Test Report

AIR-AP1815T-x-K9 (x=A,B,D,N,T,Z)

Cisco Aironet 802.11ac Dual Band Access Points

FCC ID: LDK102107 IC: 2461B-102107

2400-2483.5 MHz

Against the following Specifications:

CFR47 Part 15.247 RSS-247 RSS-Gen AS/NZS 4268 LP0002 G.S.R 45 (E)

Cisco Systems 170 West Tasman Drive San Jose, CA 95134

Al Aguin

Jun Muhelaen

Author: Jose Aguirre Tested By: TEST ENGINEER Approved By: Jim Nicholson Title: Technical Leader, Engineering Revision: 3

This report replaces any previously entered test report under EDCS – **11549012.** This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

Page No: 1 of 63

This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

SECTION 1: OVERVIEW	3
SECTION 2: ASSESSMENT INFORMATION	4
2.1 General	4
2.2 DATE OF TESTING	6
2.3 Report Issue Date	6
2.4 TESTING FACILITIES	6
2.5 Equipment Assessed (EUT)	6
2.6 EUT DESCRIPTION	7
SECTION 3: RESULT SUMMARY	8
3.1 Results Summary Table	8
SECTION 4: SAMPLE DETAILS	10
4.1 Sample Details	
4.2 System Details	10
4.3 MODE OF OPERATION DETAILS	10
APPENDIX A: EMISSION TEST RESULTS	11
CONDUCTED TEST SETUP DIAGRAM	11
TARGET MAXIMUM CHANNEL POWER	
A.1 6DB BANDWIDTH	
A.2 99% and 26dB Bandwidth	
A.3 MAXIMUM CONDUCTED OUTPUT POWER	
A.4 POWER SPECTRAL DENSITY	
A.5 CONDUCTED SPURIOUS EMISSIONS	
A.6 CONDUCTED BANDEDGE	
APPENDIX B: EMISSION TEST RESULTS	40
RADIATED EMISSION SETUP DIAGRAM-BELOW 1G	
B.1 RADIATED SPURIOUS EMISSIONS	
B.2 RECEIVER SPURIOUS EMISSIONS	
B.3 RADIATED EMISSIONS 30MHZ TO 1GHZ	
B.4 AC CONDUCTED EMISSIONS	53
APPENDIX C: LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST	59
APPENDIX E: ABBREVIATION KEY AND DEFINITIONS	62

Page No: 2 of 63

Section 1: Overview

The samples were assessed against the tests under the requirements of the following specifications:

Emission

CFR47 Part 15.247 RSS-247 Issue 2: February 2017

RSS-Gen Issue 4: Nov 2014

Measurements were made in accordance with

- ANSI C63.10:2013
- FCC KDB 662911 D01 v02r01
- KDB 558074 D01 Meas Guidance v03r05

Page No: 3 of 63

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature 15°C to 35°C (54°F to 95°F)

 Atmospheric Pressure
 860mbar to 1060mbar (25.4" to 31.3")

 Humidity
 10% to 75*%

*[Where applicable] For ESD testing the humidity limits used were 30% to 60% and for EFT/B tests the humidity limits used were 25% to 75%.

All AC testing was performed at one or more of the following supply voltages:
 110V 60 Hz (+/-20%)

Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB] The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss.

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Page No: 4 of 63

Measurement Uncertainty Values

voltage and power measurements	±2dB
conducted EIRP measurements	± 1.4 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7
temperature measurements	± 0.54°
humidity measurements	± 2.3%
DC and low frequency measurements	± 2.5%

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

30	MHz – 40GHz	+/- 0.38 dB

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

Page No: 5 of 63

2.2 Date of testing

16-Dec-16 - 29-Jan-17

2.3 Report Issue Date

04-Feb-17

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled.

2.4 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc., 125 West Tasman Drive San Jose, CA 95134, USA

Registration Numbers for Industry Canada

Cisco System Site	Address	Site Identifier
Building P, 10m Chamber	125 West Tasman Dr	Company #: 2461N-2
	San Jose, CA 95134	
Building P, 5m Chamber	125 West Tasman Dr	Company #: 2461N-1
	San Jose, CA 95134	
Building I, 5m Chamber	285 W. Tasman Drive	Company #: 2461M-1
	San Jose, California 95134	

Test Engineers

Jose Aguirre

2.5 Equipment Assessed (EUT)

AIR-AP1815T-A-K9

Page No: 6 of 63

2.6 EUT Description

The Cisco Aironet 802.11ac Dual Band Access Points support the following modes of operation. The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst case data for all modes. Data is recorded at the lowest supported data rate for each mode. This report covers operation on channel 1-11.

802.11b - Legacy CCK, One Antenna, 1 to 11 Mbps
802.11b - Legacy CCK, Two Antennas, 1 to 11 Mbps
802.11g - Non HT20, One Antenna, 6 to 54 Mbps, 1ss
802.11g - Non HT20, Two Antennas, 6 to 54 Mbps, 1ss
802.11g - Non HT20 Beam Forming, Two Antennas, 6 to 54 Mbps, 1ss
802.11n/ac - HT/VHT20, One Antenna, M0 to M7, 1ss
802.11n/ac - HT/VHT20, Two Antennas, M0 to M7, 1ss
802.11n/ac - HT/VHT20, Two Antennas, M8 to M15, 2ss
802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M0 to M7, 1ss
802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M0 to M7, 1ss
802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M0 to M7, 1ss

802.11n/ac - HT/VHT20 STBC, Two Antennas, M0 to M7, 2ss

The following antennas are supported by this product series. The data included in this report represent the worst case data for all antennas.

Frequency	Part Number	Antenna Type	Antenna Gain (dBi)
24/5047	BLE	Omni	2
2.4 / 5 GHz	2x2 Internal	TW / WP Omni	2/3

Page No: 7 of 63

Section 3: Result Summary

3.1 Results Summary Table

Conducted emissions

Basic Standard	Technical Requirements / Details	Result		
FCC 15.247	6dB Bandwidth:			
RSS-247 Systems using digital modulation techniques may operate in the		Pass		
LP0002:3.10.1(6.2.1)	2400-2483.5MHz band. The minimum 6dB bandwidth shall be at least 500 kHz.	1 400		
FCC 15.247	99% & 26 dB Bandwidth:			
RSS-247	The 99% occupied bandwidth is the frequency bandwidth such that, below its			
	lower and above its upper frequency limits, the mean powers are each equal to			
	0.5% of the total mean power of the given emission. There is no limit for 99%			
	OBW.			
	The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower			
	frequencies) that are attenuated by 26 dB relative to the maximum level			
	measured in the fundamental emission.			
FCC 15.247	Output Power:			
RSS-247	15.247 The maximum conducted output power of the intentional radiator for			
LP0002:3.10.1(2.3)	systems using digital modulation in the 2400-2483.5 MHz band shall not exceed			
	1 Watt (30dBm). If transmitting antennas of directional gain greater than 6 dBi			
	are used, the maximum conducted output power shall be reduced by the amount	Daaa		
	in dB that the directional gain of the antenna exceeds 6 dBi.	Pass		
	RSS-247 For DTSs employing digital modulation techniques operating in the			
	band 2400-2483.5 MHz, the maximum peak conducted output power shall not			
	exceed 1W. Except as provided in Section 5.4(5), the e.i.r.p. shall not exceed 4			
	W.			
FCC 15.247	Power Spectral Density:			
RSS-247	For digitally modulated systems, the power spectral density conducted from the	Pass		
LP0002:3.10.1(6.2.2)	intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz			
FCC 15.247	band during any time interval of continuous transmission.			
RSS-247	Conducted Spurious Emissions / Band-Edge: In any 100 kHz bandwidth outside the frequency band in which the spread			
LP0002:3.10.1(5)/2.8	spectrum or digitally modulated intentional radiator is operating, the radio			
	frequency power that is produced by the intentional radiator shall be at least 20			
	dB below that in the 100 kHz bandwidth within the band that contains the highest			
	level of the desired power, based on either an RF conducted or a radiated	Pass		
	measurement, provided the transmitter demonstrates compliance with the peak	1 033		
	conducted power limits. If the transmitter complies with the conducted power			
limits based on the use of RMS averaging over a time interval, as permitted under $h(x) = \frac{1}{2} \int \frac{1}{$				
paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in				
§15.209(a) is not required				
FCC 15.247	Restricted band:			
RSS-247	Unwanted emissions falling within the restricted bands, as defined in FCC 15.205	Deee		
FCC 15.205	(a) and RSS-Gen 8.10 must also comply with the radiated emission limits	Pass		
RSS-Gen	specified in FCC 15.209 (a) and RSS-Gen 8.9.			

Page No: 8 of 63

Basic Standard	Technical Requirements / Details	Result
FCC 15.209 RSS-Gen LP0002:3.10.1(5)/2.8	S-Gen Except as provided elsewhere in this subpart, the emissions from an intentional	
RSS-Gen LP0002:3.10.1(5)2.8	 RX Spurious Emissions: RSS-Gen 8.9 Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 and Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission. RSS-Gen 8.10 Unwanted emissions that fall into restricted bands of Table 6 shall comply with the limits specified in RSS-Gen; and (c) Unwanted emissions that do not fall within the restricted frequency bands of Table 6 shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen. 	Pass
FCC 15.207 RSS-Gen LP0002:2.3	AC conducted Emissions: Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.	Pass

սիսին

Radiated Emissions (General requirements)

* MPE calculation is recorded in a separate report

Page No: 9 of 63

Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing.

