

Test Report

AIR-AP1832I-B-K9

Cisco Aironet 802.11ac Dual Band Access Points

FCC ID: LDK102098

5150-5250 MHz

Against the following Specifications:

CFR47 Part 15.407

Cisco Systems

170 West Tasman Drive San Jose, CA 95134

Author: Jose Aguirre

Tested By: TEST ENGINEER

ote I Agrum

Approved By: Jim Nicholson

Title: Technical Leader, Engineering

Revision: 3

This report replaces any previously entered test report under EDCS – **11496964**. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

SECTION 1: OVERVIEW	3
SECTION 2: ASSESSMENT INFORMATION	4
2.1 General	4
2.2 Date of testing	6
2.3 REPORT ISSUE DATE	6
2.4 TESTING FACILITIES	6
2.5 EQUIPMENT ASSESSED (EUT)	6
2.6 EUT DESCRIPTION	7
SECTION 3: RESULT SUMMARY	9
3.1 RESULTS SUMMARY TABLE	9
SECTION 4: SAMPLE DETAILS	11
4.1 Sample Details	11
4.2 System Details	11
4.3 Mode of Operation Details	11
APPENDIX A: EMISSION TEST RESULTS	12
CONDUCTED TEST SETUP DIAGRAM	12
TARGET MAXIMUM CHANNEL POWER	12
A.1 99% and 26dB Bandwidth	
DUTY CYCLE	21
A.2 MAXIMUM CONDUCTED OUTPUT POWER/ POWER SPECTRAL DENSITY	
A.3 CONDUCTED SPURIOUS EMISSIONS	
A.4 CONDUCTED BAND EDGE	41
APPENDIX B: EMISSION TEST RESULTS	52
RADIATED EMISSION SETUP DIAGRAM-BELOW 1G	52
B.1 RADIATED SPURIOUS EMISSIONS	53
B.2 RADIATED EMISSIONS 30MHz TO 1GHz	
B.3 AC CONDUCTED EMISSIONS	74
APPENDIX C: LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST	77
APPENDIX E: ABBREVIATION KEY AND DEFINITIONS	80

Section 1: Overview

The samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

Specifications:	
CFR47 Part 15.407	

Measurements were made in accordance with

- ANSI C63.10:2013
- KDB 789033 D02 General UNII Test Procedures New Rules v01r03
- KDB 662911 D01 Multiple Transmitter Output v02r01

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature 15°C to 35°C (54°F to 95°F)

Atmospheric Pressure 860mbar to 1060mbar (25.4" to 31.3")

Humidity 10% to 75*%

e) All AC testing was performed at one or more of the following supply voltages:

110V 60 Hz (+/-20%)

Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB] The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss...

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Measurement Uncertainty Values

voltage and power measurements	± 2 dB
conducted EIRP measurements	± 1.4 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7
temperature measurements	± 0.54°
humidity measurements	± 2.3%
DC and low frequency measurements	± 2.5%

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

2.2 Date of testing

05-May-16 - 06-Jun-16

2.3 Report Issue Date

17-Nov-16

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System 11496964. The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled.

2.4 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc., 125 West Tasman Drive San Jose, CA 95134, USA

Registration Numbers for Industry Canada

Cisco System Site	Address	Site Identifier
Building P, 10m Chamber	125 West Tasman Dr	Company #: 2461N-2
	San Jose, CA 95134	
Building P, 5m Chamber	125 West Tasman Dr	Company #: 2461N-1
	San Jose, CA 95134	
Building I, 5m Chamber	285 W. Tasman Drive	Company #: 2461M-1
	San Jose, California 95134	

Test Engineers

Jose Aguirre

2.5 Equipment Assessed (EUT)

AIR-AP1832I-A-K9

2.6 EUT Description

The Cisco Aironet 802.11ac Radio supports the following modes of operation. The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst case data for all modes.

```
802.11n/ac - Mode, Tx Paths
802.11n/ac - Non HT20, One Antenna, 6 to 54 Mbps, 1ss
802.11n/ac - Non HT20, Two Antennas, 6 to 54 Mbps, 1ss
802.11n/ac - Non HT20, Three Antennas, 6 to 54 Mbps, 1ss
802.11n/ac - Non HT20 Beam Forming, Two Antennas, 6 to 54 Mbps, 1ss
802.11n/ac - Non HT20 Beam Forming, Three Antennas, 6 to 54 Mbps, 1ss
802.11n/ac - HT/VHT20, One Antenna, M0 to M7, 1ss
802.11n/ac - HT/VHT20, Two Antennas, M0 to M7, 1ss
802.11n/ac - HT/VHT20, Two Antennas, M8 to M15, 2ss
802.11n/ac - HT/VHT20, Three Antennas, M0 to M7, 1ss
802.11n/ac - HT/VHT20, Three Antennas, M8 to M15, 2ss
802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M0 to M7, 1ss
802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M8 to M15, 2ss
802.11n/ac - HT/VHT20 Beam Forming, Three Antennas, M0 to M7, 1ss
802.11n/ac - HT/VHT20 Beam Forming, Three Antennas, M8 to M15, 2ss
802.11n/ac - HT/VHT20 STBC, Two Antennas, M0 to M7, 2ss
802.11n/ac - HT/VHT20 STBC, Three Antennas, M0 to M7, 2ss
802.11n/ac - Non HT40 Duplicate, One Antenna, 6 to 54 Mbps, 1ss
802.11n/ac - Non HT40 Duplicate, Two Antennas, 6 to 54 Mbps, 1ss
802.11n/ac - Non HT40 Duplicate, Three Antennas, 6 to 54 Mbps, 1ss
802.11n/ac - HT/VHT40, One Antenna, M0 to M7, 1ss
802.11n/ac - HT/VHT40, Two Antennas, M0 to M7, 1ss
802.11n/ac - HT/VHT40, Two Antennas, M8 to M15, 2ss
802.11n/ac - HT/VHT40, Three Antennas, M0 to M7, 1ss
802.11n/ac - HT/VHT40, Three Antennas, M8 to M15, 2ss
802.11n/ac - HT/VHT40 Beam Forming, Two Antennas, M0 to M7, 1ss
802.11n/ac - HT/VHT40 Beam Forming, Two Antennas, M8 to M15, 2ss
802.11n/ac - HT/VHT40 Beam Forming, Three Antennas, M0 to M7, 1ss
802.11n/ac - HT/VHT40 Beam Forming, Three Antennas, M8 to M15, 2ss
802.11n/ac - HT/VHT40 STBC, Two Antennas, M0 to M7, 2ss
802.11n/ac - HT/VHT40 STBC, Three Antennas, M0 to M7, 2ss
802.11n/ac - Non HT80 Duplicate, One Antenna, 6 to 54 Mbps, 1ss
802.11n/ac - Non HT80 Duplicate, Two Antennas, 6 to 54 Mbps, 1ss
802.11n/ac - Non HT80 Duplicate, Three Antennas, 6 to 54 Mbps, 1ss
802.11ac - VHT80, One Antenna, M0 to M9 1ss
802.11ac - VHT80, Two Antennas, M0 to M9 1ss
802.11ac - VHT80, Two Antennas, M0 to M9 2ss
802.11ac - VHT80, Three Antennas, M0 to M9 1ss
802.11ac - VHT80, Three Antennas, M0 to M9 2ss
802.11ac - VHT80 Beam Forming, Two Antennas, M0 to M9 1ss
802.11ac - VHT80 Beam Forming, Two Antennas, M0 to M9 2ss
```

Page No: 7 of 81

802.11ac - VHT80 Beam Forming, Three Antennas, M0 to M9 1ss 802.11ac - VHT80 Beam Forming, Three Antennas, M0 to M9 2ss

802.11ac - VHT80 STBC, Two Antennas, M0 to M9 2ss 802.11ac - VHT80 STBC, Three Antennas, M0 to M9 2ss

The following antennas are supported by this product series.

The data included in this report represent the worst case data for all antennas.

Frequency	Frequency Part Number		Antenna Gain (dBi)	
2.4 / 5 GHz	3x3 Internal	Omni	3/5	

Section 3: Result Summary

3.1 Results Summary Table

Conducted emissions

Basic Standard	Technical Requirements / Details	Result
FCC 15.407	99% & 26 dB Bandwidth: The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW. The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.	Pass
FCC 15.407	Output Power: 15.407: (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm). (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	Pass
FCC 15.407	Power Spectral Density: 15.407 The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	Pass
FCC 15.407	Conducted Spurious Emissions / Band-Edge: For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.25 GHz band shall not exceed an EIRP of -27dBm/MHz.	Pass
FCC 15.407 FCC 15.209 FCC 15.205	Restricted band: Unwanted emissions falling within the restricted bands, as defined in FCC 15.205 (a) must also comply with the radiated emission limits specified in FCC 15.209 (a).	Pass

Radiated Emissions (General requirements)

Basic Standard	Technical Requirements / Details	Result
FCC 15.209 FCC 15.205	TX Spurious Emissions: Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the filed strength limits table in this section.	Pass
FCC 15.207	AC conducted Emissions: Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.	Pass

^{*} MPE calculation is recorded in a separate report

Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing.

4.1 Sample Details

Sample No.	Equipment Details	Manufacturer	Hardware Rev.	Firmware Rev.	Software Rev.	Serial Number
S01	AIR-AP1832I-A-K9	Cisco Systems	P2	8.4.1.10	AP1G4 Sept22	RFDP2BHY033
S02*	AIR-PWR-C	Meanwell	A0	NA	NA	EB46E93226

^(*) S02 is support equipment Power supply for EUT S01

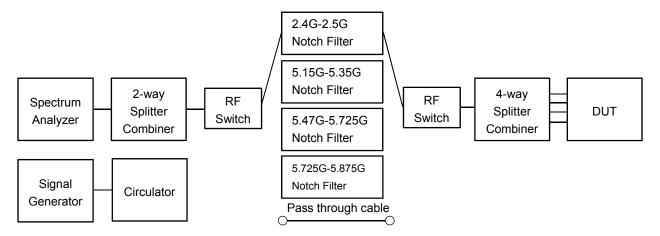
4.2 System Details

System #	Description	Samples
1	AIR-AP1832I-A-K9	S01
2	AIR-PWR-C	S02

4.3 Mode of Operation Details

Mode#	Description	Comments
1	Continuous Transmitting	Continuous Transmitting ≥98% duty cycle

All measurements were made in accordance with


- ANSI C63.10:2013
- KDB 789033 D02 General UNII Test Procedures New Rules v01r03
- KDB 662911 D01 Multiple Transmitter Output v02r01

Page No: 11 of 81

Appendix A: Emission Test Results

Conducted Test Setup Diagram

Target Maximum Channel Power
The following table details the maximum supported Total Channel Power for all operating modes.

	Maximum Channel Power (dBm)		
	Fre	Frequency (MHz)	
Operating Mode	5180	5220	5240
Non HT20, 6 to 54 Mbps	22	22	22
Non HT20 Beam Forming, 6 to 54 Mbps	22	22	22
HT/VHT20, M0 to M15	21	21	22
HT/VHT20 Beam Forming, M0 to M15	21	21	22
HT/VHT20 STBC, M0 to M7	21	21	22
	5190	5230	
Non HT40, 6 to 54 Mbps	19	22	
HT/VHT40, M0 to M15	19	23	
HT/VHT40 Beam Forming, M0 to M15	18	23	
HT/VHT40 STBC, M0 to M7	19	23	
	5210		
Non HT80, 6 to 54 Mbps	18		
VHT80, M0 to M9, M0 to M9 1-1ss	18		
VHT80 Beam Forming, M0 to M9, M0 to M9 1-1ss	17		
VHT80 STBC, M0 to M9 1ss	18		

A.1 99% and 26dB Bandwidth

FCC 15.407 The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW.

The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.

