Test Report

AIR-AP1800S-B-K9 AIR-AP1800I-B-K9

Cisco Aironet 802.11ac Dual Band Access Points

FCC ID: LDK102112

5150-5250 MHz

Against the following Specifications:

CFR47 Part 15.407

Cisco Systems 170 West Tasman Drive San Jose, CA 95134

ofe L'Aguine Approved By: Jim Nicholson Author: Jose Aguirre Tested By: Jose Aguirre Title: Technical Leader, Engineering Revision: 2

This report replaces any previously entered test report under EDCS –**11570955.** This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

Page No: 1 of 61

This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

SECTION 1: OVERVIEW	3
SECTION 2: ASSESSMENT INFORMATION	4
2.1 General	4
2.2 DATE OF TESTING	6
2.3 Report Issue Date	6
2.4 TESTING FACILITIES	6
2.5 Equipment Assessed (EUT)	6
2.6 EUT DESCRIPTION	7
SECTION 3: RESULT SUMMARY	8
3.1 Results Summary Table	8
SECTION 4: SAMPLE DETAILS	10
4.1 Sample Details	10
4.2 System Details	10
4.3 MODE OF OPERATION DETAILS	10
APPENDIX A: EMISSION TEST RESULTS	11
CONDUCTED TEST SETUP DIAGRAM	11
TARGET MAXIMUM CHANNEL POWER	11
A.1 99% and 26dB Bandwidth	12
A.2 MAXIMUM CONDUCTED OUTPUT POWER/ POWER SPECTRAL DENSITY	15
A.3 CONDUCTED SPURIOUS EMISSIONS	23
A.4 CONDUCTED BAND EDGE	
APPENDIX B: EMISSION TEST RESULTS	
RADIATED EMISSION SETUP DIAGRAM-BELOW 1G	
B.1 RADIATED SPURIOUS EMISSIONS	
B.2 RADIATED EMISSIONS 30MHz TO 1GHz	48
B.3 AC CONDUCTED EMISSIONS	
APPENDIX C: LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST	56
APPENDIX E: ABBREVIATION KEY AND DEFINITIONS	60

Page No: 2 of 61

Section 1: Overview

The samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

Specifications:

CFR47 Part 15.407

Measurements were made in accordance with

- ANSI C63.10:2013
- KDB 789033 D02 General UNII Test Procedures New Rules v01r03
- KDB 662911 D01 Multiple Transmitter Output v02r01

Page No: 3 of 61

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature	15°C to 35°C (54°F to 95°F)
Atmospheric Pressure	860mbar to 1060mbar (25.4" to 31.3")
Humidity	10% to 75*%

All AC testing was performed at one or more of the following supply voltages:
 110V 60 Hz (+/-20%)

Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB] The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss..

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Page No: 4 of 61

Measurement Uncertainty Values

voltage and power measurements	±2dB
conducted EIRP measurements	± 1.4 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7
temperature measurements	± 0.54°
humidity measurements	± 2.3%
DC and low frequency measurements	± 2.5%

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

30 MHz – 40GHz	+/- 0.38 dB
----------------	-------------

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

Page No: 5 of 61

2.2 Date of testing

21-Jan-17 - 01-Feb-17

2.3 Report Issue Date

14-Feb-17

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled.

2.4 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc., 125 West Tasman Drive San Jose, CA 95134, USA

Registration Numbers for Industry Canada

Cisco System Site	Address	Site Identifier
Building P, 10m Chamber	125 West Tasman Dr	Company #: 2461N-2
	San Jose, CA 95134	
Building P, 5m Chamber	125 West Tasman Dr	Company #: 2461N-1
	San Jose, CA 95134	
Building I, 5m Chamber	285 W. Tasman Drive	Company #: 2461M-1
	San Jose, California 95134	

Test Engineers

Jose Aguirre

2.5 Equipment Assessed (EUT) AIR-AP1800S-x-K9

Page No: 6 of 61

2.6 EUT Description

The Cisco Aironet 802.11ac Radio supports the following modes of operation. The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst case data for all modes.

802.11a - Non HT20, One Antenna, 6 to 54 Mbps, 1ss 802.11a - Non HT20, Two Antennas, 6 to 54 Mbps, 1ss

802.11a - Non HT20 Beam Forming, Two Antennas, 6 to 54 Mbps, 1ss

802.11n/ac - HT/VHT20, One Antenna, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20, Two Antennas, M8 to M15, 2ss

802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M8 to M15, 2ss

802.11n/ac - HT/VHT20 STBC, Two Antennas, M0 to M7, 2ss

802.11a - Non HT40, One Antenna, 6 to 54 Mbps, 1ss 802.11a - Non HT40, Two Antennas, 6 to 54 Mbps, 1ss

802.11n/ac - HT/VHT40, One Antenna, M0 to M7, 1ss 802.11n/ac - HT/VHT40, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT40, Two Antennas, M8 to M15, 2ss

802.11n/ac - HT/VHT40 Beam Forming, Two Antennas, M0 to M7, 1ss 802.11n/ac - HT/VHT40 Beam Forming, Two Antennas, M8 to M15, 2ss

802.11n/ac - HT/VHT40 STBC, Two Antennas, M0 to M7, 2ss

802.11a - Non HT80, One Antenna, 6 to 54 Mbps, 1ss 802.11a - Non HT80, Two Antennas, 6 to 54 Mbps, 1ss

802.11ac - VHT80, One Antenna, M0 to M9 1ss 802.11ac - VHT80, Two Antennas, M0 to M9 1ss 802.11ac - VHT80, Two Antennas, M0 to M9 2ss

802.11ac - VHT80 Beam Forming, Two Antennas, M0 to M9 1ss 802.11ac - VHT80 Beam Forming, Two Antennas, M0 to M9 2ss

802.11ac - VHT80 STBC, Two Antennas, M0 to M9 2ss

The following antennas are supported by this product series. The data included in this report represent the worst case data for all antennas.

Frequency	Part Number	Antenna Type	Antenna Gain (dBi)
2404-	BLE Internal	Omni	1 / NA
	2x2 Internal	Omni	3 / 5

Page No: 7 of 61

Section 3: Result Summary

3.1 Results Summary Table

Conducted emissions

Basic Standard	Technical Requirements / Details	Result
FCC 15.407	99% & 26 dB Bandwidth: The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW. The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.	Pass
FCC 15.407	 Output Power: 15.407: (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm). (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. 	Pass
FCC 15.407	Power Spectral Density: 15.407 The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	Pass
FCC 15.407	Conducted Spurious Emissions / Band-Edge: For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.25 GHz band shall not exceed an EIRP of -27dBm/MHz.	Pass
FCC 15.407 FCC 15.209 FCC 15.205	Restricted band: Unwanted emissions falling within the restricted bands, as defined in FCC 15.205 (a) must also comply with the radiated emission limits specified in FCC 15.209 (a).	Pass

Page No: 8 of 61

Basic Standard	Technical Requirements / Details	Result
FCC 15.209 FCC 15.205	TX Spurious Emissions: Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the filed strength limits table in this section.	Pass
FCC 15.207	AC conducted Emissions: Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.	Pass

Radiated Emissions (General requirements)

* MPE calculation is recorded in a separate report

Page No: 9 of 61

Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing.

4.1 Sample Details

Sample No.	Equipment Details	Manufacturer	Hardware Rev.	Firmware Rev.	Software Rev.	Serial Number
S01	AIR-AP1800S-x-K9	Cisco Systems	P2	6fd6a0ba7 4da9f8665 9cfcb8984 f36b9	8.4.1.10	RFDP3AFA037
S02*	AIR-PWRINJ6	Cisco Systems	V01	NA	NA	C15456663000 0247

(*) S02 is support equipment Power supply for EUT S01

4.2 System Details

System #	Description	Samples
1	AIR-AP1800S-x-K9	S01
2	AIR-PWRINJ6	S02

4.3 Mode of Operation Details

Mode#	Description	Comments
1	Continuous Transmitting	Continuous Transmitting ≥98% duty cycle

All measurements were made in accordance with

- ANSI C63.10:2013
- KDB 789033 D02 General UNII Test Procedures New Rules v01r03
- KDB 662911 D01 Multiple Transmitter Output v02r01

Page No: 10 of 61

Appendix A: Emission Test Results

Conducted Test Setup Diagram

Target Maximum Channel Power

The following table details the maximum supported Total Channel Power for all operating modes.

	Maximum Channel Power (dBm)				
	Frequency (MHz)				
Operating Mode	5180 5220 52				
Non HT20, 6 to 54 Mbps	15	15	16		
Non HT20 Beam Forming, 6 to 54 Mbps	15	15	16		
HT/VHT20, M0 to M15	15	15	16		
HT/VHT20 Beam Forming, M0 to M15	15	15	16		
HT/VHT20 STBC, M0 to M7	15 15		16		
	5190	5230			
Non HT40, 6 to 54 Mbps	14	15			
HT/VHT40, M0 to M15	15	15			
HT/VHT40 Beam Forming, M0 to M15	15	15			
HT/VHT40 STBC, M0 to M7	15	15			
	5210				
Non HT80, 6 to 54 Mbps	15				
VHT80, M0 to M9, M0 to M9 1-1ss	14				
VHT80 Beam Forming, M0 to M9, M0 to M9 1-1ss	14				
VHT80 STBC, M0 to M9 1ss	14				

A.1 99% and 26dB Bandwidth

FCC 15.407 The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW.

The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.