4.1 Sample Details

Sample No.	Equipment Details	Manufacturer	Hardware Rev.	Firmware Rev.	Software Rev.	Serial Number
S01	AIR-AP1815T-A-K9	Cisco Systems	P2	28bb3ae8 d7576e23 8bd6a752 bdc8dc74	8.4.1.10	FOC20438TTE
S02*	AIR-PWR-C	Meanwell	A0	NA	NA	EB46E93226

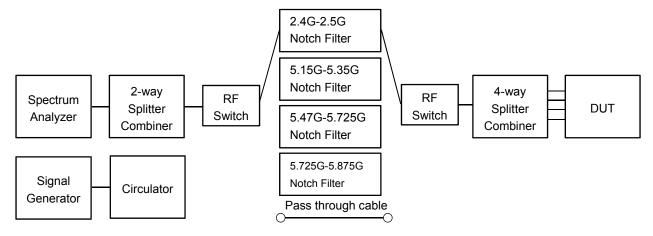
(*) S02 is support equipment Power supply for EUT S01

4.2 System Details

System #	Description	Samples
1	AIR-AP1815T-A-K9	S01
2	AIR-PWR-C	S02

4.3 Mode of Operation Details

Mode# Description Comments		Comments	
I	1	Continuous Transmitting	Continuous Transmitting ≥98% duty cycle


Measurements were made in accordance with

- ANSI C63.10:2013
- FCC KDB 662911 D01 v02r01
- KDB 558074 D01 Meas Guidance v03r05

Page No: 10 of 63

Appendix A: Emission Test Results

Conducted Test Setup Diagram

Target Maximum Channel Power

The following table details the maximum supported Total Channel Power for all operating modes.

		Maximum Channel Power (dBm EIRP) Frequency (MHz)	
Operating Mode	2412	2412 2437 2462	
Legacy CCK, 1 to 11 Mbps	22	22	22
Non HT20, 6 to 54 Mbps	22	22	19
Non HT20 Beam Forming, 6 to 54 Mbps	25	25	21
HT/VHT20, M0 to M15	22	22	18
HT/VHT20 Beam Forming, M0 to M15	24	25	22
HT/VHT20 STBC, M0 to M7	22	22	18

Page No: 11 of 63

A.1 6dB Bandwidth

15.247 / **RSS-247** / **LP0002:3.10.1(6.2.1)** Systems using digital modulation techniques may operate in the 2400-2483.5MHz band. The minimum 6dB bandwidth shall be at least 500 kHz.

Test Procedure

Ref. KDB 558074 D01 DTS Meas Guidance v03r05

ANSI C63.10: 2013

6 BW

Test Procedure

1. Set the radio in the continuous transmitting mode.

2. Allow the trace to stabilize.

3. Setting the x-dB bandwidth mode to -6dB within the measurement set up function.

4. Select the automatic OBW measurement function of an instrument to perform bandwidth measurement.

5. Capture graphs and record pertinent measurement data.

Ref. KDB 558074 D01 DTS Meas Guidance v03r05

ANSI C63.10: 2013 section 11.8.2 Option 2

6 BW Test parameters

X dB BW = 6dB (using the OBW function of the spectrum analyzer)

Span = Large enough to capture the entire EBW

RBW = 100 KHz

VBW ≥ 3 x RBW

Sweep = Auto couple

Detector = Peak or where practical sample shall be used

Trace = Max. Hold

System Number	Description	Samples	System under test	Support equipment	
	EUT	S01	V		
1	Support	S02		$\mathbf{\nabla}$	

Tested By :	Date of testing:
Jose Aguirre	16-Dec-16 - 29-Jan-17
bose / iguine	

Test Result : PASS

See Appendix C for list of test equipment

Page No: 12 of 63

Frequency (MHz)	Mode	Data Rate (Mbps)	6dB BW (MHz)	Limit (kHz)	Margin (MHz)		
	CCK, 1 to 11 Mbps	11	7.9	>500	7.4		
2412	Non HT20, 6 to 54 Mbps	6	16.3	>500	15.8		
	HT/VHT20, M0 to M15	m0	17.3	>500	16.8		
	CCK, 1 to 11 Mbps	11	8.2	>500	7.7		
2437	Non HT20, 6 to 54 Mbps	6	16.3	>500	15.8		
	HT/VHT20, M0 to M15	m0	17.5	>500	17.0		
	CCK, 1 to 11 Mbps	11	8.0	>500	7.5		
2462	Non HT20, 6 to 54 Mbps	6	16.3	>500	15.8		
	HT/VHT20, M0 to M15	m0	17.6	>500	17.1		

Page No: 13 of 63

6dB Bandwidth, 2412 MHz, CCK, 1 to 11 Mbps

Page No: 14 of 63

A.2 99% and 26dB Bandwidth

The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW.

The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.

Test Procedure

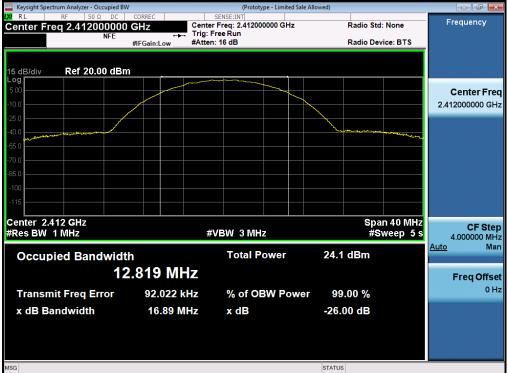
Ref. ANSI C63.10: 2013

26 BW & 99% BW
Test Procedure
1. Set the radio in the continuous transmitting mode.
2. Allow the trace to stabilize.
3. Setting the x-dB bandwidth mode to -26dB & OBW to 99% within the measurement set up function.
4. Select the automatic OBW measurement function of an instrument to perform bandwidth measurement.
5. Capture graphs and record pertinent measurement data.

Ref. ANSI C63.10: 2013 section 6.9.3

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	V	
1	Support	S02		\checkmark

Tested By :	Date of testing:
Jose Aguirre	16-Dec-16 - 29-Jan-17
Test Beault - DACC	


Test Result : PASS

See Appendix C for list of test equipment

Page No: 15 of 63

Frequency (MHz)	Mode	Data Rate (Mbps)	26dB BW (MHz)	99% BW (MHz)			
	CCK, 1 to 11 Mbps	11	16.9	12.819			
2412	Non HT20, 6 to 54 Mbps	6	20.8	17.240			
	HT/VHT20, M0 to M15	m0	21.5	18.194			
	CCK, 1 to 11 Mbps	11	17.0	12.888			
2437	Non HT20, 6 to 54 Mbps	6	21.0	17.363			
	HT/VHT20, M0 to M15	m0	22.0	18.322			
	CCK, 1 to 11 Mbps	11	17.1	12.993			
2462	Non HT20, 6 to 54 Mbps	6	20.8	17.261			
	HT/VHT20, M0 to M15	m0	21.6	18.184			

Page No: 16 of 63

սիսիս

26dB / 99% Bandwidth, 2412 MHz, CCK, 1 to 11 Mbps

Page No: 17 of 63

A.3 Maximum Conducted Output Power

15.247 / **RSS-247** section **5.4** / **LP0002:3.10.1(2.3)** The maximum conducted output power of the intentional radiator for systems using digital modulation in the 2400-2483.5 MHz band shall not exceed 1 Watt (30dBm). If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

The maximum supported antenna gain is 2dBi. The peak correlated gain for each mode is listed in the table below.

Test Procedure

Ref. KDB 558074 D01 DTS Meas Guidance v03r05 ANSI C63.10: 2013

Maximum Conducted Output power
Test Procedure
1. Set the radio in the continuous transmitting mode at full power
2. Compute power by integrating the spectrum across the EBW (or alternatively entire 99% OBW) of the signal using
the instrument's band power measurement function. The integration shall be performed using the spectrum analyzer
band-power measurement function with band limits set equal to the EBW or the OBW band edges.
3. Capture graphs and record pertinent measurement data.

Ref. 558074 D01 DTS Meas Guidance v03r05 section 9.2 Method AVGSA-1 ANSI C63.10: 2013 section 11.9.2 Method AVGSA-1

 Maximum Conducted Output power

 Test parameters

 Span = >1.5 times the OBW

 RBW = 1MHz

 VBW ≥ 3 x RBW

 Sweep = Auto couple

 Detector = Peak

 Trace = Trace Average 100

 The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum

approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. (See ANSI C63.10 section 14.3 for Guidance)

System Number	Description	Samples	System under test	Support equipment
4	EUT	S01	V	
1	Support	S02		\checkmark

Tested By :	Date of testing:
Jose Aguirre	16-Dec-16 - 29-Jan-17
Test Result : PASS	

See Appendix C for list of test equipment

Note: Limit is modified to ensure complying with both conducted power limit of 30dBm and eirp limit of 36 dBm