Test Procedure

Ref. ANSI C63.10: 2013 Section 6.9.3

99% BW and EBW (-26dB)

Test Procedure

- 1. Set the radio in the continuous transmitting mode.
- 2. Allow the trace to stabilize.
- 3. Setting the x-dB bandwidth mode to -26dB and OBW power function to 99% within the measurement set up function.
- 4. Select the automatic OBW measurement function of an instrument to perform bandwidth measurement.
- 5. Capture graphs and record pertinent measurement data.

Ref. ANSI C63.10: 2013 Section 6.9.3

99% BW and EBW (-26dB)

Test parameters

Span = 1.5 x to 5.0 times OBW

RBW = approx. 1% to 5% of the OBW

VBW ≥ 3 x RBW

Detector = Peak or where practical sample shall be used

Trace = Max. Hold

Sys Nun	tem nber	Description Samples		System under test	Support equipment	
	1	EUT	S01	\searrow		
		Support	S02		\checkmark	

Tested By :	Date of testing:
Jose Aguirre	05-May-16 - 06-Jun-16
Test Result : PASS	

See Appendix C for list of test equipment


Page No: 13 of 81

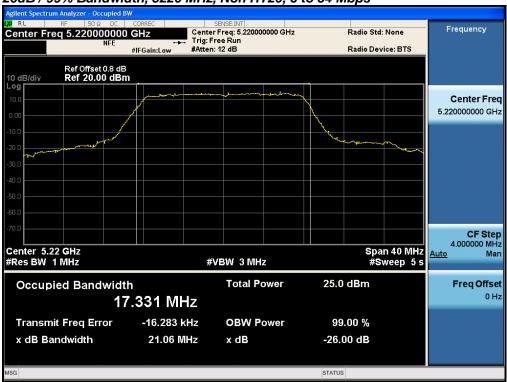
Frequency (MHz)	Mode	Data Rate (Mbps)	26dB BW (MHz)	99% BW (MHz)
5180	Non HT20, 6 to 54 Mbps	6	21.1	17.280
5160	HT/VHT20, M0 to M15	m0	21.8	18.149
F100	Non HT40, 6 to 54 Mbps	6	39.9	35.502
5190	HT/VHT40, M0 to M15	m0	40.7	36.039
F240	Non HT80, 6 to 54 Mbps	6	83.0	75.705
5210	VHT80, M0 to M9, M0 to M9 1-1ss	m0x1	85.4	76.033
E000	Non HT20, 6 to 54 Mbps	6	21.1	17.323
5220	HT/VHT20, M0 to M15	m0	22.0	18.214
5000	Non HT40, 6 to 54 Mbps	6	69.4	36.507
5230	HT/VHT40, M0 to M15	m0	53.1	36.316
F240	Non HT20, 6 to 54 Mbps	6	21.3	17.338
5240	HT/VHT20, M0 to M15	m0	22.2	18.224

26dB / 99% Bandwidth, 5180 MHz, HT/VHT20, M0 to M15

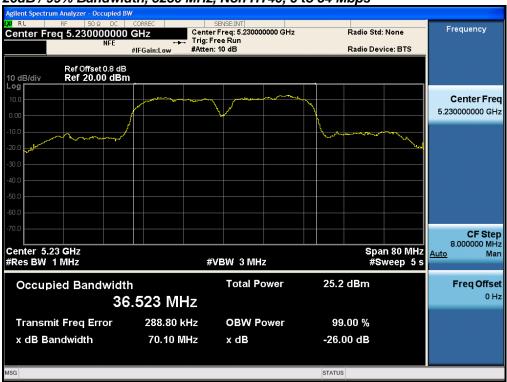
Page No: 15 of 81

26dB / 99% Bandwidth, 5190 MHz, HT/VHT40, M0 to M15

Page No: 16 of 81

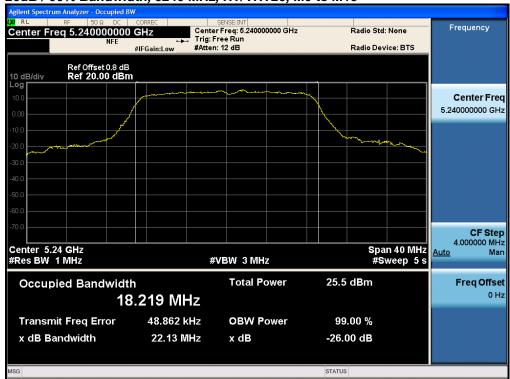

26dB / 99% Bandwidth, 5210 MHz, VHT80, M0 to M9, M0 to M9 1-1ss


Page No: 17 of 81


26dB / 99% Bandwidth, 5220 MHz, HT/VHT20, M0 to M15

Page No: 18 of 81

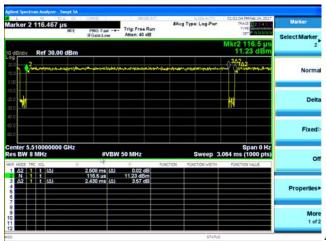
26dB / 99% Bandwidth, 5230 MHz, HT/VHT40, M0 to M15


Page No: 19 of 81

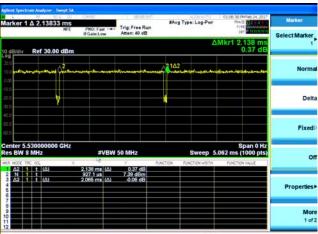
26dB / 99% Bandwidth, 5240 MHz, Non HT20, 6 to 54 Mbps

26dB / 99% Bandwidth, 5240 MHz, HT/VHT20, M0 to M15

Page No: 20 of 81



Duty Cycle


EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98%)

20MHz Channel plan

40MHz Channel Plan

80MHz Channel plan

Page No: 21 of 81

A.2 Maximum Conducted Output Power/ Power Spectral Density

15.407 (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note:

The Intentional Beamforming correlated array gain for any number of space time streams is given by the general formula:

$$G_{bf_max} = 10*log10(N_{tx}/N_{sts})$$

where N_{tx} is the number of equal power active transmit antennas and N_{sts} is the number of active space time streams.

The maximum unintentional correlation gain (G_{max}) can be shown to be less than or equal to $G_{max} = 10*log10(N_{tx}/N_{sts})$

for all points in space, where N_{tx} is the number of active transmit antennas and N_{sts} is the number of space time streams. This formulation is general and can be applied to all non-beamforming modes.

Whenever the number of space-time streams (N_{sts}) is equal to the number of active transmitters (N_{tx}) the spatial expansion is the Identity matrix and therefore the streams are independently sent by each antenna. For these modes the correlation gain will be zero.

Test Procedure

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r03 ANSI C63.10: 2013

Output Power

Test Procedure

- 1. Set the radio in the continuous transmitting mode at full power
- 2. Compute power by integrating the spectrum across the EBW (or alternatively entire 99% OBW) of the signal using the instrument's band power measurement function. The integration shall be performed using the spectrum analyzer band-power measurement function with band limits set equal to the EBW or the OBW band edges.
- 3. Capture graphs and record pertinent measurement data.

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r03 ANSI C63.10: 2013 section 12.3.2.2 Method SA-1

Output Power

Test parameters

Span = >1.5 times the OBW

RBW = 1MHz

VBW ≥ 3 x RBW

Sweep = Auto couple

Detector = sample

Trace = Trace Average 100

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various

Page No: 22 of 81

antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. (See ANSI C63.10 section 14.3.2.2)

System Number	Description	Samples	System under test	Support equipment
4	EUT	S01	\checkmark	
1	Support	S02		\checkmark

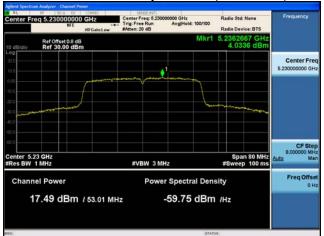
Tested By :	Date of testing:			
Jose Aguirre	05-May-16 - 06-Jun-16			
Test Result : PASS				

See Appendix C for list of test equipment

Maximum Output Power

_	Maximum Output Power								
Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Tx 2 Max Power (dBm)	Tx 3 Max Power (dBm)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	5	17.1			17.1	30.0	12.9
	Non HT20, 6 to 54 Mbps	2	5	17.1	16.8		20.0	30.0	10.0
	Non HT20, 6 to 54 Mbps	3	5	17.1	16.8	17.1	21.8	30.0	8.2
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	17.1	16.8		20.0	28.0	8.0
	Non HT20 Beam Forming, 6 to 54 Mbps	3	10	14.7	14.6	14.9	19.5	26.0	6.5
	HT/VHT20, M0 to M7	1	5	16.6			16.6	30.0	13.4
	HT/VHT20, M0 to M7	2	5	16.6	16.5		19.6	30.0	10.4
5180	HT/VHT20, M8 to M15	2	5	16.6	16.5		19.6	30.0	10.4
518	HT/VHT20, M0 to M7	3	5	16.6	16.5	16.7	21.4	30.0	8.6
	HT/VHT20, M8 to M15	3	5	16.6	16.5	16.7	21.4	30.0	8.6
	HT/VHT20 Beam Forming, M0 to M7	2	8	16.6	16.5		19.6	28.0	8.4
	HT/VHT20 Beam Forming, M8 to M15	2	5	16.6	16.5		19.6	30.0	10.4
	HT/VHT20 Beam Forming, M0 to M7	3	10	14.4	14.4	14.7	19.3	26.0	6.7
	HT/VHT20 Beam Forming, M8 to M15	3	7	16.6	16.5	16.7	21.4	29.0	7.6
	HT/VHT20 STBC, M0 to M7	2	5	16.6	16.5		19.6	30.0	10.4
	HT/VHT20 STBC, M0 to M7	3	5	16.6	16.5	16.7	21.4	30.0	8.6
	Non HT40, 6 to 54 Mbps	1	5	14.7			14.7	30.0	15.3
	Non HT40, 6 to 54 Mbps	2	5	13.6	13.7		16.7	30.0	13.3
	Non HT40, 6 to 54 Mbps	3	5	12.7	12.6	13.3	17.6	30.0	12.4
	HT/VHT40, M0 to M7	1	5	15.3			15.3	30.0	14.7
	HT/VHT40, M0 to M7	2	5	14.3	14.3		17.3	30.0	12.7
	HT/VHT40, M8 to M15	2	5	14.3	14.3		17.3	30.0	12.7
06	HT/VHT40, M0 to M7	3	5	13.2	13.2	13.8	18.2	30.0	11.8
51	HT/VHT40, M8 to M15	3	5	13.2	13.2	13.8	18.2	30.0	11.8
	HT/VHT40 Beam Forming, M0 to M7	2	8	13.2	13.2		16.2	28.0	11.8
	HT/VHT40 Beam Forming, M8 to M15	2	5	14.3	14.3		17.3	30.0	12.7
	HT/VHT40 Beam Forming, M0 to M7	3	10	11.3	11.1	11.8	16.2	26.0	9.8
	HT/VHT40 Beam Forming, M8 to M15	3	7	13.2	13.2	13.9	18.2	29.0	10.8
	HT/VHT40 STBC, M0 to M7	2	5	14.3	14.3		17.3	30.0	12.7
	HT/VHT40 STBC, M0 to M7	3	5	13.2	13.2	13.8	18.2	30.0	11.8