Test Procedure

Ref. ANSI C63.10: 2013 Section 6.9.3

99% BW and EBW (-26dB)

Test Procedure

1. Set the radio in the continuous transmitting mode.

2. Allow the trace to stabilize.

3. Setting the x-dB bandwidth mode to -26dB and OBW power function to 99% within the measurement set up function.

4. Select the automatic OBW measurement function of an instrument to perform bandwidth measurement.

5. Capture graphs and record pertinent measurement data.

Ref. ANSI C63.10: 2013 Section 6.9.3

99% BW and EBW (-26dB)
Test parameters
Span = 1.5 x to 5.0 times OBW
RBW = approx. 1% to 5% of the OBW
VBW ≥ 3 x RBW
Detector = Peak or where practical sample shall be used
Trace = Max. Hold

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support	S02		\checkmark

Tested By :	Date of testing:
Jose Aguirre	21-Jan-17 - 01-Feb-17

Test Result : PASS

See Appendix C for list of test equipment

Page No: 12 of 61

Frequency (MHz)	Mode	Data Rate (Mbps)	26dB BW (MHz)	99% BW (MHz)
5400	Non HT20, 6 to 54 Mbps	6	20.7	17.283
5180	HT/VHT20, M0 to M15	m0	21.6	18.245
5100	Non HT40, 6 to 54 Mbps	6	39.8	35.572
5190	HT/VHT40, M0 to M15	m0	40.4	36.048
5210	Non HT80, 6 to 54 Mbps	6	83.3	75.760
5210	VHT80, M0 to M9, M0 to M9 1-1ss	m0x1	83.4	75.716
5000	Non HT20, 6 to 54 Mbps	6	20.8	17.258
5220	HT/VHT20, M0 to M15	m0	21.5	18.194
5000	Non HT40, 6 to 54 Mbps	6	39.6	35.511
5230	HT/VHT40, M0 to M15	m0	40.4	36.053
5240	Non HT20, 6 to 54 Mbps	6	20.8	17.221
5240	HT/VHT20, M0 to M15	m0	21.5	18.209

Page No: 13 of 61

սիսիս

26dB / 99% Bandwidth, 5240 MHz, Non HT20, 6 to 54 Mbps

Page No: 14 of 61

A.2 Maximum Conducted Output Power/ Power Spectral Density

15.407 (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Procedure

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r03

ANSI C63.10: 2013
Output Power
Test Procedure
1. Set the radio in the continuous transmitting mode at full power
2. Compute power by integrating the spectrum across the EBW (or alternatively entire 99% OBW) of the signal using
the instrument's band power measurement function. The integration shall be performed using the spectrum analyzer
band-power measurement function with band limits set equal to the EBW or the OBW band edges.
Capture graphs and record pertinent measurement data.

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r03 ANSI C63.10: 2013 section 12.3.2.2 Method SA-1

Output Power
Test parameters
Span = >1.5 times the OBW
RBW = 1MHz
VBW ≥ 3 x RBW
Sweep = Auto couple
Detector = sample
Trace = Trace Average 100

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. (See ANSI C63.10 section 14.3.2.2)

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support	S02		\mathbf{k}

Page No: 15 of 61

Tested By :	Date of testing:
Jose Aguirre	21-Jan-17 - 01-Feb-17
Test Result : PASS	

սիսիս

See Appendix C for list of test equipment

Page No: 16 of 61

Maximum Output Power

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Tx 2 Max Power (dBm)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	5	11.9		11.9	30.0	18.1
	Non HT20, 6 to 54 Mbps	2	5	11.9	11.7	14.8	30.0	15.2
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	11.9	11.7	14.8	28.0	13.2
0	HT/VHT20, M0 to M7	1	5	11.7		11.7	30.0	18.3
518(HT/VHT20, M0 to M7	2	5	11.7	11.7	14.7	30.0	15.3
L)	HT/VHT20, M8 to M15	2	5	11.7	11.7	14.7	30.0	15.3
	HT/VHT20 Beam Forming, M0 to M7	2	8	11.7	11.7	14.7	28.0	13.3
	HT/VHT20 Beam Forming, M8 to M15	2	5	11.7	11.7	14.7	30.0	15.3
	HT/VHT20 STBC, M0 to M7	2	5	11.7	11.7	14.7	30.0	15.3
	Non HT40, 6 to 54 Mbps	1	5	11.2		11.2	30.0	18.8
	Non HT40, 6 to 54 Mbps	2	5	11.2	11.3	14.3	30.0	15.7
	HT/VHT40, M0 to M7	1	5	11.7		11.7	30.0	18.3
90	HT/VHT40, M0 to M7	2	5	11.7	11.8	14.8	30.0	15.2
5,	HT/VHT40, M8 to M15	2	5	11.7	11.8	14.8	30.0	15.2
	HT/VHT40 Beam Forming, M0 to M7	2	8	10.8	10.8	13.8	28.0	14.2
	HT/VHT40 Beam Forming, M8 to M15	2	5	11.7	11.8	14.8	30.0	15.2
	HT/VHT40 STBC, M0 to M7	2	5	11.7	11.8	14.8	30.0	15.2
	Non HT80, 6 to 54 Mbps	1	5	11.7		11.7	30.0	18.3
	Non HT80, 6 to 54 Mbps	2	5	11.7	11.4	14.6	30.0	15.4
	VHT80, M0 to M9 1ss	1	5	11.6		11.6	30.0	18.4
210	VHT80, M0 to M9 1ss	2	5	11.6	11.3	14.5	30.0	15.5
5	VHT80, M0 to M9 2ss	2	5	11.6	11.3	14.5	30.0	15.5
	VHT80 Beam Forming, M0 to M9 1ss	2	8	10.6	10.3	13.5	28.0	14.5
	VHT80 Beam Forming, M0 to M9 2ss	2	5	11.6	11.3	14.5	30.0	15.5
	VHT80 STBC, M0 to M9 1ss	2	5	11.6	11.3	14.5	30.0	15.5
	Non HT20, 6 to 54 Mbps	1	5	12.5		12.5	30.0	17.5
	Non HT20, 6 to 54 Mbps	2	5	12.5	12.3	15.4	30.0	14.6
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	12.5	12.3	15.4	28.0	12.6
220	HT/VHT20, M0 to M7	1	5	12.5		12.5	30.0	17.5
5,	HT/VHT20, M0 to M7	2	5	12.5	12.3	15.4	30.0	14.6
	HT/VHT20, M8 to M15	2	5	12.5	12.3	15.4	30.0	14.6
	HT/VHT20 Beam Forming, M0 to M7	2	8	12.5	12.3	15.4	28.0	12.6
	HT/VHT20 Beam Forming, M8 to M15	2	5	12.5	12.3	15.4	30.0	14.6
	Page N	lo: 1	7 of 61					

	HT/VHT20 STBC, M0 to M7	2	5	12.5	12.3	15.4	30.0	14.6	
	Non HT40, 6 to 54 Mbps	1	5	12.3		12.3	30.0	17.7	
	Non HT40, 6 to 54 Mbps	2	5	12.3	11.7	15.0	30.0	15.0	
	HT/VHT40, M0 to M7	1	5	12.8		12.8	30.0	17.2	
30	HT/VHT40, M0 to M7	2	5	12.8	12.1	15.5	30.0	14.5	
52	HT/VHT40, M8 to M15	2	5	12.8	12.1	15.5	30.0	14.5	
	HT/VHT40 Beam Forming, M0 to M7	2	8	12.8	12.1	15.5	28.0	12.5	
	HT/VHT40 Beam Forming, M8 to M15	2	5	12.8	12.1	15.5	30.0	14.5	
	HT/VHT40 STBC, M0 to M7	2	5	12.8	12.1	15.5	30.0	14.5	
	Non HT20, 6 to 54 Mbps	1	5	12.9		12.9	30.0	17.1	
	Non HT20, 6 to 54 Mbps	2	5	12.9	12.2	15.6	30.0	14.4	
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	12.9	12.2	15.6	28.0	12.4	
0	HT/VHT20, M0 to M7	1	5	12.9		12.9	30.0	17.1	
524(HT/VHT20, M0 to M7	2	5	12.9	12.1	15.5	30.0	14.5	
5	HT/VHT20, M8 to M15	2	5	12.9	12.1	15.5	30.0	14.5	
	HT/VHT20 Beam Forming, M0 to M7	2	8	12.9	12.1	15.5	28.0	12.5	
	HT/VHT20 Beam Forming, M8 to M15	2	5	12.9	12.1	15.5	30.0	14.5	
	HT/VHT20 STBC, M0 to M7	2	5	12.9	12.1	15.5	30.0	14.5	

