n HT20

Frequency MHz	RF Power Density Reading (dBm/MHz)	Maximum Limit (dBm/MHz)
5180	-0.21	11
5260	1.42	11
5320	1.53	11
5500	-1.38	11
5580	-1.47	11
5700	-0.18	11
Frequency MHz	RF Power Density Reading (dBm/500KHz)	Maximum Limit (dBm/500KHz)
5745	-2.87	30
5785	-3.58	30
5825	-4.43	30

802.11n HT40 Mode

Frequency MHz	RF Power Density Reading (dBm/MHz)	Maximum Limit (dBm/MHz)
5190	-2.66	11
5270	-1.29	11
5310	-1.44	11
5510	-5.58	11
5550	-5.57	11
5670	-3.34	11
Frequency	RF Power Density	Maximum Limit
MHz	Reading (dBm/500KHz)	(dBm/500KHz)
5755	-6.81	30
5795	-6.98	30

Frequency	RF Power Density	Conducted Limit	EIRP Density	EIRP Density Limit
MHz	Reading (dBm/MHz)	(dBm/MHz)	(dBm/MHz)	(dBm/MHz)
5180	0.12	NA	0.89	10
5260	1.41	11	2.18	NA
5320	1.31	11	2.08	NA
5500	-0.81	11	-0.04	NA
5600	-1.33	11	-0.56	NA
5700	0.35	11	1.12	NA
Frequency	RF Power Density	Conducted Limit	EIRP Density	EIRP Density Limit
MHz	Reading (dBm/500KHz)	(dBm/500KHz)	(dBm/500KHz)	(dBm/500KHz)
5745	-3.04	30	-2.27	NA
5785	-2.96	30	-2.19	NA
5825	-3.81	30	-3.04	NA

Power Spectral Density Measurement for ISED:

802.11n HT20

RF Power Density **Conducted Limit EIRP Density EIRP Density Limit** Frequency MHz Reading (dBm/MHz) (dBm/MHz) (dBm/MHz) (dBm/MHz) 5180 -0.21 NA 0.56 10 5260 1.42 11 2.19 NA 5320 1.53 11 2.30 NA 5500 -1.38 11 -0.61 NA 5600 -1.47 11 -0.70 NA 5700 0.59 -0.18 11 NA EIRP Density EIRP Density Limit **RF** Power Density **Conducted Limit** Frequency (dBm/500KHz) Reading (dBm/500KHz) (dBm/500KHz) (dBm/500KHz) MHz 5745 -2.87 30 -2.10 NA 5785 -3.58 30 -2.81 NA 5825 -4.43 30 -3.66 NA

802.11n HT40 Mode

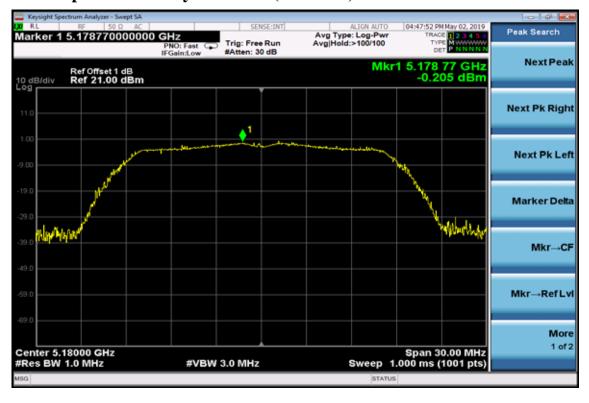
Frequency MHz	RF Power Density Reading (dBm/MHz)	Conducted Limit (dBm/MHz)	EIRP Density (dBm/MHz)	EIRP Density Limit (dBm/MHz)
5190	-2.66	NA	-1.89	10
5270	-1.29	11	-0.52	NA
5310	-1.44	11	-0.67	NA
5510	-5.58	11	-4.81	NA
5550	-5.57	11	-4.80	NA
5670	-3.34	11	-2.57	NA
Frequency MHz	RF Power Density Reading (dBm/500KHz)	Conducted Limit (dBm/500KHz)	EIRP Density (dBm/500KHz)	EIRP Density Limit (dBm/500KHz)
5755	-6.81	30	-6.04	NA
5795	-6.98	30	-6.21	NA

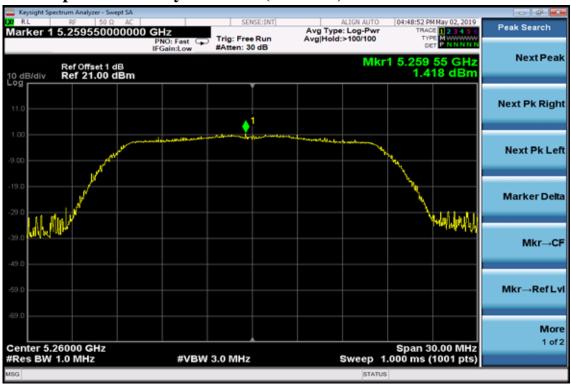


BAND 1, 2

802.11a Power Spectral Density Data Plot (CH Low)

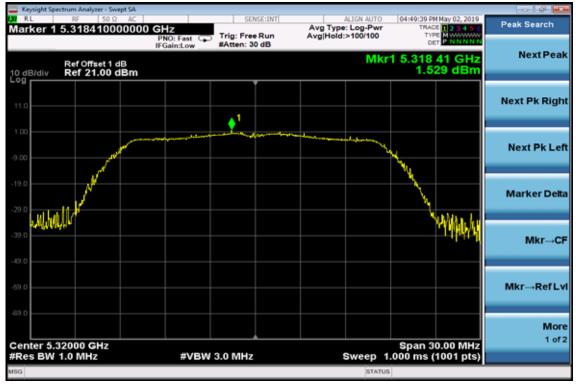
Power Spectral Density Data Plot (CH Mid)





Power Spectral Density Data Plot (CH High)

802.11n HT20 Power Spectral Density Test Plot (CH-Low)

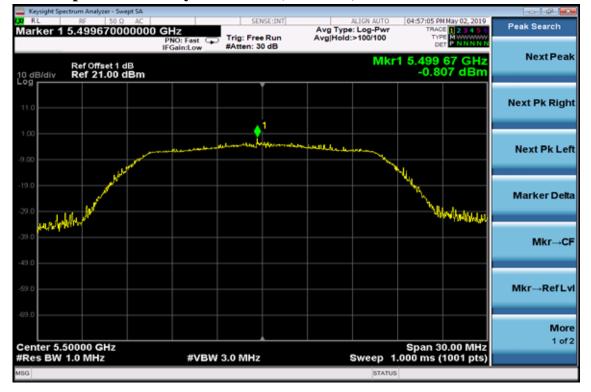


Power Spectral Density Test Plot (CH-Mid)

Power Spectral Density Test Plot (CH-High)

802.11n HT40 Power Spectral Density Test Plot (CH-Low)

Power Spectral Density Test Plot (CH-Mid)

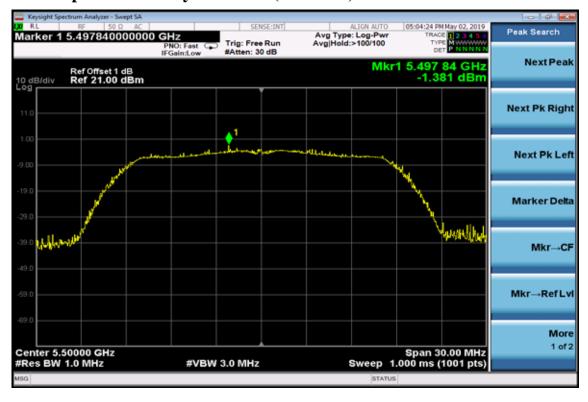


Power Spectral Density Test Plot (CH-High)

BAND 3

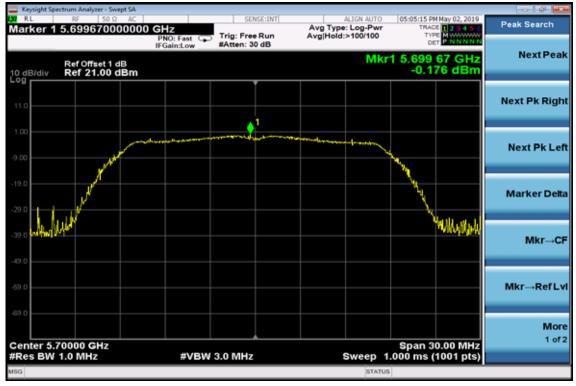
802.11a Power Spectral Density Data Plot (CH Low)

Power Spectral Density Data Plot (CH Mid)



Power Spectral Density Data Plot (CH High)

802.11n HT20 Power Spectral Density Test Plot (CH-Low)



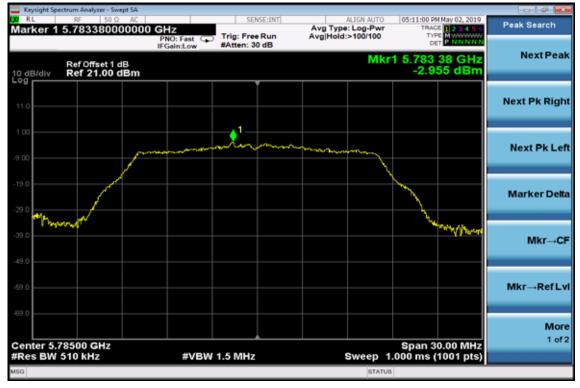
Power Spectral Density Test Plot (CH-Mid)

Power Spectral Density Test Plot (CH-High)

802.11n HT40 Power Spectral Density Test Plot (CH-Low)

Power Spectral Density Test Plot (CH-Mid)

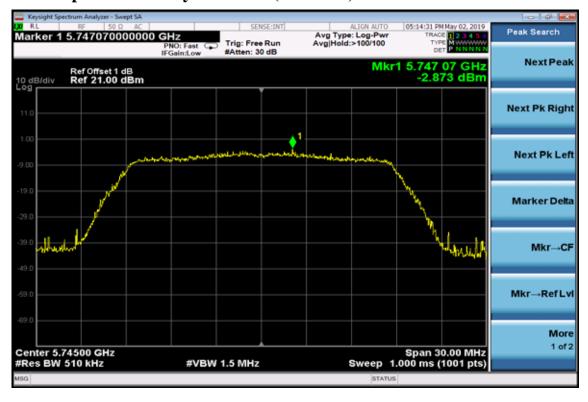
Power Spectral Density Test Plot (CH-High)



BAND 4


802.11a Power Spectral Density Data Plot (CH Low)

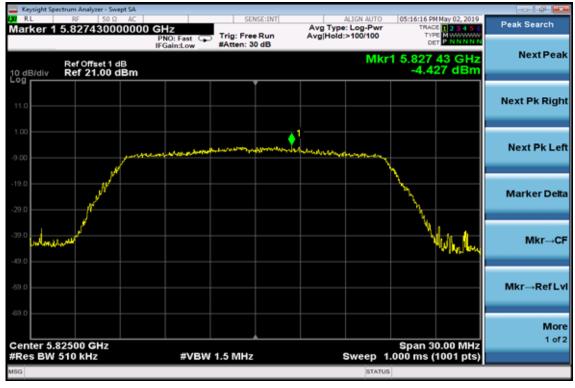
Power Spectral Density Data Plot (CH Mid)





Power Spectral Density Data Plot (CH High)

802.11n HT20 Power Spectral Density Test Plot (CH-Low)



Power Spectral Density Test Plot (CH-Mid)

Power Spectral Density Test Plot (CH-High)

802.11n HT40 Power Spectral Density Test Plot (CH-Low)

Power Spectral Density Test Plot (CH-High)

7. 26dB /99% Emission Bandwidth Measurement

7.1. Standard Applicable

According to §15.407(a) for band 1,2,3. No Limit required.

According to RSS -247, 6.2, No Limit required.

RSS-Gen §4.4.1, the transmitter shall be operated at its maximum carrier power measured under normal test conditions. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold, may produce a wider bandwidth than actual.

The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded.

7.2. Measurement Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=300KHz, VBW =1MHz, Span= 50MHz, Sweep=auto
- 4. Mark the peak frequency and –26dB (upper and lower) frequency.
- 5. Repeat above procedures until all frequency measured were complete.

Refer to section D of KDB Document: KDB 789033 D02 General UNII Test Procedures New Rules v02r01

7.3. Measurement Equipment Used:

Refer to section 6.3 for details.

7.4. Test Set-up:

Refer to section 6.4 for details.

7.5. Measurement Result

802.11a Mode

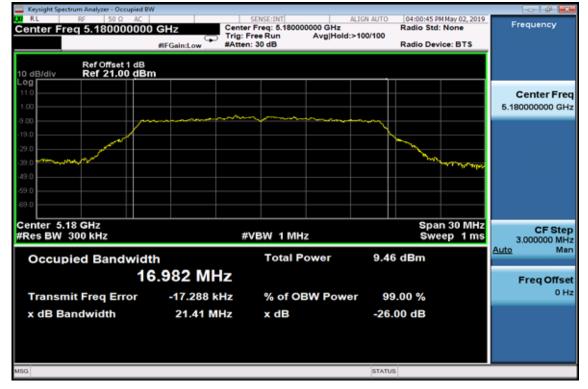
Frequency	26dB Bandwidth	99% Bandwidth	Power Limit Calculation
(MHz)	(MHz)	(MHz)	(dBm)
5180	21.410	16.982	
5260	21.300	16.939	24.28
5320	21.380	16.922	24.30
5500	21.400	16.956	24.30
5600	21.430	17.027	24.31
5700	21.520	16.961	24.33

802.11n HT20 Mode

Frequency	26dB Bandwidth	99% Bandwidth	Power Limit Calculation
(MHz)	(MHz)	(MHz)	(dBm)
5180	21.930	18.076	
5260	21.630	18.003	24.35
5320	21.800	17.978	24.38
5500	21.840	18.113	24.39
5600	21.680	18.109	24.36
5700	21.590	18.067	24.34

802.11n HT40 Mode

Frequency	26dB Bandwidth	99% Bandwidth	Power Limit Calculation
(MHz)	(MHz)	(MHz)	(dBm)
5190	40.100	36.307	
5270	40.020	36.294	27.02
5310	40.060	36.345	27.03
5510	39.930	36.335	27.01
5570	43.460	36.338	27.38
5670	39.950	36.260	27.02


Note: Power Limit =11+10*Log (26dB BW)

Band 1, 2

802.11a


26dB / 99% Band Width Test Data CH-Low

26dB / 99% Band Width Test Data CH-Mid

26dB / 99% Band Width Test Data CH-High

802.11n HT20 26dB / 99% Band Width Test Data CH-Low

Keysight Spectrum Analyzer - Occu				
Center Freq 5.18000	0000 GHz Cen	ter Freq: 5.180000000 GHz	LIGN AUTO 04:03:12 PM May 02, 2 Radio Std: None	Frequency
):FreeRun Avg Hold∷ ten:30 dB	100/100 Radio Device: BTS	
10 dB/div Ref 21.00				
Log 11.0				
1.00				Center Freq 5.180000000 GHz
-9.00				5.18000000 GHz
-19.0				
-29.0			Mark 1	
-39.0			Mathematics	
-49.0				
-59.0				
-69.0				
Center 5.18 GHz			Span 30 M	47
#Res BW 300 kHz		#VBW 1 MHz	Sweep 1	
				Auto Man
Occupied Bandy		Total Power	9.32 dBm	
	18.076 MHz			Freq Offset
Transmit Freq Erro	or -17.635 kHz	% of OBW Powe	r 99.00 %	0 Hz
x dB Bandwidth	21.93 MHz	x dB	-26.00 dB	
	21.00 1012	A QD	20.00 00	
MSG			STATUS	_