_									
	Non HT80, 6 to 54 Mbps	1	5	13.7			13.7	30.0	16.3
	Non HT80, 6 to 54 Mbps	2	5	12.7	12.3		15.5	30.0	14.5
	Non HT80, 6 to 54 Mbps	3	5	11.8	11.3	12.8	16.8	30.0	13.2
	VHT80, M0 to M9 1ss	1	5	14.4			14.4	30.0	15.6
	VHT80, M0 to M9 1ss	2	5	13.2	13.0		16.1	30.0	13.9
	VHT80, M0 to M9 2ss	2	5	13.2	13.0		16.1	30.0	13.9
5210	VHT80, M0 to M9 1ss	3	5	12.3	11.8	13.4	17.3	30.0	12.7
52	VHT80, M0 to M9 2ss	3	5	12.3	11.8	13.4	17.3	30.0	12.7
	VHT80 Beam Forming, M0 to M9 1ss	2	8	12.3	11.8		15.1	28.0	12.9
	VHT80 Beam Forming, M0 to M9 2ss	2	5	13.2	13.0		16.1	30.0	13.9
	VHT80 Beam Forming, M0 to M9 1ss	3	10	10.3	9.7	11.3	15.3	26.0	10.7
	VHT80 Beam Forming, M0 to M9 2ss	3	7	12.3	11.8	13.4	17.3	29.0	11.7
	VHT80 STBC, M0 to M9 1ss	2	5	13.2	13.0		16.1	30.0	13.9
	VHT80 STBC, M0 to M9 1ss	3	5	12.3	11.8	13.4	17.3	30.0	12.7
	Non HT20, 6 to 54 Mbps	1	5	16.6			16.6	30.0	13.4
	Non HT20, 6 to 54 Mbps	2	5	16.6	15.8		19.2	30.0	10.8
	Non HT20, 6 to 54 Mbps	3	5	16.6	15.8	17.9	21.6	30.0	8.4
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	16.6	15.8		19.2	28.0	8.8
	Non HT20 Beam Forming, 6 to 54 Mbps	3	10	16.6	15.8	17.9	21.6	26.0	4.4
	HT/VHT20, M0 to M7	1	5	16.3			16.3	30.0	13.7
	HT/VHT20, M0 to M7	2	5	16.3	15.5		18.9	30.0	11.1
20	HT/VHT20, M8 to M15	2	5	16.3	15.5		18.9	30.0	11.1
5220	HT/VHT20, M0 to M7	3	5	16.3	15.5	17.7	21.4	30.0	8.6
	HT/VHT20, M8 to M15	3	5	16.3	15.5	17.7	21.4	30.0	8.6
	HT/VHT20 Beam Forming, M0 to M7	2	8	16.3	15.5		18.9	28.0	9.1
	HT/VHT20 Beam Forming, M8 to M15	2	5	16.3	15.5		18.9	30.0	11.1
	HT/VHT20 Beam Forming, M0 to M7	3	10	16.3	15.5	17.7	21.4	26.0	4.6
	HT/VHT20 Beam Forming, M8 to M15	3	7	16.3	15.5	17.7	21.4	29.0	7.6
	HT/VHT20 STBC, M0 to M7	2	5	16.3	15.5		18.9	30.0	11.1
	HT/VHT20 STBC, M0 to M7	3	5	16.3	15.5	17.7	21.4	30.0	8.6
	Non HT40, 6 to 54 Mbps	1	5	16.9			16.9	30.0	13.1
	Non HT40, 6 to 54 Mbps	2	5	16.9	16.0		19.5	30.0	10.5
	Non HT40, 6 to 54 Mbps	3	5	16.9	16.0	18.5	22.0	30.0	8.0
	HT/VHT40, M0 to M7	1	5	17.5			17.5	30.0	12.5
	HT/VHT40, M0 to M7	2	5	17.5	16.6		20.1	30.0	9.9
5230	HT/VHT40, M8 to M15	2	5	17.5	16.6		20.1	30.0	9.9
5	HT/VHT40, M0 to M7	3	5	17.5	16.6	19.1	22.6	30.0	7.4
	HT/VHT40, M8 to M15	3	5	17.5	16.6	19.1	22.6	30.0	7.4
	HT/VHT40 Beam Forming, M0 to M7	2	8	17.5	16.6		20.1	28.0	7.9
	HT/VHT40 Beam Forming, M8 to M15	2	5	17.5	16.6		20.1	30.0	9.9
	HT/VHT40 Beam Forming, M0 to M7	3	10	17.5	16.6	19.1	22.6	26.0	3.4


Page No: 25 of 81



T/VHT40 Beam Forming, M8 to M15	3	7	17.5	16.6	19.1	22.6	29.0	6.4
T/VHT40 STBC, M0 to M7	2	5	17.5	16.6		20.1	30.0	9.9
T/VHT40 STBC, M0 to M7	3	5	17.5	16.6	19.1	22.6	30.0	7.4
on HT20, 6 to 54 Mbps	1	5	17.0			17.0	30.0	13.0
on HT20, 6 to 54 Mbps	2	5	17.0	16.0		19.5	30.0	10.5
on HT20, 6 to 54 Mbps	3	5	17.0	16.0	18.3	22.0	30.0	8.0
on HT20 Beam Forming, 6 to 54 Mbps	2	8	17.0	16.0		19.5	28.0	8.5
on HT20 Beam Forming, 6 to 54 Mbps	3	10	17.0	16.0	18.3	22.0	26.0	4.0
T/VHT20, M0 to M7	1	5	16.7			16.7	30.0	13.3
T/VHT20, M0 to M7	2	5	16.7	15.8		19.3	30.0	10.7
T/VHT20, M8 to M15	2	5	16.7	15.8		19.3	30.0	10.7
T/VHT20, M0 to M7	3	5	16.7	15.8	18.0	21.7	30.0	8.3
T/VHT20, M8 to M15	3	5	16.7	15.8	18.0	21.7	30.0	8.3
T/VHT20 Beam Forming, M0 to M7	2	8	16.7	15.8		19.3	28.0	8.7
T/VHT20 Beam Forming, M8 to M15	2	5	16.7	15.8		19.3	30.0	10.7
T/VHT20 Beam Forming, M0 to M7	3	10	16.7	15.8	18.0	21.7	26.0	4.3
T/VHT20 Beam Forming, M8 to M15	3	7	16.7	15.8	18.0	21.7	29.0	7.3
T/VHT20 STBC, M0 to M7	2	5	16.7	15.8		19.3	30.0	10.7
T/VHT20 STBC, M0 to M7	3	5	16.7	15.8	18.0	21.7	30.0	8.3
	T/VHT40 STBC, M0 to M7 T/VHT40 STBC, M0 to M7 T/VHT40 STBC, M0 to M7 T/VHT20, 6 to 54 Mbps Ton HT20, 6 to 54 Mbps Ton HT20, 6 to 54 Mbps Ton HT20 Beam Forming, 6 to 54 Mbps Trivition M0 to M7 Trivition, M0 to M7 Trivition, M0 to M7 Trivition, M8 to M15 Trivition, M8 to M15 Trivition, M8 to M15 Trivition Beam Forming, M0 to M7 Trivition Beam Forming, M8 to M15 Trivition StbC, M0 to M7	T/VHT40 STBC, M0 to M7 2 T/VHT40 STBC, M0 to M7 3 50n HT20, 6 to 54 Mbps 50n HT20, 6 to 54 Mbps 50n HT20, 6 to 54 Mbps 50n HT20 Beam Forming, 6 to 54 Mbps 50n HT20 Beam Forming, 6 to 54 Mbps 70n HT20, M0 to M7 70n HT20, M0 to	T/VHT40 STBC, M0 to M7 T/VHT20, 6 to 54 Mbps T/VHT20, M0 to M7 T/VHT20, M0 to M7 T/VHT20, M8 to M15 T/VHT20, M8 to M15 T/VHT20, M8 to M15 T/VHT20 Beam Forming, M0 to M7 T/VHT20 Beam Forming, M8 to M15 T/VHT20 STBC, M0 to M7	T/VHT40 STBC, M0 to M7 2 5 17.5 T/VHT40 STBC, M0 to M7 3 5 17.5 On HT20, 6 to 54 Mbps 1 5 17.0 On HT20, 6 to 54 Mbps 2 5 17.0 On HT20, 6 to 54 Mbps 3 5 17.0 On HT20 Beam Forming, 6 to 54 Mbps 2 8 17.0 On HT20 Beam Forming, 6 to 54 Mbps 3 10 17.0 T/VHT20, M0 to M7 1 5 16.7 T/VHT20, M0 to M7 2 5 16.7 T/VHT20, M8 to M15 2 5 16.7 T/VHT20 Beam Forming, M0 to M7 2 8 16.7 T/VHT20 Beam Forming, M8 to M15 2 5 16.7 T/VHT20 Beam Forming, M8 to M15 3 7 16.7 T/VHT20 Beam Forming, M8 to M15 3 7 16.7 T/VHT20 Beam Forming, M8 to M15 3 7 16.7 T/VHT20 STBC, M0 to M7 2 5 16.7 T/VHT20 STBC, M0 to M7 2 5 16.7	T/VHT40 STBC, M0 to M7 T/VHT20, 6 to 54 Mbps T/VHT20, 6 to 54 Mbps T/VHT20 Beam Forming, 6 to 54 Mbps T/VHT20, M0 to M7 T/VHT20 Beam Forming, M8 to M15 T/VHT20 STBC, M0 to M7 T/VHT20 STBC, M0 to M7 T/VHT20 STBC, M0 to M7	T/VHT40 STBC, M0 to M7 2 5 17.5 16.6 T/VHT40 STBC, M0 to M7 3 5 17.5 16.6 19.1 T/VHT40 STBC, M0 to M7 3 5 17.5 16.6 19.1 T/VHT20, 6 to 54 Mbps T/VHT20, 6 to 54 Mbps T/VHT20, 6 to 54 Mbps T/VHT20 Beam Forming, 6 to 54 Mbps T/VHT20, M0 to M7 T/VHT20, M8 to M15 T/VHT20, M8 to M15 T/VHT20 Beam Forming, M0 to M7 T/VHT20 Beam Forming, M8 to M15 T/VHT20 STBC, M0 to M7 T/VHT20 STBC, M0 to M7	T/VHT40 STBC, M0 to M7 2 5 17.5 16.6 20.1 T/VHT40 STBC, M0 to M7 3 5 17.5 16.6 19.1 22.6 T/VHT40 STBC, M0 to M7 3 5 17.5 16.6 19.1 22.6 T/VHT20, 6 to 54 Mbps 1 5 17.0 16.0 19.5 T/VHT20, 6 to 54 Mbps 3 5 17.0 16.0 18.3 22.0 T/VHT20 Beam Forming, 6 to 54 Mbps 3 10 17.0 16.0 18.3 22.0 T/VHT20, M0 to M7 1 5 16.7 15.8 19.3 T/VHT20, M0 to M7 T/VHT20, M8 to M15 T/VHT20, M8 to M15 T/VHT20, M8 to M15 T/VHT20 Beam Forming, M0 to M7 T/VHT20 Beam Forming, M8 to M15 T/VHT20 STBC, M0 to M7 T/VHT20 STBC, M0 to M7	TWHT40 STBC, M0 to M7 TWHT20, 6 to 54 Mbps TWHT20 Beam Forming, 6 to 54 Mbps TWHT20, M0 to M7 TWHT20, M0 to M7 TWHT20, M0 to M7 TWHT20, M0 to M7 TWHT20, M8 to M15 TWHT20 Beam Forming, M0 to M7 TWHT20, M8 to M15 TWHT20 Beam Forming, M0 to M7 TWHT20 Beam Forming, M8 to M15 TWHT20 STBC, M0 to M7 THE TWHT20 STBC, M0 to M7