սիսիս

co

Page No: 18 of 61

Maximum Transmit Output Power, 5240 MHz, Non HT20 Beam Forming, 6 to 54 Mbps

Antenna B

Page No: 19 of 61

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

Antenna A

Power Spectral Density

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/MHz)	Tx 2 PSD (dBm/MHz)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	5	1.2		1.2	17.0	15.8
	Non HT20, 6 to 54 Mbps	2	8	1.2	0.9	4.1	15.0	10.9
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	1.2	0.9	4.1	15.0	10.9
0	HT/VHT20, M0 to M7	1	5	0.6		0.6	17.0	16.4
518	HT/VHT20, M0 to M7	2	8	0.6	0.7	3.7	15.0	11.3
2,	HT/VHT20, M8 to M15	2	5	0.6	0.7	3.7	17.0	13.3
	HT/VHT20 Beam Forming, M0 to M7	2	8	0.6	0.7	3.7	15.0	11.3
	HT/VHT20 Beam Forming, M8 to M15	2	5	0.6	0.7	3.7	17.0	13.3
	HT/VHT20 STBC, M0 to M7	2	5	0.6	0.7	3.7	17.0	13.3
	Non HT40, 6 to 54 Mbps	1	5	-1.5		-1.5	17.0	18.5
	Non HT40, 6 to 54 Mbps	2	8	-1.5	-0.6	2.0	15.0	13.0
	HT/VHT40, M0 to M7	1	5	-1.9		-1.9	17.0	18.9
90	HT/VHT40, M0 to M7	2	8	-1.9	-1.9	1.1	15.0	13.9
51	HT/VHT40, M8 to M15	2	5	-1.9	-1.9	1.1	17.0	15.9
	HT/VHT40 Beam Forming, M0 to M7	2	8	-3.0	-2.8	0.1	15.0	14.9
	HT/VHT40 Beam Forming, M8 to M15	2	5	-1.9	-1.9	1.1	17.0	15.9
	HT/VHT40 STBC, M0 to M7	2	5	-1.9	-1.9	1.1	17.0	15.9
	Non HT80, 6 to 54 Mbps	1	5	-4.6		-4.6	17.0	21.6
	Non HT80, 6 to 54 Mbps	2	8	-4.6	-5.2	-1.9	15.0	16.9
	VHT80, M0 to M9 1ss	1	5	-5.1		-5.1	17.0	22.1
10	VHT80, M0 to M9 1ss	2	8	-5.1	-5.5	-2.3	15.0	17.3
52	VHT80, M0 to M9 2ss	2	5	-5.1	-5.5	-2.3	17.0	19.3
	VHT80 Beam Forming, M0 to M9 1ss	2	8	-6.2	-7.0	-3.6	15.0	18.6
	VHT80 Beam Forming, M0 to M9 2ss	2	5	-5.1	-5.5	-2.3	17.0	19.3
	VHT80 STBC, M0 to M9 1ss	2	5	-5.1	-5.5	-2.3	17.0	19.3
	Non HT20, 6 to 54 Mbps	1	5	1.8		1.8	17.0	15.2
	Non HT20, 6 to 54 Mbps	2	8	1.8	1.4	4.6	15.0	10.4
0	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	1.8	1.4	4.6	15.0	10.4
522	HT/VHT20, M0 to M7	1	5	1.6		1.6	17.0	15.4
4,	HT/VHT20, M0 to M7	2	8	1.6	1.1	4.4	15.0	10.6
	HT/VHT20, M8 to M15	2	5	1.6	1.1	4.4	17.0	12.6
	HT/VHT20 Beam Forming, M0 to M7	2	8	1.6	1.1	4.4	15.0	10.6

Page No: 20 of 61

	HT/VHT20 Beam Forming, M8 to M15	2	5	1.6	1.1	4.4	17.0	12.6
	HT/VHT20 STBC, M0 to M7	2	5	1.6	1.1	4.4	17.0	12.6
	Non HT40, 6 to 54 Mbps	1	5	-0.2		-0.2	17.0	17.2
	Non HT40, 6 to 54 Mbps	2	8	-0.2	-0.8	2.5	15.0	12.5
	HT/VHT40, M0 to M7	1	5	-1.3		-1.3	17.0	18.3
30	HT/VHT40, M0 to M7	2	8	-1.3	-1.6	1.6	15.0	13.4
52	HT/VHT40, M8 to M15	2	5	-1.3	-1.6	1.6	17.0	15.4
	HT/VHT40 Beam Forming, M0 to M7	2	8	-1.3	-1.6	1.6	15.0	13.4
	HT/VHT40 Beam Forming, M8 to M15	2	5	-1.3	-1.6	1.6	17.0	15.4
	HT/VHT40 STBC, M0 to M7	2	5	-1.3	-1.6	1.6	17.0	15.4
	Non HT20, 6 to 54 Mbps	1	5	2.2		2.2	17.0	14.8
	Non HT20, 6 to 54 Mbps	2	8	2.2	1.7	5.0	15.0	10.0
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	2.2	1.7	5.0	15.0	10.0
0	HT/VHT20, M0 to M7	1	5	2.1		2.1	17.0	14.9
524(HT/VHT20, M0 to M7	2	8	2.1	0.9	4.6	15.0	10.4
4	HT/VHT20, M8 to M15	2	5	2.1	0.9	4.6	17.0	12.4
	HT/VHT20 Beam Forming, M0 to M7	2	8	2.1	0.9	4.6	15.0	10.4
	HT/VHT20 Beam Forming, M8 to M15	2	5	2.1	0.9	4.6	17.0	12.4
	HT/VHT20 STBC, M0 to M7	2	5	2.1	0.9	4.6	17.0	12.4

սիսիս

co

Page No: 21 of 61

Power Spectral Density, 5240 MHz, Non HT20, 6 to 54 Mbps

Antenna B

Page No: 22 of 61

A.3 Conducted Spurious Emissions

15.407 (b) *Undesirable emission limits.* Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits: (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of –27 dBm/MHz.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Test Procedure

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r03

ANSI C63.10: 2013

Conducted Spurious Emissions

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode. Use the procedures in KDB 789033 D02 General UNII Test Procedures New Rules v01r03 to substitute conducted measurements in place of radiated measurements.

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Record the marker waveform peak to spur difference. Also measure any emissions in the restricted bands.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the

measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded.

6. Capture graphs and record pertinent measurement data.

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r03 ANSI C63.10: 2013 section 12.7.7.3 (average) & 12.7.6 (peak)

 ANSI C65.10. 2013 Section 12.7.7.5 (average) & 12.7.6 (peak)

 Conducted Spurious Emissions

 Test parameters

 Span = 30MHz to 18GHz / 18GHz to 40GHz

 RBW = 1 MHz

 VBW ≥ 3 x RBW for Peak, 1kHz for Average

 Sweep = Auto couple

 Detector = Peak

 Trace = Max Hold.

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support	S02		\checkmark

Tested By :	Date of testing:
Jose Aguirre	21-Jan-17 - 01-Feb-17
Test Result : PASS	

See Appendix C for list of test equipment

Page No: 23 of 61

Conducted Spurs Average, All Antennas

Agrient Spectrui	in Analyzer - Sv	wept sa								
(XI RL	RF 50 \$	Ω DC	CORREC	SEN	SE:INT				j	Frequency
Center Fre	eq 22.000	000000	GHz	Tria Free	Run	Avg Type	: Log-Pwr	TY	E WAAAAAAAAAA	
			IFGain:High	#Atten: 0	dB			D	PNNNNN	
										Auto Tune
10 dB/div	Ref -20.00	JaBm								
3										0
20.0										Center Freq
-30.0										22.00000000 GHz
-40.0										
										Start Freq
-50.0										18.00000000 GHz
-60.0										
				and the second			~~~~~	and the second second		Stop Freq
70.0										26.00000000 GHz
-70.0										
										05.04.0
-80.0										
										Auto Man
-90.0										<u>Auto</u> murr
-100										Freq Offset
										0 Hz
-110										
Start 18.00	0 GHz							Stop 26	.000 GHz	
#Res BW 1	.0 MHz		#VBW	1.0 kHz			Sweep	6.24 s (1001 pts)	
MSG							STATUS			

Conducted Spurs Peak, All Antennas

Agilent Spect	rum Analyzer - Swej	ot SA						
Center F	RF 50 Ω reg 22.0000		SENSE:INT	Avg Type:	Log-Pwr	TRACE) 3456	Frequency
10 dB/div	Ref -20.00 c	PNO: Fast ← IFGain:High	➡ Trig: Free Run #Atten: 0 dB		-	TYPE WAR DET P N	NNNN	Auto Tune
-30.0								Center Freq 22.000000000 GHz
-40.0				La Adha alla La Jawa	an de la de	an an air air air	ly.h/h	Start Freq 18.000000000 GHz
-60.0 WWW	die die fan die staar die	ander gennensker førter to	k par piloni je njedi di navni	analia di 1974 na an	1999 1997	AN MANADA I.A		Stop Freq 26.000000000 GHz
-80.0								CF Step 800.000000 MHz <u>Auto</u> Man
-100								Freq Offset 0 Hz
Start 18.0 #Res BW	000 GHz 1.0 MHz	#VB	W 3.0 MHz		Sweep	Stop 26.000 13.3 ms (100	GHz 1 pts)	
MSG					STATUS			