26dB / 99% Band Width Test Data CH-Mid

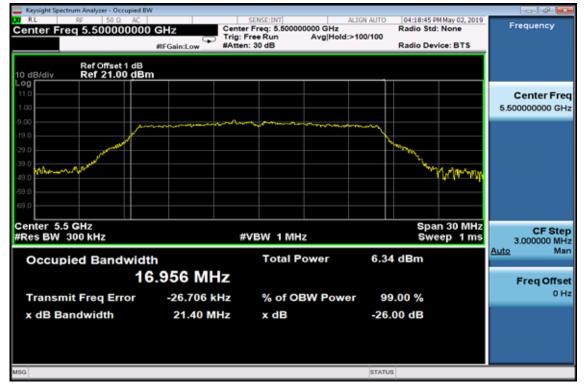
26dB / 99% Band Width Test Data CH-High

Keysight Spectrum Analyzer - Occupied B	W					- 6 💌
RL RF 50 Ω AC Center Freq 5.320000000		sense:INT ter Freq: 5.320000000 GHz : Free Run Avg Ho en: 30 dB	ALIGN AUTO	04:04:42 PM Ma Radio Std: No Radio Device:	me	Frequency
10 dB/div Ref Offset 1 dB Ref 21.00 dB	m					
11.0 1.00		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Center Freq 5.320000000 GHz
-19.0 -29.0				Man Marken		
-39.0 -49.0				- Mure	miller	
Center 5.32 GHz #Res BW 300 kHz		#VBW 1 MHz		Span 3 Sweep	0 MHz	CF Step 3.000000 MHz
Occupied Bandwid	th 7.978 MHz	Total Power	10.1	dBm		Auto Man Freq Offset
Transmit Freq Error	-29.536 kHz	% of OBW Pov	ver 99	.00 %		0 Hz
x dB Bandwidth	21.80 MHz	x dB	-26.	00 dB		
MSG			STATUS			

802.11n HT40 26dB / 99% Band Width Test Data CH-Low

26dB / 99% Band Width Test Data CH-Mid

Keysight Spectrum Analyzer - Occupied B				- Ø 🕰
Center Freq 5.270000000) GHz Center Trig: F	SENSE:INT ALI Freq: 6.270000000 GHz iree Run Avg Hold:>1 : 30 dB	GN AUTO 04:09:50 PM May 02 Radio Std: None 00/100 Radio Device: BT	Frequency
Ref Offset 1 dB 10 dB/div Ref 21.00 dBr Log	n			
11.0 1.00				Center Freq 5.270000000 GHz
-29.0				
-49.0				
Center 5.27 GHz			Span 50 l	
#Res BW 510 kHz Occupied Bandwidt		VBW 1.5 MHz Total Power	Sweep 1 10.4 dBm	MS 5.000000 MHz Auto Man
30	6.294 MHz			Freq Offset
Transmit Freq Error	-46.286 kHz	% of OBW Power	99.00 %	0 Hz
x dB Bandwidth	40.02 MHz	x dB	-26.00 dB	
MSG			STATUS	


26dB / 99%Band Width Test Data CH-High


Band 3

802.11a

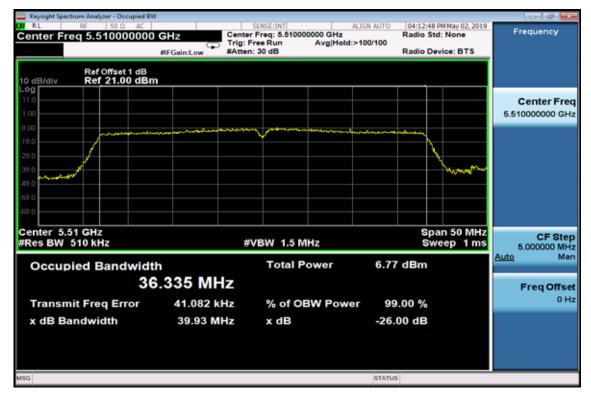
26dB / 99% Band Width Test Data CH-Low

26dB / 99% Band Width Test Data CH-Mid

26dB / 99% Band Width Test Data CH-High

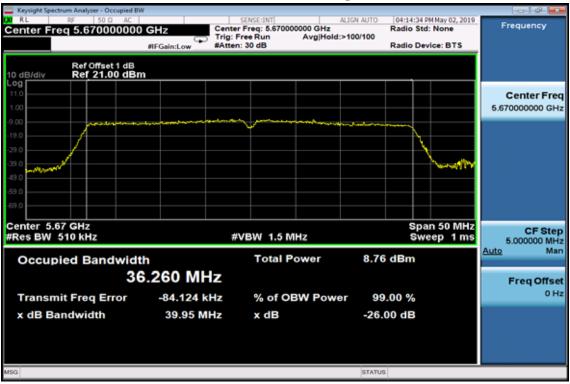
802.11n HT20 26dB / 99% Band Width Test Data CH-Low

	im Analyzer - Occi										6
Center Free	RF 50 Ω α 5.50000		z	Center F	NSE:INT req: 5.50000	0000 GHz	ALIGN AUTO	Radio Std	M May 02, 2019 : None	Frequ	uency
			Gain:Low	Trig: Fre #Atten: 3		Avg Hold:	>100/100	Radio Dev	ice: BTS		
			ounicow								
10 dB/div	Ref Offset 1 Ref 21.00										
Log								1			
11.0											nter Freq
1.00										5.50000	0000 GHz
-9.00		man	- marine			*******					
-19.0	مسحد							1 mg			
-29.0	Ser and										
-49.0	345							<u>م</u> بر	the Alexandre		
-59.0											
-69.0											
-037.0											
Center 5.5								Spa	n 30 MHz		CF Step
#Res BW 3	QQ KHZ			#VE	3W 1 MH	z		Swe	eep 1 ms	3.00	0000 MHz
Occupie	ed Band	width			Total P	ower	7.03	dBm		Auto	Man
			13 MF	7							
		10.1		12						Fre	eq Offset
Transmit	t Freq Erro	ог	10.689 k	Hz	% of O	BW Powe	r 99	.00 %			0 Hz
x dB Ban	ndwidth		21.84 M	Hz	x dB		-26.	00 dB			
MSG							STATU	5			


26dB / 99% Band Width Test Data CH-Mid

26dB / 99% Band Width Test Data CH-High


Keysight Spectrum Analyzer - Occupied Bi	v					- 0 - 2
RL RF 50 Ω AC Center Freq 5.700000000	Trig:	sense:INT Freq: 6.700000000 GHz Free Run Avg Hol n: 30 dB	ALIGN AUTO	04:28:10 P Radio Std		Frequency
10 dB/div Ref Offset 1 dB Ref 21.00 dBr	n					
11.0 1.00						Center Freq 5.70000000 GH2
-9.00 -19.0 -29.0				- Marka		
-39.0 -49.0					Menneputh	
Center 5.7 GHz				6 no	5 20 MHz	
#Res BW 300 kHz	#	¢VBW 1 MHz			n 30 MHz ep 1 ms	CF Step 3.000000 MHz Auto Man
Occupied Bandwidt	^{sh} 3.067 MHz	Total Power	9.55	i dBm		Freq Offset
Transmit Freq Error	-56.566 kHz	% of OBW Pow	ver 99	.00 %		0 Ha
x dB Bandwidth	21.59 MHz	x dB	-26.	00 dB		
MSG			STATUS	5		


802.11n HT40 26dB / 99% Band Width Test Data CH-Low

26dB / 99% Band Width Test Data CH-Mid

26dB / 99%Band Width Test Data CH-High

8. 6dB EMISSION BANDWIDTH MEASUREMENT

8.1. Standard Applicable

According to §15.407 (e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

According to RSS-247, 6.2.4

For equipment operating in the band 5725-5850 MHz, the minimum 6 dB bandwidth shall be at least 500 kHz.

8.2. Measurement Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=100kHz, VBW =100MHz, Span= 50MHz, Sweep=auto
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat above procedures until all frequency measured were complete.

Refer to section D of KDB Document: KDB 789033 D02 General UNII Test Procedures New Rules v01r03

8.3. Measurement Equipment Used:

Refer to section 6.3 for details.

8.4. Test Set-up:

Refer to section 6.4 for details.

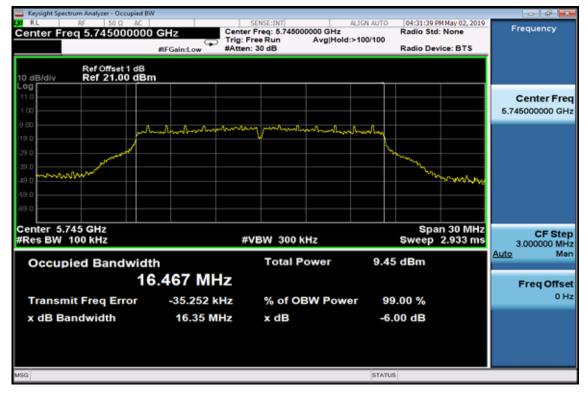
8.5. Measurement Result

802.11a Mode

Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limit (kHz)	
5745	16.350	16.961	>500	
5785	16.350	17.057	>500	
5825	16.340	17.071	>500	

802.11n HT20 Mode

Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limit (kHz)
5745	17.110	18.185	>500
5785	17.580	18.062	>500
5825	17.260	18.097	>500


802.11n HT40 Mode

Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limit (kHz)
5755	36.250	36.354	>500
5795	35.820	36.337	>500

Band 4

802.11a 6dB Band Width Test Data CH-Low

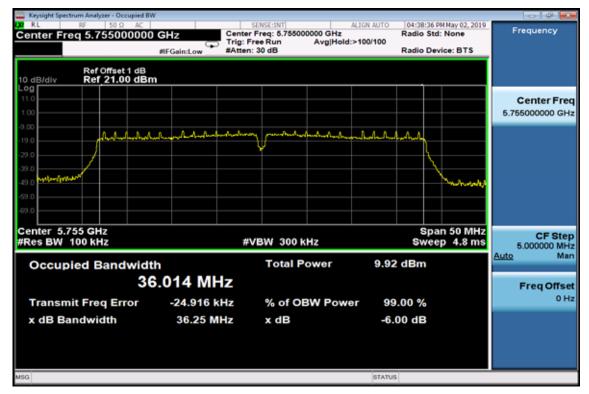
6dB Band Width Test Data CH-Mid

Keysight Spectrum Analyzer - Occupied BV						
Center Freq 5.785000000	GHz Center Trig: F	SENSE:INT Freq: 5.785000000 GHz ree Run Avg Hol : 30 dB	ALIGN AUTO	Radio Std: Radio Dev		Frequency
Ref Offset 1 dB 10 dB/div Ref 21.00 dBr	n					
11.0						Center Freq 5.785000000 GHz
-9.00 -19.0		m markan harshould	mmuly			
-39.0 -49.0					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-69.0						
Center 5.785 GHz #Res BW 100 kHz	#\	/BW 300 kHz			n 30 MHz 2.933 ms	CF Step 3.000000 MHz
Occupied Bandwidt	հ 6.479 MHz	Total Power	9.28	dBm		Auto Man
Transmit Freq Error	-32.959 kHz	% of OBW Pow	ver 99	.00 %		Freq Offset 0 Hz
x dB Bandwidth	16.35 MHz	x dB	-6.	00 dB		
MSG			STATUS	6		

6dB Band Width Test Data CH-High

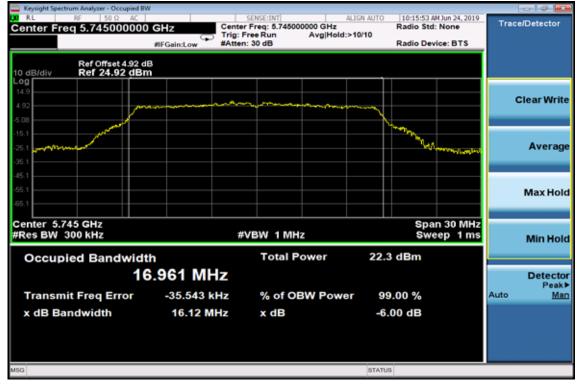
802.11n HT20 6dB Band Width Test Data CH-Low

Keysight Spectrum Analyzer - Occupied B	w				
Center Freq 5.74500000		r Freq: 5.745000000 GHz	Radio Ste	PM May 02, 2019 d: None	Frequency
		Free Run Avg Hold:> 1:30 dB		vice: BTS	
	WPGallittow writter		itadio De		
Ref Offset 1 dB 10 dB/div Ref 21.00 dB	m				
Log					
11.0					Center Freq
1.00					5.745000000 GHz
	hallen have have the	m mohanhanhan	harling		
-19.0			h.		
-29.0			North Market		
-39.0			- No.		
-49.0 millionning				"martine the	
-69.0					
-69.0					
Center 5.745 GHz			Spa	an 30 MHz	CF Step
#Res BW 100 kHz	#	VBW 300 kHz		2.933 ms	3.000000 MHz
Occupied Banduild	41-	Total Power	9.46 dBm		<u>Auto</u> Man
Occupied Bandwid		Total Fower	5.40 dBill		
1	7.658 MHz				Freq Offset
Transmit Freq Error	-29.430 kHz	% of OBW Powe	r 99.00 %		0 Hz
x dB Bandwidth	17.11 MHz	x dB	-6.00 dB		
x ab bandwidth	17.11 10112	X UD	-0.00 uB		
MSG			STATUS		


6dB Band Width Test Data CH-Mid

6dB Band Width Test Data CH-High

802.11n HT40 6dB Band Width Test Data CH-Low

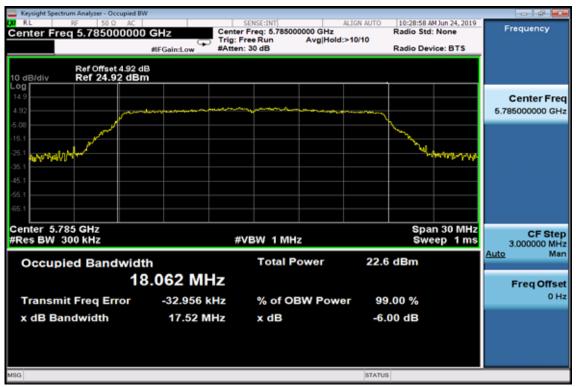

6dB Band Width Test Data CH-High

	um Analyzer - Occ										6
Center Fre	RF 50 Ω α 5.79500		IZ	Center Fr	vse:INT req: 5.79500		ALIGN AUTO		1 PM May 02, 2019 td: None	Freque	ncy
	q 011 0 0 0 0		Gain:Low	Trig: Free #Atten: 3		Avg Hold	:>100/100	Radio D	evice: BTS		
			Gamicow								
10 dB/div	Ref Offset Ref 21.0										
Log											
11.0											er Freq
1.00										5.795000	000 GHz
-9.00		L. A. A.	Mulubart	advadorere.	methoday	harberturk	.0.4.4	4.0.0			
-19.0	1	kagai hand haad haar	And policipation and			A REAL PROPERTY AND	hand from part pro-	-			
-29.0								<u>۲</u>			
-39.0								+	\mathbf{X}		
-49.0 mellorithme									Jaky Market and California		
-59.0											
-69.0											
Center 5.79	95 GHz		·					Sp	oan 50 MHz	-	F Step
#Res BW 1	00 kHz			#VE	3W 300 k	Hz		Swe	ep 4.8 ms		DOO MHz
Occupi	ed Band	width			Total P	ower	9.4	4 dBm		Auto	Man
Occupi	eu banu		07.04	-	i otar i		0.4				_
		36.0	07 MH	1Z						Freq	Offset
Transmi	t Freq Err	or	-22.201 k	Hz	% of O	SW Pow	er 99	9.00 %			0 Hz
x dB Bar	ndwidth		35.82 M	Hz	x dB		-6	.00 dB			
A db bu	in a material and		00.02 11		AUD		-0.	00 00			
MSG							STATU	s			
				_	_	_		-			