Maximum Transmit Output Power, 5230 MHz, HT/VHT40 Beam Forming, M0 to M7

Antenna A

Antenna B

Antenna C

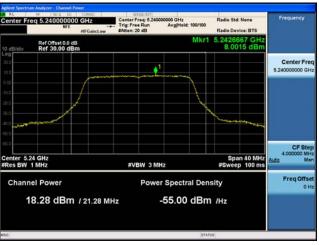
Power Spectral Density

_	Power Spectral Density			1				1	
Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/MHz)	Tx 2 PSD (dBm/MHz)	Tx 3 PSD (dBm/MHz)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	5	6.6			6.6	17.0	10.4
	Non HT20, 6 to 54 Mbps	2	8	6.6	6.1		9.4	15.0	5.6
	Non HT20, 6 to 54 Mbps	3	10	6.6	6.1	6.4	11.1	13.0	1.9
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	6.6	6.1		9.4	15.0	5.6
	Non HT20 Beam Forming, 6 to 54 Mbps	3	10	6.6	6.1	6.4	11.1	13.0	1.9
	HT/VHT20, M0 to M7	1	5	6.0			6.0	17.0	11.0
	HT/VHT20, M0 to M7	2	8	6.0	5.5		8.8	15.0	6.2
5180	HT/VHT20, M8 to M15	2	5	6.0	5.5		8.8	17.0	8.2
51	HT/VHT20, M0 to M7	3	10	6.0	5.5	5.6	10.5	13.0	2.5
	HT/VHT20, M8 to M15	3	7	6.0	5.5	5.6	10.5	16.0	5.5
	HT/VHT20 Beam Forming, M0 to M7	2	8	6.0	5.5		8.8	15.0	6.2
	HT/VHT20 Beam Forming, M8 to M15	2	5	6.0	5.5		8.8	17.0	8.2
	HT/VHT20 Beam Forming, M0 to M7	3	10	6.0	5.5	5.6	10.5	13.0	2.5
	HT/VHT20 Beam Forming, M8 to M15	3	7	6.0	5.5	5.6	10.5	16.0	5.5
	HT/VHT20 STBC, M0 to M7	2	5	6.0	5.5		8.8	17.0	8.2
	HT/VHT20 STBC, M0 to M7	3	7	6.0	5.5	5.6	10.5	16.0	5.5
	Non HT40, 6 to 54 Mbps	1	5	2.2			2.2	17.0	14.8
	Non HT40, 6 to 54 Mbps	2	8	1.4	1.1		4.3	15.0	10.7
	Non HT40, 6 to 54 Mbps	3	10	1.4	1.1	2.7	6.6	13.0	6.4
	HT/VHT40, M0 to M7	1	5	1.6			1.6	17.0	15.4
	HT/VHT40, M0 to M7	2	8	0.4	0.6		3.5	15.0	11.5
	HT/VHT40, M8 to M15	2	5	0.4	0.6		3.5	17.0	13.5
90	HT/VHT40, M0 to M7	3	10	0.4	0.6	1.2	5.5	13.0	7.5
51	HT/VHT40, M8 to M15	3	7	0.4	0.6	1.2	5.5	16.0	10.5
	HT/VHT40 Beam Forming, M0 to M7	2	8	0.4	0.6		3.5	15.0	11.5
	HT/VHT40 Beam Forming, M8 to M15	2	5	0.4	0.6		3.5	17.0	13.5
	HT/VHT40 Beam Forming, M0 to M7	3	10	-1.5	-1.5	-1.2	3.4	13.0	9.6
	HT/VHT40 Beam Forming, M8 to M15	3	7	-0.5	-0.5	0.2	4.5	16.0	11.5
	HT/VHT40 STBC, M0 to M7	2	5	0.4	0.6		3.5	17.0	13.5
	HT/VHT40 STBC, M0 to M7	3	7	0.4	0.6	1.2	5.5	16.0	10.5

	Non HT80, 6 to 54 Mbps	1	5	-2.0			-2.0	17.0	19.0
	Non HT80, 6 to 54 Mbps	2	8	-2.8	-4.4		-0.5	15.0	15.5
	Non HT80, 6 to 54 Mbps	3	10	-2.8	-4.4	-1.7	1.9	13.0	11.1
	VHT80, M0 to M9 1ss	1	5	-2.1			-2.1	17.0	19.1
Į.	VHT80, M0 to M9 1ss	2	8	-2.9	-3.9		-0.4	15.0	15.4
	VHT80, M0 to M9 2ss	2	5	-2.9	-3.9		-0.4	17.0	17.4
5210	VHT80, M0 to M9 1ss	3	10	-2.9	-3.9	-1.7	2.0	13.0	11.0
52	VHT80, M0 to M9 2ss	3	7	-2.9	-3.9	-1.7	2.0	16.0	14.0
	VHT80 Beam Forming, M0 to M9 1ss	2	8	-4.0	-4.9		-1.4	15.0	16.4
	VHT80 Beam Forming, M0 to M9 2ss	2	5	-2.9	-3.9		-0.4	17.0	17.4
	VHT80 Beam Forming, M0 to M9 1ss	3	10	-5.1	-6.2	-3.4	0.0	13.0	13.0
	VHT80 Beam Forming, M0 to M9 2ss	3	7	-4.0	-4.9	-2.7	1.0	16.0	15.0
	VHT80 STBC, M0 to M9 1ss	2	5	-2.9	-3.9		-0.4	17.0	17.4
	VHT80 STBC, M0 to M9 1ss	3	5	-2.9	-3.9	-1.7	2.0	17.0	15.0
	Non HT20, 6 to 54 Mbps	1	5	5.9			5.9	17.0	11.1
	Non HT20, 6 to 54 Mbps	2	8	5.9	5.2		8.6	15.0	6.4
	Non HT20, 6 to 54 Mbps	3	10	5.9	5.2	7.1	10.9	13.0	2.1
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	5.9	5.2		8.6	15.0	6.4
	Non HT20 Beam Forming, 6 to 54 Mbps	3	10	5.9	5.2	7.1	10.9	13.0	2.1
	HT/VHT20, M0 to M7	1	5	5.3			5.3	17.0	11.7
	HT/VHT20, M0 to M7	2	8	5.3	4.5		7.9	15.0	7.1
5220	HT/VHT20, M8 to M15	2	5	5.3	4.5		7.9	17.0	9.1
52	HT/VHT20, M0 to M7	3	10	5.3	4.5	6.6	10.3	13.0	2.7
	HT/VHT20, M8 to M15	3	7	5.3	4.5	6.6	10.3	16.0	5.7
	HT/VHT20 Beam Forming, M0 to M7	2	8	5.3	4.5		7.9	15.0	7.1
	HT/VHT20 Beam Forming, M8 to M15	2	5	5.3	4.5		7.9	17.0	9.1
	HT/VHT20 Beam Forming, M0 to M7	3	10	5.3	4.5	6.6	10.3	13.0	2.7
	HT/VHT20 Beam Forming, M8 to M15	3	7	5.3	4.5	6.6	10.3	16.0	5.7
	HT/VHT20 STBC, M0 to M7	2	5	5.3	4.5		7.9	17.0	9.1
	HT/VHT20 STBC, M0 to M7	3	7	5.3	4.5	6.6	10.3	16.0	5.7
	Non HT40, 6 to 54 Mbps	1	5	4.7			4.7	17.0	12.3
	Non HT40, 6 to 54 Mbps	2	8	4.7	4.0		7.4	15.0	7.6
	Non HT40, 6 to 54 Mbps	3	10	4.7	4.0	6.8	10.1	13.0	2.9
	HT/VHT40, M0 to M7	1	5	4.0			4.0	17.0	13.0
	HT/VHT40, M0 to M7	2	8	4.0	3.0		6.5	15.0	8.5
5230	HT/VHT40, M8 to M15	2	5	4.0	3.0		6.5	17.0	10.5
Ω)	HT/VHT40, M0 to M7	3	10	4.0	3.0	5.7	9.2	13.0	3.8
	HT/VHT40, M8 to M15	3	7	4.0	3.0	5.7	9.2	16.0	6.8
	HT/VHT40 Beam Forming, M0 to M7	2	8	4.0	3.0		6.5	15.0	8.5
	HT/VHT40 Beam Forming, M8 to M15	2	5	4.0	3.0		6.5	17.0	10.5
	HT/VHT40 Beam Forming, M0 to M7	3	10	4.0	3.0	5.7	9.2	13.0	3.8

Page No: 29 of 81

	HT/VHT40 Beam Forming, M8 to M15	3	7	4.0	3.0	5.7	9.2	16.0	6.8
	HT/VHT40 STBC, M0 to M7	2	5	4.0	3.0		6.5	17.0	10.5
	HT/VHT40 STBC, M0 to M7	3	7	4.0	3.0	5.7	9.2	16.0	6.8
	Non HT20, 6 to 54 Mbps	1	5	6.7			6.7	17.0	10.3
	Non HT20, 6 to 54 Mbps	2	8	6.7	5.3		9.1	15.0	5.9
	Non HT20, 6 to 54 Mbps	3	10	6.7	5.3	8.0	11.6	13.0	1.4
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	6.7	5.3		9.1	15.0	5.9
	Non HT20 Beam Forming, 6 to 54 Mbps	3	10	6.7	5.3	8.0	11.6	13.0	1.4
	HT/VHT20, M0 to M7	1	5	6.1			6.1	17.0	10.9
	HT/VHT20, M0 to M7	2	8	6.1	4.8		8.5	15.0	6.5
5240	HT/VHT20, M8 to M15	2	5	6.1	4.8		8.5	17.0	8.5
52	HT/VHT20, M0 to M7	3	10	6.1	4.8	7.2	10.9	13.0	2.1
	HT/VHT20, M8 to M15	3	7	6.1	4.8	7.2	10.9	16.0	5.1
	HT/VHT20 Beam Forming, M0 to M7	2	8	6.1	4.8		8.5	15.0	6.5
	HT/VHT20 Beam Forming, M8 to M15	2	5	6.1	4.8		8.5	17.0	8.5
	HT/VHT20 Beam Forming, M0 to M7	3	10	6.1	4.8	7.2	10.9	13.0	2.1
	HT/VHT20 Beam Forming, M8 to M15	3	7	6.1	4.8	7.2	10.9	16.0	5.1
	HT/VHT20 STBC, M0 to M7	2	5	6.1	4.8		8.5	17.0	8.5
	HT/VHT20 STBC, M0 to M7	3	7	6.1	4.8	7.2	10.9	16.0	5.1



Power Spectral Density, 5240 MHz, Non HT20, 6 to 54 Mbps

Agency Spectrum Analyzer / Dismort Prover | March | Spectrum Analyzer / Dismort Prover | Prover | Spectrum Analyzer | Prover | Prover | Spectrum Analyzer | Prover |

Antenna A Antenna B

Antenna C

A.3 Conducted Spurious Emissions

15.407 (b) *Undesirable emission limits*. Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits: (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Note:

The Intentional Beamforming correlated array gain for any number of space time streams is given by the general formula:

$$G_{bf_max} = 10*log10(N_{tx}\!/\!N_{sts})$$

where N_{tx} is the number of equal power active transmit antennas and N_{sts} is the number of active space time streams.

Test Procedure

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r03

ANSI C63.10: 2013

Conducted Spurious Emissions

Test Procedure

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Place the radio in continuous transmit mode. Use the procedures in KDB 789033 D02 General UNII Test Procedures New Rules v01r03 to substitute conducted measurements in place of radiated measurements.
- 3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).
- 4. Record the marker waveform peak to spur difference. Also measure any emissions in the restricted bands.
- 5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded.
- 6. Capture graphs and record pertinent measurement data.

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r03 ANSI C63.10: 2013 section 12.7.7.3 (average) & 12.7.6 (peak)

Conducted Spurious Emissions

Test parameters

Span = 30MHz to 18GHz / 18GHz to 40GHz

RBW = 1 MHz

VBW ≥ 3 x RBW for Peak, 1kHz for Average

Sweep = Auto couple

Detector = Peak

Trace = Max Hold.