Page No: 18 of 63

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Tx 2 Max Power (dBm)	Total Tx Channel Power (dBm)	Limit (dBm) EIRP	Margin (dB)
	CCK, 1 to 11 Mbps	1	2	17.6		19.6	32.0	12.4
	CCK, 1 to 11 Mbps	2	2	17.6	17.2	22.4	32.0	9.6
	Non HT20, 6 to 54 Mbps	1	2	17.6		19.6	32.0	12.4
	Non HT20, 6 to 54 Mbps	2	2	16.7	16.4	21.6	32.0	10.4
2	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	16.0	15.4	23.7	35.0	11.3
2412	HT/VHT20, M0 to M7	1	2	16.7		18.7	32.0	13.3
	HT/VHT20, M0 to M7	2	2	16.7	16.5	21.6	32.0	10.4
	HT/VHT20, M8 to M15	2	2	16.7	16.5	21.6	32.0	10.4
	HT/VHT20 Beam Forming, M0 to M7	2	5	15.9	15.5	23.7	35.0	11.3
	HT/VHT20 Beam Forming, M8 to M15	2	2	16.7	16.5	21.6	32.0	10.4
	HT/VHT20 STBC, M0 to M7	2	2	16.7	16.5	21.6	32.0	10.4
	CCK, 1 to 11 Mbps	1	2	16.9		18.9	32.0	13.1
	CCK, 1 to 11 Mbps	2	2	16.9	16.8	21.9	32.0	10.1
	Non HT20, 6 to 54 Mbps	1	2	16.8		18.8	32.0	13.2
	Non HT20, 6 to 54 Mbps	2	2	16.8	16.7	21.8	32.0	10.2
2	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	16.8	16.7	24.8	35.0	10.2
2437	HT/VHT20, M0 to M7	1	2	16.9		18.9	32.0	13.1
CN I	HT/VHT20, M0 to M7	2	2	16.9	16.7	21.8	32.0	10.2
	HT/VHT20, M8 to M15	2	2	16.9	16.7	21.8	32.0	10.2
	HT/VHT20 Beam Forming, M0 to M7	2	5	16.9	16.7	24.8	35.0	10.2
	HT/VHT20 Beam Forming, M8 to M15	2	2	16.9	16.7	21.8	32.0	10.2
	HT/VHT20 STBC, M0 to M7	2	2	16.9	16.7	21.8	32.0	10.2
	CCK, 1 to 11 Mbps	1	2	16.7		18.7	32.0	13.3
	CCK, 1 to 11 Mbps	2	2	16.7	16.6	21.7	32.0	10.3
	Non HT20, 6 to 54 Mbps	1	2	14.8		16.8	32.0	15.2
	Non HT20, 6 to 54 Mbps	2	2	13.9	13.8	18.9	32.0	13.1
	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	12.9	12.8	20.9	35.0	14.1
2462	HT/VHT20, M0 to M7	1	2	14.9		16.9	32.0	15.1
7	HT/VHT20, M0 to M7	2	2	13.0	12.8	17.9	32.0	14.1
	HT/VHT20, M8 to M15	2	2	13.0	12.8	17.9	32.0	14.1
	HT/VHT20 Beam Forming, M0 to M7	2	5	14.1	13.6	21.9	35.0	13.1
	HT/VHT20 Beam Forming, M8 to M15	2	2	13.0	12.8	17.9	32.0	14.1
	HT/VHT20 STBC, M0 to M7	2	2	13.0	12.8	17.9	32.0	14.1

Page No: 19 of 63

Maximum Transmit Output Power, 2412 MHz, CCK, 1 to 11 Mbps

 Meysight spectru 	en Analyzer - Charinel P2w			stotype - Londed Sale Allowed			terter 1
Center Free	q 2.412000000 NFE	GHZ #FGain:Low	Center Freq: 2.412	2000000 GHz Avg Hold: 100/100	Radio Std Radio Dev		Frequency
15 dB/div	Ref 30.00 dBn			1	Mkr1 2.4 9.87	13 GHz 40 dBm	
15.0 0.00			1	-			Center Fr 2.412000000 0
15.0 10.0 45.0	/						
60.0 75.0							
-105							
Center 2.41 #Res BW 1			#VBW 3N	1Hz		n 40 MHz o 100 ms	CF S 4.000000 M Auto
Channe	Power		Pow	er Spectral Den	sity		Freg Off
17	.15 dBm	/ 16.91 MI	iz	-55.13 dBm	/Hz		0
150				STAT	16		

Antenna B

Page No: 20 of 63

Antenna A

A.4 Power Spectral Density

15.247 / **RSS-247** / **LP0002:3.10.1(6.2.2)** For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

Ref. KDB 558074 D01 DTS Meas Guidance v03r05 ANSI C63 10: 2013

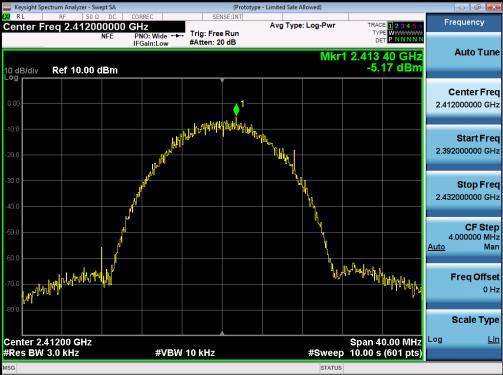
Power Spectral Density	
Test Procedure	
1. Set the radio in the continuous transmitting mode at full power	
2.Configure Spectrum analyzer as per test parameters below and Peak search marker	
3. Capture graphs and record pertinent measurement data.	
Ref. 558074 D01 DTS Meas Guidance v03r05 section 10.2 Peak PSD	

ANSI C63.10: 2013 section 11.10.2 Peak PSD

Power Spectral Density
Test parameters
Span = >1.5 times the OBW
RBW = 3 kHz ≤ RBW ≤ 100 kHz.
VBW ≥ 3 x RBW
Sweep = Auto couple
Detector = Peak
Trace = Trace Average 100

The "Measure and add 10 log(N) dB technique", where N is the number of outputs, is used for measuring in-band Power Spectral Density. (See ANSI C63.10 section 14.3.2.3)

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support	S02		\checkmark


Tested By :	Date of testing:		
Jose Aguirre	16-Dec-16 - 29-Jan-17		
Test Result : PASS			

See Appendix C for list of test equipment

Page No: 21 of 63

Frequency (MHz)	Mode	Data Rate (Mbps)	PSD / Antenna (dBm/3kHz)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Margin (dB)		
	CCK, 1 to 11 Mbps	11	-5.2	-2.2	8.0	10.2		
2412	Non HT20, 6 to 54 Mbps	6	-10.3	-7.3	8.0	15.3		
	HT/VHT20, M0 to M15	m0	-9.7	-6.7	8.0	14.7		
	CCK, 1 to 11 Mbps	11	-6.5	-3.5	8.0	11.5		
2437	Non HT20, 6 to 54 Mbps	6	-10.1	-7.1	8.0	15.1		
	HT/VHT20, M0 to M15	m0	-10.7	-7.7	8.0	15.7		
	CCK, 1 to 11 Mbps	11	-6.3	-3.3	8.0	11.3		
2462	Non HT20, 6 to 54 Mbps	6	-12.6	-9.6	8.0	17.6		
	HT/VHT20, M0 to M15	m0	-13.6	-10.6	8.0	18.6		

Page No: 22 of 63

Power Spectral Density, 2412 MHz, CCK, 1 to 11 Mbps

Page No: 23 of 63

A.5 Conducted Spurious Emissions

15.205 / **15.209** / **LP0002** - Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

RSS-Gen 8.9: Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 and Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

RSS-Gen 8.10 (b) Unwanted emissions that fall into restricted bands of Table 6 shall comply with the limits specified in RSS-Gen; and (c) Unwanted emissions that do not fall within the restricted frequency bands of Table 6 shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.

Use formula below to substitute conducted measurements in place of radiated measurements

E[dBµV/m] = EIRP[dBm] - 20 log(d[meters]) + 104.77, where E = field strength and d = 3 meter

1) Average Plot, Limit= -41.25 dBm eirp 2) Peak plot, Limit = -21.25 dBm eirp

Test Procedure

Ref. KDB 558074 D01 DTS Meas Guidance v03r05 ANSI C63.10: 2013

Conducted Spurious Emissions

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Use the peak marker function to determine the maximum spurs amplitude level.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded. (see ANSI C63.10 2013 section 14.3.2.2)

6. Capture graphs and record pertinent measurement data.

Ref. 558074 D01 DTS Meas Guidance v03r05 section 11.1b, 11.2-3, 12.2.4 & 12.2.5.3 ANSI C63.10: 2013 section 11.10.3 & 11.12.2.4 & 11.12.2.5.3

Conducted Spurious Emissions
Test parameters
Span = 30 MHz-26 GHz
RBW = 100 kHz.
VBW ≥ 3 x RBW
Sweep = Auto couple
Detector = Peak
Trace = Max Hold

KDB: 558074 D01 DTS Meas Guidance v03r05 section 12.2.2 © add the max antenna gain + ground reflection factor (4.7 dB for frequencies between 30 MHz and 1000 MHz, and 0 dB for frequencies > 1000 MHz).