802.11a

99% Band Width Test Data CH-Low

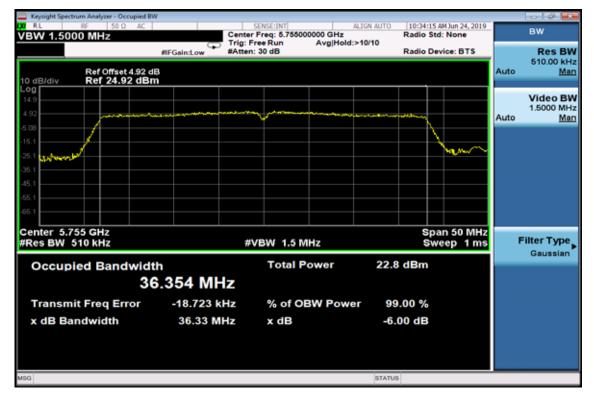
99% Band Width Test Data CH-Mid



99% Band Width Test Data CH-High

802.11n HT20 99% Band Width Test Data CH-Low

Keysight Spectrum Analyzer - Occupied B					
RL RF 50 Ω AC Center Freq 5.745000000		Freq: 5.745000000 GHz	Radio Sto	M Jun 24, 2019 I: None	Frequency
	C Ing: P	ree Run Avg Hold: : 30 dB	>10/10 Radio De	vice: BTS	
	Mr Gall.cow		10010-01		
Ref Offset 4.92 d 10 dB/div Ref 24.92 dBr					
Log					
14.9					Center Freq
4.92					5.745000000 GHz
-5.08					
-15.1					
-25.1 0				a narran na 10	
-45.1					
-45.1					
-65.1					
Center 5.745 GHz				in 30 MHz	CF Step
#Res BW 300 kHz	#	VBW 1 MHz	SW	eep 1 ms	3.000000 MHz
Occupied Bandwid	th	Total Power	23.0 dBm		<u>Auto</u> Man
	8.185 MHz				
					Freq Offset 0 Hz
Transmit Freq Error	-52.028 kHz	% of OBW Powe	r 99.00 %		0 H2
x dB Bandwidth	17.51 MHz	x dB	-6.00 dB		
MSG			STATUS		


99% Band Width Test Data CH-Mid

99% Band Width Test Data CH-High

Keysight Spectrum Analyzer - Occupied B	W					
Center Freq 5.82500000	0 GHz Ce	SENSE:INT Inter Freq: 5.825000000 GH: g: Free Run Avg He tten: 30 dB	ALIGN AUTO z old:>10/10	10:31:04 AMJu Radio Std: No Radio Device	one	Frequency
Ref Offset 4.92 of Ref 24.92 dB	iB m					
Log 14.9 4.92 5.08				\		Center Freq 5.825000000 GHz
-15.1 -25.1 And And Market				and the second	wyeliany of	
-45.1						
Center 5.825 GHz #Res BW 300 kHz		#VBW 1 MHz			30 MHz > 1 ms	CF Step 3.000000 MHz
Occupied Bandwid	th 8.097 MHz	Total Power	23.0) dBm		Auto Man Freq Offset
Transmit Freq Error	-31.873 kHz	% of OBW Po	wer 99	.00 %		0 Hz
x dB Bandwidth	17.50 MHz	x dB	-6.	00 dB		
MSG			STATU	5		

802.11n HT40 99% Band Width Test Data CH-Low

99%Band Width Test Data CH-High

	3W	CENCEANT	ALCH AUTO	10/26/25 AM Jun	24, 2010	
	0 GHz 9	enter Freq: 5.795000000 GH	Hz			Frequency
			1010:>10/10	Radio Device:	втя	
		hanne and a second second				Center Freq 5.795000000 GHz
					_	8.79800000 GH2
				- h.	ant -	
5 GHz 10 kHz		#VBW 1.5 MHz				CF Step 5.00000 MHz
			23.1	l dBm		<u>Auto</u> Man
3	6.337 MHz	2				Freq Offset
Freq Error	-2.159 kHz	z % of OBW P	ower 99	0.00 %		0 Hz
dwidth	36.26 MHz	z xdB	-6.	00 dB		
			STATU	5		
	S 50 R AC 5.79500000 Ref Offset 4.92 Ref 24.92 dB 5 GHz 0 KHz 5 GHz 0 KHz 5 GHz 0 KHz 5 GHz 0 KHz 5 GHz 1 So R AC 1 SO	S.795000000 GHz #FGeln:Low	SINCE AC 5.795000000 GHz WIFGain:Low Center Freq: 8.79500000 GHZ WIFGain:Low Avg/V #Atten: 30 dB Ref 24.92 dB Ref 24.92 dB Content Freq: 8.79500000 GHZ #Atten: 30 dB Content Freq: 8.79500000 GHZ #Atten: 30 dB Content Freq: 8.7950000 GHZ #Atten: 30 dB Content Freq: 8.79500000 GHZ #Atten: 30 dB Content Freq: 8.7950000 GHZ #Atten: 30 dB Content Freq: 8.79500000 GHZ #Atten: 30 dB Content Freq: 8.795000000 GHZ #Atten: 30 dB Content Freq: 8.795000000 GHZ #Atten: 30 dB Content Freq: 8.795000000 GHZ #Atten: 30 dB Content Freq: 8.7950000000 GHZ #Atten: 30 dB Content Freq: 8.795000000 GHZ #Atten: 30 dB Content Freq: 8.795000000 GHZ #Atten: 30 dB Content Freq: 8.795000000 GHZ #Atten: 30 dB #Atten: 30 dB Atten: 30 dB Atten: 30 dB #Atten: 30 dB Atten: 30 d	Star Star ALIGN AUTO 5.795000000 GHz Center Freq: 6.795000000 GHz Avg Hold:>10/10 #FGain:Low Trip: Freq: 6.795000000 GHz Avg Hold:>10/10 Ref Offset 4.92 dB Pref Offset 4.92 dB Pref Offset 4.92 dB Ref 24.92 dBm Pref Offset 4.92 dB Pref Offset 4.92 dB Star Pref Offset 4.92 dB Pref Offset 4.92 dB Star Pref Offset 4.92 dB Pref Offset 4.92 dB Star Pref Offset 4.92 dB Pref Offset 4.92 dB Star Pref Offset 4.92 dB Pref Offset 4.92 dB Star Pref Offset 4.92 dB Pref Offset 4.92 dB Star Pref Offset 4.92 dB Pref Offset 4.92 dB Star Pref Offset 4.92 dB Pref Offset 4.92 dB Star Pref Offset 4.92 dB Pref Offset 4.92 dB Star Pref Offset 4.92 dB Pref Offset 4.92 dB Star Pref Offset 4.92 dB Pref Offset 4.92 dB Star Pref Offset 4.92 dB Pref Offset 4.92 dB Star Pref Offset 4.92 dB Pref Offset 4.92 dB Star Pref Offset 4.92 dB </td <td>Stop AL SENSE:INT ALIGN AUTO 10:36:25 AM Jun 5.795000000 GHz #FGain:Low Center Free Run Avg Hold:>10:10 Radio Std: Nor Radio Device: Ref Offset 4.92 dB Ref 24.92 dB Trig: Free Run Avg Hold:>10:10 Radio Device: Som Accord #FGain:Low #Kten: 30 dB Avg Hold:>10:10 Radio Device: Som Accord #FGain:Low #Kten: 30 dB Avg Hold:>10:10 Radio Device: Ref Offset 4.92 dB #IFGain:Low #Kten: 30 dB Avg Hold:>10:10 Radio Device: Soft and the state of the stat</td> <td>BF 50.9 AC SENSE:NT ALIGN AUTO 10:36:25 AM Jun 24, 2019 S.795000000 GHz Center Freq: 6.795000000 GHz Radio Std: None mFGain:Low #Atten: 30 dB Avg Hold:>1010 Radio Std: None Ref Offset 4.92 dB #Atten: 30 dB Augumentation 10:36:25 AM Jun 24, 2019 Ref Offset 4.92 dB #Atten: 30 dB Augumentation Radio Device: BTS So GHZ #Atten: 30 dB Augumentation Span 50 MHz So GHZ #VBW 1.5 MHz Span 50 MHz So Hz #VBW 1.5 MHz Span 50 MHz Stada Bandwidth Total Power 23.1 dBm 36.337 MHz % of OBW Power 99.00 % Freq Error -2.159 kHz % of OBW Power 99.00 % dwidth 36.26 MHz x dB -6.00 dB</td>	Stop AL SENSE:INT ALIGN AUTO 10:36:25 AM Jun 5.795000000 GHz #FGain:Low Center Free Run Avg Hold:>10:10 Radio Std: Nor Radio Device: Ref Offset 4.92 dB Ref 24.92 dB Trig: Free Run Avg Hold:>10:10 Radio Device: Som Accord #FGain:Low #Kten: 30 dB Avg Hold:>10:10 Radio Device: Som Accord #FGain:Low #Kten: 30 dB Avg Hold:>10:10 Radio Device: Ref Offset 4.92 dB #IFGain:Low #Kten: 30 dB Avg Hold:>10:10 Radio Device: Soft and the state of the stat	BF 50.9 AC SENSE:NT ALIGN AUTO 10:36:25 AM Jun 24, 2019 S.795000000 GHz Center Freq: 6.795000000 GHz Radio Std: None mFGain:Low #Atten: 30 dB Avg Hold:>1010 Radio Std: None Ref Offset 4.92 dB #Atten: 30 dB Augumentation 10:36:25 AM Jun 24, 2019 Ref Offset 4.92 dB #Atten: 30 dB Augumentation Radio Device: BTS So GHZ #Atten: 30 dB Augumentation Span 50 MHz So GHZ #VBW 1.5 MHz Span 50 MHz So Hz #VBW 1.5 MHz Span 50 MHz Stada Bandwidth Total Power 23.1 dBm 36.337 MHz % of OBW Power 99.00 % Freq Error -2.159 kHz % of OBW Power 99.00 % dwidth 36.26 MHz x dB -6.00 dB

9. Undesirable Emission – Radiated Measurement

9.1. Standard Applicable

According to §15.407(b), Undesirable Emission Limits: Except as shown in Paragraph (b)(7) of this section, the peak emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (5) The above emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in Section 15.207.
- (7) The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

According to RSS-247, 6.2

6.2.1 Frequency Band 5150-5250 MHz

For transmitters operating in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. However, any unwanted emissions that fall into the band 5250-5350 MHz must be 26 dBc, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth, above 5.25 GHz. Otherwise, the transmission is considered as intentional and the devices shall implement dynamic frequency selection (DFS) and transmitter power control (TPC) as per the requirements for the band 5250-5350 MHz.

-65 of 143-

6.2.2 Frequency Band 5250-5350 MHz

- i) For devices with both operating frequencies and channel bandwidths contained within the band 5250-5350 MHz, the device shall comply with the following:
- a. All emissions outside the band 5250-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. if the equipment is intended for outdoor use; or
- b. All emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. and any emissions within the band 5150-5250 MHz shall meet the power spectral density limits of Section 6.2.1. The device shall be labelled "for indoor use only."
- ii) For devices with operating frequencies in the band 5250-5350 MHz but having a channel bandwidth that overlaps the band 5150-5250 MHz, the devices' unwanted emission shall not exceed -27 dBm/MHz e.i.r.p. outside the band 5150-5350 MHz and its power shall comply with the spectral power density for operation within the band 5150-5250 MHz. The device shall be labelled "for indoor use only."
- (3) Additional requirements

In addition to the above requirements, devices operating in the band 5250-5350 MHz with a maximum e.i.r.p. greater than 200 mW shall comply with the following e.i.r.p. at different elevations, where θ is the angle above the local horizontal plane (of the Earth) as shown below:

- (i) -13 dBW/MHz for $00 \le \theta \le 80$
- (ii) (ii) $-13 0.716 (\theta 8) \text{ dBW/MHz}$ for $80 \le \theta < 400$
- (iii) (iii) $-35.9 1.22 (\theta 40) \text{ dBW/MHz}$ for $400 \le \theta \le 450$
- (iv) (iv) -42 dBW/MHz for θ > 450

The measurement procedure defined in Annex A of this document shall be used to verify the compliance to the e.i.r.p. at different elevations.

6.2.3 Frequency Bands 5470-5600 MHz and 5650-5725 MHz

Emissions outside the band 5470-5725 MHz shall not exceed -27 dBm/MHz e.i.r.p.

6.2.4 Frequency Band 5725-5850 MHz

For the band 5725-5850 MHz, emissions at frequencies from the band edges to 10 MHz above or below the band edges shall not exceed -17 dBm/MHz e.i.r.p.

For emissions at frequencies more than 10 MHz above or below the band edges, the emissions power shall not exceed -27 dBm/MHz.

§15.205- RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(2)
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

30-88

88-216

216-960

Above 960

40

43.5

46

54

§15.209- RADIATED EMISSION LIMITS: GENERAL REQUIREMENTS

1001/10120)							
MEASURING DISTANCE OF 3 METER							
FREQUENCY RANGE	FIELD STRENGTH	FIELD STRENGTH					
(MHz)	(Microvolts/m)	(dBuV/m)					

100

150

200

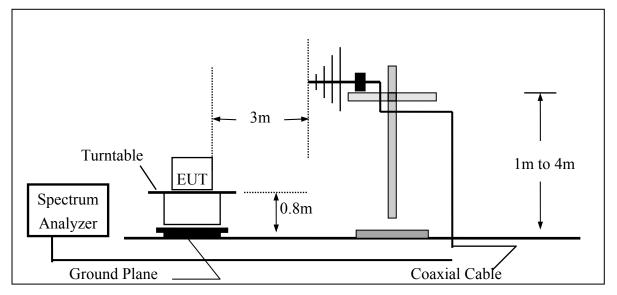
500

FCC PART 15.209

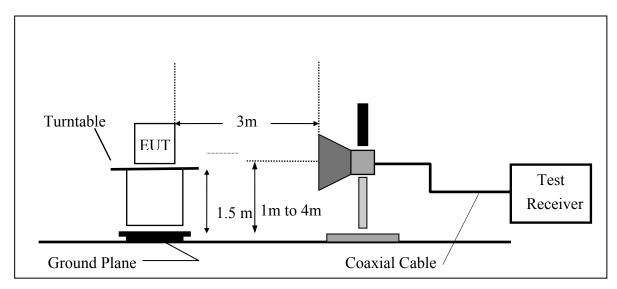
9.2. EUT Setup

- 1. The radiated emission tests were performed in the 3 meter open-test site, using the setup in accordance with the ANSI C63.10: 2013
- 2. The EUT was put in the front of the test table. The host PC system was placed on the center of the back edge on the test table. The peripherals like modem, monitor printer, K/B, and mouse were placed on the side of the host PC system. The rear of the EUT and peripherals were placed flushed with the rear of the tabletop.
- 3. The keyboard was placed directly in the front of the monitor, flushed with the front tabletop. The mouse was placed next to the Keyboard, flushed with the back of keyboard.
- 4. The spacing between the peripherals was 10 centimeters.
- 5. External I/O cables were draped along the edge of the test table and bundle when necessary.
- 6. The host PC system was connected with 120Vac/60Hz power source.

9.3. Measurement Procedure


- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. The turn table shall rotate 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until all frequency measured were complete.

Refer to section F of KDB Document: KDB 789033 D02 General UNII Test Procedures New Rules v02r01



9.4. Test SET-UP (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

9.5. Measurement Equipment Used:

Chamber 19(966)									
EQUIPMENT MFR MODEL SERIAL LAST CAL									
TYPE		NUMBER	NUMBER	CAL.					
966 Chamber	Chance Most	Chamber 19	N/A	08/13/2018	08/12/2019				
Spectrum analyzer	R&S	FSP40	100116	01/10/2019	01/09/2020				
EMI Receiver	R&S	ESR3	102461	08/08/2018	08/07/2019				
Loop Antenna(9K-30M)	EM	EM-6879	271	06/06/2018	06/05/2020				
Bilog Antenna (30M-1G)	SCHWARZBECK	VULB9168 w 5dB Att	736	01/29/2019	01/28/2020				
Horn antenna (1G-18G)	SCHWARZBECK	9120D	9120D-1627	11/27/2017	11/26/2019				
Horn antenna (18G-26G)	Com-power	AH-826	081001	11/21/2017	11/20/2019				
Horn antenna (26G-40G)	Com-power	AH-640	100A	03/29/2019	03/28/2021				
Preamplifier (9k-1000M)	HP	8447F	3113A06362	01/14/2019	01/13/2020				
Preamplifier(1G-26G)	Agilent	8449B	3008A02471	10/29/2018	10/28/2019				
Preamplifier (26G-40G)	MITEQ	JS4-26004000- 27-5A	818471	05/06/2019	05/05/2020				
RF Cable (9k-18G)	HUBER SUHNER	SUCOFLEX 104A	MY1397/4A	01/17/2019	01/16/2020				
RF cable (18G~40G)	HUBER SUHNER	Sucoflex 102	27963/2&37421/2	11/12/2018	11/11/2019				
Turn Table	MF	Turn Table-19	Turn Table-19	N/A	N/A				
Mast Tower	MF	JSDES-15A	1308283	N/A	N/A				
Controller	MF	MF-7802BS	MF780208460	N/A	N/A				
AC power source	T-Power	TFC-1005	40006471	N/A	N/A				
Signal Generator	Anritsu	MG3692A	20311	01/09/2019	01/08/2020				
2.4G Filter	Micro-Tronics	Brm50702	76	12/25/2018	12/24/2019				
5G Filter	Micro-Tronics	Brm50716	005	12/25/2018	12/24/2019				
Test Software	Audix	N/A	N/A	N/A	N/A				

9.6. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

9.7. Measurement Result

Refer to attach tabular data sheets.