System Number	Description	Samples	System under test	Support equipment
4	EUT	S01	Ŋ	
1	Support	S02		\checkmark

Tested By :	Date of testing:
Jose Aguirre	05-May-16 - 06-Jun-16
Test Result : PASS	

See Appendix C for list of test equipment

Page No: 32 of 81

Conducted Spurs Average Upper, All Antennas

Conducted Spurs Peak Upper, All Antennas

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Tx 3 Spur Power (dBm)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	5	-71.8			-66.8	-41.25	25.6
	Non HT20, 6 to 54 Mbps	2	5	-71.8	-72.1		-63.9	-41.25	22.7
	Non HT20, 6 to 54 Mbps	3	5	-71.8	-72.1	-72.0	-62.2	-41.25	20.9
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-71.8	-72.1		-60.9	-41.25	19.7
	Non HT20 Beam Forming, 6 to 54 Mbps	3	10	-71.8	-72.1	-72.0	-57.2	-41.25	15.9
	HT/VHT20, M0 to M7	1	5	-72.0			-67.0	-41.25	25.8
	HT/VHT20, M0 to M7	2	5	-72.0	-72.6		-64.3	-41.25	23.0
5180	HT/VHT20, M8 to M15	2	5	-72.0	-72.6		-64.3	-41.25	23.0
51	HT/VHT20, M0 to M7	3	5	-72.0	-72.6	-70.8	-62.0	-41.25	20.7
	HT/VHT20, M8 to M15	3	5	-72.0	-72.6	-70.8	-62.0	-41.25	20.7
	HT/VHT20 Beam Forming, M0 to M7	2	8	-72.0	-72.6		-61.3	-41.25	20.0
	HT/VHT20 Beam Forming, M8 to M15	2	5	-72.0	-72.6		-64.3	-41.25	23.0
	HT/VHT20 Beam Forming, M0 to M7	3	10	-72.0	-72.6	-70.8	-57.0	-41.25	15.7
	HT/VHT20 Beam Forming, M8 to M15	3	7	-72.0	-72.6	-70.8	-60.0	-41.25	18.7
	HT/VHT20 STBC, M0 to M7	2	5	-72.0	-72.6		-64.3	-41.25	23.0
	HT/VHT20 STBC, M0 to M7	3	5	-72.0	-72.6	-70.8	-62.0	-41.25	20.7
	Non HT40, 6 to 54 Mbps	1	5	-70.6			-65.6	-41.25	24.4
	Non HT40, 6 to 54 Mbps	2	5	-72.0	-71.9		-63.9	-41.25	22.7
	Non HT40, 6 to 54 Mbps	3	5	-72.0	-71.9	-72.2	-62.3	-41.25	21.0
	HT/VHT40, M0 to M7	1	5	-72.1			-67.1	-41.25	25.9
	HT/VHT40, M0 to M7	2	5	-70.9	-72.2		-63.5	-41.25	22.2
	HT/VHT40, M8 to M15	2	5	-70.9	-72.2		-63.5	-41.25	22.2
5190	HT/VHT40, M0 to M7	3	5	-70.9	-72.2	-72.1	-61.9	-41.25	20.7
	HT/VHT40, M8 to M15	3	5	-70.9	-72.2	-72.1	-61.9	-41.25	20.7
	HT/VHT40 Beam Forming, M0 to M7	2	8	-70.9	-72.2		-60.5	-41.25	19.2
	HT/VHT40 Beam Forming, M8 to M15	2	5	-70.9	-72.2		-63.5	-41.25	22.2
	HT/VHT40 Beam Forming, M0 to M7	3	10	-72.3	-72.0	-72.2	-57.4	-41.25	16.1
	HT/VHT40 Beam Forming, M8 to M15	3	7	-72.3	-72.1	-71.1	-60.0	-41.25	18.8
	HT/VHT40 STBC, M0 to M7	2	5	-70.9	-72.2		-63.5	-41.25	22.2
	HT/VHT40 STBC, M0 to M7	3	5	-70.9	-72.2	-72.1	-61.9	-41.25	20.7

	Non HT80, 6 to 54 Mbps	1	5	-70.9			-65.9	-41.25	24.7
5210	Non HT80, 6 to 54 Mbps	2	5	-70.6	-71.1		-62.8	-41.25	21.6
	Non HT80, 6 to 54 Mbps	3	5	-70.6	-71.1	-72.0	-61.4	-41.25	20.2
	VHT80, M0 to M9 1ss	1	5	-70.9			-65.9	-41.25	24.7
	VHT80, M0 to M9 1ss	2	5	-71.8	-70.9		-63.3	-41.25	22.1
	VHT80, M0 to M9 2ss	2	5	-71.8	-70.9		-63.3	-41.25	22.1
	VHT80, M0 to M9 1ss	3	5	-71.8	-70.9	-72.5	-61.9	-41.25	20.7
	VHT80, M0 to M9 2ss	3	5	-71.8	-70.9	-72.5	-61.9	-41.25	20.7
	VHT80 Beam Forming, M0 to M9 1ss	2	8	-70.6	-72.2		-60.3	-41.25	19.1
	VHT80 Beam Forming, M0 to M9 2ss	2	5	-71.8	-70.9		-63.3	-41.25	22.1
	VHT80 Beam Forming, M0 to M9 1ss	3	10	-70.6	-70.9	-71.0	-56.1	-41.25	14.8
	VHT80 Beam Forming, M0 to M9 2ss	3	7	-70.6	-72.2	-70.9	-59.4	-41.25	18.2
	VHT80 STBC, M0 to M9 1ss	2	5	-71.8	-70.9		-63.3	-41.25	22.1
	VHT80 STBC, M0 to M9 1ss	3	5	-71.8	-70.9	-72.5	-61.9	-41.25	20.7
	Non HT20, 6 to 54 Mbps	1	5	-70.8			-65.8	-41.25	24.6
	Non HT20, 6 to 54 Mbps	2	5	-70.8	-73.4		-63.9	-41.25	22.6
	Non HT20, 6 to 54 Mbps	3	5	-70.8	-73.4	-59.1	-53.7	-41.25	12.4
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-70.8	-73.4		-60.9	-41.25	19.6
	Non HT20 Beam Forming, 6 to 54 Mbps	3	10	-70.8	-73.4	-59.1	-48.7	-41.25	7.4
	HT/VHT20, M0 to M7	1	5	-70.9			-65.9	-41.25	24.7
	HT/VHT20, M0 to M7	2	5	-70.9	-73.4		-64.0	-41.25	22.7
20	HT/VHT20, M8 to M15	2	5	-70.9	-73.4		-64.0	-41.25	22.7
5220	HT/VHT20, M0 to M7	3	5	-70.9	-73.4	-71.0	-61.9	-41.25	20.6
	HT/VHT20, M8 to M15	3	5	-70.9	-73.4	-71.0	-61.9	-41.25	20.6
	HT/VHT20 Beam Forming, M0 to M7	2	8	-70.9	-73.4		-61.0	-41.25	19.7
	HT/VHT20 Beam Forming, M8 to M15	2	5	-70.9	-73.4		-64.0	-41.25	22.7
	HT/VHT20 Beam Forming, M0 to M7	3	10	-70.9	-73.4	-71.0	-56.9	-41.25	15.6
	HT/VHT20 Beam Forming, M8 to M15	3	7	-70.9	-73.4	-71.0	-59.9	-41.25	18.6
	HT/VHT20 STBC, M0 to M7	2	5	-70.9	-73.4		-64.0	-41.25	22.7
	HT/VHT20 STBC, M0 to M7	3	5	-70.9	-73.4	-71.0	-61.9	-41.25	20.6
	Non HT40, 6 to 54 Mbps	1	5	-70.9			-65.9	-41.25	24.7
	Non HT40, 6 to 54 Mbps	2	5	-70.9	-73.2		-63.9	-41.25	22.6
	Non HT40, 6 to 54 Mbps	3	5	-70.9	-73.2	-59.5	-54.0	-41.25	12.8
5230	HT/VHT40, M0 to M7	1	5	-73.2			-68.2	-41.25	27.0
	HT/VHT40, M0 to M7	2	5	-73.2	-70.9		-63.9	-41.25	22.6
	HT/VHT40, M8 to M15	2	5	-73.2	-70.9		-63.9	-41.25	22.6
	HT/VHT40, M0 to M7	3	5	-73.2	-70.9	-73.2	-62.5	-41.25	21.3
	HT/VHT40, M8 to M15	3	5	-73.2	-70.9	-73.2	-62.5	-41.25	21.3
	HT/VHT40 Beam Forming, M0 to M7	2	8	-73.2	-70.9		-60.9	-41.25	19.6
	HT/VHT40 Beam Forming, M8 to M15	2	5	-73.2	-70.9		-63.9	-41.25	22.6
	<u>V</u>								

Page No: 35 of 81

	HT/VHT40 Beam Forming, M0 to M7	3	10	-73.2	-70.9	-73.2	-57.5	-41.25	16.3
	HT/VHT40 Beam Forming, M8 to M15	3	7	-73.2	-70.9	-73.2	-60.5	-41.25	19.3
	HT/VHT40 STBC, M0 to M7	2	5	-73.2	-70.9		-63.9	-41.25	22.6
	HT/VHT40 STBC, M0 to M7	3	5	-73.2	-70.9	-73.2	-62.5	-41.25	21.3
	Non HT20, 6 to 54 Mbps	1	5	-72.9			-67.9	-41.25	26.7
	Non HT20, 6 to 54 Mbps	2	5	-72.9	-73.4		-65.1	-41.25	23.9
	Non HT20, 6 to 54 Mbps	3	5	-72.9	-73.4	-70.8	-62.4	-41.25	21.2
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-72.9	-73.4		-62.1	-41.25	20.9
	Non HT20 Beam Forming, 6 to 54 Mbps	3	10	-72.9	-73.4	-70.8	-57.4	-41.25	16.2
	HT/VHT20, M0 to M7	1	5	-73.5			-68.5	-41.25	27.3
	HT/VHT20, M0 to M7	2	5	-73.5	-73.4		-65.4	-41.25	24.2
5240	HT/VHT20, M8 to M15	2	5	-73.5	-73.4		-65.4	-41.25	24.2
52	HT/VHT20, M0 to M7	3	5	-73.5	-73.4	-71.1	-62.7	-41.25	21.5
	HT/VHT20, M8 to M15	3	5	-73.5	-73.4	-71.1	-62.7	-41.25	21.5
	HT/VHT20 Beam Forming, M0 to M7	2	8	-73.5	-73.4		-62.4	-41.25	21.2
	HT/VHT20 Beam Forming, M8 to M15	2	5	-73.5	-73.4		-65.4	-41.25	24.2
	HT/VHT20 Beam Forming, M0 to M7	3	10	-73.5	-73.4	-71.1	-57.7	-41.25	16.5
	HT/VHT20 Beam Forming, M8 to M15	3	7	-73.5	-73.4	-71.1	-60.7	-41.25	19.5
	HT/VHT20 STBC, M0 to M7	2	5	-73.5	-73.4		-65.4	-41.25	24.2
	HT/VHT20 STBC, M0 to M7	3	5	-73.5	-73.4	-71.1	-62.7	-41.25	21.5