Page No: 24 of 63

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	$\mathbf{\nabla}$	
1	Support	S02		\checkmark

Tested By :	Date of testing:		
Jose Aguirre	16-Dec-16 - 29-Jan-17		
Test Result : PASS			

See Appendix C for list of test equipment

Page No: 25 of 63

Conducted Spurs Average Upper, All Antennas

Page No: 26 of 63

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	2	-62.7		-60.7	-41.25	19.5
	CCK, 1 to 11 Mbps	2	2	-62.7	-75.5	-60.5	-41.25	19.2
	Non HT20, 6 to 54 Mbps	1	2	-55.0		-53.0	-41.25	11.8
	Non HT20, 6 to 54 Mbps	2	2	-55.0	-76.2	-53.0	-41.25	11.7
2	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-56.0	-76.3	-51.0	-41.25	9.7
2412	HT/VHT20, M0 to M7	1	2	-54.9		-52.9	-41.25	11.7
	HT/VHT20, M0 to M7	2	2	-56.1	-76.8	-54.1	-41.25	12.8
	HT/VHT20, M8 to M15	2	2	-56.1	-76.8	-54.1	-41.25	12.8
	HT/VHT20 Beam Forming, M0 to M7	2	5	-57.1	-76.9	-52.1	-41.25	10.8
	HT/VHT20 Beam Forming, M8 to M15	2	2	-56.1	-76.8	-54.1	-41.25	12.8
	HT/VHT20 STBC, M0 to M7	2	2	-56.1	-76.8	-54.1	-41.25	12.8
	CCK, 1 to 11 Mbps	1	2	-64.7		-62.7	-41.25	21.5
	CCK, 1 to 11 Mbps	2	2	-64.7	-63.3	-58.9	-41.25	17.7
	Non HT20, 6 to 54 Mbps	1	2	-59.0		-57.0	-41.25	15.8
	Non HT20, 6 to 54 Mbps	2	2	-59.0	-61.8	-55.2	-41.25	13.9
P.	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-59.0	-61.8	-52.2	-41.25	10.9
2437	HT/VHT20, M0 to M7	1	2	-59.5		-57.5	-41.25	16.3
	HT/VHT20, M0 to M7	2	2	-59.5	-61.5	-55.4	-41.25	14.1
	HT/VHT20, M8 to M15	2	2	-59.5	-61.5	-55.4	-41.25	14.1
	HT/VHT20 Beam Forming, M0 to M7	2	5	-59.5	-61.5	-52.4	-41.25	11.1
	HT/VHT20 Beam Forming, M8 to M15	2	2	-59.5	-61.5	-55.4	-41.25	14.1
	HT/VHT20 STBC, M0 to M7	2	2	-59.5	-61.5	-55.4	-41.25	14.1
	CCK, 1 to 11 Mbps	1	2	-65.7		-63.7	-41.25	22.5
	CCK, 1 to 11 Mbps	2	2	-65.7	-65.0	-60.3	-41.25	19.1
	Non HT20, 6 to 54 Mbps	1	2	-60.7		-58.7	-41.25	17.5
	Non HT20, 6 to 54 Mbps	2	2	-61.2	-65.9	-57.9	-41.25	16.7
N	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-61.6	-66.3	-55.3	-41.25	14.1
2462	HT/VHT20, M0 to M7	1	2	-60.9		-58.9	-41.25	17.7
C V	HT/VHT20, M0 to M7	2	2	-61.2	-66.2	-58.0	-41.25	16.8
	HT/VHT20, M8 to M15	2	2	-61.2	-66.2	-58.0	-41.25	16.8
	HT/VHT20 Beam Forming, M0 to M7	2	5	-61.7	-67.0	-55.6	-41.25	14.3
	HT/VHT20 Beam Forming, M8 to M15	2	2	-61.2	-66.2	-58.0	-41.25	16.8
	HT/VHT20 STBC, M0 to M7	2	2	-61.2	-66.2	-58.0	-41.25	16.8

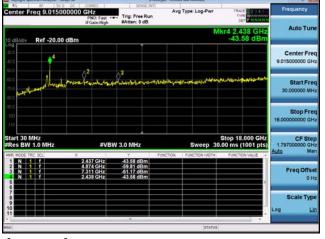
Page No: 27 of 63

Conducted Spurs Average, 2412 MHz, Non HT20 Beam Forming, 6 to 54 Mbps

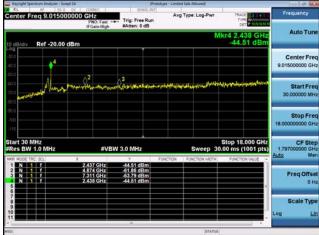
 Context Freq 9.0150000000 GHz
 Context Freq 9.0150000000 GHz
 Context Freq 9.0150000000 GHz
 Context Freq 9.0150000000 GHz

 Up delative Ref -20.00 dBm
 -76.34 dBm
 -76.34 dBm
 -76.34 dBm
 Center Freq 9.0150000000 GHz
 Center Freq 9.0150000000 GHz
 Center Freq 9.0150000000 GHz
 Center Freq 9.0150000000 GHz
 Center Freq 9.015000000 GHz
 Center Freq 9.01500000 GHz
 Stop Freq 9.01500000 GHz
 Stop Freq 9.0150000 GHz
 Stop Freq 9.01500000 GHz
 Center Freq 9.01500000 GHz
 Center Freq 9.01500000 GHz
 Stop Freq 9.01500000 GHz
 Stop Freq 9.0150000 GHz
 Stop Freq 9.0150000 GHz
 Stop Freq 9.0150000 GHz
 Center Freq 9.0150000 GHz
 Stop Freq 9.0150000 G

Antenna B


Antenna A

Page No: 28 of 63


Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	2	-50.8	50.0	-48.8	-21.25	27.6
	CCK, 1 to 11 Mbps	2		-50.8	-50.8	-45.8	-21.25	24.5
	Non HT20, 6 to 54 Mbps	1	2	-63.9	54.0	-61.9	-21.25	40.7
	Non HT20, 6 to 54 Mbps	2	2	-63.9	-51.6	-49.4	-21.25	28.1
12	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-51.0	-51.6	-43.3	-21.25	22.0
2412	HT/VHT20, M0 to M7	1	2	-63.0		-61.0	-21.25	39.8
	HT/VHT20, M0 to M7	2	2	-50.7	-50.5	-45.6	-21.25	24.3
	HT/VHT20, M8 to M15	2	2	-50.7	-50.5	-45.6	-21.25	24.3
	HT/VHT20 Beam Forming, M0 to M7	2	5	-60.6	-53.7	-47.9	-21.25	26.6
	HT/VHT20 Beam Forming, M8 to M15	2	2	-50.7	-50.5	-45.6	-21.25	24.3
	HT/VHT20 STBC, M0 to M7	2	2	-50.7	-50.5	-45.6	-21.25	24.3
	CCK, 1 to 11 Mbps	1	2	-45.1		-43.1	-21.25	21.9
	CCK, 1 to 11 Mbps	2	2	-45.1	-43.7	-39.3	-21.25	18.1
	Non HT20, 6 to 54 Mbps	1	2	-45.3		-43.3	-21.25	22.1
	Non HT20, 6 to 54 Mbps	2	2	-45.3	-44.6	-39.9	-21.25	18.7
2	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-45.3	-44.6	-36.9	-21.25	15.7
2437	HT/VHT20, M0 to M7	1	2	-43.6		-41.6	-21.25	20.4
	HT/VHT20, M0 to M7	2	2	-43.6	-44.5	-39.0	-21.25	17.8
	HT/VHT20, M8 to M15	2	2	-43.6	-44.5	-39.0	-21.25	17.8
	HT/VHT20 Beam Forming, M0 to M7	2	5	-43.6	-44.5	-36.0	-21.25	14.8
	HT/VHT20 Beam Forming, M8 to M15	2	2	-43.6	-44.5	-39.0	-21.25	17.8
	HT/VHT20 STBC, M0 to M7	2	2	-43.6	-44.5	-39.0	-21.25	17.8
	CCK, 1 to 11 Mbps	1	2	-43.4		-41.4	-21.25	20.2
	CCK, 1 to 11 Mbps	2	2	-43.4	-43.2	-38.3	-21.25	17.0
	Non HT20, 6 to 54 Mbps	1	2	-64.1		-62.1	-21.25	40.9
	Non HT20, 6 to 54 Mbps	2	2	-64.1	-47.9	-45.8	-21.25	24.5
	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-64.7	-63.3	-55.9	-21.25	34.7
2462	HT/VHT20, M0 to M7	1	2	-64.8		-62.8	-21.25	41.6
N	HT/VHT20, M0 to M7	2	2	-65.3	-64.9	-60.1	-21.25	38.8
	HT/VHT20, M8 to M15	2	2	-65.3	-64.9	-60.1	-21.25	38.8
	HT/VHT20 Beam Forming, M0 to M7	2	5	-48.1	-64.1	-43.0	-21.25	21.7
	HT/VHT20 Beam Forming, M8 to M15	2	2	-65.3	-64.9	-60.1	-21.25	38.8
	HT/VHT20 STBC, M0 to M7	2	2	-65.3	-64.9	-60.1	-21.25	38.8

Page No: 29 of 63

Conducted Spurs Peak, 2437 MHz, HT/VHT20 Beam Forming, M0 to M7

Antenna A

Antenna B

Page No: 30 of 63

A.6 Conducted Bandedge

15.205 / **15.247** / **RSS-Gen** / **RSS-247** / **LP0002:3.10.1(5)** & **2.8** In any 100 kHz bandwidth outside the frequency band in which the digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), and RSS-Gen 8.10 must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)) and RSS-Gen 8.9...

Test Procedure

Ref. KDB 558074 D01 DTS Meas Guidance v03r05

ANSI C63.10: 2013

Conducted Band edge

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode. Use the procedures in KDB 558074 D01 DTS Meas Guidance v03r05 to substitute conducted measurements in place of radiated measurements.

3. Configure Spectrum analyzer as per test parameters below below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance.

Also measure any emissions in the restricted bands..

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the

measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded.

6. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance.