NOTE:

The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 100kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz. And RBW 1MHz for frequency above 1GHz.

Radiated Spurious Emission Measurement Result (below 1GHz)

(Worst case: Band 1, 2 a mode)

Operation Mode Channel Number	TX MODE CH Low	Test Date Test By	2019/05/17 Barry
Temperature	25	Pol	Ver./Hor
Humidity	65 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	155.13	30.53	-5.93	24.60	43.50	-18.90	Peak	VERTICAL
2	304.51	32.57	-4.75	27.82	46.00	-18.18	Peak	VERTICAL
3	375.32	34.26	-3.49	30.77	46.00	-15.23	Peak	VERTICAL
4	500.45	31.91	-1.64	30.27	46.00	-15.73	Peak	VERTICAL
5	648.86	28.59	0.99	29.58	46.00	-16.42	Peak	VERTICAL
6	749.74	33.60	3.08	36.68	46.00	-9.32	Peak	VERTICAL
1	171.62	34.67	-6.43	28.24	43.50	-15.26	Peak	HORIZONTAL
2	285.11	31.29	-5.24	26.05	46.00	-19.95	Peak	HORIZONTAL
3	399.57	34.61	-2.98	31.63	46.00	-14.37	Peak	HORIZONTAL
4	500.45	32.40	-1.64	30.76	46.00	-15.24	Peak	HORIZONTAL
5	613.94	28.14	0.58	28.72	46.00	-17.28	Peak	HORIZONTAL
6	749.74	33.05	3.08	36.13	46.00	-9.87	Peak	HORIZONTAL

Remark:

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH Mid	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	65 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	143.49	29.35	-6.29	23.06	43.50	-20.44	Peak	VERTICAL
2	304.51	33.49	-4.75	28.74	46.00	-17.26	Peak	VERTICAL
3	375.32	33.88	-3.49	30.39	46.00	-15.61	Peak	VERTICAL
4	500.45	32.41	-1.64	30.77	46.00	-15.23	Peak	VERTICAL
5	649.83	27.94	1.00	28.94	46.00	-17.06	Peak	VERTICAL
6	749.74	33.55	3.08	36.63	46.00	-9.37	Peak	VERTICAL
1	170.65	34.77	-6.30	28.47	43.50	-15.03	Peak	HORIZONTAL
2	285.11	31.21	-5.24	25.97	46.00	-20.03	Peak	HORIZONTAL
3	399.57	33.92	-2.98	30.94	46.00	-15.06	Peak	HORIZONTAL
4	499.48	33.50	-1.66	31.84	46.00	-14.16	Peak	HORIZONTAL
5	644.01	28.06	0.93	28.99	46.00	-17.01	Peak	HORIZONTAL
6	749.74	33.28	3.08	36.36	46.00	-9.64	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Kaulateu Spullous E	inission Measurement Result (Delow 10112)		
Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH High	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	65 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	153.19	29.10	-5.95	23.15	43.50	-20.35	Peak	VERTICAL
2	304.51	32.12	-4.75	27.37	46.00	-18.63	Peak	VERTICAL
3	375.32	37.00	-3.49	33.51	46.00	-12.49	Peak	VERTICAL
4	518.88	33.83	-1.34	32.49	46.00	-13.51	Peak	VERTICAL
5	606.18	29.13	0.49	29.62	46.00	-16.38	Peak	VERTICAL
6	749.74	33.17	3.08	36.25	46.00	-9.75	Peak	VERTICAL
1	171.62	35.36	-6.43	28.93	43.50	-14.57	Peak	HORIZONTAL
2	285.11	32.28	-5.24	27.04	46.00	-18.96	Peak	HORIZONTAL
3	399.57	34.18	-2.98	31.20	46.00	-14.80	Peak	HORIZONTAL
4	500.45	31.93	-1.64	30.29	46.00	-15.71	Peak	HORIZONTAL
5	612.97	28.33	0.57	28.90	46.00	-17.10	Peak	HORIZONTAL
6	749.74	33.25	3.08	36.33	46.00	-9.67	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

(Band 1, 2 HT40 mode)

Operation Mode Channel Number	TX MODE CH Low	Test Date Test By	2019/05/17 Barry
Temperature	25	Pol	Ver./Hor
Humidity	65 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	159.01	26.77	-5.90	20.87	43.50	-22.63	Peak	VERTICAL
2	285.11	31.39	-5.24	26.15	46.00	-19.85	Peak	VERTICAL
3	442.25	28.83	-2.21	26.62	46.00	-19.38	Peak	VERTICAL
4	500.45	29.97	-1.64	28.33	46.00	-17.67	Peak	VERTICAL
5	658.56	27.24	1.16	28.40	46.00	-17.60	Peak	VERTICAL
6	749.74	32.92	3.08	36.00	46.00	-10.00	Peak	VERTICAL
1	153.19	26.68	-5.95	20.73	43.50	-22.77	Peak	HORIZONTAL
2	285.11	32.40	-5.24	27.16	46.00	-18.84	Peak	HORIZONTAL
3	399.57	29.96	-2.98	26.98	46.00	-19.02	Peak	HORIZONTAL
4	522.76	30.42	-1.27	29.15	46.00	-16.85	Peak	HORIZONTAL
5	648.86	27.49	0.99	28.48	46.00	-17.52	Peak	HORIZONTAL
6	749.74	32.51	3.08	35.59	46.00	-10.41	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH Mid	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	65 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	153.19	29.21	-5.95	23.26	43.50	-20.24	Peak	VERTICAL
2	331.67	32.28	-4.32	27.96	46.00	-18.04	Peak	VERTICAL
3	386.96	32.98	-3.25	29.73	46.00	-16.27	Peak	VERTICAL
4	500.45	31.80	-1.64	30.16	46.00	-15.84	Peak	VERTICAL
5	647.89	29.26	0.98	30.24	46.00	-15.76	Peak	VERTICAL
6	749.74	33.80	3.08	36.88	46.00	-9.12	Peak	VERTICAL
1	171.62	35.27	-6.43	28.84	43.50	-14.66	Peak	HORIZONTAL
2	359.80	32.53	-3.82	28.71	46.00	-17.29	Peak	HORIZONTAL
3	399.57	33.78	-2.98	30.80	46.00	-15.20	Peak	HORIZONTAL
4	513.06	31.28	-1.43	29.85	46.00	-16.15	Peak	HORIZONTAL
5	652.74	28.83	1.06	29.89	46.00	-16.11	Peak	HORIZONTAL
6	749.74	32.57	3.08	35.65	46.00	-10.35	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Radiated Spurious En	ission measurement Result (below 10112)		
Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH High	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	65 %		

	-							
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	199.75	29.15	-8.60	20.55	43.50	-22.95	Peak	VERTICAL
2	285.11	32.36	-5.24	27.12	46.00	-18.88	Peak	VERTICAL
3	455.83	28.38	-2.02	26.36	46.00	-19.64	Peak	VERTICAL
4	500.45	29.77	-1.64	28.13	46.00	-17.87	Peak	VERTICAL
5	672.14	27.37	1.40	28.77	46.00	-17.23	Peak	VERTICAL
6	749.74	32.79	3.08	35.87	46.00	-10.13	Peak	VERTICAL
1	169.68	29.13	-6.21	22.92	43.50	-20.58	Peak	HORIZONTAL
2	331.67	29.50	-4.32	25.18	46.00	-20.82	Peak	HORIZONTAL
3	399.57	31.12	-2.98	28.14	46.00	-17.86	Peak	HORIZONTAL
4	500.45	29.68	-1.64	28.04	46.00	-17.96	Peak	HORIZONTAL
5	654.68	27.82	1.09	28.91	46.00	-17.09	Peak	HORIZONTAL
6	778.84	27.38	3.37	30.75	46.00	-15.25	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

(Worst case: Band 3, 802.11a mode)

Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH Low	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	65 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	150.28	29.67	-5.97	23.70	43.50	-19.80	Peak	VERTICAL
2	304.51	32.73	-4.75	27.98	46.00	-18.02	Peak	VERTICAL
3	375.32	34.28	-3.49	30.79	46.00	-15.21	Peak	VERTICAL
4	500.45	30.57	-1.64	28.93	46.00	-17.07	Peak	VERTICAL
5	636.25	28.16	0.85	29.01	46.00	-16.99	Peak	VERTICAL
6	749.74	33.26	3.08	36.34	46.00	-9.66	Peak	VERTICAL
1	170.65	36.17	-6.30	29.87	43.50	-13.63	Peak	HORIZONTAL
2	285.11	31.44	-5.24	26.20	46.00	-19.80	Peak	HORIZONTAL
3	375.32	35.06	-3.49	31.57	46.00	-14.43	Peak	HORIZONTAL
4	514.03	31.45	-1.42	30.03	46.00	-15.97	Peak	HORIZONTAL
5	649.83	28.90	1.00	29.90	46.00	-16.10	Peak	HORIZONTAL
6	749.74	32.24	3.08	35.32	46.00	-10.68	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH Mid	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	65 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	193.93	32.72	-8.41	24.31	43.50	-19.19	Peak	VERTICAL
2	304.51	32.06	-4.75	27.31	46.00	-18.69	Peak	VERTICAL
3	375.32	34.69	-3.49	31.20	46.00	-14.80	Peak	VERTICAL
4	500.45	31.39	-1.64	29.75	46.00	-16.25	Peak	VERTICAL
5	651.77	28.31	1.04	29.35	46.00	-16.65	Peak	VERTICAL
6	749.74	33.29	3.08	36.37	46.00	-9.63	Peak	VERTICAL
1	172.59	34.99	-6.56	28.43	43.50	-15.07	Peak	HORIZONTAL
2	375.32	37.44	-3.49	33.95	46.00	-12.05	Peak	HORIZONTAL
3	500.45	32.57	-1.64	30.93	46.00	-15.07	Peak	HORIZONTAL
4	621.70	28.13	0.68	28.81	46.00	-17.19	Peak	HORIZONTAL
5	697.36	28.56	1.84	30.40	46.00	-15.60	Peak	HORIZONTAL
6	798.24	29.33	3.58	32.91	46.00	-13.09	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Radiated Spurious En	inssion measurement result (below 10112)		
Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH High	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	65 %		

Radiated Spurious	Emission Measurement Result (below 1GHz)	
Onenation Made	TVMODE	Test

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	157.07	29.07	-5.91	23.16	43.50	-20.34	Peak	VERTICAL
2	285.11	32.82	-5.24	27.58	46.00	-18.42	Peak	VERTICAL
3	375.32	34.95	-3.49	31.46	46.00	-14.54	Peak	VERTICAL
4	500.45	31.75	-1.64	30.11	46.00	-15.89	Peak	VERTICAL
5	719.67	27.44	2.36	29.80	46.00	-16.20	Peak	VERTICAL
6	870.02	27.57	4.74	32.31	46.00	-13.69	Peak	VERTICAL
1	170.65	35.28	-6.30	28.98	43.50	-14.52	Peak	HORIZONTAL
2	359.80	31.42	-3.82	27.60	46.00	-18.40	Peak	HORIZONTAL
3	399.57	34.50	-2.98	31.52	46.00	-14.48	Peak	HORIZONTAL
4	500.45	31.76	-1.64	30.12	46.00	-15.88	Peak	HORIZONTAL
5	651.77	28.76	1.04	29.80	46.00	-16.20	Peak	HORIZONTAL
6	749.74	33.68	3.08	36.76	46.00	-9.24	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Radiated Spurious Emission Measurement Result (below 1GHz) (Band 3, 802.11HT40 mode)

Operation Mode Channel Number	TX MODE CH Low	Test Date Test By	2019/05/17 Barry
Temperature	25	Pol	Ver./Hor
Humidity	65 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	160.95	27.16	-5.92	21.24	43.50	-22.26	Peak	VERTICAL
2	285.11	31.91	-5.24	26.67	46.00	-19.33	Peak	VERTICAL
3	455.83	29.30	-2.02	27.28	46.00	-18.72	Peak	VERTICAL
4	513.06	31.39	-1.43	29.96	46.00	-16.04	Peak	VERTICAL
5	645.95	28.59	0.97	29.56	46.00	-16.44	Peak	VERTICAL
6	749.74	33.71	3.08	36.79	46.00	-9.21	Peak	VERTICAL
1	149.31	28.13	-6.00	22.13	43.50	-21.37	Peak	HORIZONTAL
2	331.67	28.81	-4.32	24.49	46.00	-21.51	Peak	HORIZONTAL
3	399.57	30.77	-2.98	27.79	46.00	-18.21	Peak	HORIZONTAL
4	525.67	29.38	-1.22	28.16	46.00	-17.84	Peak	HORIZONTAL
5	659.53	27.61	1.17	28.78	46.00	-17.22	Peak	HORIZONTAL
6	782.72	28.02	3.42	31.44	46.00	-14.56	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH Mid	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	65 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	199.75	29.79	-8.60	21.19	43.50	-22.31	Peak	VERTICAL
2	285.11	32.52	-5.24	27.28	46.00	-18.72	Peak	VERTICAL
3	455.83	29.41	-2.02	27.39	46.00	-18.61	Peak	VERTICAL
4	513.06	30.26	-1.43	28.83	46.00	-17.17	Peak	VERTICAL
5	672.14	27.21	1.40	28.61	46.00	-17.39	Peak	VERTICAL
6	749.74	32.79	3.08	35.87	46.00	-10.13	Peak	VERTICAL
1	142.52	29.01	-6.33	22.68	43.50	-20.82	Peak	HORIZONTAL
2	342.34	28.96	-4.15	24.81	46.00	-21.19	Peak	HORIZONTAL
3	399.57	31.74	-2.98	28.76	46.00	-17.24	Peak	HORIZONTAL
4	549.92	30.16	-0.81	29.35	46.00	-16.65	Peak	HORIZONTAL
5	636.25	28.99	0.85	29.84	46.00	-16.16	Peak	HORIZONTAL
6	753.62	28.84	3.13	31.97	46.00	-14.03	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Radiated Spurious En	ission measurement Result (below 10112)		
Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH High	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	65 %		

Radiated Spurious	Emission Measurement Result (below 1GHz)	
Operation Mode	TX MODE	Test Dat

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	190.05	29.04	-8.27	20.77	43.50	-22.73	Peak	VERTICAL
2	285.11	32.07	-5.24	26.83	46.00	-19.17	Peak	VERTICAL
3	399.57	29.53	-2.98	26.55	46.00	-19.45	Peak	VERTICAL
4	500.45	30.73	-1.64	29.09	46.00	-16.91	Peak	VERTICAL
5	661.47	28.25	1.21	29.46	46.00	-16.54	Peak	VERTICAL
6	749.74	33.50	3.08	36.58	46.00	-9.42	Peak	VERTICAL
1	201.69	30.19	-8.59	21.60	43.50	-21.90	Peak	HORIZONTAL
2	331.67	29.10	-4.32	24.78	46.00	-21.22	Peak	HORIZONTAL
3	399.57	30.50	-2.98	27.52	46.00	-18.48	Peak	HORIZONTAL
4	500.45	30.43	-1.64	28.79	46.00	-17.21	Peak	HORIZONTAL
5	652.74	27.56	1.06	28.62	46.00	-17.38	Peak	HORIZONTAL
6	768.17	27.74	3.28	31.02	46.00	-14.98	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

(Band 4, 802.11a mode)

Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH Low	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	65 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	193.93	31.70	-8.41	23.29	43.50	-20.21	Peak	VERTICAL
2	304.51	32.65	-4.75	27.90	46.00	-18.10	Peak	VERTICAL
3	386.96	32.31	-3.25	29.06	46.00	-16.94	Peak	VERTICAL
4	500.45	31.61	-1.64	29.97	46.00	-16.03	Peak	VERTICAL
5	649.83	29.19	1.00	30.19	46.00	-15.81	Peak	VERTICAL
6	749.74	33.56	3.08	36.64	46.00	-9.36	Peak	VERTICAL
1	171.62	34.65	-6.43	28.22	43.50	-15.28	Peak	HORIZONTAL
2	359.80	32.54	-3.82	28.72	46.00	-17.28	Peak	HORIZONTAL
3	399.57	34.51	-2.98	31.53	46.00	-14.47	Peak	HORIZONTAL
4	500.45	32.23	-1.64	30.59	46.00	-15.41	Peak	HORIZONTAL
5	635.28	28.65	0.83	29.48	46.00	-16.52	Peak	HORIZONTAL
6	749.74	33.58	3.08	36.66	46.00	-9.34	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH Mid	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	65 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	141.55	29.51	-6.38	23.13	43.50	-20.37	Peak	VERTICAL
2	285.11	32.30	-5.24	27.06	46.00	-18.94	Peak	VERTICAL
3	386.96	32.81	-3.25	29.56	46.00	-16.44	Peak	VERTICAL
4	500.45	31.20	-1.64	29.56	46.00	-16.44	Peak	VERTICAL
5	657.59	28.03	1.15	29.18	46.00	-16.82	Peak	VERTICAL
6	749.74	33.81	3.08	36.89	46.00	-9.11	Peak	VERTICAL
1	172.59	34.18	-6.56	27.62	43.50	-15.88	Peak	HORIZONTAL
2	342.34	32.83	-4.15	28.68	46.00	-17.32	Peak	HORIZONTAL
3	399.57	34.89	-2.98	31.91	46.00	-14.09	Peak	HORIZONTAL
4	500.45	32.80	-1.64	31.16	46.00	-14.84	Peak	HORIZONTAL
5	658.56	28.27	1.16	29.43	46.00	-16.57	Peak	HORIZONTAL
6	749.74	33.02	3.08	36.10	46.00	-9.90	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Kadiated Spurious Emission Wedsurement Result (below 10112)									
Operation Mode	TX MODE	Test Date	2019/05/17						
Channel Number	CH High	Test By	Barry						
Temperature	25	Pol	Ver./Hor						
Humidity	65 %								

Radiated Spurious E	mission Measurement Result (below 1GHz)	
Operation Mode	ΤΥ ΜΟΡΕ	Test

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	156.10	29.29	-5.92	23.37	43.50	-20.13	Peak	VERTICAL
2	304.51	32.41	-4.75	27.66	46.00	-18.34	Peak	VERTICAL
3	386.96	32.23	-3.25	28.98	46.00	-17.02	Peak	VERTICAL
4	500.45	31.56	-1.64	29.92	46.00	-16.08	Peak	VERTICAL
5	631.40	27.99	0.79	28.78	46.00	-17.22	Peak	VERTICAL
6	749.74	33.12	3.08	36.20	46.00	-9.80	Peak	VERTICAL
1	171.62	35.23	-6.43	28.80	43.50	-14.70	Peak	HORIZONTAL
2	359.80	32.23	-3.82	28.41	46.00	-17.59	Peak	HORIZONTAL
3	399.57	34.88	-2.98	31.90	46.00	-14.10	Peak	HORIZONTAL
4	500.45	32.43	-1.64	30.79	46.00	-15.21	Peak	HORIZONTAL
5	651.77	28.84	1.04	29.88	46.00	-16.12	Peak	HORIZONTAL
6	749.74	33.06	3.08	36.14	46.00	-9.86	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Radiated Spurious Emission Measurement Result (below 1GHz) (Band 4, 802.11 HT40 mode)

Operation Mode Channel Number	TX MODE CH Low	Test Date Test By	2019/05/17 Barry
Temperature	25	Pol	Ver./Hor
Humidity	65 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	156.10	28.54	-5.92	22.62	43.50	-20.88	Peak	VERTICAL
2	285.11	32.07	-5.24	26.83	46.00	-19.17	Peak	VERTICAL
3	455.83	28.97	-2.02	26.95	46.00	-19.05	Peak	VERTICAL
4	500.45	30.96	-1.64	29.32	46.00	-16.68	Peak	VERTICAL
5	630.43	28.21	0.77	28.98	46.00	-17.02	Peak	VERTICAL
6	749.74	33.72	3.08	36.80	46.00	-9.20	Peak	VERTICAL
1	199.75	30.95	-8.60	22.35	43.50	-21.15	Peak	HORIZONTAL
2	342.34	29.76	-4.15	25.61	46.00	-20.39	Peak	HORIZONTAL
3	399.57	30.55	-2.98	27.57	46.00	-18.43	Peak	HORIZONTAL
4	500.45	29.20	-1.64	27.56	46.00	-18.44	Peak	HORIZONTAL
5	647.89	27.97	0.98	28.95	46.00	-17.05	Peak	HORIZONTAL
6	746.83	29.29	3.02	32.31	46.00	-13.69	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH Mid	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	65 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	150.28	28.04	-5.97	22.07	43.50	-21.43	Peak	VERTICAL
2	285.11	32.09	-5.24	26.85	46.00	-19.15	Peak	VERTICAL
3	455.83	29.70	-2.02	27.68	46.00	-18.32	Peak	VERTICAL
4	497.54	30.83	-1.68	29.15	46.00	-16.85	Peak	VERTICAL
5	660.50	28.01	1.19	29.20	46.00	-16.80	Peak	VERTICAL
6	749.74	34.29	3.08	37.37	46.00	-8.63	Peak	VERTICAL
1	140.58	28.52	-6.43	22.09	43.50	-21.41	Peak	HORIZONTAL
2	331.67	29.55	-4.32	25.23	46.00	-20.77	Peak	HORIZONTAL
3	399.57	30.81	-2.98	27.83	46.00	-18.17	Peak	HORIZONTAL
4	549.92	29.61	-0.81	28.80	46.00	-17.20	Peak	HORIZONTAL
5	648.86	28.72	0.99	29.71	46.00	-16.29	Peak	HORIZONTAL
6	786.60	27.62	3.46	31.08	46.00	-14.92	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Radiated Sparrous Emission Weasarement Result (below 10112)									
Operation Mode	TX MODE	Test Date	2019/05/17						
Channel Number	CH High	Test By	Barry						
Temperature	25	Pol	Ver./Hor						
Humidity	65 %								

Radiated Spurious Em	ission Measurement Result (below 1GHz)		
Operation Mode	TX MODE	Test Date	20
Channel Number	CH High	Test By	Ba

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	152.22	27.80	-5.95	21.85	43.50	-21.65	Peak	VERTICAL
2	285.11	32.04	-5.24	26.80	46.00	-19.20	Peak	VERTICAL
3	399.57	29.63	-2.98	26.65	46.00	-19.35	Peak	VERTICAL
4	513.06	30.17	-1.43	28.74	46.00	-17.26	Peak	VERTICAL
5	657.59	27.56	1.15	28.71	46.00	-17.29	Peak	VERTICAL
6	749.74	33.74	3.08	36.82	46.00	-9.18	Peak	VERTICAL
1	143.49	28.48	-6.29	22.19	43.50	-21.31	Peak	HORIZONTAL
2	342.34	29.01	-4.15	24.86	46.00	-21.14	Peak	HORIZONTAL
3	399.57	31.18	-2.98	28.20	46.00	-17.80	Peak	HORIZONTAL
4	524.70	29.18	-1.23	27.95	46.00	-18.05	Peak	HORIZONTAL
5	600.36	29.29	0.42	29.71	46.00	-16.29	Peak	HORIZONTAL
6	781.75	27.72	3.41	31.13	46.00	-14.87	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

(Worst case: Band 1-2, 802.11a mode)

Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH Low	Test By	Barry
Temperature	25	Humidity	60 %

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	1497.00	54.95	-19.05	35.90	74.00	-38.10	Peak	VERTICAL
2	10320.00	44.19	4.20	48.39	68.20	-19.81	Peak	VERTICAL
1	5816.00	51.99	-6.51	45.48	68.20	-22.72	Peak	HORIZONTAL
2	10360.00	43.20	4.29	47.49	68.20	-20.71	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH Mid	Test By	Barry
Temperature	25	Humidity	60 %

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
	IVITIZ	uDuv	uВ	uDu v/III	uDu v/III	uВ		V/11
1	2246.00	54.42	-15.63	38.79	74.00	-35.21	Peak	VERTICAL
2	10520.00	43.05	4.74	47.79	68.20	-20.41	Peak	VERTICAL
1	2246.00	52.41	-15.63	36.78	74.00	-37.22	Peak	HORIZONTAL
2	10520.00	44.17	4.74	48.91	68.20	-19.29	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH High	Test By	Barry
Temperature	25	Humidity	60 %

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	1497.00	54.94	-19.05	35.89	74.00	-38.11	Peak	VERTICAL
2	10640.00	43.30	5.11	48.41	74.00	-25.59	Peak	VERTICAL
1	2246.00	52.49	-15.63	36.86	74.00	-37.14	Peak	HORIZONTAL
2	10640.00	44.43	5.11	49.54	74.00	-24.46	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Radiated Spurious Emission Measurement Result (above 1GHz) (Band 1-2, 802.11 HT40 mode)

Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH Low	Test By	Barry
Temperature	25	Humidity	60 %

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
	IVITIZ	uDu v	uD	uDu v/m	uDu v/III	uD		۷/11
1	3555.00	48.24	-13.48	34.76	74.00	-39.24	Peak	VERTICAL
2	10380.00	41.88	4.35	46.23	68.20	-21.97	Peak	VERTICAL
1	2666.00	46.81	-15.29	31.52	74.00	-42.48	Peak	HORIZONTAL
2	10380.00	43.52	4.35	47.87	68.20	-20.33	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

VERTICAL

VERTICAL

HORIZONTAL

HORIZONTAL

Chanı	ation Mode nel Number perature		K MODE H Mid		× ·	,	Test Date Test By Humidity	2019/05/17 Barry 60 %
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H

74.00

68.20

74.00

68.20

-41.56

-20.85

-40.70

-20.52

Peak

Peak

Peak

Peak

32.44

47.35

33.30

47.68

Radiated Spurious Emission Measurement Result (above 1GHz)

-15.29

4.68

-15.16

4.68

Remark:

1

2

1

2

2666.00

10500.00

2750.00

10500.00

47.73

42.67

48.46

43.00

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

TX MODE

CH High

25

Operation Mode	
Channel Number	
Temperature	

Test Date2019/05/17Test ByBarryHumidity60 %

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	2750.00	48.46	-15.16	33.30	74.00	-40.70	Peak	VERTICAL
2	10620.00	42.35	5.05	47.40	74.00	-26.60	Peak	VERTICAL
1	2834.00	47.87	-15.04	32.83	74.00	-41.17	Peak	HORIZONTAL
2	10620.00	42.87	5.05	47.92	74.00	-26.08	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

(Worst case: Band 3, 802.11a mode)

Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH Low	Test By	Barry
Temperature	25	Humidity	60 %

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	1497.00	54.39	-19.05	35.34	74.00	-38.66	Peak	VERTICAL
2	11000.00	41.63	6.19	47.82	74.00	-26.18	Peak	VERTICAL
1	3100.00	48.44	-14.32	34.12	68.20	-34.08	Peak	HORIZONTAL
2	11000.00	41.10	6.19	47.29	74.00	-26.71	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH Mid	Test By	Barry
Temperature	25	Humidity	60 %

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	3100.00	47.21	-14.32	32.89	68.20	-35.31	Peak	VERTICAL
2	11200.00	42.56	6.41	48.97	74.00	-25.03	Peak	VERTICAL
1	3240.00	46.77	-14.48	32.29	68.20	-35.91	Peak	HORIZONTAL
2	11200.00	41.59	6.41	48.00	74.00	-26.00	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH High	Test By	Barry
Temperature	25	Humidity	60 %

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	3240.00	47.51	-14.48	33.03	68.20	-35.17	Peak	VERTICAL
2	11400.00	41.58	6.62	48.20	74.00	-25.80	Peak	VERTICAL
1	3380.00	47.52	-14.48	33.04	68.20	-35.16	Peak	HORIZONTAL
2	11400.00	41.75	6.62	48.37	74.00	-25.63	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Radiated Spurious Emission Measurement Result (above 1GHz) (Band 3, 802.11 HT40 mode)

Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH Low	Test By	Barry
Temperature	25	Humidity	60 %

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	2834.00	48.59	-15.04	33.55	74.00	-40.45	Peak	VERTICAL
2	11020.00	42.25	6.21	48.46	74.00	-25.54	Peak	VERTICAL
1	3114.00	48.56	-14.33	34.23	68.20	-33.97	Peak	HORIZONTAL
2	11020.00	42.54	6.21	48.75	74.00	-25.25	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

	Naula	neu spurio	, IGHZ)							
Operation Mode TX MODE							Test Date	2019/05/17		
Channel Number CH				I Mid			Test By	Barry		
Temperature		25					Humidity	60 %		
Γ	NL-	Enge	Destine	Eastan	τ1	T ::4	Manala	D	D-1	-

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	3114.00	47.88	-14.33	33.55	68.20	-34.65	Peak	VERTICAL
2	11100.00	41.66	6.30	47.96	74.00	-26.04	Peak	VERTICAL
1	3170.00	47.94	-14.36	33.58	68.20	-34.62	Peak	HORIZONTAL
2	11100.00	42.00	6.30	48.30	74.00	-25.70	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Operation Mode	
Channel Number	
Temperature	

TX MODE CH High

25

Test Date 2019/05/17 Test By Barry Humidity 60 %

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	3170.00	47.43	-14.36	33.07	68.20	-35.13	Peak	VERTICAL
2	11340.00	42.50	6.56	49.06	74.00	-24.94	Peak	VERTICAL
1	3338.00	48.97	-14.57	34.40	74.00	-39.60	Peak	HORIZONTAL
2	11340.00	42.18	6.56	48.74	74.00	-25.26	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- ⁴ Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Radiated Spurious Emission Measurement Result (above 1GHz) (Worst case: Band 4, 802.11a mode)

Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH Low	Test By	Barry
Temperature	25	Humidity	60 %

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	3380.00	47.09	-14.48	32.61	68.20	-35.59	Peak	VERTICAL
2	11488.00	42.97	6.72	49.69	74.00	-24.31	Peak	VERTICAL
1	4052.00	47.09	-11.80	35.29	74.00	-38.71	Peak	HORIZONTAL
2	11490.00	42.32	6.72	49.04	74.00	-24.96	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH Mid	Test By	Barry
Temperature	25	Humidity	60 %

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4052.00	46.24	-11.80	34.44	74.00	-39.56	Peak	VERTICAL
2	11570.00	41.35	6.74	48.09	74.00	-25.91	Peak	VERTICAL
1	3499.00	47.39	-13.72	33.67	68.20	-34.53	Peak	HORIZONTAL
2	11570.00	41.11	6.74	47.85	74.00	-26.15	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Operation Mode Channel Number Temperature		X MODE H High					Test I Test I Humi	Зy	2019/05/17 Barry 60 %
	D 1'	-	•		• .		-		D 1

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4843.00	48.36	-9.18	39.18	74.00	-34.82	Peak	VERTICAL
2	8000.00	43.26	-0.46	42.80	68.20	-25.40	Peak	VERTICAL
3	11650.00	41.16	6.75	47.91	74.00	-26.09	Peak	VERTICAL
1	3555.00	48.08	-13.48	34.60	74.00	-39.40	Peak	HORIZONTAL
2	11650.00	41.37	6.75	48.12	74.00	-25.88	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Radiated Spurious Emission Measurement Result (above 1GHz) (Band 4, 802.11 HT40 mode)

Operation Mode	TX MODE	Test Date	2019/05/17
Channel Number	CH Low	Test By	Barry
Temperature	25	Humidity	60 %