Conducted Spurs Average, 5220 MHz, Non HT20 Beam Forming, 6 to 54 Mbps

Antenna A

Antenna B

Antenna C

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Tx 3 Spur Power (dBm)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	5	-58.3			-53.3	-21.25	32.1
	Non HT20, 6 to 54 Mbps	2	5	-58.3	-57.7		-50.0	-21.25	28.7
	Non HT20, 6 to 54 Mbps	3	5	-58.3	-57.7	-59.0	-48.5	-21.25	27.3
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-58.3	-57.7		-47.0	-21.25	25.7
	Non HT20 Beam Forming, 6 to 54 Mbps	3	10	-58.3	-57.7	-59.0	-43.5	-21.25	22.3
	HT/VHT20, M0 to M7	1	5	-57.8			-52.8	-21.25	31.6
	HT/VHT20, M0 to M7	2	5	-57.8	-56.4		-49.0	-21.25	27.8
5180	HT/VHT20, M8 to M15	2	5	-57.8	-56.4		-49.0	-21.25	27.8
51	HT/VHT20, M0 to M7	3	5	-57.8	-56.4	-57.0	-47.3	-21.25	26.0
	HT/VHT20, M8 to M15	3	5	-57.8	-56.4	-57.0	-47.3	-21.25	26.0
	HT/VHT20 Beam Forming, M0 to M7	2	8	-57.8	-56.4		-46.0	-21.25	24.8
	HT/VHT20 Beam Forming, M8 to M15	2	5	-57.8	-56.4		-49.0	-21.25	27.8
	HT/VHT20 Beam Forming, M0 to M7	3	10	-57.8	-56.4	-57.0	-42.3	-21.25	21.0
	HT/VHT20 Beam Forming, M8 to M15	3	7	-57.8	-56.4	-57.0	-45.3	-21.25	24.0
	HT/VHT20 STBC, M0 to M7	2	5	-57.8	-56.4		-49.0	-21.25	27.8
	HT/VHT20 STBC, M0 to M7	3	5	-57.8	-56.4	-57.0	-47.3	-21.25	26.0
	Non HT40, 6 to 54 Mbps	1	5	-58.9			-53.9	-21.25	32.7
	Non HT40, 6 to 54 Mbps	2	5	-56.7	-58.1		-49.3	-21.25	28.1
	Non HT40, 6 to 54 Mbps	3	5	-56.7	-58.1	-59.0	-48.1	-21.25	26.8
	HT/VHT40, M0 to M7	1	5	-58.6			-53.6	-21.25	32.4
	HT/VHT40, M0 to M7	2	5	-57.6	-55.9		-48.7	-21.25	27.4
	HT/VHT40, M8 to M15	2	5	-57.6	-55.9		-48.7	-21.25	27.4
90	HT/VHT40, M0 to M7	3	5	-57.6	-55.9	-57.1	-47.0	-21.25	25.8
5190	HT/VHT40, M8 to M15	3	5	-57.6	-55.9	-57.1	-47.0	-21.25	25.8
	HT/VHT40 Beam Forming, M0 to M7	2	8	-57.6	-55.9		-45.7	-21.25	24.4
	HT/VHT40 Beam Forming, M8 to M15	2	5	-57.6	-55.9		-48.7	-21.25	27.4
	HT/VHT40 Beam Forming, M0 to M7	3	10	-58.6	-58.4	-57.9	-43.5	-21.25	22.3
	HT/VHT40 Beam Forming, M8 to M15	3	7	-58.3	-57.5	-57.0	-45.8	-21.25	24.5
	HT/VHT40 STBC, M0 to M7	2	5	-57.6	-55.9		-48.7	-21.25	27.4
	HT/VHT40 STBC, M0 to M7	3	5	-57.6	-55.9	-57.1	-47.0	-21.25	25.8

1	Non HT80, 6 to 54 Mbps Non HT80, 6 to 54 Mbps	1	5	-51.9			-46.9	-21.25	25.7
1	Non HT80, 6 to 54 Mbps	_							_0.,
\		2	5	-52.0	-57.3		-45.9	-21.25	24.6
_	Non HT80, 6 to 54 Mbps	3	5	-52.0	-57.3	-49.4	-42.1	-21.25	20.8
\	VHT80, M0 to M9 1ss	1	5	-58.5			-53.5	-21.25	32.3
. L'	VHT80, M0 to M9 1ss	2	5	-52.4	-57.9		-46.3	-21.25	25.1
١	VHT80, M0 to M9 2ss	2	5	-52.4	-57.9		-46.3	-21.25	25.1
5210	VHT80, M0 to M9 1ss	3	5	-52.4	-57.9	-52.2	-43.7	-21.25	22.5
52	VHT80, M0 to M9 2ss	3	5	-52.4	-57.9	-52.2	-43.7	-21.25	22.5
١	VHT80 Beam Forming, M0 to M9 1ss	2	8	-53.6	-52.2		-41.8	-21.25	20.6
١	VHT80 Beam Forming, M0 to M9 2ss	2	5	-52.4	-57.9		-46.3	-21.25	25.1
١	VHT80 Beam Forming, M0 to M9 1ss	3	10	-53.0	-52.1	-51.7	-37.5	-21.25	16.2
١	VHT80 Beam Forming, M0 to M9 2ss	3	7	-53.6	-52.2	-57.6	-42.2	-21.25	20.9
١	VHT80 STBC, M0 to M9 1ss	2	5	-52.4	-57.9		-46.3	-21.25	25.1
١	VHT80 STBC, M0 to M9 1ss	3	5	-52.4	-57.9	-52.2	-43.7	-21.25	22.5
1	Non HT20, 6 to 54 Mbps	1	5	-60.4			-55.4	-21.25	34.2
1	Non HT20, 6 to 54 Mbps	2	5	-60.4	-61.1		-52.7	-21.25	31.5
1	Non HT20, 6 to 54 Mbps	3	5	-60.4	-61.1	-58.8	-50.2	-21.25	29.0
1	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-60.4	-61.1		-49.7	-21.25	28.5
1	Non HT20 Beam Forming, 6 to 54 Mbps	3	10	-60.4	-61.1	-58.8	-45.2	-21.25	24.0
ŀ	HT/VHT20, M0 to M7	1	5	-58.2			-53.2	-21.25	32.0
ŀ	HT/VHT20, M0 to M7	2	5	-58.2	-59.3		-50.7	-21.25	29.5
5220	HT/VHT20, M8 to M15	2	5	-58.2	-59.3		-50.7	-21.25	29.5
52	HT/VHT20, M0 to M7	3	5	-58.2	-59.3	-59.0	-49.0	-21.25	27.8
ŀ	HT/VHT20, M8 to M15	3	5	-58.2	-59.3	-59.0	-49.0	-21.25	27.8
ŀ	HT/VHT20 Beam Forming, M0 to M7	2	8	-58.2	-59.3		-47.7	-21.25	26.5
ŀ	HT/VHT20 Beam Forming, M8 to M15	2	5	-58.2	-59.3		-50.7	-21.25	29.5
ŀ	HT/VHT20 Beam Forming, M0 to M7	3	10	-58.2	-59.3	-59.0	-44.0	-21.25	22.8
ŀ	HT/VHT20 Beam Forming, M8 to M15	3	7	-58.2	-59.3	-59.0	-47.0	-21.25	25.8
ŀ	HT/VHT20 STBC, M0 to M7	2	5	-58.2	-59.3		-50.7	-21.25	29.5
1	HT/VHT20 STBC, M0 to M7	3	5	-58.2	-59.3	-59.0	-49.0	-21.25	27.8
1	Non HT40, 6 to 54 Mbps	1	5	-50.8			-45.8	-21.25	24.6
1	Non HT40, 6 to 54 Mbps	2	5	-50.8	-52.2		-43.4	-21.25	22.2
1	Non HT40, 6 to 54 Mbps	3	5	-50.8	-52.2	-48.9	-40.7	-21.25	19.4
ŀ	HT/VHT40, M0 to M7	1	5	-59.6			-54.6	-21.25	33.4
5230	HT/VHT40, M0 to M7	2	5	-59.6	-52.3		-46.6	-21.25	25.3
52	HT/VHT40, M8 to M15	2	5	-59.6	-52.3		-46.6	-21.25	25.3
ŀ	HT/VHT40, M0 to M7	3	5	-59.6	-52.3	-49.3	-42.3	-21.25	21.0
ŀ	HT/VHT40, M8 to M15	3	5	-59.6	-52.3	-49.3	-42.3	-21.25	21.0
_	HT/VHT40 Beam Forming, M0 to M7	2	8	-59.6	-52.3		-43.6	-21.25	22.3
ŀ	HT/VHT40 Beam Forming, M8 to M15	2	5	-59.6	-52.3		-46.6	-21.25	25.3

Page No: 39 of 81

		_							
	HT/VHT40 Beam Forming, M0 to M7	3	10	-59.6	-52.3	-49.3	-37.3	-21.25	16.0
	HT/VHT40 Beam Forming, M8 to M15	3	7	-59.6	-52.3	-49.3	-40.3	-21.25	19.0
	HT/VHT40 STBC, M0 to M7	2	5	-59.6	-52.3		-46.6	-21.25	25.3
	HT/VHT40 STBC, M0 to M7	3	5	-59.6	-52.3	-49.3	-42.3	-21.25	21.0
	Non HT20, 6 to 54 Mbps	1	5	-52.1			-47.1	-21.25	25.9
	Non HT20, 6 to 54 Mbps	2	5	-52.1	-51.7		-43.9	-21.25	22.6
	Non HT20, 6 to 54 Mbps	3	5	-52.1	-51.7	-48.9	-40.9	-21.25	19.6
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-52.1	-51.7		-40.9	-21.25	19.6
	Non HT20 Beam Forming, 6 to 54 Mbps	3	10	-52.1	-51.7	-48.9	-35.9	-21.25	14.6
	HT/VHT20, M0 to M7	1	5	-51.5			-46.5	-21.25	25.3
	HT/VHT20, M0 to M7	2	5	-51.5	-50.5		-43.0	-21.25	21.7
5240	HT/VHT20, M8 to M15	2	5	-51.5	-50.5		-43.0	-21.25	21.7
52	HT/VHT20, M0 to M7	3	5	-51.5	-50.5	-49.3	-40.6	-21.25	19.3
	HT/VHT20, M8 to M15	3	5	-51.5	-50.5	-49.3	-40.6	-21.25	19.3
	HT/VHT20 Beam Forming, M0 to M7	2	8	-51.5	-50.5		-40.0	-21.25	18.7
	HT/VHT20 Beam Forming, M8 to M15	2	5	-51.5	-50.5		-43.0	-21.25	21.7
	HT/VHT20 Beam Forming, M0 to M7	3	10	-51.5	-50.5	-49.3	-35.6	-21.25	14.3
	HT/VHT20 Beam Forming, M8 to M15	3	7	-51.5	-50.5	-49.3	-38.6	-21.25	17.3
	HT/VHT20 STBC, M0 to M7	2	5	-51.5	-50.5		-43.0	-21.25	21.7
	HT/VHT20 STBC, M0 to M7	3	5	-51.5	-50.5	-49.3	-40.6	-21.25	19.3

Conducted Spurs Peak, 5240 MHz, HT/VHT20 Beam Forming, M0 to M7

Antenna A Antenna B

Antenna C

A.4 Conducted Band Edge

15.205 / 15.209 - Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). Use formula below to substitute conducted measurements in place of radiated measurements

 $E[dB\mu V/m] = EIRP[dBm] - 20 log(d[meters]) + 104.77$, where E = field strength and <math>d = 3 meter

- 1) Average Plot, Limit= -41.25 dBm eirp
- 2) Peak plot, Limit = -21.25 dBm eirp

Note

The Intentional Beamforming correlated array gain for any number of space time streams is given by the general formula:

$$G_{bf max} = 10*log10(N_{tx}/N_{sts})$$

where N_{tx} is the number of equal power active transmit antennas and N_{sts} is the number of active space time streams.

Test Procedure

Ref. ANSI C63.10: 2013

Conducted Bandedge

Test Procedure

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Place the radio in continuous transmit mode. Use the procedures in ANSI C63.10: 2013 to substitute conducted measurements in place of radiated measurements.
- 3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).
- 4. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.
- 5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded.
- 6. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands
- 7. Capture graphs and record pertinent measurement data.

Ref. ANSI C63.10: 2013 section 12.7.6 (peak) & 12.7.7.3 (average, Method VB-A (Alternative))

Conducted Bandedge

Test parameters restricted Band

RBW = 1 MHz

VBW ≥ 3 x RBW for Peak, 100Hz for Average

Sweep = Auto couple

Detector = Peak

Trace = Max Hold.