Also measure any emissions in the restricted bands

7. Capture graphs and record pertinent measurement data.

Conducted Bandedge	Conducted Bandedge
Test parameters non-restricted Band	Test parameters restricted Band
KDB 558074 D01 v03r05 section 11.1b, 11.2-3, also see	KDB 558074 D01 v03r05 section 12.2.4 & 12.2.5.3 also
ANSI C63.10: 2013 section 11.10.3	see ANSI C63.10: 2013 section 11.12.4 & 11.12.5.3
RBW = 100 kHz	RBW = 1 MHz
VBW ≥ 3 x RBW	VBW ≥ 3 x RBW for Peak, 100Hz for Average
Sweep = Auto couple	Sweep = Auto couple
Detector = Peak	Detector = Peak
Trace = Max Hold.	Trace = Max Hold.

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	V	
	Support	S02		\checkmark

Tested By :	Date of testing:				
Jose Aguirre	16-Dec-16 - 29-Jan-17				
To LD H. DAGO					

Test Result : PASS

See Appendix C for list of test equipment

Page No: 31 of 63

Restricted Band

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	2	-59.5		-57.5	-41.25	16.3
	CCK, 1 to 11 Mbps	2	2	-59.5	-59.4	-54.4	-41.25	13.2
	Non HT20, 6 to 54 Mbps	1	2	-43.5		-41.5	-41.25	0.3
	Non HT20, 6 to 54 Mbps	2	2	-48.0	-46.7	-42.3	-41.25	1.0
2	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-51.3	-50.6	-42.9	-41.25	1.7
2412	HT/VHT20, M0 to M7	1	2	-47.7		-45.7	-41.25	4.5
	HT/VHT20, M0 to M7	2	2	-47.7	-45.2	-41.3	-41.25	0.0
	HT/VHT20, M8 to M15	2	2	-47.7	-45.2	-41.3	-41.25	0.0
	HT/VHT20 Beam Forming, M0 to M7	2	5	-51.6	-49.2	-42.2	-41.25	1.0
	HT/VHT20 Beam Forming, M8 to M15	2	2	-47.7	-45.2	-41.3	-41.25	0.0
	HT/VHT20 STBC, M0 to M7	2	2	-47.7	-45.2	-41.3	-41.25	0.0
	CCK, 1 to 11 Mbps	1	2	-53.9		-51.9	-41.25	10.7
	CCK, 1 to 11 Mbps	2	2	-53.9	-54.8	-49.3	-41.25	8.1
	Non HT20, 6 to 54 Mbps	1	2	-46.1		-44.1	-41.25	2.9
2462	Non HT20, 6 to 54 Mbps	2	2	-48.4	-47.3	-42.8	-41.25	1.6
	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-50.9	-49.4	-42.1	-41.25	0.8
	HT/VHT20, M0 to M7	1	2	-43.7		-41.7	-41.25	0.5
	HT/VHT20, M0 to M7	2	2	-49.1	-47.4	-43.2	-41.25	1.9
	HT/VHT20, M8 to M15	2	2	-49.1	-47.4	-43.2	-41.25	1.9
	HT/VHT20 Beam Forming, M0 to M7	2	5	-50.8	-49.2	-41.9	-41.25	0.7
	HT/VHT20 Beam Forming, M8 to M15	2	2	-49.1	-47.4	-43.2	-41.25	1.9
	HT/VHT20 STBC, M0 to M7	2	2	-49.1	-47.4	-43.2	-41.25	1.9

Page No: 32 of 63

Conducted Bandedge Average, 2412 MHz, HT/VHT20, M0 to M7

Antenna A

RL RF 50							- 6 -		
enter Freq 2.0654	100000 GHz	Hz PNO: Fast C Trig: Free Run		g Type: Voltage	TRAC TVF DE	E 123456 E Mullion Mullion P N N N N N	Frequency		
0 dB/div Ref 10.00) dBm			M	r2 2.303 -62.3	9 GHz 37 dBm	Auto Tur		
0.00 10.0 20.0							Center Fr 2.065400000 G		
40.0						- ¢	Start Fr 1.718800000 G		
60.0 70.0 60.0				and the second	• ²		Stop Fr 2.412000000 Gi		
itart 1.7188 GHz Res BW 1.0 MHz		W 100 Hz	FUNCTION	Sweep	Stop 2.4 5.405 s (CF St 69.320000 M Auto M		
1 N 1 7 2 N 1 7 3 4 5 6	× 2.390 0 GHz 2.303 9 GHz	-45.20 dBm -62.37 dBm	FUNCTION	FORCHON WOTH	FONCIL		Freq Offs 0		
6 7 8 9 10							Scale Ty		
						·			
sg				STATU	5				

Antenna B

Page No: 33 of 63

cisco

Conducted Bandedge Average, 2462 MHz, HT/VHT20, M0 to M7

Antenna A

Page No: 34 of 63

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dBm)	Margin (dB)
	CCK, 1 to 11 Mbps	1	2	-48.6		-46.6	-21.25	25.4
	CCK, 1 to 11 Mbps	2	2	-48.6	-47.2	-42.8	-21.25	21.6
	Non HT20, 6 to 54 Mbps	1	2	-28.8		-26.8	-21.25	5.6
	Non HT20, 6 to 54 Mbps	2	2	-28.8	-29.1	-23.9	-21.25	2.7
2	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-34.6	-31.9	-25.0	-21.25	3.8
2412	HT/VHT20, M0 to M7	1	2	-25.9		-23.9	-21.25	2.7
	HT/VHT20, M0 to M7	2	2	-33.0	-29.7	-26.0	-21.25	4.8
	HT/VHT20, M8 to M15	2	2	-33.0	-29.7	-26.0	-21.25	4.8
	HT/VHT20 Beam Forming, M0 to M7	2	5	-37.6	-33.3	-26.9	-21.25	5.7
	HT/VHT20 Beam Forming, M8 to M15	2	2	-33.0	-29.7	-26.0	-21.25	4.8
	HT/VHT20 STBC, M0 to M7	2	2	-33.0	-29.7	-26.0	-21.25	4.8
	CCK, 1 to 11 Mbps	1	2	-47.5		-45.5	-21.25	24.3
	CCK, 1 to 11 Mbps	2	2	-47.5	-44.2	-40.5	-21.25	19.3
	Non HT20, 6 to 54 Mbps	1	2	-28.5		-26.5	-21.25	5.3
	Non HT20, 6 to 54 Mbps	2	2	-33.5	-31.8	-27.6	-21.25	6.3
2462	Non HT20 Beam Forming, 6 to 54 Mbps	2	5	-37.7	-35.4	-28.4	-21.25	7.1
	HT/VHT20, M0 to M7	1	2	-31.2		-29.2	-21.25	8.0
	HT/VHT20, M0 to M7	2	2	-35.5	-32.4	-28.7	-21.25	7.4
	HT/VHT20, M8 to M15	2	2	-35.5	-32.4	-28.7	-21.25	7.4
	HT/VHT20 Beam Forming, M0 to M7	2	5	-37.0	-32.9	-26.5	-21.25	5.2
	HT/VHT20 Beam Forming, M8 to M15	2	2	-35.5	-32.4	-28.7	-21.25	7.4
	HT/VHT20 STBC, M0 to M7	2	2	-35.5	-32.4	-28.7	-21.25	7.4

սիսիս

co

Page No: 35 of 63

Conducted Bandedge Peak, 2412 MHz, Non HT20, 6 to 54 Mbps

Antenna A

Antenna B

Page No: 36 of 63

Conducted Bandedge Peak, 2462 MHz, HT/VHT20 Beam Forming, M0 to M7

Antenna A

Antenna B

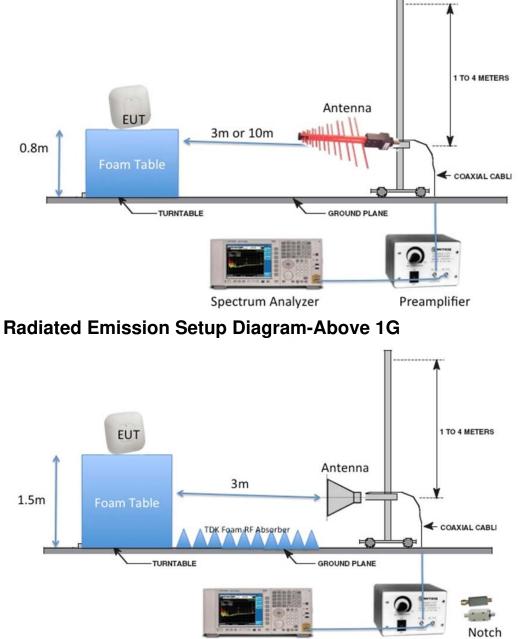
Page No: 37 of 63

Non-Restristred Band

Frequency (MHz)	Mode	Data Rate (Mbps)	Conducted Bandedge Delta (dB)	Limit (dBc)	Margin (dB)
	CCK, 1 to 11 Mbps	11	57.3	>30	27.3
2412	Non HT20, 6 to 54 Mbps	6	39.1	>30	9.1
	HT/VHT20, M0 to M15	m0	40.2	>30	10.2

Page No: 38 of 63

🔤 Keysight Spectrum Analyzer - Swept SA 🚽		(Pro	ototype - Limited Sale A	(llowed)			
RL RF 50Ω DC Center Freq 2.406000000		SENSE:INT		: Log-Pwr		3456	Frequency
10 dB/div Ref 10.00 dBm	PNO: Wide 🖵 IFGain:Low	Trig: Free Run #Atten: 20 dB		Mkr1	2.400 000 C -32.26 d	SHZ	Auto Tune
Log 0.00 	1	palsonhurahn	lorong handway	rahandaan	inanta Anta antag		Center Freq 2.406000000 GHz
-30.0 -40.0	Jun and a second a						Start Freq 2.390000000 GHz
-60.0						00 dBm	Stop Freq 2.422000000 GHz
Start 2.39000 GHz #Res BW 100 kHz	#VBW	300 kHz			Stop 2.42200 000 ms (1001 FUNCTION VALU	pts)	CF Step 3.200000 MHz .uto Man
2	0 000 GHz 7.008 MHz (Δ)	-32.26 dBm 39.10 dB					Freq Offset 0 Hz
7 8 9 10							Scale Type
11						• •	
ISG				STATUS			


Conducted Bandedge Delta, 2412 MHz, Non HT20, 6 to 54 Mbps

Page No: 39 of 63

Appendix B: Emission Test Results

Testing Laboratory: Cisco Systems, Inc., 125 West Tasman Drive, San Jose, CA 95134, USA

Radiated Emission Setup Diagram-Below 1G

Spectrum Analyzer

Page No: 40 of 63

Preamplifier Filters

B.1 Radiated Spurious Emissions

15.205 / **RSS-Gen** / **LP0002:3.10.1(5)**/**2.8** Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) and RSS-Gen 8.10, must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)) and RSS-Gen 8.9.