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	3338.00	46.80	-14.57	32.23	74.00	-41.77	Peak	VERTICAL
2	11510.00	41.22	6.73	47.95	74.00	-26.05	Peak	VERTICAL
1	3457.00	47.69	-14.02	33.67	74.00	-40.33	Peak	HORIZONTAL
2	11510.00	41.25	6.73	47.98	74.00	-26.02	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Kaulateu Spullous Emission Measurement Kesuit (above 16112)									
Operation Mode	TX MODE		Test Date	2019/05/17					
Channel Number	CH Mid		Test By	Barry					
Temperature	25		Humidity	60 %					

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	3457.00	47.56	-14.02	33.54	74.00	-40.46	Peak	VERTICAL
2	11550.00	41.27	6.73	48.00	74.00	-26.00	Peak	VERTICAL
1	3485.00	47.16	-13.82	33.34	74.00	-40.66	Peak	HORIZONTAL
2	11550.00	42.51	6.73	49.24	74.00	-24.76	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Operation Mode	TX MODE
Channel Number	CH High
Temperature	25

Test Date2019/05/17Test ByBarryHumidity60 %

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	3485.00	48.11	-13.82	34.29	74.00	-39.71	Peak	VERTICAL
2	11630.00	41.91	6.75	48.66	74.00	-25.34	Peak	VERTICAL
1	3541.00	48.99	-13.54	35.45	74.00	-38.55	Peak	HORIZONTAL
2	11630.00	40.89	6.75	47.64	74.00	-26.36	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Band Edges test (Band 1-2, 802.11a mode) -Radiated										
Opera	ation Mode	Test Date	2019/05/17							
Channel Number 5180 MHz							Test By	Barry		
Temp	erature	25					Humidity	65 %		
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H		
1	5150.00	44.17	3.96	48.13	54.00	-5.87	Average	VERTICAL		
2	5150.00	58.19	3.96	62.15	74.00	-11.85	Peak	VERTICAL		
1	5150.00	41.94	3.96	45.90	54.00	-8.10	Average	HORIZONTAL		
2	5150.00	56.71	3.96	60.67	74.00	-13.33	Peak	HORIZONTAL		
Chan	ation Mode nel Number perature		X CH Hig 20MHz	h			Test Date Test By Humidity	2019/05/17 Barry 65 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5350.00	45.70	4.22	49.92	54.00	-4.08	Average	VERTICAL
2	5350.00	59.55	4.22	63.77	74.00	-10.23	Peak	VERTICAL
1	5350.00	42.15	4.22	46.37	54.00	-7.63	Average	HORIZONTAL
2	5350.00	56.55	4.22	60.77	74.00	-13.23	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Band Edges test (Band 1-2, 802.11n HT20 mode) -Radiated

Operation Mode	
Channel Number	
Temperature	

TX CH Low 5180 MHz 25 Test Date2019/05/17Test ByBarryHumidity65 %

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5150.00	47.32	3.96	51.28	54.00	-2.72	Average	VERTICAL
2	5150.00	61.17	3.96	65.13	74.00	-8.87	Peak	VERTICAL
1	5150.00	44.11	3.96	48.07	54.00	-5.93	Average	HORIZONTAL
2	5150.00	58.40	3.96	62.36	74.00	-11.64	Peak	HORIZONTAL

Operation Mode Channel Number Temperature TX CH High 5320MHz 25 Test Date2019/05/17Test ByBarryHumidity65 %

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5350.00	43.27	4.22	47.49	54.00	-6.51	Average	VERTICAL
2	5350.00	58.28	4.22	62.50	74.00	-11.50	Peak	VERTICAL
1	5350.00	41.94	4.22	46.16	54.00	-7.84	Average	HORIZONTAL
2	5350.00	55.04	4.22	59.26	74.00	-14.74	Peak	HORIZONTAL

Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- ² Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Band	Edges test	t (Band 1-2	, 802.11n	HT40 mod	le) -Radiat	ed		
Opera	ation Mode	T	X CH Lov	V			Test Date	2019/05/17
Chan	nel Number	51	90 MHz				Test By	Barry
Temp	Temperature 25						Humidity	65 %
	1							
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5150.00	48.97	3.96	52.93	54.00	-1.07	Average	VERTICAL
2	5150.00	64.12	3.96	68.08	74.00	-5.92	Peak	VERTICAL
1	5150.00	43.27	3.96	47.23	54.00	-6.77	Average	HORIZONTAL
2	5150.00	58.29	3.96	62.25	74.00	-11.75	Peak	HORIZONTAL
							Test Date	2019/05/17
Chan	nel Number	53	310MHz				Test By	Barry
Temp	oerature	25	5				Humidity	65 %

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5350.00	38.94	4.22	43.16	54.00	-10.84	Average	VERTICAL
2	5350.00	52.21	4.22	56.43	74.00	-17.57	Peak	VERTICAL
1	5350.00	37.28	4.22	41.50	54.00	-12.50	Average	HORIZONTAL
2	5350.00	50.92	4.22	55.14	74.00	-18.86	Peak	HORIZONTAL

Remark:

- Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequen-1 cy
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- Measurement of data within this frequency range shown "-" in the table above means the 3 reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Band	Edges test	(Band 3, 8	02.11a m	ode) -Radi	ated			
Opera	ation Mode	ТУ	K CH Low	7			Test Date	2019/05/17
Chan	nel Number	55	00 MHz				Test By	Barry
Temp	erature	25					Humidity	65 %
							-	
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5460.00	43.94	4.40	48.34	54.00	-5.66	Average	VERTICAL
2	5460.00	58.40	4.40	62.80	74.00	-11.20	Peak	VERTICAL
3	5470.00	61.92	4.57	66.49	68.20	-1.71	Peak	VERTICAL
1	5460.00	41.27	4.40	45.67	54.00	-8.33	Average	HORIZONTAL
2	5460.00	56.04	4.40	60.44	74.00	-13.56	Peak	HORIZONTAL
3	5470.00	58.97	4.57	63.54	68.20	-4.66	Peak	HORIZONTAL
Opera	ation Mode	ТΣ	K CH Higl	h			Test Date	2019/05/17
Chan	nel Number	57	00MHz				Test By	Barry
Temp	erature	25					Humidity	65 %

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5725.00	56.45	5.14	61.59	68.20	-6.61	Peak	VERTICAL
1	5725.00	53.37	5.14	58.51	68.20	-9.69	Peak	HORIZONTAL

Remark:

- Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequen-1 cy
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

2019/05/17

Barry

65 %

Band Edges test (Band 3, 802.11n HT20 mode) -Radiated

Operation Mode	TX CH Low	Test Date
Channel Number	5500 MHz	Test By
Temperature	25	Humidity

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5460.00	40.57	4.40	44.97	54.00	-9.03	Average	VERTICAL
2	5460.00	53.68	4.40	58.08	74.00	-15.92	Peak	VERTICAL
3	5470.00	56.50	4.57	61.07	68.20	-7.13	Peak	VERTICAL
1	5460.00	38.58	4.40	42.98	54.00	-11.02	Average	HORIZONTAL
2	5460.00	52.34	4.40	56.74	74.00	-17.26	Peak	HORIZONTAL
3	5470.00	54.38	4.57	58.95	68.20	-9.25	Peak	HORIZONTAL

Operation Mode Channel Number Temperature TX CH High 5700MHz 25 Test Date2019/05/17Test ByBarryHumidity65 %

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5725.00	53.97	5.14	59.11	68.20	-9.09	Peak	VERTICAL
1	5725.00	52.70	5.14	57.84	68.20	-10.36	Peak	HORIZONTAL

Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- ² Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Band	Band Edges test (Band 3, 802.11n H140 mode) -Radiated											
Opera	ation Mode	T	X CH Low	V			Test Date	2019/05/17				
Chan	nel Number	Test By	Barry									
Temp	erature	25		Humidity	65 %							
1	1											
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol				
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H				
1	5460.00	43.94	4.40	48.34	54.00	-5.66	Average	VERTICAL				
2	5460.00	58.40	4.40	62.80	74.00	-11.20	Peak	VERTICAL				
3	5470.00	60.40	4.57	64.97	68.20	-3.23	Peak	VERTICAL				
1	5460.00	41.27	4.40	45.67	54.00	-8.33	Average	HORIZONTAL				
2	5460.00	56.04	4.40	60.44	74.00	-13.56	Peak	HORIZONTAL				
3	5470.00	55.55	4.57	60.12	68.20	-8.08	Peak	HORIZONTAL				
Opera	Operation Mode TX CH High Test Date 2019/05/17											
Chan	nel Number	56	70MHz				Test By	Barry				

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5725.00	54.67	5.14	59.81	68.20	-8.39	Peak	VERTICAL
1	5725.00	50.83	5.14	55.97	68.20	-12.23	Peak	HORIZONTAL

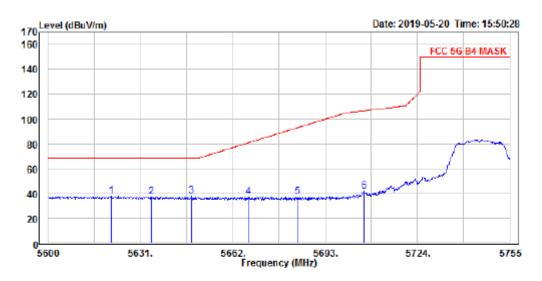
Remark:

Temperature

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

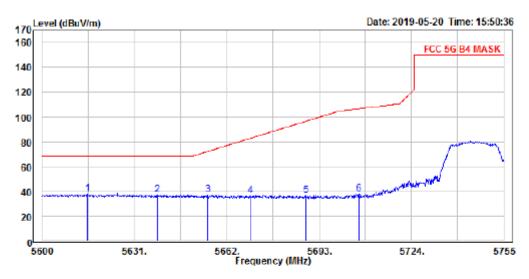
Band Edges test (Band 3, 802.11n HT40 mode) -Radiated

25


Humidity

65 %

Band Edges test (Band 4, 802.11a mode) - Radiated

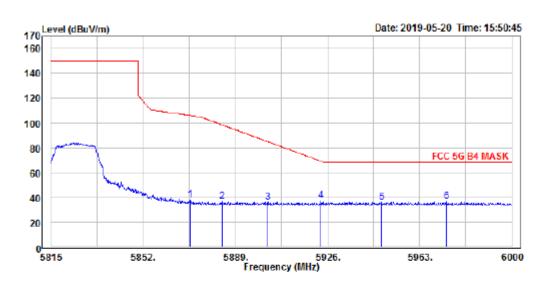

Operation Mode	TX CH Low	Test Date	2019/05/20
Channel Number	5745 MHz	Test By	Barry
Temperature	25	Humidity	65 %

Condition: limit\FCC\FCC 5G B4 MASK.csv 3m Vertical : RBW:1000kHz VBW:3000kHz SWT:Auto DET:Positive EUT : Wistron IP Phone Mode : Wifi 5G Mask 802.11a B4 Low Ch Note :

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Pol/Phase
	MHz	dBuV	dB/m	dBuV∕m	dBuV/m	dB	
1	5621.080	51.02	-13.16	37.86	68.20	-30.34	Vertical
2	5634.565	50.68	-13.18	37.50	68.20	-30.70	Vertical
3 PP	5648.205	51.17	-13.20	37.97	68.20	-30.23	Vertical
4	5667.270	50.55	-13.23	37.32	81.02	-43.70	Vertical
5	5683.700	50.45	-13.26	37.19	93.17	-55.98	Vertical
6	5706.175	55.24	-13.30	41.94	10 6.93	-64.99	Vertical

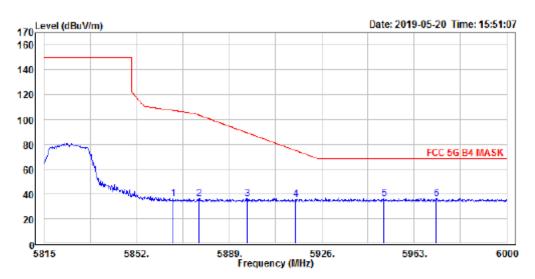
Condition: limit\FCC\FCC 5G B4 MASK.csv 3m Horizontal : RBW:1000kHz VBW:3000kHz SWT:Auto DET:Positive

	: RBW:1000kHz VBW:3000kHz SWT:Auto
EUT	: Wistron IP Phone
Mode	: Wifi 5G Mask 802.11a B4 Low Ch
Note	:


	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Pol/Phase
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	
1 PP 2 3 4 5 6		50.57 50.78 49.84 50.07	-13.14 -13.17 -13.20 -13.23	37.43 37.61 36.64 36.84	68.20 72.39 83.08 96.72	-30.77 -34.78 -46.44 -59.88	Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal

Operation Mode	
Channel Number	
Temperature	

TX CH High 5825MHz 25


Test Date	2019/05/20
Test By	Barry
Humidity	65 %

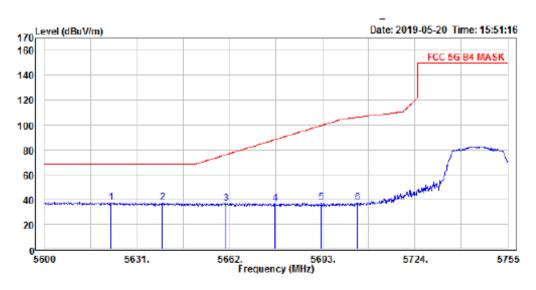
Condition: limit\FCC\FCC 5G B4 MASK.csv 3m Vertical : RBW:1000kHz VBW:3000kHz SWT:Auto DET:Positive EUT : Wistron IP Phone Mode : Wifi 5G Mask 802.11a B4 High Ch Note :

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Pol/Phase
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	
1	5870.685	51.71	-13.57	38.14	106.41	-68.27	Vertical
2	5883.820	50.29	-13.59	36.70	98.65	-61.95	Vertical
3	5901.950	49.97	-13.62	36.35	85.22	-48.87	Vertical
4	5923.410	50.86	-13.66	37.20	69.37	-32.17	Vertical
5	5947.830	49.62	-13.70	35.92	68.20	-32.28	Vertical
6 PP	5973.730	50.33	-13.74	36.59	68.20	-31.61	Vertical

Condition: limit\FCC\FCC 5G B4 MASK.csv 3m Horizontal : RBW:1000kHz VBW:3000kHz SWT:Auto DET:Positive EUT : Wistron IP Phone

Mode	: Wifi 5G M	lask 802.11a	B4 High	Ch
Note	:			

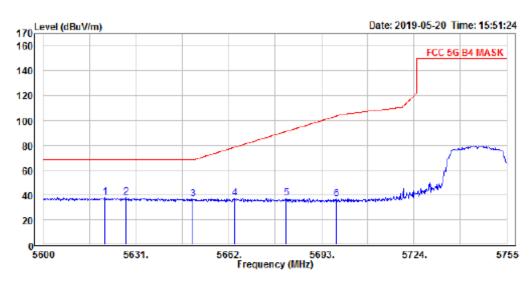
		Read			Limit	0ver	
	Freq	Level	Factor	Level	Line	Limit	Pol/Phase
-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	
1	5866.615	49.68	-13.53	36.15	107.55	-71.40	Horizontal
2	5876.790	49.95	-13.55	36.40	103.87	-67.47	Horizontal
3	5896.215	49.53	-13.58	35.95	89.46	-53.51	Horizontal
4	5915.455	49.26	-13.62	35.64	75.24	-39.60	Horizontal
5 PP	5950.790	49.96	-13.68	36.28	68.20	-31.92	Horizontal
6	5971.880	49.77	-13.71	36.06	68.20	-32.14	Horizontal



Band Edges test (Band 4, 802.11n HT20 mode) – Radiated

Operation Mode	
Channel Number	
Temperature	

TX CH Low 5745 MHz 25


Test Date2019/05/20Test ByBarryHumidity65 %

Condition:	limit\FCC\FCC 5G B4 MASK.csv 3m Vertical
:	RBW:1000kHz VBW:3000kHz SWT:Auto DET:Positive
EUT :	Wistron IP Phone
Mode :	Wifi 5G Mask 802.11HT20 B4 Low Ch
Note :	