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	K	
1	Support	S02		\checkmark

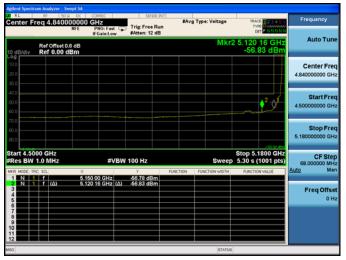
Tested By :	Date of testing:
Jose Aguirre	05-May-16 - 06-Jun-16
Test Result : PASS	

See Appendix C for list of test equipment

Page No: 42 of 81

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Tx 3 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dBm)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	5	-56.5			-51.5	-41.3	10.3
	Non HT20, 6 to 54 Mbps	2	5	-56.5	-55.6		-48.0	-41.3	6.8
	Non HT20, 6 to 54 Mbps	3	5	-56.5	-55.6	-54.0	-45.5	-41.3	4.2
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-56.5	-55.6		-45.0	-41.3	3.8
	Non HT20 Beam Forming, 6 to 54 Mbps	3	10	-57.5	-59.9	-56.8	-43.1	-41.3	1.9
	HT/VHT20, M0 to M7	1	5	-56.8			-51.8	-41.3	10.6
	HT/VHT20, M0 to M7	2	5	-56.8	-55.7		-48.2	-41.3	7.0
5180	HT/VHT20, M8 to M15	2	5	-56.8	-55.7		-48.2	-41.3	7.0
51	HT/VHT20, M0 to M7	3	5	-56.8	-55.7	-54.0	-45.6	-41.3	4.3
	HT/VHT20, M8 to M15	3	5	-56.8	-55.7	-54.0	-45.6	-41.3	4.3
	HT/VHT20 Beam Forming, M0 to M7	2	8	-56.8	-55.7		-45.2	-41.3	4.0
	HT/VHT20 Beam Forming, M8 to M15	2	5	-56.8	-55.7		-48.2	-41.3	7.0
	HT/VHT20 Beam Forming, M0 to M7	3	10	-59.6	-59.6	-56.4	-43.5	-41.3	2.2
	HT/VHT20 Beam Forming, M8 to M15	3	7	-56.8	-55.7	-54.0	-43.6	-41.3	2.3
	HT/VHT20 STBC, M0 to M7	2	5	-56.8	-55.7		-48.2	-41.3	7.0
	HT/VHT20 STBC, M0 to M7	3	5	-56.8	-55.7	-54.0	-45.6	-41.3	4.3
	Non HT40, 6 to 54 Mbps	1	5	-47.2			-42.2	-41.3	1.0
	Non HT40, 6 to 54 Mbps	2	5	-53.1	-50.4		-43.5	-41.3	2.3
	Non HT40, 6 to 54 Mbps	3	5	-53.1	-50.4	-50.4	-41.4	-41.3	0.1
	HT/VHT40, M0 to M7	1	5	-47.2			-42.2	-41.3	1.0
	HT/VHT40, M0 to M7	2	5	-50.8	-50.7		-42.7	-41.3	1.5
	HT/VHT40, M8 to M15	2	5	-50.8	-50.7		-42.7	-41.3	1.5
5190	HT/VHT40, M0 to M7	3	5	-53.8	-49.9	-50.8	-41.4	-41.3	0.2
51	HT/VHT40, M8 to M15	3	5	-53.8	-49.9	-50.8	-41.4	-41.3	0.2
	HT/VHT40 Beam Forming, M0 to M7	2	8	-56.7	-53.0		-43.5	-41.3	2.2
	HT/VHT40 Beam Forming, M8 to M15	2	5	-53.8	-49.9		-43.4	-41.3	2.2
	HT/VHT40 Beam Forming, M0 to M7	3	10	-58.5	-56.4	-54.6	-41.4	-41.3	0.2
	HT/VHT40 Beam Forming, M8 to M15	3	7	-56.7	-53.0	-53.0	-42.2	-41.3	0.9
	HT/VHT40 STBC, M0 to M7	2	5	-53.8	-49.9		-43.4	-41.3	2.2
	HT/VHT40 STBC, M0 to M7	3	5	-53.8	-49.9	-50.8	-41.4	-41.3	0.2

	Non HT80, 6 to 54 Mbps	1	5	-47.7			-42.7	-41.3	1.5
	Non HT80, 6 to 54 Mbps	2	5	-51.0	-49.4		-42.1	-41.3	0.9
	Non HT80, 6 to 54 Mbps	3	5	-51.0	-53.4	-52.4	-42.4	-41.3	1.1
	VHT80, M0 to M9 1ss	1	5	-47.6			-42.6	-41.3	1.4
	VHT80, M0 to M9 1ss	2	5	-52.6	-49.3		-42.6	-41.3	1.4
	VHT80, M0 to M9 2ss	2	5	-52.6	-49.3		-42.6	-41.3	1.4
19	VHT80, M0 to M9 1ss	3	5	-52.6	-52.2	-53.1	-42.8	-41.3	1.6
52	VHT80, M0 to M9 2ss	3	5	-52.6	-52.2	-53.1	-42.8	-41.3	1.6
	VHT80 Beam Forming, M0 to M9 1ss	2	8	-52.6	-52.2		-41.4	-41.3	0.1
	VHT80 Beam Forming, M0 to M9 2ss	2	5	-52.6	-49.3		-42.6	-41.3	1.4
	VHT80 Beam Forming, M0 to M9 1ss	3	10	-58.7	-56.2	-54.6	-41.4	-41.3	0.2
	VHT80 Beam Forming, M0 to M9 2ss	3	7	-55.8	-52.2	-53.1	-41.7	-41.3	0.4
	VHT80 STBC, M0 to M9 1ss	2	5	-50.7	-49.3		-41.9	-41.3	0.7
	VHT80 STBC, M0 to M9 1ss	3	5	-52.6	-52.2	-53.1	-42.8	-41.3	1.6


Conducted Bandedge Average, 5180 MHz, Non HT20 Beam Forming, 6 to 54 Mbps

Antenna A

Antenna B

Antenna C

Conducted Bandedge Average, 5190 MHz, Non HT40, 6 to 54 Mbps

Antenna A

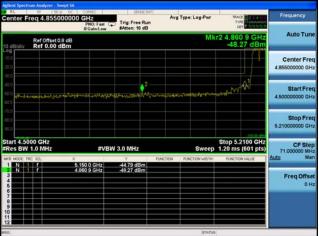
Antenna B

Antenna C

Conducted Bandedge Average, 5210 MHz, VHT80 Beam Forming, M0 to M9 1ss

Antenna A Antenna B

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Tx 3 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dBm)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	5	-45.5			-40.5	-21.25	19.3
	Non HT20, 6 to 54 Mbps	2	5	-45.5	-45.4		-37.4	-21.25	16.2
	Non HT20, 6 to 54 Mbps	3	5	-45.5	-45.4	-46.8	-36.1	-21.25	14.8
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-45.5	-45.4		-34.4	-21.25	13.2
	Non HT20 Beam Forming, 6 to 54 Mbps	3	10	-45.5	-45.4	-46.8	-31.1	-21.25	9.8
	HT/VHT20, M0 to M7	1	5	-47.3			-42.3	-21.25	21.1
	HT/VHT20, M0 to M7	2	5	-47.3	-44.6		-37.7	-21.25	16.5
5180	HT/VHT20, M8 to M15	2	5	-47.3	-44.6		-37.7	-21.25	16.5
51	HT/VHT20, M0 to M7	3	5	-47.3	-44.6	-47.5	-36.5	-21.25	15.2
	HT/VHT20, M8 to M15	3	5	-47.3	-44.6	-47.5	-36.5	-21.25	15.2
	HT/VHT20 Beam Forming, M0 to M7	2	8	-47.3	-44.6		-34.7	-21.25	13.5
	HT/VHT20 Beam Forming, M8 to M15	2	5	-47.3	-44.6		-37.7	-21.25	16.5
	HT/VHT20 Beam Forming, M0 to M7	3	10	-47.3	-44.6	-47.5	-31.5	-21.25	10.2
	HT/VHT20 Beam Forming, M8 to M15	3	7	-47.3	-44.6	-47.5	-34.5	-21.25	13.2
	HT/VHT20 STBC, M0 to M7	2	5	-47.3	-44.6		-37.7	-21.25	16.5
	HT/VHT20 STBC, M0 to M7	3	5	-47.3	-44.6	-47.5	-36.5	-21.25	15.2
	Non HT40, 6 to 54 Mbps	1	5	-40.3			-35.3	-21.25	14.1
	Non HT40, 6 to 54 Mbps	2	5	-42.0	-43.0		-34.5	-21.25	13.2
	Non HT40, 6 to 54 Mbps	3	5	-42.0	-43.0	-39.4	-31.4	-21.25	10.2
	HT/VHT40, M0 to M7	1	5	-42.3			-37.3	-21.25	16.1
	HT/VHT40, M0 to M7	2	5	-43.5	-42.6		-35.0	-21.25	13.8
	HT/VHT40, M8 to M15	2	5	-43.5	-42.6		-35.0	-21.25	13.8
90	HT/VHT40, M0 to M7	3	5	-43.5	-42.6	-42.4	-33.0	-21.25	11.8
5190	HT/VHT40, M8 to M15	3	5	-43.5	-42.6	-42.4	-33.0	-21.25	11.8
	HT/VHT40 Beam Forming, M0 to M7	2	8	-43.5	-42.6		-32.0	-21.25	10.8
	HT/VHT40 Beam Forming, M8 to M15	2	5	-43.5	-42.6		-35.0	-21.25	13.8
	HT/VHT40 Beam Forming, M0 to M7	3	10	-48.3	-47.1	-43.6	-31.1	-21.25	9.8
	HT/VHT40 Beam Forming, M8 to M15	3	7	-45.5	-44.4	-43.4	-32.6	-21.25	11.3
	HT/VHT40 STBC, M0 to M7	2	5	-43.5	-42.6		-35.0	-21.25	13.8
	HT/VHT40 STBC, M0 to M7	3	5	-43.5	-42.6	-42.4	-33.0	-21.25	11.8



	Non HT80, 6 to 54 Mbps	1	5	-36.3			-31.3	-21.25	10.1
	Non HT80, 6 to 54 Mbps	2	5	-44.8	-44.4		-36.6	-21.25	15.3
	Non HT80, 6 to 54 Mbps	3	5	-44.8	-44.4	-37.1	-30.8	-21.25	9.5
	VHT80, M0 to M9 1ss	1	5	-36.3			-31.3	-21.25	10.1
	VHT80, M0 to M9 1ss	2	5	-42.7	-41.3		-33.9	-21.25	12.7
	VHT80, M0 to M9 2ss	2	5	-42.7	-41.3		-33.9	-21.25	12.7
10	VHT80, M0 to M9 1ss	3	5	-42.7	-41.3	-41.6	-32.1	-21.25	10.8
52	VHT80, M0 to M9 2ss	3	5	-42.7	-41.3	-41.6	-32.1	-21.25	10.8
	VHT80 Beam Forming, M0 to M9 1ss	2	8	-43.8	-45.6		-33.6	-21.25	12.3
	VHT80 Beam Forming, M0 to M9 2ss	2	5	-42.7	-41.3		-33.9	-21.25	12.7
	VHT80 Beam Forming, M0 to M9 1ss	3	10	-46.4	-47.3	-45.2	-31.4	-21.25	10.2
	VHT80 Beam Forming, M0 to M9 2ss	3	7	-43.8	-45.6	-42.6	-32.1	-21.25	10.8
	VHT80 STBC, M0 to M9 1ss	2	5	-42.7	-41.3		-33.9	-21.25	12.7
	VHT80 STBC, M0 to M9 1ss	3	5	-42.7	-41.3	-41.6	-32.1	-21.25	10.8

Freq Offse

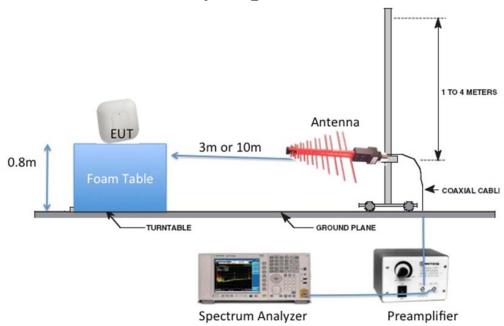
Conducted Bandedge Peak, 5210 MHz, Non HT80, 6 to 54 Mbps

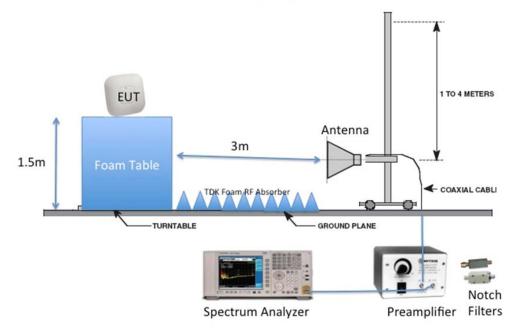
Antenna A Antenna B

Antenna C

Ref Offset 0.8 dB Ref 0.00 dBm

#VBW 3.0 MH:


This is a dual band 2.4GHz / 5GHz device. All ports in this test set up photo are connected as all testing is automated. Section 2.6 of this test report given an overview of the different Tx antenna combinations used by this device.