Ref. ANSI C63.10: 2013 section 4.1.4.2.2, 4.1.4.2.3, 6.6.4 & 11.12.2

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span:	1GHz – 18 GHz
Reference Level:	80 dBuV
Attenuation:	10 dB
Sweep Time:	Coupled
Resolution Bandwidth:	1MHz
Video Bandwidth:	3 MHz for peak, 1 KHz for average
Detector:	Peak

Terminate the access Point RF ports with 50 ohm loads.

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

Save 2 plots: 1) Average plot, Limit= 54dBuV/m @3m 2) Peak plot, Limit = 74dBuV/m @3m

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

This report represents the worst case data for all supported operating modes and antennas. There are no measurable emissions above 18 GHz.

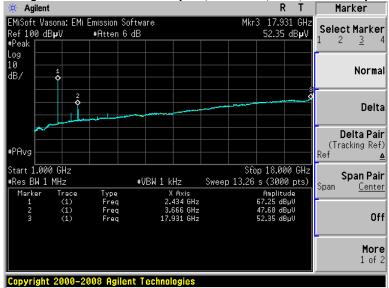
System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\mathbf{V}	
1	Support	S02		\checkmark

Tested By :	Date of testing:
Jose Aguirre	16-Dec-16 - 29-Jan-17
Test Result : PASS	

See Appendix C for list of test equipment

Page No: 41 of 63

B.1.A Transmitter Radiated Spurious Emissions-Average Worst Case


Frequency (MHz)	Mode	Data Rate (Mbps)	Spurious Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (MHz)
2412	CCK, 1 to 11 Mbps	11	52.7	54	1.3
2437	CCK, 1 to 11 Mbps	11	52.4	54	1.6
2462	CCK, 1 to 11 Mbps	11	52.8	54	1.2

Page No: 42 of 63

🔆 Agilent					R 1	Г	Marker
EMiSoft Vasona: Ref 100 dBµV #Peak	EMi Emission #Atten			Mkr3 1 52	.7.873 0 2.66 dB		ect Marker 2 <u>3</u> 4
Log 10 dB/ \$							Norma
	2					×	Delta
*PAvg						(Ref	Delta Pair Tracking Ref
Start 1.000 GH ‡Res BW 1 MHz		#VBW 1 kHz		o 13.26 s (Span Pail
Marker Tra 1 (1 2 (1 3 (1	L) Freq L) Freq	2.413 3.667	3 GHz 7 GHz	67.8 47.8	plitude 7 dBµV 1 dBµV 6 dBµV		Of
							More 1 of 2

Average Radiated Transmitter Spurs, 2412 MHz, CCK, 1 to 11 Mbps

Average Radiated Transmitter Spurs, 2437 MHz, CCK, 1 to 11 Mbps

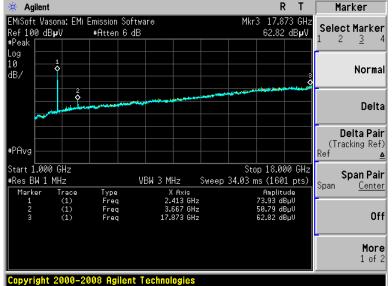
Page No: 43 of 63

🔆 Agilent				R	Т	Peak Search
EMiSoft Vasona: EMi Ref 100 dBµV #Peak	Emission Softwa #Atten 6 dB	are		Mkr2 3.6 47.74	64 GHz dB µ V	Next Peak
Log 10 dB/						Next Pk Right
					فْسَد	Next Pk Left
#PAvg						Min Search
Start 1.000 GHż #Res BW 1 MHz Marker Trace	#\ Type	/BW 1 kHz X Axis	Sweep 13.	Stop 18.00 26 s (300 Amplitu	0 pts)	Pk-Pk Search
1 (1) 2 (1) 3 (1)	Freq Freq Freq	2.462 GHz 3.664 GHz 17.897 GHz		68.39 dE 47.74 dE 52.78 dE	նըՄ ՅըՄ	Mkr → Cf
						More 1 of 2

Average Radiated Transmitter Spurs, 2462 MHz, CCK, 1 to 11 Mbps

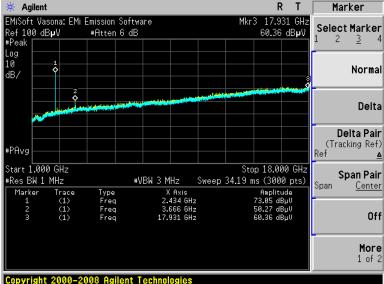
Copyright 2000–2008 Agilent Technologies

Average Radiated Transmitter Spurs, All rates, All Modes

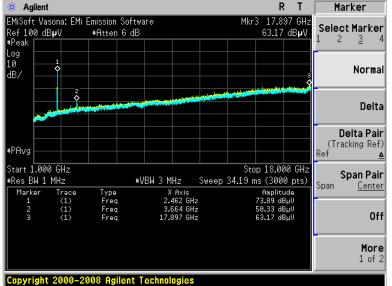

No emissions seen above 18GHz, the plot above is representative of all modes tested.

Page No: 44 of 63

B.1.P Transmitter Radiated Spurious Emissions-Peak Worst Case

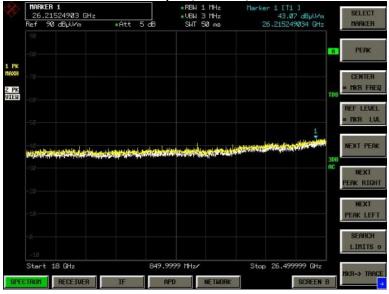

Frequency (MHz)	Mode	Data Rate (Mbps)	Spurious Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (MHz)
2412	CCK, 1 to 11 Mbps	11	62.8	74.0	11.2
2437	CCK, 1 to 11 Mbps	11	60.4	74.0	13.6
2462	CCK, 1 to 11 Mbps	11	63.2	74.0	10.8

Page No: 45 of 63



Peak Radiated Transmitter Spurs, 2412 MHz, CCK, 1 to 11 Mbps

Peak Radiated Transmitter Spurs, 2437 MHz, CCK, 1 to 11 Mbps


Page No: 46 of 63

Peak Radiated Transmitter Spurs, 2462 MHz, CCK, 1 to 11 Mbps

մինվին

No emissions seen above 18GHz, the plot above represents worst case for all modes tested.

Page No: 47 of 63

B.2 Receiver Spurious Emissions

RSS-Gen Receivers are required to comply with the limits of spurious emissions as set out in this section. Receiver emission measurements are to be performed as per the normative test method referenced in Section 3.

Radiated emissions which fall in the restricted bands, as defined in RSS-Gen section 8.10, must also comply with the radiated emission limits specified in RSS-Gen section 8.9.

For emissions at frequencies below 1 GHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. At frequencies above 1 GHz, measurements shall be performed using a linear average detector with a minimum resolution bandwidth of 1 MHz.

Ref. RSS-Gen section 8.9 & 8.10 ANSI C63.10: 2013 section 4.1.4.2.2, 4.1.4.2.3, 6.6.4 & 11.12.2

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span:	1GHz – 18 GHz
Reference Level:	80 dBuV
Attenuation:	10 dB
Sweep Time:	Coupled
Resolution Bandwidth:	1MHz
Video Bandwidth:	3MHz for Peak, 1 kHz for average
Detector:	Peak

Radiated emission measurements shall be performed with the receiver antenna connected to the receiver antenna terminals.

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

Save plot: 1) Average Plot (Vertical and Horizontal), Limit= 54dBuV/m @3m 2) Peak Plot (Vertical and Horizontal), Limit= 74dBuV/m @3m

This report represents the worst case data for all supported operating modes and antennas. There are no measurable emissions above 18 GHz.

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	V	
1	Support	S02		\checkmark

Tested By :	Date of testing:
Jose Aguirre	16-Dec-16 - 29-Jan-17
Tot Book BADD	

Test Result : PASS

See Appendix C for list of test equipment

Page No: 48 of 63

B.2.A Receiver Radiated Spurious Emissions (Average Measurements)

ոլուլո

Average Radiated Receiver Spurs, All Rates, All Modes, (1-18GHz)

Radiated Receiver Spurs, All rate, All modes, Average (18-26.5GHz)

No emissions seen above 18GHz. The plots above are representative of all modes tested.