	Freq	Read Level	Factor	Level		Over Limit	Pol/Phase
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	
1 PP	5622.165	50.84	-13.16	37.68	68.20	-30.52	Vertical
2	5639.525	50.42	-13.19	37.23	68.20	-30.97	Vertical
3	5660.915	50.33	-13.22	37.11	76.30	-39.19	Vertical
4	5677.345	50.13	-13.25	36.88	88.48	-51.60	Vertical
5	5692.690	50.53	-13.28	37.25	99.81	-62.56	Vertical
6	5704.625	51 .0 1	-13.30	37.71	106.50	-68.79	Vertical

Condition:	limit\FCC\FCC 5G B4 MASK.csv 3m Horizontal
:	RBW:1000kHz VBW:3000kHz SWT:Auto DET:Positive
EUT :	Wistron IP Phone
Mode •	Wifi 56 Mask 802 11HT20 B4 Low Ch

	:	Wifi	5G	Mask	802.11HT2	0 B4	Low	Ch
Note	•							
			Rea	d		Limi	t ()ver

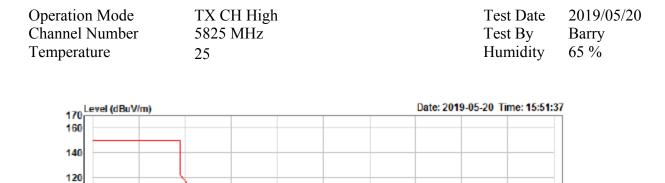
	Kead			Limit	Over	
Freq	Level	Factor	Leve1	Line	Limit	Pol/Phase
MHz	dBuV	dB/m	dBu V/m	dBuV/m	dB	
5620.615	51.16	-13.11	38.05	68.20	-30.15	Horizontal
5627.590	51.26	-13.12	38.14	68.20	-30.06	Horizontal
5649.910	49.82	-13.16	36.66	68.20	-31.54	Horizontal
5664.015	51.00	-13.19	37.81	78.60	-40.79	Horizontal
5681.375	50.85	-13.22	37.63	91.46	-53.83	Horizontal
5697.960	49.94	-13.25	36.69	10 3.70	-67.01	Horizontal
	MHz 5620.615 5627.590 5649.910 5664.015 5681.375	Freq Level MHz dBuV 5620.615 51.16 5627.590 51.26 5649.910 49.82 5664.015 51.00 5681.375 50.85	Freq Level Factor MHz dBuV dB/m 5620.615 51.16 -13.11 5627.590 51.26 -13.12 5649.910 49.82 -13.16 5664.015 51.00 -13.19 5681.375 50.85 -13.22	Freq Level Factor Level MHz dBuV dB/m dBuV/m 5620.615 51.16 -13.11 38.05 5627.590 51.26 -13.12 38.14 5649.910 49.82 -13.16 36.66 5664.015 51.00 -13.19 37.81 5681.375 50.85 -13.22 37.63	Freq Level Factor Level Line MHz dBuV dB/m dBuV/m dBuV/m 5620.615 51.16 -13.11 38.05 68.20 5627.590 51.26 -13.12 38.14 68.20 5649.910 49.82 -13.16 36.66 68.20 5664.015 51.00 -13.19 37.81 78.60 5681.375 50.85 -13.22 37.63 91.46	Freq Level Factor Level Line Limit MHz dBuV dB/m dBuV/m dBuV/m dB 5620.615 51.16 -13.11 38.05 68.20 -30.15 5627.590 51.26 -13.12 38.14 68.20 -30.06 5649.910 49.82 -13.16 36.66 68.20 -31.54 5664.015 51.00 -13.19 37.81 78.60 -40.79

100 80

60

40 20

> 0 5815


м

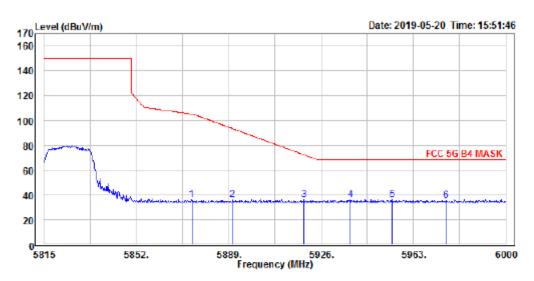
5852.

FCC 5G B4 MASK

6000

5963.

5889. 5926. Frequency (MHz)


Condition:	limit\FCC\FCC 5G B4 MASK.csv 3m Vertical
:	RBW:1000kHz VBW:3000kHz SWT:Auto DET:Positive
EUT :	Wistron IP Phone
Mode :	Wifi 5G Mask 802.11HT20 B4 High Ch
Note :	_

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Pol/Phase
-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	
1	5857.550						Vertical
2	5879.010	49.81	-13.59	36.22	102.22	-66.00	Vertical
3	5904.170	50.42	-13.63	36.79	83.58	-46.79	Vertical
4	5921.560	49.83	-13.65	36.18	70.74	-34.56	Vertical
5	5936.915	49.78	-13.68	36.10	68.20	-32.10	Vertical
6 PP	5958.930	50.01	-13.71	36.30	68.20	-31.90	Vertical

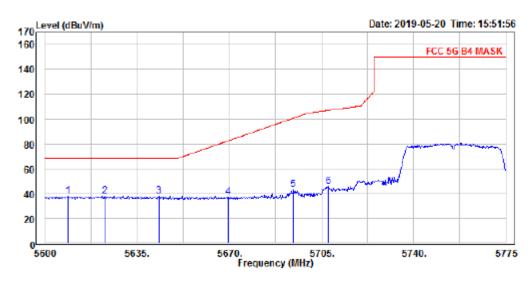
3 4

6

Condition:	limit\FCC\FCC 5G B4 MASK.csv 3m Horizontal
:	RBW:1000kHz VBW:3000kHz SWT:Auto DET:Positive
EUT :	Wistron IP Phone
	LUCC FORM A DOD AND TOO DALL' A DI

Mode	: Wif:	i 5G M	ask 80	2.11HT:	20 B4 H	ligh Ch	1
Note	:						
		Read			Limit	0ver	
	Freq	Level	Factor	Level	Line	Limit	Pol/Phase
	MHz		dB/m	dBuV/m	dBuV/m	dB	
	1112	abar	0071	40477	0001/1		
1	5874.200	49.62	-13.55	36.07	105.42	-69.35	Horizontal
2	5890.480	49.49	-13.57	35.92	93.71	-57.79	Horizontal

5919.155 49.56 -13.62 35.94 72.51 -36.57 Horizontal

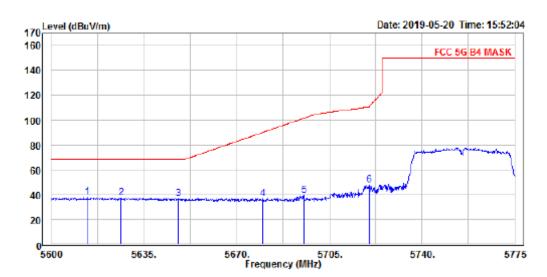

4 5937.840 49.84 -13.65 36.19 68.20 -32.01 Horizontal 5 PP 5954.490 50.18 -13.68 36.50 68.20 -31.70 Horizontal

5975.950 49.50 -13.72 35.78 68.20 -32.42 Horizontal

Band Edges test (Band 4, 802.11n HT40 mode) – Radiated

Operation Mode	TX CH Low	Test Date	2019/05/20
Channel Number	5755 MHz	Test By	Barry
Temperature	25	Humidity	65 %

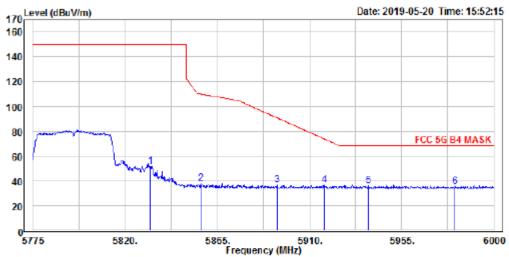
Condition: limit\FCC\FCC 5G B4 MASK.csv 3m Vertical : RBW:1000kHz VBW:3000kHz SWT:Auto DET:Positive


EUT : Wistron IP Phone Mode : Wifi 5G Mask 802.11HT40 B4 Low Ch

:

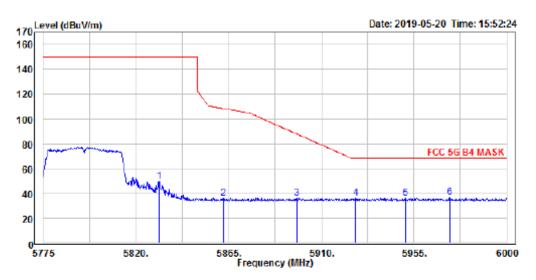
Mode Note

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Pol/Phase
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	
1	5608.750 5622.575						Vertical
-	5643.225						
4 5	5669.475 5694.325						Vertical Vertical
6	5707.450	58.89	-13.30	45.59	107.29	-61.70	Vertical



	: limit\FCC\FCC 5G B4 MASK.csv 3m Horizontal
:	: RBW:1000kHz VBW:3000kHz SWT:Auto DET:Positive
EUT :	: Wistron IP Phone
Mode :	: Wifi 5G Mask 802.11HT40 B4 Low Ch
Note :	1
	Read Limit Over
	Freq Level Factor Level Line Limit Pol/Phase

	MHz	dBuV	dB/m	dBu V∕m	dBuV/m	dB	
1 PP	5613.475	51.29	-13.09	38.20	68.20	-30.00	Horizontal
2	5626.425	50.71	-13.12	37.59	68.20	-30.61	Horizontal
3	5647.950	50.24	-13.16	37.08	68.20	-31.12	Horizontal
4	5679.975	50.03	-13.21	36.82	90.42	-53.60	Horizontal
5	5695.375	52.71	-13.24	39.47	101.79	-62.32	Horizontal
6	5720.050	61 .18	-13.28	47.90	110.91	-63.01	Horizontal



Condition:	limit\FCC\FCC 5G B4 MASK.csv 3m Vertical
:	RBW:1000kHz VBW:3000kHz SWT:Auto DET:Positive
EUT :	Wistron IP Phone
Mode :	Wifi 5G Mask 802.11HT40 B4 High Ch
Note :	

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Pol/Phase
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	
1 2 3 4 5 PP	5832.150 5856.900 5894.025 5917.200 5938.800	51.54 50.48 50.41	-13.55 -13.61 -13.65	37.99 36.87 36.76	110.27 91.08 73.95	-72.28 -54.21 -37.19	Vertical Vertical Vertical Vertical Vertical
6	5981.100	49.40	-13.75	35.65	68.20	-32.55	Vertical

Condition: limit\FCC\FCC 5G B4 MASK.csv 3m Horizontal : RBW:1000kHz VBW:3000kHz SWT:Auto DET:Positive

EUT	:	Wistr	on	IP P	one			
Mode	:	Wifi	5G	Mask	802.11HT40	B4	High	Ch
Note	:							

		Read			Limit	0ver	
	Freq	Level	Factor	Level	Line	Limit	Pol/Phase
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	
1	5 8 31.025	63.36	-13.47	49.89	150.00	-100.11	Horizontal
2	5862.300	49.75	-13.53	36.22	108.75	-72.53	Horizontal
3	5898.075	49.74	-13.59	36.15	88.09	-51.94	Horizontal
4	5926.650	49.58	-13.64	35.94	68.20	-32.26	Horizontal
5	5950.725	49.95	-13.68	36.27	68.20	-31.93	Horizontal
6 PP	5972.325	50.48	-13.71	36.77	68.20	-31.43	Horizontal

-126 of 143-

10. TRANSMISSION IN THE ABSENCE OF DATA

10.1. Standard Applicable

According to §15.407(c)

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

According to RSS-247, 6.4(2)

The device shall automatically discontinue transmission in cases of absence of information to transmit, or operational failure. A description on how this is done shall accompany the application for equipment certification. Note that this is not intended to prohibit transmission of control or signaling information or the use of repetitive codes where required by the technology.

10.2. Result:

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby from remote device and verify whether it shall resend or discontinue transmission.

11. Frequency Stability

11.1. Standard Applicable

According to §15.407 (g) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

According to A9.5

The applicant shall ensure frequency stability by showing that an emission is maintained within the band of operation under all normal operating conditions as specified in the user's manual.

11.2. Result

Test frequency : 5260 MHz

Temperature test									
Power Supply	Environment	Frequency	Dalta (MIIz)	frequency drift					
Vdc	Temperature ()	(MHz)	– Delta (MHz)	(PPM)					
	-20	5260.021800	0.021800	4.14					
	-10	5260.024700	0.024700	4.70					
	0	5260.025900	0.025900	4.92					
12	10	5260.031400	0.031400	5.97					
12	20	5260.031600	0.031600	6.01					
	30	5260.034900	0.034900	6.63					
	40	5260.034700	0.034700	6.60					
	50	5260.038700	0.038700	7.36					

Voltage test								
Power Supply	Environment	Frequency	Delta (MHz)	frequency drift (PPM)				
Vdc	Temperature ()	(MHz)	Della (MHZ)					
12	20	5260.025800	0.02580	4.90				
13.2	20	5260.014600	0.01460	2.78				
10.8	20	5260.032100	0.03210	6.10				

12. Antenna Requirement

12.1. Standard Applicable

According to §15.203, Antenna requirement.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

According to RSS-GEN 6.8 antenna requirement: The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna.

The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below). When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

12.2. Antenna Connected Construction

The directional gins of antenna used for transmitting is below table, and the antenna connector is designed with unique type RF connector and no consideration of replacement. Please see EUT photo and antenna spec. for details.

Antenna Designation:

	P/N	Туре	Gain (2.4GHz)	Gain (5GHz)
Ant	025.901IK.0001	PIFA Antenna	2.44dBi	0.71dBi

13. TPC and DFS Measurement

13.1. TPC: Standard Applicable

According to §15.407(h)(1), Transmit power control (TPC). U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for systems with an e.i.r.p. of less than 500 mW.

According to RSS 210 A9.2 (3), The maximum conducted output power shall not exceed 250mW or 11 + 10 log10 B, dBm, whichever power is less. The power spectral density shall not exceed 11dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. Note that devices with a maximum e.i.r.p. greater than 500mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

15.1.1. Result: Appearance and LCD size are different, The output power is less than 500mW (27dBm).

13.2. DFS: Standard Applicable

According to §15.407(h)(2), Radar Detection Function of Dynamic Frequency Selection (DFS). U-NII devices operating in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection.

According to RSS 210 A9.3), Note: For the band 5600-5650 MHz, no operation is permitted. Until further notice, devices subject to this annex shall not be capable of transmitting in the band 5600-5650 MHz. This restriction is for the protection of Environment Canada weather radars operating in this band.

Devices operating in the bands 5250-5350 MHz, 5470-5600 MHz and 5650-5725 MHz band shall comply with the following:

(a) Devices shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems (see Note below). The minimum DFS radar signal detection threshold is -62dBm for devices with a maximum e.i.r.p. less than 200mW, and -64dBm for devices with a maximum e.i.r.p. of 200mW to 1 W. The detection threshold power is the received power, averaged over a 1-microsecond reference to a 0dBi antenna. The DFS process shall provide a uniform spreading of the loading over all the available channels.

Note: Test procedures for demonstrating compliance with the DFS radar detection requirements set out in this section are being evaluated by Industry Canada. As an interim measure, the Department will, until further notice, accept utilization of the DFS test procedures published by the U.S. Federal Communications Commission (FCC) 3 to demonstrate compliance with the requirements of this section.

(b) Operational requirements: the requirement for channel availability check time applies in the master operational mode. The requirement for channel move time applies in both the master and slave operational modes.

(i) In-service monitoring: an LE-LAN device should be able to monitor the operating channel to check that a co-channel radar has not moved or started operation within range of the LE-LAN device. During in-service monitoring, the LE-LAN radar detection function continuously searches for radar signals between normal LE-LAN transmissions.

(ii) Channel availability check time: the device shall check if there is a radar system already operating on the channel before it initiates a transmission on a channel and when it moves to a channel. The device may start using the channel if no radar signals with a power level greater than the interference threshold value specified in A9.3 (a) above is detected within 60 seconds.

(iii) Channel move time: after a radar's signal is detected, the device shall cease all transmissions on the operating channel within 10 seconds. Transmission during this period shall consist of normal traffic for a maximum of 200 ms after detection of the radar signal. Intermittent management and control signals may also be sent during the remaining time to facilitate vacating the operating channel.