Page No: 24 of 61

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	5	-69.8		-64.8	-41.25	23.6
	Non HT20, 6 to 54 Mbps	2	5	-69.8	-65.3	-59.0	-41.25	17.7
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-69.8	-65.3	-56.0	-41.25	14.7
0	HT/VHT20, M0 to M7	1	5	-68.7		-63.7	-41.25	22.5
18(HT/VHT20, M0 to M7	2	5	-68.7	-65.8	-59.0	-41.25	17.8
LC)	HT/VHT20, M8 to M15	2	5	-68.7	-65.8	-59.0	-41.25	17.8
	HT/VHT20 Beam Forming, M0 to M7	2	8	-68.7	-65.8	-56.0	-41.25	14.8
	HT/VHT20 Beam Forming, M8 to M15	2	5	-68.7	-65.8	-59.0	-41.25	17.8
	HT/VHT20 STBC, M0 to M7	2	5	-68.7	-65.8	-59.0	-41.25	17.8
	Non HT40, 6 to 54 Mbps	1	5	-69.7		-64.7	-41.25	23.5
	Non HT40, 6 to 54 Mbps	2	5	-69.7	-69.8	-61.7	-41.25	20.5
5190	HT/VHT40, M0 to M7	1	5	-68.8		-63.8	-41.25	22.6
	HT/VHT40, M0 to M7	2	5	-68.8	-68.5	-60.6	-41.25	19.4
	HT/VHT40, M8 to M15	2	5	-68.8	-68.5	-60.6	-41.25	19.4
	HT/VHT40 Beam Forming, M0 to M7	2	8	-68.8	-68.8	-57.8	-41.25	16.5
	HT/VHT40 Beam Forming, M8 to M15	2	5	-68.8	-68.5	-60.6	-41.25	19.4
	HT/VHT40 STBC, M0 to M7	2	5	-68.8	-68.5	-60.6	-41.25	19.4
	Non HT80, 6 to 54 Mbps	1	5	-68.5		-63.5	-41.25	22.3
	Non HT80, 6 to 54 Mbps	2	5	-68.5	-64.2	-57.8	-41.25	16.6
	VHT80, M0 to M9 1ss	1	5	-68.7		-63.7	-41.25	22.5
10	VHT80, M0 to M9 1ss	2	5	-68.7	-68.7	-60.7	-41.25	19.4
52	VHT80, M0 to M9 2ss	2	5	-68.7	-68.7	-60.7	-41.25	19.4
	VHT80 Beam Forming, M0 to M9 1ss	2	8	-68.9	-68.7	-57.8	-41.25	16.5
	VHT80 Beam Forming, M0 to M9 2ss	2	5	-68.7	-68.7	-60.7	-41.25	19.4
	VHT80 STBC, M0 to M9 1ss	2	5	-68.7	-68.7	-60.7	-41.25	19.4
	Non HT20, 6 to 54 Mbps	1	5	-63.4		-58.4	-41.25	17.2
	Non HT20, 6 to 54 Mbps	2	5	-63.4	-64.6	-55.9	-41.25	14.7
C	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-63.4	-64.6	-52.9	-41.25	11.7
522(HT/VHT20, M0 to M7	1	5	-65.4		-60.4	-41.25	19.2
ц)	HT/VHT20, M0 to M7	2	5	-65.4	-64.6	-57.0	-41.25	15.7
	HT/VHT20, M8 to M15	2	5	-65.4	-64.6	-57.0	-41.25	15.7
	HT/VHT20 Beam Forming, M0 to M7	2	8	-65.4	-64.6	-54.0	-41.25	12.7

Page No: 25 of 61

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

- cisco

	HT/VHT20 Beam Forming, M8 to M15	2	5	-65.4	-64.6	-57.0	-41.25	15.7
	HT/VHT20 STBC, M0 to M7	2	5	-65.4	-64.6	-57.0	-41.25	15.7
	Non HT40, 6 to 54 Mbps	1	5	-63.5		-58.5	-41.25	17.3
	Non HT40, 6 to 54 Mbps	2	5	-63.5	-64.2	-55.8	-41.25	14.6
	HT/VHT40, M0 to M7	1	5	-64.7		-59.7	-41.25	18.5
30	HT/VHT40, M0 to M7	2	5	-64.7	-69.8	-58.5	-41.25	17.3
52	HT/VHT40, M8 to M15	2	5	-64.7	-69.8	-58.5	-41.25	17.3
	HT/VHT40 Beam Forming, M0 to M7	2	8	-64.7	-69.8	-55.5	-41.25	14.3
	HT/VHT40 Beam Forming, M8 to M15	2	5	-64.7	-69.8	-58.5	-41.25	17.3
	HT/VHT40 STBC, M0 to M7	2	5	-64.7	-69.8	-58.5	-41.25	17.3
	Non HT20, 6 to 54 Mbps	1	5	-66.5		-61.5	-41.25	20.3
	Non HT20, 6 to 54 Mbps	2	5	-66.5	-64.7	-57.5	-41.25	16.2
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-66.5	-64.7	-54.5	-41.25	13.2
0	HT/VHT20, M0 to M7	1	5	-63.4		-58.4	-41.25	17.2
524(HT/VHT20, M0 to M7	2	5	-63.4	-64.3	-55.8	-41.25	14.6
LC)	HT/VHT20, M8 to M15	2	5	-63.4	-64.3	-55.8	-41.25	14.6
	HT/VHT20 Beam Forming, M0 to M7	2	8	-63.4	-64.3	-52.8	-41.25	11.6
	HT/VHT20 Beam Forming, M8 to M15	2	5	-63.4	-64.3	-55.8	-41.25	14.6
	HT/VHT20 STBC, M0 to M7	2	5	-63.4	-64.3	-55.8	-41.25	14.6

սիսիս

co

Page No: 26 of 61

Conducted Spurs Average, 5240 MHz, HT/VHT20 Beam Forming, M0 to M7

Antenna B

Page No: 27 of 61

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	5	-53.5		-48.5	-21.25	27.3
	Non HT20, 6 to 54 Mbps	2	5	-53.5	-50.0	-43.4	-21.25	22.1
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-53.5	-50.0	-40.4	-21.25	19.1
0	HT/VHT20, M0 to M7	1	5	-49.9		-44.9	-21.25	23.7
518	HT/VHT20, M0 to M7	2	5	-49.9	-55.3	-43.8	-21.25	22.5
	HT/VHT20, M8 to M15	2	5	-49.9	-55.3	-43.8	-21.25	22.5
	HT/VHT20 Beam Forming, M0 to M7	2	8	-49.9	-55.3	-40.8	-21.25	19.5
	HT/VHT20 Beam Forming, M8 to M15	2	5	-49.9	-55.3	-43.8	-21.25	22.5
	HT/VHT20 STBC, M0 to M7	2	5	-49.9	-55.3	-43.8	-21.25	22.5
	Non HT40, 6 to 54 Mbps	1	5	-52.4		-47.4	-21.25	26.2
	Non HT40, 6 to 54 Mbps	2	5	-52.4	-53.0	-44.7	-21.25	23.4
5190	HT/VHT40, M0 to M7	1	5	-53.0		-48.0	-21.25	26.8
	HT/VHT40, M0 to M7	2	5	-53.0	-53.3	-45.1	-21.25	23.9
	HT/VHT40, M8 to M15	2	5	-53.0	-53.3	-45.1	-21.25	23.9
	HT/VHT40 Beam Forming, M0 to M7	2	8	-53.6	-53.2	-42.4	-21.25	21.1
	HT/VHT40 Beam Forming, M8 to M15	2	5	-53.0	-53.3	-45.1	-21.25	23.9
	HT/VHT40 STBC, M0 to M7	2	5	-53.0	-53.3	-45.1	-21.25	23.9
	Non HT80, 6 to 54 Mbps	1	5	-52.1		-47.1	-21.25	25.9
	Non HT80, 6 to 54 Mbps	2	5	-52.1	-52.3	-44.2	-21.25	22.9
	VHT80, M0 to M9 1ss	1	5	-52.9		-47.9	-21.25	26.7
10	VHT80, M0 to M9 1ss	2	5	-52.9	-53.4	-45.1	-21.25	23.9
52	VHT80, M0 to M9 2ss	2	5	-52.9	-53.4	-45.1	-21.25	23.9
	VHT80 Beam Forming, M0 to M9 1ss	2	8	-52.3	-53.0	-41.6	-21.25	20.4
	VHT80 Beam Forming, M0 to M9 2ss	2	5	-52.9	-53.4	-45.1	-21.25	23.9
	VHT80 STBC, M0 to M9 1ss	2	5	-52.9	-53.4	-45.1	-21.25	23.9
	Non HT20, 6 to 54 Mbps	1	5	-53.4		-48.4	-21.25	27.2
	Non HT20, 6 to 54 Mbps	2	5	-53.4	-53.0	-45.2	-21.25	23.9
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-53.4	-53.0	-42.2	-21.25	20.9
20	HT/VHT20, M0 to M7	1	5	-52.4		-47.4	-21.25	26.2
52	HT/VHT20, M0 to M7	2	5	-52.4	-52.3	-44.3	-21.25	23.1
	HT/VHT20, M8 to M15	2	5	-52.4	-52.3	-44.3	-21.25	23.1
	HT/VHT20 Beam Forming, M0 to M7	2	8	-52.4	-52.3	-41.3	-21.25	20.1
	HT/VHT20 Beam Forming, M8 to M15	2	5	-52.4	-52.3	-44.3	-21.25	23.1