Page No: 49 of 63

B.2.A Receiver Radiated Spurious Emissions (Peak Measurements)

մինին

Peak Radiated Receiver Spurs, All Rates, All Modes, (1-18GHz)

Radiated Receiver Spurs, All rate, All modes, Peak (18-26.5GHz)

No emissions seen above 18GHz. The plots above are representative of all modes tested.

Page No: 50 of 63

B.3 Radiated Emissions 30MHz to 1GHz

15.205 / **15.209** / **RSS-Gen** / **LP0002:3.10.1(5)**/**2.8** Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)) and RSS-Gen section 8.9.

Ref. ANSI C63.10: 2013 section 6.5

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

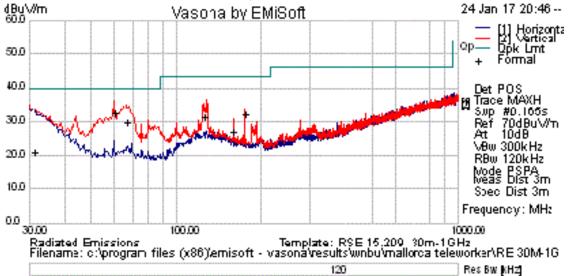
Span:	30MHz – 1GHz
Reference Level:	80 dBuV
Attenuation:	10 dB
Sweep Time:	Coupled
Resolution Bandwidth:	100kHz
Video Bandwidth:	300kHz
Detector:	Peak for Pre-scan, Quasi-Peak
	Compliance shall be determined using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak detection.

Terminate the access Point RF ports with 50 ohm loads.

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

This report represents the worst case data for all supported operating modes and antennas.

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	V	
1	Support	S02		\checkmark


Tested By :	Date of testing:
Jose Aguirre	16-Dec-16 - 29-Jan-17
Test Result : PASS	

See Appendix C for list of test equipment

Page No: 51 of 63

Graphical Test Results

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results

Frequency	Raw	Cable	AF dB	Level	Measurement	Pol	Hgt cm	Azt Deg	Limit	Margin	Pass
MHz	dBuV	Loss		dBuV/m	Туре				dBuV/m	dB	/Fail
60.001	24.8	0.7	7.4	32.8	Quasi Max	V	168	76	40	-7.2	Pass
66.855	21.3	0.7	8	30	Quasi Max	V	108	150	40	-10	Pass
174.998	20	1.1	11.3	32.4	Quasi Max	V	149	225	43.5	-11.1	Pass
124.991	16.3	0.9	14.1	31.4	Quasi Max	V	112	52	43.5	-12.1	Pass
159.993	14.1	1.1	12.1	27.3	Quasi Max	V	170	359	43.5	-16.2	Pass
31.195	0.4	0.5	20.5	21.4	Quasi Max	V	206	-2	40	-18.6	Pass

Page No: 52 of 63

B.4 AC Conducted Emissions

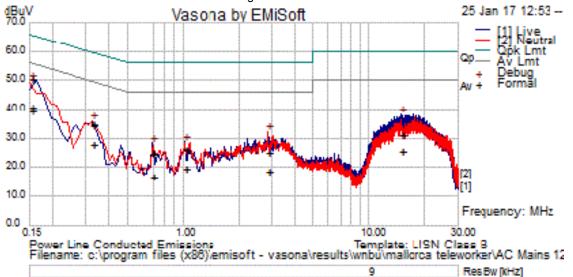
FCC 15.207 (a) & RSS-Gen 8.8 / LP0002:2.3 Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.

Measurement Procedure Accordance with ANSI C63.10:2013 section 6.2

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span:	150 KHz – 30 MHz
Attenuation:	10 dB
Sweep Time:	Coupled
Resolution Bandwidth:	9 KHz
Video Bandwidth:	30 KHz
Detector:	Quasi-Peak / Average

System Number	Description	Samples	System under test	Support equipment
4	EUT	S01	V	
1	Support	S02		\checkmark

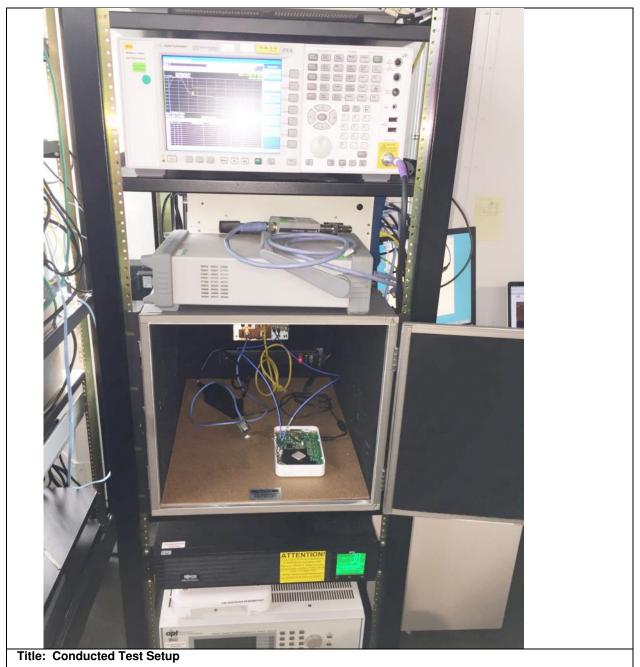

Tested By :	Date of testing:
Jose Aguirre	16-Dec-16 - 29-Jan-17
Test Result : PASS	

See separate EMC test report for test data.

Page No: 53 of 63

Graphical Test Results

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

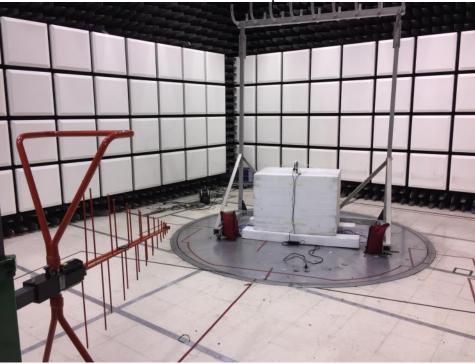


Test Resu	ilts								
Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail
2.854	5.2	20	0	25.2	Quasi Peak	Live	56	-30.8	Pass
0.154	29.5	21	0.1	50.6	Quasi Peak	Live	65.8	-15.2	Pass
14.851	11	20.3	0.1	31.4	Quasi Peak	Live	60	-28.6	Pass
0.329	14.4	20.2	0.1	34.7	Quasi Peak	Live	59.5	-24.8	Pass
1.031	6.4	19.9	0	26.3	Quasi Peak	Live	56	-29.7	Pass
0.697	4.9	19.9	0	24.9	Quasi Peak	Live	56	-31.1	Pass
14.851	10.9	20.3	0.1	31.3	Quasi Peak	Neutral	60	-28.7	Pass
0.154	29.7	21	0.1	50.8	Quasi Peak	Neutral	65.8	-15	Pass
1.031	6.3	19.9	0	26.2	Quasi Peak	Neutral	56	-29.8	Pass
0.329	14.3	20.2	0.1	34.6	Quasi Peak	Neutral	59.5	-24.9	Pass
2.854	5.1	20	0	25.1	Quasi Peak	Neutral	56	-30.9	Pass
0.697	4.9	19.9	0	24.9	Quasi Peak	Neutral	56	-31.1	Pass
2.854	-1.3	20	0	18.7	Average	Live	46	-27.3	Pass
0.154	18.4	21	0.1	39.5	Average	Live	55.8	-16.2	Pass
14.851	5.3	20.3	0.1	25.7	Average	Live	50	-24.3	Pass
0.329	7.7	20.2	0.1	28	Average	Live	49.5	-21.4	Pass
1.031	-0.4	19.9	0	19.5	Average	Live	46	-26.5	Pass
0.697	-2.9	19.9	0	17	Average	Live	46	-29	Pass
14.851	5.2	20.3	0.1	25.6	Average	Neutral	50	-24.4	Pass
0.154	19.7	21	0.1	40.9	Average	Neutral	55.8	-14.9	Pass
1.031	-0.4	19.9	0	19.5	Average	Neutral	46	-26.5	Pass
0.329	7.7	20.2	0.1	28	Average	Neutral	49.5	-21.5	Pass
2.854	-1.5	20	0	18.5	Average	Neutral	46	-27.5	Pass
0.697	-3	19.9	0	16.9	Average	Neutral	46	-29.1	Pass

Page No: 54 of 63

- dudu cisco

Photographs of setup


This is a dual band 2.4GHz / 5GHz device. All ports in this test set up photo are connected as all testing is automated. Section 2.6 of this test report given an overview of the different Tx antenna combinations used by this device.