(iv) Channel closing time: the maximum channel closing time is 260 ms.

(v) Non-occupancy period: a channel that has been flagged as containing a radar signal, either by a channel availability check or in-service monitoring, is subject to a 30-minute non-occupancy period where the channel cannot be used by the LE-LAN device. The non-occupancy period starts from the time that the radar signal is detected.

13.2.1. Limit

 Table 1: Applicability of DFS requirements prior to use of a channel

	Operational Mode					
Requirement	Slave	Client(without radar detection)	Client(with radar detection)			
Non-occupancy Period	Yes	Not required	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
Uniform Spreading	Yes	Not required	Not required			
U-NII Detection Band- width	Yes	Not required	Yes			

Table 2: Applicability of DFS requirements during normal operation

	Operational Mode					
Requirement	Slave	Client(without radar detection)	Client(with radar detection)			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Closing Transmis- sion Time	Yes	Yes	Yes			
Channel Move Time	Yes	Yes	Yes			
U-NII Detection Bandwidth	Yes	Not required	Yes			

Refer to KDB Number: 905462 APPENDIX B COMPLIANCE MEASUREMENT PROCE-DURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5.25-5.35 GHz AND 5.47-5.725 GHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION.

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value				
	(see note)				
≥ 200 milliwatt	-64 dBm				
< 200 milliwatt	-62 dBm				
Note 1: This is the level at the input of the receiver ass	uming a 0 dBi receive antenna				
Note 2: Throughout these test procedures an additional 1 dB has been added to the					
amplitude of the test transmission waveforms to account for variations in measurement					
equipment. This will ensure that the test signal is at or	above the detection threshold level				

Table 4: DFS Response requirement values

to trigger a DFS response.

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	aggregate of 60
	milliseconds over
	remaining 10 second
	period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 80% of the U-
	NII 99% transmission
	power bandwidth. See
	Note 3.

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

- · For the Short Pulse Radar Test Signals this instant is the end of the Burst.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.
- For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

-134 of 143-

Table 5: Radar Test Waveforms

Short Pulse Radar

Shortiu					
Radar	Pulse Width	PRI	Number	Minimum	Minimum
Туре	(µsec)	(µsec)	of Pulses	Percentage of	Trials
				Successful	
				Detection	
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggrega	ate (Radar Types 1	80%	120		

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. For Short Pulse Radar Type 1, the same waveform is used a minimum of 30 times. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms

Long Pulse Radar

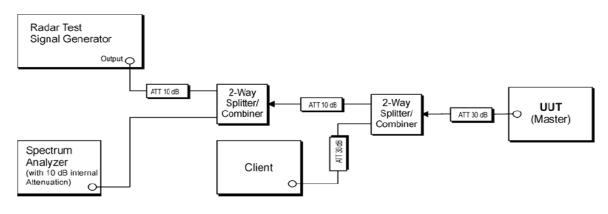
Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of <i>Bursts</i>	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000- 2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

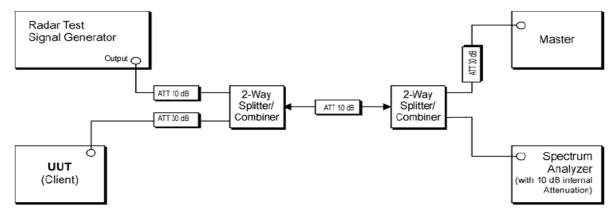
Frequency Hopping Radar

Radar Type		PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	.333	300	70%	30

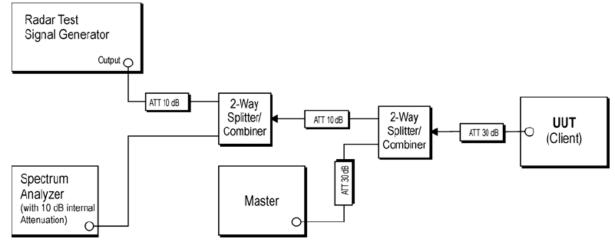
For the Frequency Hopping Radar Type, the same *Burst* parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm: 3


The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 - 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

International Standards Laboratory Corp.



13.2.2.Test Setup


Setup for Master with injection at the Master

Setup for Client with injection at the Master

Setup for Client with injection at the Client

Note: device under test are configured with AP as IP based by streaming MPEG video, 30 frames per seconds

Conducted DFS Test Site								
Equipment	MFR	Model	Serial	Last	Cal Due.			
Туре		Number	Number	Cal.				
Signal Generator	Agilent	E4438C	MY49071550	11/16/2018	11/15/2019			
Signal Generator	keysight	N5182B	MY53052399	12/07/2018	12/06/2019			
Spectrum analyzer	keysight	N9010A	MY56070257	10/15/2018	10/14/2019			
AP Router	ASUS	RTAC66U	FTX1220905D	NA	NA			
Usb Adapter	D-Link	DWA-182	QBYS1D8000 073	NA	NA			
Test Box	keysight	AD211A	NA	NA	NA			
Test Box	keysight	AD191A	NA	NA	NA			
Direction Couliper	Krytar	1821S	1461	NA	NA			
Splitter	Mini-Circuits	ZN2PD-63-S	UU97201111	NA	NA			
Attenuator	Woken	Watt-65m3502	11051601	NA	NA			
Software	Agilent	Adaptive TEST	NA	NA	NA			
Cable	Draka	NA	NA	NA	NA			
Test Software	Keysight	N9607B DFS Radar Profiles	NA	NA	NA			
Test Software	Keysight	ETSI Standard test system	NA	NA	NA			

13.3. Test Equipment Used:

13.3.1. Description of EUT :

EUT operates over the 5250-5350MHz and 5470-5725MHz ranges and EUT is a slave device (client equipment) w/o radar detection and DFS capability.

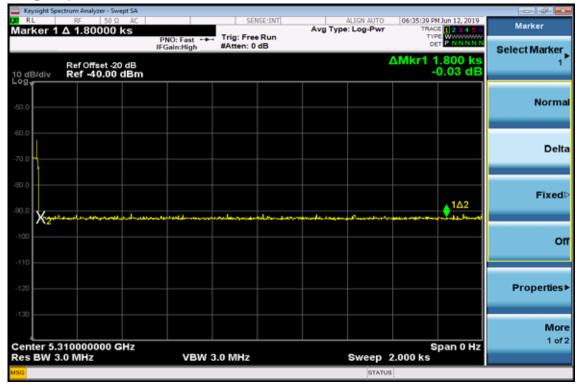
The EUT utilizes the 802.11n architecture, with a nominal channel bandwidth of 40MHz WLAN traffic is generated by streaming the mpeg file from the master to slave in full monitor video mode using the media player.

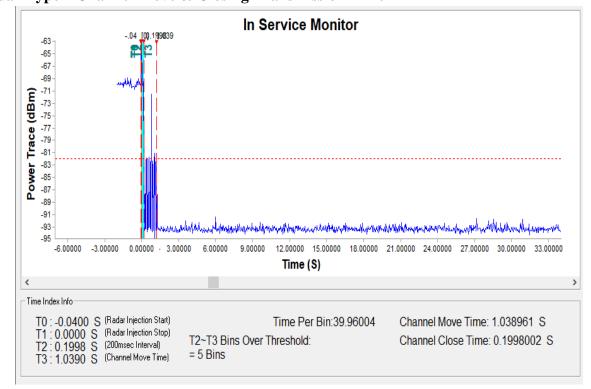
The rated output power of the master unit is >23dBm(EIRP).therefore the required interference threshold level is -64dBm. The master device as employed for the applicable DFS test is ASUS router whose FCC ID= MSQ-RTAC66U

13.4. Test results

Applicability of DFS requirements during normal operation

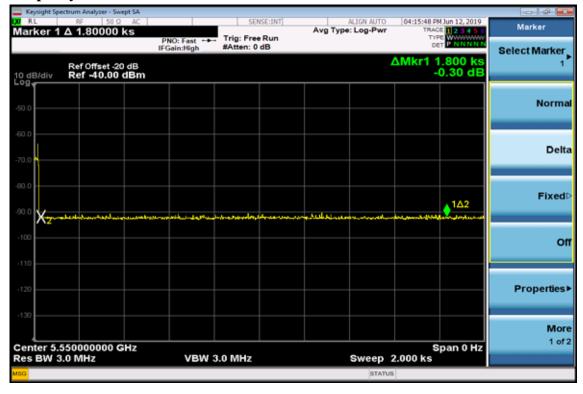
Requirement	Operational Mode: Client(without radar detection)			
	Test Result	Remark		
Non-occupancy Period	No transmission in 30mins. (test results), pass (Remark)	Pass		
DFS Detection Threshold	N/A	N/A		
Channel Closing Transmis-	Less than 200ms, Refer to next	Pass		
sion Time	page for plots.			
Channel Move Time	Less than 10s, Refer to next	Pass		
	page for plots.			
U-NII Detection Bandwidth	N/A	N/A		


Input Level to Master AP= -64dBm


In Service Monitor -67 -69 -71 -73 -73 -75--79 -79 -79 -79 -79 -83 -85 -85 -87 -87 -87 -89 -89 -91 -93 and Adline was the first of the address of the second standard and the second state of the second providence of the second state of the -95 6.00000 9.00000 12.00000 15.00000 18.00000 21.00000 24.00000 27.00000 30.00000 -9.00000 -6.00000 -3.00000 0.00000 3.00000 Time (S) < Time Index Info-T0:-0.0400 S (Radar Injection Start) T1:0.0000 S (Radar Injection Stop) T2:0.1998 S (200msec Interval) Time Per Bin:39.96004 Channel Move Time: 0.6793207 S T2~T3 Bins Over Threshold: Channel Close Time: 0.1993202 S T3:0.6793 S (Channel Move Time) = 5 Bins

Note: the unit of time per bin is millisecond

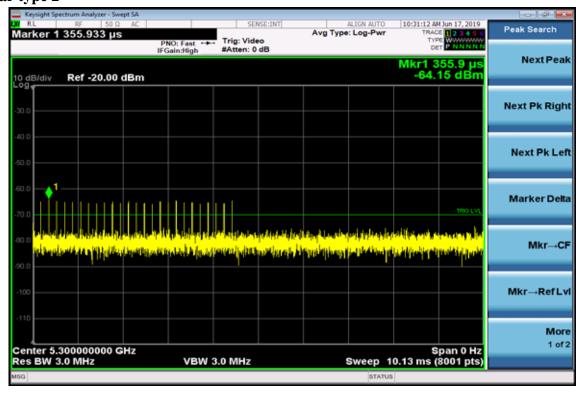
Non-occupancy Period



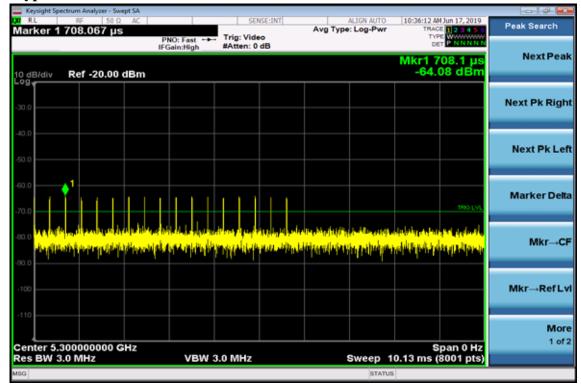
5500MHz ~ 5700MHz Radar Type 1 Channel Move & Closing Transmission Time

Note: the unit of time per bin is millisecond

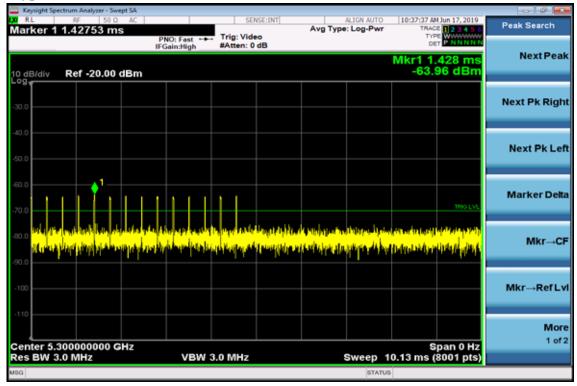
Non-occupancy Period



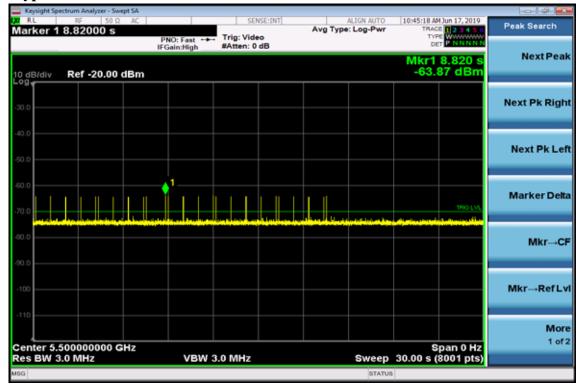
Radar type 1 Key RI SENSE:INT ALIGN AUTO Avg Type: Log-Pwr 10:34:20 AM Jun 17, 2019 TRACE 1 2 3 4 5 6 TYPE W Peak Search Marker 1 27.1597 ms Trig: Video #Atten: 0 dB PNO: Fast IFGain:High Next Peak Mkr1 27.16 ms -64.07 dBm Ref -20.00 dBm 10 dB/div Next Pk Right Next Pk Left Marker Delta Mkr→CF Mkr→RefLvl More 1 of 2 Center 5.300000000 GHz Res BW 3.0 MHz Span 0 Hz Sweep 100.3 ms (8001 pts) VBW 3.0 MHz SG STATUS


Calibration plots for each of the required radar waveforms

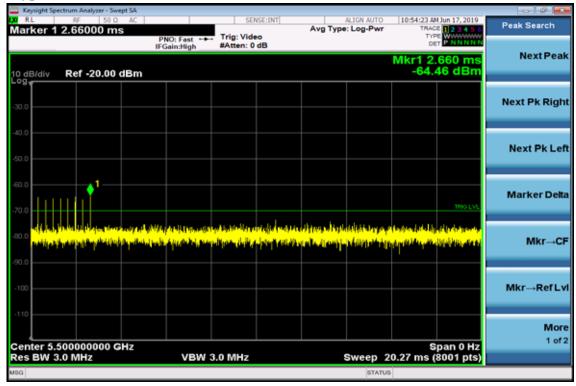
Radar type 2



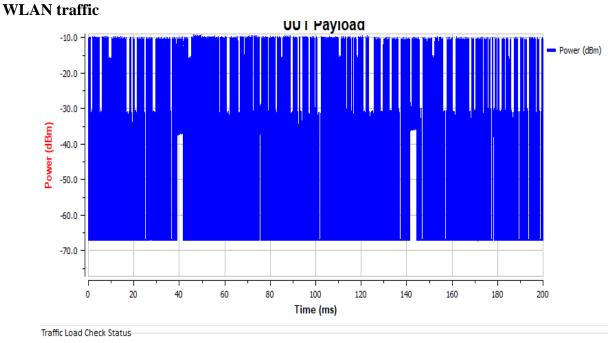
Radar type 3



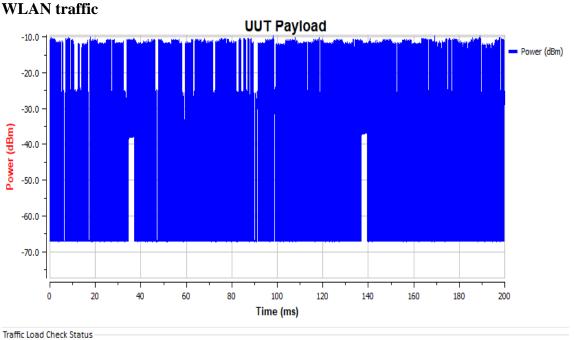
Radar type 4



Radar type 5



Radar type 6



Band 2

Duty Cycle (%) : 72.79

*Please make sure when we want to do the Adaptivity Test, the Duty Cycle in Traffic Load must over then 30%.

Band 3 WLAN traffi

Duty Cycle (%) : 79.03

*Please make sure when we want to do the Adaptivity Test, the Duty Cycle in Traffic Load must over then 30%.

International Standards Laboratory Corp.