Page No: 28 of 61

	HT/VHT20 STBC, M0 to M7	2	5	-52.4	-52.3	-44.3	-21.25	23.1
	Non HT40, 6 to 54 Mbps	1	5	-52.0		-47.0	-21.25	25.8
	Non HT40, 6 to 54 Mbps	2	5	-52.0	-53.6	-44.7	-21.25	23.5
	HT/VHT40, M0 to M7	1	5	-52.4		-47.4	-21.25	26.2
30	HT/VHT40, M0 to M7	2	5	-52.4	-52.7	-44.5	-21.25	23.3
52	HT/VHT40, M8 to M15	2	5	-52.4	-52.7	-44.5	-21.25	23.3
	HT/VHT40 Beam Forming, M0 to M7	2	8	-52.4	-52.7	-41.5	-21.25	20.3
	HT/VHT40 Beam Forming, M8 to M15	2	5	-52.4	-52.7	-44.5	-21.25	23.3
	HT/VHT40 STBC, M0 to M7	2	5	-52.4	-52.7	-44.5	-21.25	23.3
	Non HT20, 6 to 54 Mbps	1	5	-53.4		-48.4	-21.25	27.2
	Non HT20, 6 to 54 Mbps	2	5	-53.4	-53.3	-45.3	-21.25	24.1
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-53.4	-53.3	-42.3	-21.25	21.1
0	HT/VHT20, M0 to M7	1	5	-52.6		-47.6	-21.25	26.4
24(HT/VHT20, M0 to M7	2	5	-52.6	-53.3	-44.9	-21.25	23.7
ŝ	HT/VHT20, M8 to M15	2	5	-52.6	-53.3	-44.9	-21.25	23.7
	HT/VHT20 Beam Forming, M0 to M7	2	8	-52.6	-53.3	-41.9	-21.25	20.7
	HT/VHT20 Beam Forming, M8 to M15	2	5	-52.6	-53.3	-44.9	-21.25	23.7
	HT/VHT20 STBC, M0 to M7	2	5	-52.6	-53.3	-44.9	-21.25	23.7

սիսիս

cisco

Page No: 29 of 61

Conducted Spurs Peak, 5180 MHz, Non HT20 Beam Forming, 6 to 54 Mbps

Antenna A

Antenna B

Page No: 30 of 61

A.4 Conducted Band Edge

15.205 / 15.209 - Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). Use formula below to substitute conducted measurements in place of radiated measurements

E[dBµV/m] = EIRP[dBm] - 20 log(d[meters]) + 104.77, where E = field strength and d = 3 meter

1) Average Plot, Limit= -41.25 dBm eirp

2) Peak plot, Limit = -21.25 dBm eirp

Test Procedure

Ref. ANSI C63.10: 2013

Conducted Bandedge

Test Procedure	
1. Connect the antenna port(s) to the spectrum analyzer inp	out.

2. Place the radio in continuous transmit mode. Use the procedures in ANSI C63.10: 2013 to substitute conducted measurements in place of radiated measurements.

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance.

Also measure any emissions in the restricted bands.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the

measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded.

6. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance.

Also measure any emissions in the restricted bands

7. Capture graphs and record pertinent measurement data.

Ref. ANSI C63.10: 2013 section 12.7.6 (peak) & 12.7.7.3 (average, Method VB-A (Alternative))

Conducted Bandedge

Test parameters restricted Band RBW = 1 MHz VBW \ge 3 x RBW for Peak, 100Hz for Average Sweep = Auto couple Detector = Peak Trace = Max Hold.

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support	S02		\checkmark

Tested By :	Date of testing:
Jose Aguirre	21-Jan-17 - 01-Feb-17

Test Result : PASS

See Appendix C for list of test equipment

Page No: 31 of 61

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dBm)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	5	-55.0		-50.0	-41.25	8.7
	Non HT20, 6 to 54 Mbps	2	5	-55.0	-57.4	-48.0	-41.25	6.8
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-55.0	-57.4	-45.0	-41.25	3.8
	HT/VHT20, M0 to M7	1	5	-55.3		-50.3	-41.25	9.1
18(HT/VHT20, M0 to M7	2	5	-55.3	-57.5	-48.3	-41.25	7.0
5	HT/VHT20, M8 to M15	2	5	-55.3	-57.5	-48.3	-41.25	7.0
	HT/VHT20 Beam Forming, M0 to M7	2	8	-55.3	-57.5	-45.3	-41.25	4.0
	HT/VHT20 Beam Forming, M8 to M15	2	5	-55.3	-57.5	-48.3	-41.25	7.0
	HT/VHT20 STBC, M0 to M7	2	5	-55.3	-57.5	-48.3	-41.25	7.0
	Non HT40, 6 to 54 Mbps	1	5	-47.9		-42.9	-41.25	1.7
	Non HT40, 6 to 54 Mbps	2	5	-47.9	-52.9	-41.7	-41.25	0.5
	HT/VHT40, M0 to M7	1	5	-49.5		-44.5	-41.25	3.3
90	HT/VHT40, M0 to M7	2	5	-49.5	-53.5	-43.1	-41.25	1.8
51	HT/VHT40, M8 to M15	2	5	-49.5	-53.5	-43.1	-41.25	1.8
	HT/VHT40 Beam Forming, M0 to M7	2	8	-51.5	-53.5	-41.4	-41.25	0.1
	HT/VHT40 Beam Forming, M8 to M15	2	5	-49.5	-53.5	-43.1	-41.25	1.8
	HT/VHT40 STBC, M0 to M7	2	5	-49.5	-53.5	-43.1	-41.25	1.8
	Non HT80, 6 to 54 Mbps	1	5	-51.1		-46.1	-41.25	4.9
	Non HT80, 6 to 54 Mbps	2	5	-51.1	-51.4	-43.2	-41.25	2.0
	VHT80, M0 to M9 1ss	1	5	-50.0		-45.0	-41.25	3.7
9	VHT80, M0 to M9 1ss	2	5	-50.0	-51.0	-42.4	-41.25	1.2
52	VHT80, M0 to M9 2ss	2	5	-50.0	-51.0	-42.4	-41.25	1.2
	VHT80 Beam Forming, M0 to M9 1ss	2	8	-54.3	-53.3	-42.8	-41.25	1.5
	VHT80 Beam Forming, M0 to M9 2ss	2	5	-50.0	-51.0	-42.4	-41.25	1.2
	VHT80 STBC, M0 to M9 1ss	2	5	-50.0	-51.0	-42.4	-41.25	1.2

Page No: 32 of 61

Conducted Bandedge Average, 5190 MHz, HT/VHT40 Beam Forming, M0 to M7

 RL
 RF
 50 x
 DC
 CORREC

 enter Freq 4.845000000 GHz
 NFE
 PN0: Fast
 #Avg Type: Voltage Trig: Free Run #Atten: 14 dB Auto Tu Ref 0.00 dBm Center Fre 4.845000000 GH Start Fre 4.50000000 G Stop Free Start 4.5000 GHz #Res BW 1.0 MH: Stop 5.1900 GHz Sweep 5.38 s (1001 pts) CF St 69.000000 M #VBW 100 Hz -53.49 dBm -65.01 dBm 5.150 00 GHz 5.039 58 GHz Freq Offse

Antenna B

Antenna A

Page No: 33 of 61

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dBm)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	5	-47.2		-42.2	-21.25	21.0
	Non HT20, 6 to 54 Mbps	2	5	-47.2	-47.7	-39.4	-21.25	18.2
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-47.2	-47.7	-36.4	-21.25	15.2
0	HT/VHT20, M0 to M7	1	5	-45.9		-40.9	-21.25	19.7
18(HT/VHT20, M0 to M7	2	5	-45.9	-49.4	-39.3	-21.25	18.0
Ŋ	HT/VHT20, M8 to M15	2	5	-45.9	-49.4	-39.3	-21.25	18.0
	HT/VHT20 Beam Forming, M0 to M7	2	8	-45.9	-49.4	-36.3	-21.25	15.0
	HT/VHT20 Beam Forming, M8 to M15	2	5	-45.9	-49.4	-39.3	-21.25	18.0
	HT/VHT20 STBC, M0 to M7	2	5	-45.9	-49.4	-39.3	-21.25	18.0
	Non HT40, 6 to 54 Mbps	1	5	-39.9		-34.9	-21.25	13.7
	Non HT40, 6 to 54 Mbps	2	5	-39.9	-47.1	-34.1	-21.25	12.9
	HT/VHT40, M0 to M7	1	5	-33.0		-28.0	-21.25	6.8
90	HT/VHT40, M0 to M7	2	5	-33.0	-44.3	-27.7	-21.25	6.4
51	HT/VHT40, M8 to M15	2	5	-33.0	-44.3	-27.7	-21.25	6.4
	HT/VHT40 Beam Forming, M0 to M7	2	8	-45.3	-45.2	-34.2	-21.25	13.0
	HT/VHT40 Beam Forming, M8 to M15	2	5	-33.0	-44.3	-27.7	-21.25	6.4
	HT/VHT40 STBC, M0 to M7	2	5	-33.0	-44.3	-27.7	-21.25	6.4
	Non HT80, 6 to 54 Mbps	1	5	-36.1		-31.1	-21.25	9.9
	Non HT80, 6 to 54 Mbps	2	5	-36.1	-43.2	-30.3	-21.25	9.1
	VHT80, M0 to M9 1ss	1	5	-38.2		-33.2	-21.25	12.0
10	VHT80, M0 to M9 1ss	2	5	-38.2	-45.1	-32.4	-21.25	11.1
52	VHT80, M0 to M9 2ss	2	5	-38.2	-45.1	-32.4	-21.25	11.1
	VHT80 Beam Forming, M0 to M9 1ss	2	8	-44.8	-46.7	-34.6	-21.25	13.4
	VHT80 Beam Forming, M0 to M9 2ss	2	5	-38.2	-45.1	-32.4	-21.25	11.1
	VHT80 STBC, M0 to M9 1ss	2	5	-38.2	-45.1	-32.4	-21.25	11.1