Page No: 55 of 63

AIR-AP1815T-x-K9 AC Mains Conducted Emissions setup

Page No: 56 of 63

AIR-AP1815T-x-K9 Radiated Emissions setup 30MHz – 1GHz

Page No: 57 of 63

AIR-AP1815T-x-K9 Radiated Emissions setup above 1GHz

cisco

Page No: 58 of 63

Appendix C: List of Test Equipment Used to perform the test

Equip No	Model Manufacturer	Description	Last Cal	Next Cal	Test Item
CIS041929	iBTHP-5-DB9 Newport	5 inch Temp/RH/Press Sensor w/20ft cable	22-Dec-16	22-Dec-17	B.1, B.2, B.3
CIS001937	NSA 5m Chamber Cisco	NSA 5m Chamber	12-Feb-16	12-Feb-17	B.3
CIS049535	Above 1GHz Site Cal Cisco	Above 1GHz CISPR Site Validation	13-Feb-16	13-Feb-17	B.1, B.2
CIS028072	1840 Cisco	18-40GHz EMI Test Head	22-Feb-16	22-Feb-17	B.1, B.2
CIS045588	JB1 Sunol Sciences	Combination Antenna, 30MHz-2GHz	9-Mar-16	9-Mar-17	B.3
CIS042000	E4440A Agilent	Spectrum Analyzer	6-Jul-16	6-Jul-17	B.1, B.2
CIS037581	3117 ETS-Lindgren	Horn Antenna	7-Oct-16	7-Oct-17	B.1, B.2
CIS045098	TH0118 Cisco	Mast Mount Preamplifier Array, 1-18GHz	31-Oct-16	31-Oct-17	B.1, B.2
CIS033602	CSY-NMNM-80-273001 Midwest Microwave	RF Coaxial Cable, to 18GHz	8-Nov-16	8-Nov-17	B.1, B.2, B.3
CIS030443	UFB311A-0-1560-520520 Micro-Coax	RF Coaxial Cable, to 18GHz	8-Nov-16	8-Nov-17	B.1, B.2, B.3
CIS008024	SF106A Huber + Suhner	3 meter Sucoflex cable	8-Nov-16	8-Nov-17	B.1, B.2, B.3
CIS024201	FSEK30 Rohde & Schwarz	Spectrum Analyzer 20Hz - 40GHz	23-Nov-16	23-Nov-17	B.1, B.2
CIS037235	50CB-015 JFW	GPIB Control Box	Cal not Required	Cal not Required	B.1, B.2
CIS035244	926-8ME Klein Tools	8 Meter Tape Measure	Cal not Required	Cal not Required	B.1, B.2, B.3
CIS043124	Above 1GHz Site Cal Cisco	Above 1GHz Cispr Site Verification	14-Jan-16	14-Jan-17	B.1, B.2
CIS047300	N9038A Agilent Technologies	MXE EMI Receiver 20Hz to 26.5 Ghz	28-Jan-16	28-Jan-17	B.1, B.2, B.3
CIS030559	UFB311A-1-0950-504504 Micro-Coax	RF Coaxial Cable, to 18GHz, 95 in	15-Feb-16	15-Feb-17	B.1, B.2, B.3
CIS020975	UFB311A-0-1344-520520 Micro-Coax	RF Coaxial Cable, to 18GHz, 134.4 in	17-Feb-16	17-Feb-17	B.1, B.2, B.3
CIS019630	ESI 40(ESIB 40) Rohde & Schwarz	EMI Test Receiver, 20Hz - 40GHz	22-Feb-16	22-Feb-17	B.1, B.2
CIS008447	NSA 10m Chamber Cisco	NSA 10m Chamber	14-Oct-16	14-Oct-17	B.3
CIS036710	1840 Cisco	18-40GHz EMI Test Head/Verification Fixture	17-Nov-16	17-Nov-17	B.1, B.2
CIS030652	JB1 Sunol Sciences	Combination Antenna, 30MHz-2GHz	16-Dec-16	16-Dec-17	B.3

	Test Equipmer	nt used for AC Mains Conducted Er	nissions		
Equip No	Model Manufacturer	Description	Last Cal	Next Cal	Test Item
CIS051642	Sucoflex 106PA Huber+Suhner	RF N Type Cable 8.5m	11-Feb-16	11-Feb-17	B.4
CIS030559	UFB311A-1-0950-504504 Micro-Coax	RF Coaxial Cable, to 18GHz, 95 in	15-Feb-16	15-Feb-17	B.4
CIS020975	UFB311A-0-1344-520520 Micro-Coax	RF Coaxial Cable, to 18GHz, 134.4 in	17-Feb-16	17-Feb-17	B.4
CIS046717	5-T-MB Bird	5W 50 Ohm BNC Termination 4GHz	9-Mar-16	9-Mar-17	B.4
CIS008510	FCC-450B-2.4-N Fischer Custom Communications	Instrumentation Limiter	16-May-16	16-May-17	B.4
CIS023796	FCC-LISN-PA-520R Fischer Custom Communications	POWER ADAPTOR, POLARIZED 120VAC	27-Jul-16	27-Jul-17	B.4
CIS023794	FCC-LISN-50/250-50-2-02 Fischer Custom Communications	LISN	27-Jul-16	27-Jul-17	B.4
CIS019206	H785-150K-50-21378 TTE	High Pas Filter,Fo=150kHz	13-Sep-16	13-Sep-17	B.4
CIS005687	73 III Fluke	Digital Multimeter	3-Nov-16	3-Nov-17	B.4
CIS041929	iBTHP-5-DB9 Newport	5 inch Temp/RH/Press Sensor w/20ft cable	22-Dec-16	22-Dec-17	B.4
CIS054645	33-428 Stanley	Tape measure 8 meter	Cal Not Required	Cal Not Required	B.4

Equip No	Model	Description	Last Cal	Next Cal	Test Item
-46	Manufacturer				
CIS049445	BRC50704-02	Notch Filter, SB:5.470-5.725GHz, to 12GHz	12-Apr-16	12-Apr-17	A1 thru A6
	Micro-Tronics				
CIS035038	BRC50703-02	Notch Filter, SB:5.150-5.350GHz, to 11GHz	6-Jul-16	6-Jul-17	A1 thru A6
	Micro-Tronics				
CIS055561	F120-S1S1-48	SMA Cable 48"	15-Jul-16	15-Jul-17	A1 thru A6
	MegaPhase				
CIS054635	F120-S1S1-48	SMA cable 48"	15-Jul-16	15-Jul-17	A1 thru A6
	Megaphase				
CIS055588	BWS30-W2	SMA 30dB Attenuator	21-Jul-16	21-Jul-17	A1 thru A6
	Aeroflex				
CIS055578	BWS20-W2	SMA 20dB Attenuator	21-Jul-16	21-Jul-17	A1 thru A6
	Aeroflex				
CIS054656	BRC50705-02	Band Reject Filter	19-Sep-16	19-Sep-17	A1 thru A6
	Micro-Tronics				
CIS054653	BRM50702-02	Notch Filter, SB:2.400-2.500GHz, to 18GHz	19-Sep-16	19-Sep-17	A1 thru A6
	Micro-Tronics				
CIS055858	SMSM-A2PH-012	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
	Dynawave				
CIS055856	SMSM-A2PH-012	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
	Dynawave				
CIS055849	SMSM-A2PH-012	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
	Dynawave				
CIS055848	SMSM-A2PH-012	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
	Dynawave				
CIS055847	SMSM-A2PH-012	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
	Dynawave				
CIS055846	SMSM-A2PH-012	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
	Dynawave				

Page No: 60 of 63

CIS055845	SMSM-A2PH-012	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
	Dynawave				
CIS055844	SMSM-A2PH-012	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
	Dynawave				
CIS055843	SMSM-A2PH-012	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
	Dynawave				
CIS055842	SMSM-A2PH-012	12" SMA cable	29-Sep-16	29-Sep-17	A1 thru A6
	Dynawave				
CIS055874	SMSM-A2PH-024	24" SMA Cable	7-Oct-16	7-Oct-17	A1 thru A6
	Dynawave				
CIS055872	SMSM-A2PH-024	24" SMA Cable	7-Oct-16	7-Oct-17	A1 thru A6
	Dynawave				
CIS055868	SMSM-A2PH-024	24" SMA Cable	7-Oct-16	7-Oct-17	A1 thru A6
	Dynawave				
CIS055867	SMSM-A2PH-024	24" SMA Cable	7-Oct-16	7-Oct-17	A1 thru A6
	Dynawave				
CIS055885	SMSM-A2PH-018	18" SMA Cable	10-Oct-16	10-Oct-17	A1 thru A6
	Dynawave				
CIS055170	RFLT4WDC40GK	4 Way Power Divider 40GHz	29-Nov-16	29-Nov-17	A1 thru A6
	RF Lambda				
CIS050721	N9030A	PXA Signal Analyzer	30-Mar-16	30-Mar-17	A1 thru A6
	Keysight				
CIS054303	N5182B	MXG X-Series RF Vector Signal Generator	6-Apr-16	6-Apr-17	A1 thru A6
	Keysight				
CIS055099	SMART2200RM2U	Power Supply	Cal Not	Cal Not	A1 thru A6
	Tripp-Lite		Required	Required	
CIS055094	PXI-1042	Chassis	Cal Not	Cal Not	A1 thru A6
	National Instruments		Required	Required	

Page No: 61 of 63

Appendix E: Abbreviation Key and Definitions

The following table defines abbreviations used within this test report.

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	°C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
ТАР	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control System	Qp	Quasi Peak
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak
Cal	Calibration	kHz	Kilohertz (1x10 ³)
EN	European Norm	MHz	MegaHertz (1x10 ⁶)
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)
CISPR	International Special Committee on Radio Interference	Н	Horizontal
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization Network	dB	decibel
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³)
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)
L2	Line2	A	Amp
L3	Line 3	μA	Micro Amp (1x10 ⁻⁶)
DC	Direct Current	mS	Milli Second (1x10 ⁻³)
RAW	Uncorrected measurement value, as indicated by the measuring device	μS	Micro Second (1x10 ⁻⁶)
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)
SLCE	Signal Line Conducted Emissions	m	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
Ν	Neutral Line	R	Return
S	Supply	AC	Alternating Current

սիսիս

End

Page No: 63 of 63