Page No: 34 of 61

Conducted Bandedge Peak, 5190 MHz, HT/VHT40, M0 to M7

Center Freq 4.845000000	GHz PNO: Fast Trig: Fre	Avg e Run 0 dB	Type: Log-Pwr	TRACE 23456 TYPE MULTINE DET PNNNNN	Frequency
10 dB/div Ref 0.00 dBm	in Guinte Guint		Mk	r2 4.865 7 GHz -50.25 dBm	Auto Tune
-10.0 -20.0					Center Freq 4.845000000 GHz
-40.0 -50.0 -60.0	ulaurana dun dana da	2 กระไปปกปญเสียงปกุ	water	www.conference	Start Freq 4.50000000 GHz
-70.0 -80.0 -90.0				-150.00 dBm	Stop Freq 5.190000000 GHz
Start 4.5000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	:	Sweep	Stop 5.1900 GHz 1.16 ms (601 pts)	CF Step
NKR MODE TRC SEL X	50 0 GHz -44.31 dE	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
4 4.8 4 5 6 6 7 7 8	00 / GH2 00.20 UK				Freq Offset 0 Hz
9 10 11 12 MSG			STATUS		

Antenna B

Page No: 35 of 61

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

Antenna A

Testing Laboratory: Cisco Systems, Inc., 125 West Tasman Drive, San Jose, CA 95134, USA

1111111

Radiated Emission Setup Diagram-Below 1G

Spectrum Analyzer

Page No: 36 of 61

B.1 Radiated Spurious Emissions

FCC 15.205 / 15.407 Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Ref. ANSI C63.10: 2013 section 12.7.6 (peak) & 12.7.7.3 (average)

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span:	1GHz - 18 GHz/18GHz-26G/26GHz-40GHz
Reference Level:	80 dBuV
Attenuation:	10 dB
Sweep Time:	Coupled
Resolution Bandwidth:	1MHz
Video Bandwidth:	3 MHz for peak, 1 KHz for average
Detector:	Peak

Terminate the access Point RF ports with 50 ohm loads.

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

Save 2 plots:1) Average plot (Vertical and Horizontal), Limit= 54dBuV/m @3m2) Peak plot (Vertical and Horizontal), Limit = 74dBuV/m @3m

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

This report represents the worst case data for all supported operating modes and antennas. There are no measurable emissions above 18 GHz.

System Number	Description	Samples	System under test	Support equipment
_	EUT	S01	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	
1	Support	S02		\checkmark

Tested By :	Date of testing:
Jose Aguirre	21-Jan-17 - 01-Feb-17
Test Result : PASS	

See Appendix C for list of test equip

See Appendix C for list of test equipment

Page No: 37 of 61

Frequency (MHz)	Mode	Data Rate (Mbps)	Spurious Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)
5180	Non HT20, 6 to 54 Mbps	6	51.0	54.0	3.0
5190	HT/VHT40, M0 to M15	M0	50.8	54.0	3.2
5200	Non HT20, 6 to 54 Mbps	6	50.8	54.0	3.2
5210	Non-HT/VHT80, M0 to M15	M0x1	51.2	54.0	2.8
5230	HT/VHT40, M0 to M15	M0	50.8	54.0	3.2
5240	Non HT20, 6 to 54 Mbps	6	51.1	54.0	2.9

B.1.A Transmitter Radiated Spurious Emissions-Average Worst Case

Page No: 38 of 61

B.1.A.1 Radiated Transmitter Spurs, 5180 MHz, 6 to 54 Mbps , Average (1-18GHz)

B.1.A.2 Radiated Transmitter Spurs, 5190 MHz, HT/VHT40, M0 to M23, M0.0 to M9.4, Average (1-18GHz)

Marker 3 16.481333	AC CORREC	SENSE:IN	ат) #Av;	ALIGNAUTO g Type: RMS	10:17:24 AM Jun 02, 2017 TRACE 2 3 4 5 (Marker
	PNO: Fast IFGain:Low	#Atten: 2 dB	1	M	kr3 16.481 GHz	Select Marker
10 dB/div Ref 98.99 c	dBµV				50.79 dBµV	
79.0	{1}					Normal
69.0					43	
49.0 2						Delta
29.0 1						
19.0						Fixed⊳
Start 1 000 GHz					Stop 18 000 GHz	
#Res BW 1.0 MHz	#VI	BW 1.0 kHz		Swee	o 13.3 s (3001 pts)	Off
MKR MODE TRC SCL	× 5.205 GHz	Υ 76.61 dBμV	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 T 3 N 1 f 4	16.481 GHz	50.79 dBµV				Properties►
5 6 7						
8						More
11 12						1 of 2
MSG					3	

Page No: 39 of 61

B.1.A.3 Radiated Transmitter Spurs, 5210 MHz, VHT80, M0 to M9, M0 to M9 1.1, Average (1-18GHz)

սիսիս

B.1.A.4 Radiated Transmitter Spurs, 5200 MHz, 6 to 54 Mbps , Average (1-18GHz)

Marker	:55 PM Jun 01, 2017 TRACE 1 2 3 4 5 6	07:05:5 TF	ALIGNAUTO Type: RMS	T #Av	SENSE:IN	RREC	AC CO	RF 50 s	RL arker 4
Select Marker	DET PPPPP				rig: Free Run Atten: 2 dB	NO: Fast 🖵 Gain:Low	I		
4	7.881 GHz).78 dBµV	kr4 17. 50.	М				dBµV	Ref 98.99) dB/div
Norma							↓ 1		9.0
Delta	4							\$5	9.0 9.0 9.0
Fixed									9.0 9.0 1.99
01	18.000 GHz s (3000 pts)	Stop 1 p 13.3 s	Sweep	_) kHz	#VBW		0 GHz 1.0 MHz	tart 1.00 Res BW
	ICTION VALUE	FUNC	FUNCTION WIDTH	FUNCTION	γ).20 dΒμV	5 GHz	× 5.1	C SCL	KR MODE TF
Properties					5.91 dBµV 7.13 dBµV 0.78 dBµV 5.52 dBµV	9 GHz 9 GHz 1 GHz 9 GHz	1.2 1.4 17.8 2.6	f f f f	2 N 2 3 N 2 4 N 1 5 N 2 6
Mon 1 of:									7
		s							G

Page No: 40 of 61

B.1.A.5 Radiated Transmitter Spurs, 5230 MHz, HT/VHT40, M0 to M23, M0.0 to M9.4, Average (1-18GHz)

սիսիս

B.1.A.6 Radiated Transmitter Spurs, 5240 MHz, 6 to 54 Mbps , Average (1-18GHz)

LX/RL RF 50 Q AC	CORREC	SENSE:INT	ALIGNAUTO	09:14:47 AM Jun 02, 2017	
Marker 3 17.8753333333	33 GHz PNO: Fast C	#Av : Free Run	g Type: RMS	TRACE 23456 TYPE MMMMMMM DET P P P P P	Marker
10 dB/div Ref 98.99 dBµV	IFGain:Low #Au	en. 2 ab	MI	(r3 17.875 GHz 51.13 dBµV	Select Marker
89.0) ¹				Norma
59.0 49.0 39.0 2					Delta
29.0 J J					Fixed
Start 1.000 GHz #Res BW 1.0 MHz	#VBW 1.0 I	KHZ	Sweep	Stop 18.000 GHz 13.3 s (3001 pts)	Of
1 N 1 f 2 N 1 f 3 N 1 f 4	5.244 GHz 85.4 1.499 GHz 36.7 17.875 GHz 51.1	2 dBµV 6 dBµV 3 dBµV	TONOTION	FORCHOW MADE	Properties
6 7 8 9 10 11					More 1 of 2
MSG					

Page No: 41 of 61

B.1.A.7 Radiated Transmitter Spurs, All rate, All modes, Average (18-26.5GHz) RB₩ Att 10 dB

No emissions seen above 18GHz. The plots above are representative of all modes tested.

Page No: 42 of 61

Frequency (MHz)	Mode	Data Rate (Mbps)	Spurious Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)
5180	Non HT20, 6 to 54 Mbps	6	64.8	74.0	9.2
5190	HT/VHT40, M0 to M15	M0	64.8	74.0	9.2
5200	Non HT20, 6 to 54 Mbps	6	64.8	74.0	9.2
5210	Non-HT/VHT80, M0 to M15	M0x1	65.4	74.0	8.6
5230	HT/VHT40, M0 to M15	MO	62.9	74.0	11.1
5240	Non HT20, 6 to 54 Mbps	6	64.5	74.0	9.5

B.1.P Transmitter Radiated Spurious Emissions-Peak Worst Case

Page No: 43 of 61

B.1.P.1 Radiated Transmitter Spurs, 5180 MHz, 6 to 54 Mbps , (1-18GHz)

B.1.P.2 Radiated Transmitter Spurs, 5190 MHz, HT/VHT40, M0 to M23, M0.0 to M9.4, Peak (1-18GHz)

Page No: 44 of 61

սիսիս

B.1.P.4 Radiated Transmitter Spurs, 5200 MHz, 6 to 54 Mbps , Peak (1-18GHz)

Page No: 45 of 61

սիսիս

B.1.P.6 Radiated Transmitter Spurs, 5240 MHz, 6 to 54 Mbps , Peak (1-18GHz)

Page No: 46 of 61

B.1.P.7 Radiated Transmitter Spurs, All rate, All modes, Peak (18-26.5GHz)

B.1.P.8 Radiated Transmitter Spurs, All rate, All modes, Peak (26.5-40GHz)

No emissions seen above 18GHz. The plots above are representative of all modes tested

Page No: 47 of 61

B.2 Radiated Emissions 30MHz to 1GHz

FCC 15.209 / 15.205 / 15.407 Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Ref. ANSI C63.10: 2013 section 6.5

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span:	30MHz – 1GHz
Reference Level:	80 dBuV
Attenuation:	10 dB
Sweep Time:	Coupled
Resolution Bandwidth:	100kHz
Video Bandwidth:	300kHz
Detector:	Peak for Pre-scan, Quasi-Peak
	Compliance shall be determined using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak detection.

Terminate the access Point RF ports with 50 ohm loads.

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

This report represents the worst case data for all supported operating modes and antennas.

System Number	Description	Samples	System under test	Support equipment
1	EUT	S01	\checkmark	
	Support	S02		\checkmark

Tested By :	Date of testing:
Jose Aguirre	21-Jan-17 - 01-Feb-17

Test Result : PASS

See Appendix C for list of test equipment

Page No: 48 of 61

Graphical Test Results

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results

Frequency	Raw	Cable	AF dB	Level	Measurement	Pol	Hgt cm	Azt Deg	Limit	Margin	Pass
MHz	dBuV	Loss		dBuV/m	Туре				dBuV/m	dB	/Fail
874.988	14.4	2.6	22.1	39	Quasi Max	V	101	77	46	-7	Pass
749.986	15.7	2.4	20.8	38.9	Quasi Max	V	103	133	46	-7.1	Pass
72.138	22.3	0.8	8.1	31.1	Quasi Max	V	189	360	40	-8.9	Pass
624.994	17.5	2.2	19.4	39	Quasi Max	V	120	95	46	-7	Pass
909.735	1	2.6	22.5	26.1	Quasi Max	V	109	270	46	-19.9	Pass
31.282	2.3	0.4	20.3	23.1	Quasi Max	V	115	74	40	-16.9	Pass
319.993	15.6	1.6	13.9	31	Quasi Max	Н	120	76	46	-15	Pass
999.984	8.4	2.7	23.3	34.5	Quasi Max	V	102	338	54	-19.5	Pass

Page No: 49 of 61

B.3 AC Conducted Emissions

FCC 15.207 Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.

Measurement Procedure

Accordance with ANSI C63.10:2013 section 6.2

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

150 KHz – 30 MHz
10 dB
Coupled
9 KHz
30 KHz
Quasi-Peak / Average

System Support System under Description Samples Number test equipment \checkmark EUT S01 1 S02 \checkmark Support

Tested By :	Date of testing:
Jose Aguirre	21-Jan-17 - 01-Feb-17
Test Result : PASS	

See Appendix C for list of test equipment

Page No: 50 of 61

Graphical Test Results

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Resu	Test Results								
Frequency	Raw dBuV	Cable Loss	Factors dB	Level	Measurement	Line	Limit	Margin dB	Pass /Fail
MHz				dBuV	Туре		dBuV		
21.661	24.2	20.4	0.3	44.9	Quasi Peak	Live	60	-15.1	Pass
0.155	24	21	0.1	45.1	Quasi Peak	Live	65.7	-20.6	Pass
21.063	27.4	20.4	0.3	48.1	Quasi Peak	Live	60	-11.9	Pass
22.255	25.9	20.4	0.3	46.6	Quasi Peak	Live	60	-13.4	Pass
0.416	16.2	20	0	36.2	Quasi Peak	Live	57.5	-21.3	Pass
22.056	27.1	20.4	0.3	47.9	Quasi Peak	Live	60	-12.1	Pass
21.858	25.6	20.4	0.3	46.3	Quasi Peak	Live	60	-13.7	Pass
20.866	26.1	20.4	0.3	46.8	Quasi Peak	Live	60	-13.2	Pass
22.058	27.3	20.4	0.3	48	Quasi Peak	Neutral	60	-12	Pass
21.66	24.5	20.4	0.3	45.2	Quasi Peak	Neutral	60	-14.8	Pass
0.41	15.5	20	0	35.6	Quasi Peak	Neutral	57.6	-22.1	Pass
21.859	25.8	20.4	0.3	46.4	Quasi Peak	Neutral	60	-13.6	Pass
0.163	19.8	21	0.1	40.8	Quasi Peak	Neutral	65.3	-24.5	Pass
21.065	27.3	20.4	0.3	48	Quasi Peak	Neutral	60	-12	Pass
20.867	26.1	20.4	0.3	46.8	Quasi Peak	Neutral	60	-13.2	Pass
22.256	25.4	20.4	0.3	46.2	Quasi Peak	Neutral	60	-13.8	Pass
21.661	19.8	20.4	0.3	40.5	Average	Live	50	-9.5	Pass
0.155	11.1	21	0.1	32.2	Average	Live	55.7	-23.6	Pass
21.063	27.3	20.4	0.3	48	Average	Live	50	-2	Pass
22.255	25.8	20.4	0.3	46.5	Average	Live	50	-3.5	Pass
0.416	9.6	20	0	29.6	Average	Live	47.5	-17.9	Pass
22.056	27.1	20.4	0.3	47.8	Average	Live	50	-2.2	Pass
21.858	25.5	20.4	0.3	46.2	Average	Live	50	-3.8	Pass
20.866	26.1	20.4	0.3	46.8	Average	Live	50	-3.2	Pass
22.058	27.2	20.4	0.3	47.9	Average	Neutral	50	-2.1	Pass
21.66	19.6	20.4	0.3	40.3	Average	Neutral	50	-9.7	Pass
0.41	9.5	20	0	29.6	Average	Neutral	47.6	-18.1	Pass
21.859	25.7	20.4	0.3	46.4	Average	Neutral	50	-3.6	Pass
0.163	-0.4	21	0.1	20.6	Average	Neutral	55.3	-34.7	Pass
21.065	27.1	20.4	0.3	47.7	Average	Neutral	50	-2.3	Pass
20.867	26.1	20.4	0.3	46.8	Average	Neutral	50	-3.2	Pass
22.256	25.4	20.4	0.3	46.1	Average	Neutral	50	-3.9	Pass

Photographs of setup

Page No: 51 of 61

This is a dual band 2.4GHz / 5GHz device. All ports in this test set up photo are connected as all testing is automated. Section 2.6 of this test report given an overview of the different Tx antenna combinations used by this device.

Page No: 52 of 61

cisco

AIR-AP1800I-x-K9 AC Mains Conducted Emissions setup

Page No: 53 of 61

cisco

AIR-AP1800I-x-K9 Radiated Emissions setup 30MHz – 1GHz

Page No: 54 of 61

սիսիս

AIR-AP1800I-x-K9 Radiated Emissions setup above 1GHz

Page No: 55 of 61

Test Equipment used for Radiated Emissions						
Equip No	Model Manufacturer	Description	Last Cal	Next Cal	Test Item	
CIS041929	iBTHP-5-DB9 Newport	5 inch Temp/RH/Press Sensor w/20ft cable	22-Dec-16	22-Dec-17	B.1, B.2, B.3	
CIS001937	NSA 5m Chamber Cisco	NSA 5m Chamber	12-Feb-16	12-Feb-17	B.3	
CIS049535	Above 1GHz Site Cal Cisco	Above 1GHz CISPR Site Validation	13-Feb-16	13-Feb-17	B.1, B.2	
CIS028072	1840 Cisco	18-40GHz EMI Test Head	22-Feb-16	22-Feb-17	B.1, B.2	
CIS045588	JB1 Sunol Sciences	Combination Antenna, 30MHz-2GHz	9-Mar-16	9-Mar-17	B.3	
CIS042000	E4440A Agilent	Spectrum Analyzer	6-Jul-16	6-Jul-17	B.1, B.2	
CIS037581	3117 ETS-Lindgren	Horn Antenna	7-Oct-16	7-Oct-17	B.1, B.2	
CIS045098	TH0118 Cisco	Mast Mount Preamplifier Array, 1-18GHz	31-Oct-16	31-Oct-17	B.1, B.2	
CIS033602	CSY-NMNM-80-273001 Midwest Microwave	RF Coaxial Cable, to 18GHz	8-Nov-16	8-Nov-17	B.1, B.2, B.3	
CIS030443	UFB311A-0-1560-520520 Micro-Coax	RF Coaxial Cable, to 18GHz	8-Nov-16	8-Nov-17	B.1, B.2, B.3	
CIS008024	SF106A Huber + Suhner	3 meter Sucoflex cable	8-Nov-16	8-Nov-17	B.1, B.2, B.3	
CIS024201	FSEK30 Rohde & Schwarz	Spectrum Analyzer 20Hz - 40GHz	23-Nov-16	23-Nov-17	B.1, B.2	
CIS037235	50CB-015 JFW	GPIB Control Box	Cal not Required	Cal not Required	B.1, B.2	
CIS035244	926-8ME Klein Tools	8 Meter Tape Measure	Cal not Required	Cal not Required	B.1, B.2, B.3	
CIS043124	Above 1GHz Site Cal	Above 1GHz Cispr Site Verification	14-Jan-16	14-Jan-17	B.1, B.2	
CIS043124	Above 1GHz Site Cal Cisco	Above 1GHz Cispr Site Verification	14-Jan-17	14-Jan-18	B.1, B.2	
CIS047300	N9038A Agilent Technologies	MXE EMI Receiver 20Hz to 26.5 Ghz	28-Jan-16	28-Jan-17	B.1, B.2, B.3	
CIS047299	N9030A Agilent Technologies	PXA Signal Analyzer, 3Hz to 44GHz	17-Oct-16	17-Oct-17	B.1, B.2, B.3	
CIS030559	UFB311A-1-0950-504504 Micro-Coax	RF Coaxial Cable, to 18GHz, 95 in	15-Feb-16	15-Feb-17	B.1, B.2, B.3	
CIS020975	UFB311A-0-1344-520520 Micro-Coax	RF Coaxial Cable, to 18GHz, 134.4 in	17-Feb-16	17-Feb-17	B.1, B.2, B.3	
CIS019630	ESI 40(ESIB 40) Rohde & Schwarz	EMI Test Receiver, 20Hz - 40GHz	22-Feb-16	22-Feb-17	B.1, B.2	
CIS008447	NSA 10m Chamber Cisco	NSA 10m Chamber	14-Oct-16	14-Oct-17	B.3	
CIS036710	1840 Cisco	18-40GHz EMI Test Head/Verification	17-Nov-16	17-Nov-17	B.1, B.2	
CIS030652	JB1 Sunol Sciences	Combination Antenna, 30MHz-2GHz	16-Dec-16	16-Dec-17	B.3	

Page No: 56 of 61

Test Equipment used for AC Mains Conducted Emissions						
Equip No	Model	Description	Last Cal	Next Cal	Test Item	
	Manufacturer					
CIS051642	Sucoflex 106PA	RF N Type Cable 8.5m	11-Feb-16	11-Feb-17	B.4	
	Huber+Suhner					
CIS030559	UFB311A-1-0950-504504	RF Coaxial Cable, to 18GHz, 95 in	15-Feb-16	15-Feb-17	B.4	
	Micro-Coax					
CIS020975	UFB311A-0-1344-520520	RF Coaxial Cable, to 18GHz, 134.4 in	17-Feb-16	17-Feb-17	B.4	
	Micro-Coax					
CIS046717	5-T-MB	5W 50 Ohm BNC Termination 4GHz	9-Mar-16	9-Mar-17	B.4	
	Bird					
CIS008510	FCC-450B-2.4-N	Instrumentation Limiter	16-May-16	16-May-17	B.4	
	Fischer Custom Communications					
CIS023796	FCC-LISN-PA-520R	POWER ADAPTOR, POLARIZED 120VAC	27-Jul-16	27-Jul-17	B.4	
	Fischer Custom Communications					
CIS023794	FCC-LISN-50/250-50-2-02	LISN	27-Jul-16	27-Jul-17	B.4	
	Fischer Custom Communications					
CIS019206	H785-150K-50-21378	High Pas Filter,Fo=150kHz	13-Sep-16	13-Sep-17	B.4	
	TTE					
CIS005687	73 III	Digital Multimeter	3-Nov-16	3-Nov-17	B.4	
	Fluke					
CIS041929	iBTHP-5-DB9	5 inch Temp/RH/Press Sensor w/20ft cable	22-Dec-16	22-Dec-17	B.4	
	Newport					
CIS054645	33-428	Tape measure 8 meter	Cal Not	Cal Not	B.4	
	Stanley		Required	Required		

Page No: 57 of 61

Test Equipment used for AC Mains Conducted Emissions							
Equip No	Model	Description	Last Cal	Next Cal	Test Item		
	Manufacturer						
CIS051642	Sucoflex 106PA	RF N Type Cable 8.5m	11-Feb-16	11-Feb-17	B.4		
	Huber+Suhner						
CIS030559	UFB311A-1-0950-504504	RF Coaxial Cable, to 18GHz, 95 in	15-Feb-16	15-Feb-17	B.4		
	Micro-Coax						
CIS020975	UFB311A-0-1344-520520	RF Coaxial Cable, to 18GHz, 134.4 in	17-Feb-16	17-Feb-17	B.4		
	Micro-Coax						
CIS046717	5-T-MB	5W 50 Ohm BNC Termination 4GHz	9-Mar-16	9-Mar-17	B.4		
	Bird						
CIS008510	FCC-450B-2.4-N	Instrumentation Limiter	16-May-16	16-May-17	B.4		
	Fischer Custom Communications						
CIS023796	FCC-LISN-PA-520R	POWER ADAPTOR, POLARIZED 120VAC	27-Jul-16	27-Jul-17	B.4		
	Fischer Custom Communications						
CIS023794	FCC-LISN-50/250-50-2-02	LISN	27-Jul-16	27-Jul-17	B.4		
	Fischer Custom Communications						
CIS019206	H785-150K-50-21378	High Pas Filter,Fo=150kHz	13-Sep-16	13-Sep-17	B.4		
	TTE						
CIS005687	73 III	Digital Multimeter	3-Nov-16	3-Nov-17	B.4		
	Fluke						
CIS041929	iBTHP-5-DB9	5 inch Temp/RH/Press Sensor w/20ft cable	22-Dec-16	22-Dec-17	B.4		
	Newport						
CIS054645	33-428	Tape measure 8 meter	Cal Not	Cal Not	B.4		
	Stanley		Required	Required			

	Test Equipment used for RF Conducted Tests						
Equip No	Model	Description	Last Cal	Next Cal	Test Item		
	Manufacturer						
CIS049445	BRC50704-02	Notch Filter, SB:5.470-5.725GHz, to 12GHz	12-Apr-16	12-Apr-17	A1 thru A6		
	Micro-Tronics						
CIS035038	BRC50703-02	Notch Filter, SB:5.150-5.350GHz, to 11GHz	6-Jul-16	6-Jul-17	A1 thru A6		
	Micro-Tronics						
CIS055561	F120-S1S1-48	SMA Cable 48"	15-Jul-16	15-Jul-17	A1 thru A6		
	MegaPhase						
CIS054635	F120-S1S1-48	SMA cable 48"	15-Jul-16	15-Jul-17	A1 thru A6		
	Megaphase						
CIS055588	BWS30-W2	SMA 30dB Attenuator	21-Jul-16	21-Jul-17	A1 thru A6		
	Aeroflex						
CIS055578	BWS20-W2	SMA 20dB Attenuator	21-Jul-16	21-Jul-17	A1 thru A6		
	Aeroflex						
CIS054656	BRC50705-02	Band Reject Filter	19-Sep-16	19-Sep-17	A1 thru A6		
	Micro-Tronics						
CIS054653	BRM50702-02	Notch Filter, SB:2.400-2.500GHz, to 18GHz	19-Sep-16	19-Sep-17	A1 thru A6		
	Micro-Tronics						
CIS055858	SMSM-A2PH-012	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6		
	Dynawave						
CIS055856	SMSM-A2PH-012	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6		
	Dynawave						
CIS055849	SMSM-A2PH-012	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6		
	Dynawave						
CIS055848	SMSM-A2PH-012	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6		
	Dynawave						
CIS055847	SMSM-A2PH-012	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6		
	Dynawave						
CIS055846	SMSM-A2PH-012	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6		
	Dynawave						

Page No: 58 of 61

CIS055845	SMSM-A2PH-012 Dynawave	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
CIS055844	SMSM-A2PH-012 Dynawave	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
CIS055843	SMSM-A2PH-012 Dynawave	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
CIS055842	SMSM-A2PH-012 Dynawave	12" SMA cable	29-Sep-16	29-Sep-17	A1 thru A6
CIS055874	SMSM-A2PH-024 Dynawave	24" SMA Cable	7-Oct-16	7-Oct-17	A1 thru A6
CIS055872	SMSM-A2PH-024 Dynawave	24" SMA Cable	7-Oct-16	7-0ct-17	A1 thru A6
CIS055868	SMSM-A2PH-024 Dynawave	24" SMA Cable	7-Oct-16	7-0ct-17	A1 thru A6
CIS055867	SMSM-A2PH-024 Dynawave	24" SMA Cable	7-Oct-16	7-Oct-17	A1 thru A6
CIS055885	SMSM-A2PH-018 Dynawave	18" SMA Cable	10-Oct-16	10-Oct-17	A1 thru A6
CIS055170	RFLT4WDC40GK RF Lambda	4 Way Power Divider 40GHz	29-Nov-16	29-Nov-17	A1 thru A6
CIS050721	N9030A Keysight	PXA Signal Analyzer	30-Mar-16	30-Mar-17	A1 thru A6
CIS054303	N5182B Keysight	MXG X-Series RF Vector Signal Generator	6-Apr-16	6-Apr-17	A1 thru A6
CIS055099	SMART2200RM2U Tripp-Lite	Power Supply	Cal Not Required	Cal Not Required	A1 thru A6
CIS055094	PXI-1042 National Instruments	Chassis	Cal Not Required	Cal Not Required	A1 thru A6

Page No: 59 of 61

Appendix E: Abbreviation Key and Definitions

The following table defines abbreviations used within this test report.

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	°C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
ТАР	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control	Qp	Quasi Peak
Config	Configuration	Δν	Average
	Cisco Number (unique identification		Peak
010#	number for Cisco test equipment)	IK	l ear
Cal	Calibration	kHz	Kilobertz (1x10 ³)
EN EN	European Norm	MHz	MegaHertz (1×10^{6})
IFC	International Electro technical	GHz	$\frac{1}{100} \frac{1}{100} \frac{1}$
120	Commission	GITZ	
CISPR	International Special Committee on	Н	Horizontal
	Radio Interference		
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization	dB	decibel
	Network		
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³)
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)
L2	Line2	А	Amp
L3	Line 3	μA	Micro Amp (1x10 ⁻⁶)
DC	Direct Current	mS	Milli Second (1x10 ⁻³)
RAW	Uncorrected measurement value,	μS	Micro Second (1x10 ⁻⁶)
	as indicated by the measuring		
	device		
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)
SLCE	Signal Line Conducted Emissions	m	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
Ν	Neutral Line	R	Return
S	Supply	AC	Alternating Current

սիսիս

End

Page No: 61 of 61