Appendix B: Emission Test Results

Testing Laboratory: Cisco Systems, Inc., 125 West Tasman Drive, San Jose, CA 95134, USA

Radiated Emission Setup Diagram-Below 1G

Radiated Emission Setup Diagram-Above 1G

B.1 Radiated Spurious Emissions

FCC 15.205 / 15.407 Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Ref. ANSI C63.10: 2013 section 12.7.6 (peak) & 12.7.7.3 (average)

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span: 1GHz – 18 GHz/18GHz-26G/26GHz-40GHz

Reference Level: 80 dBuV
Attenuation: 10 dB
Sweep Time: Coupled
Resolution Bandwidth: 1MHz

Video Bandwidth: 3 MHz for peak, 1 KHz for average

Detector: Peak

Terminate the access Point RF ports with 50 ohm loads.

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

Save 2 plots: 1) Average plot (Vertical and Horizontal), Limit= 54dBuV/m @3m

2) Peak plot (Vertical and Horizontal), Limit = 74dBuV/m @3m

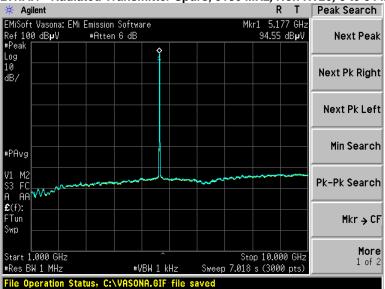
Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

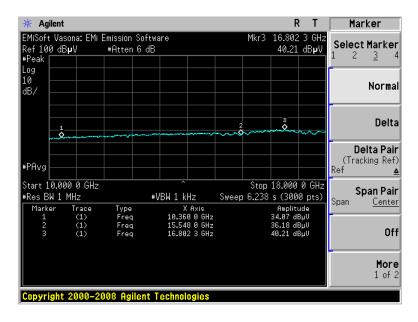
This report represents the worst case data for all supported operating modes and antennas. There are no measurable emissions above 18 GHz.

System Number	Description	Samples	System under test	Support equipment
0	EUT	S03	\checkmark	
2	Support	S04		✓

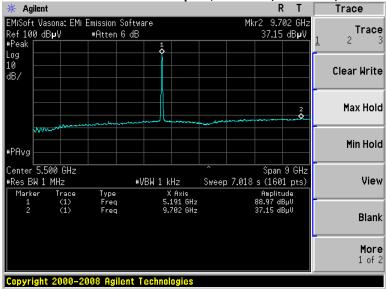
Tested By :	Date of testing:				
Jose Aguirre	05-May-16 - 06-Jun-16				
Test Result : PASS					

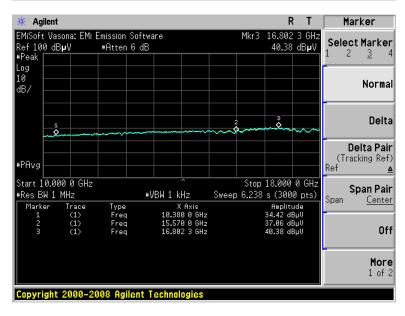
See Appendix C for list of test equipment

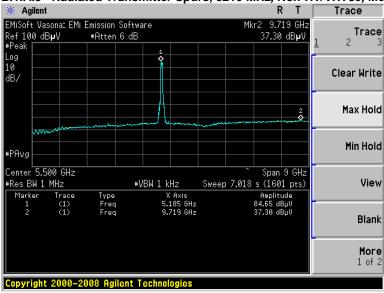

B.1.A Transmitter Radiated Spurious Emissions-Average Worst Case

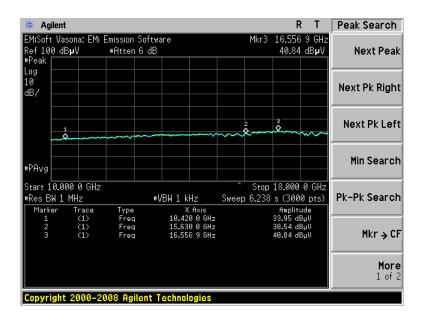

Frequency (MHz)	Mode	Data Rate (Mbps)	Spurious Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
5180	Non HT20, 6 to 54 Mbps	6	40.2	54	13.8
5190	HT/VHT40, M0 to M15	M0	40.4	54	13.6
5200	Non HT20, 6 to 54 Mbps	6	40.4	54	13.6
5210	Non-HT/VHT80, M0 to M15	M0x1	40.9	54	13.1
5230	HT/VHT40, M0 to M15	M0	40.6	54	13.4
5240	Non HT20, 6 to 54 Mbps	6	40.2	54	13.8

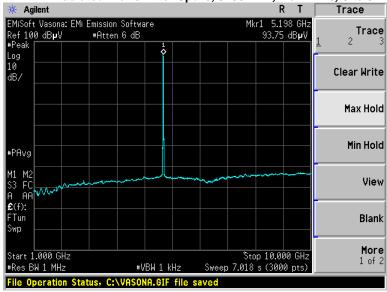
Page No: 54 of 81

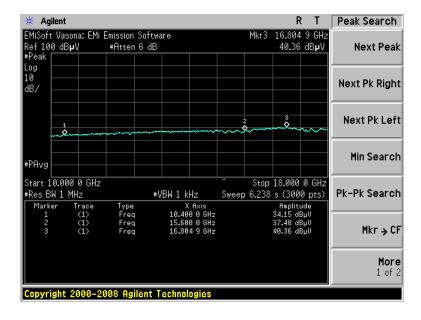

B.1.A.1 Radiated Transmitter Spurs, 5180 MHz, Non HT20, 6 to 54 Mbps, Average (1-18GHz)

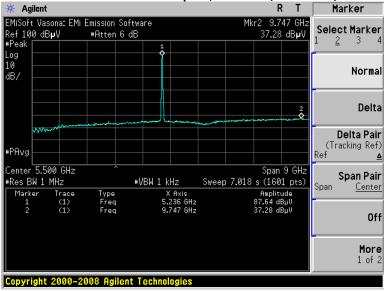


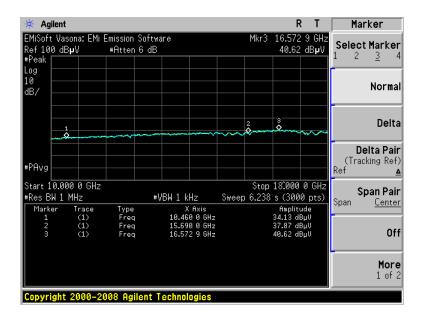

B.1.A.2 Radiated Transmitter Spurs, 5190 MHz, HT/VHT40, M0 to M15, Average (1-18GHz)

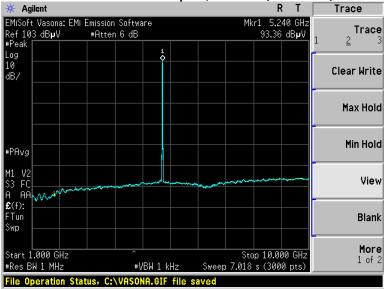


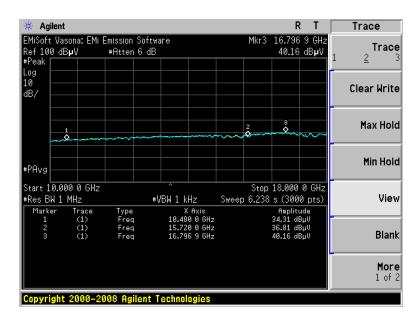

B.1.A.3 Radiated Transmitter Spurs, 5210 MHz, Non-HT/VHT80, M0 to M15, Average (1-18GHz)

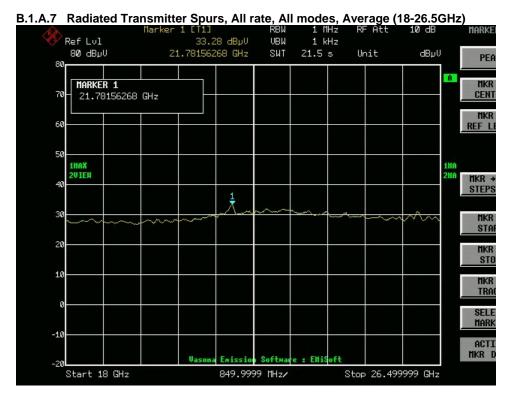


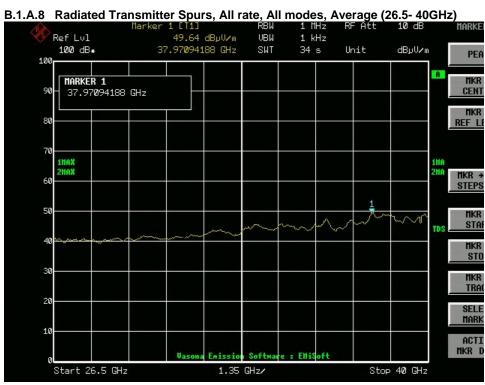

B.1.A.4 Radiated Transmitter Spurs, 5200 MHz, Non HT20, 6 to 54 Mbps, Average (1-18GHz)



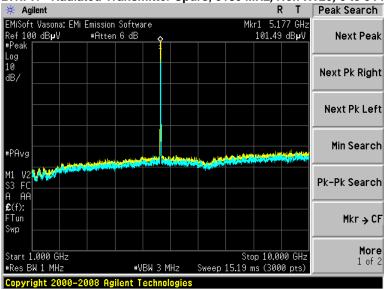

B.1.A.5 Radiated Transmitter Spurs, 5230 MHz, HT/VHT40, M0 to M15, Average (1-18GHz)

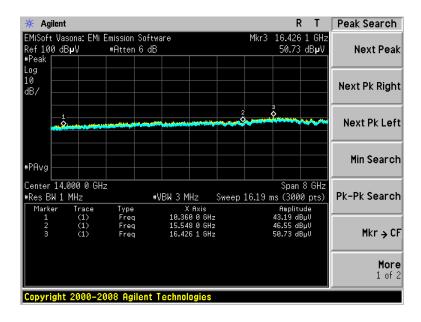




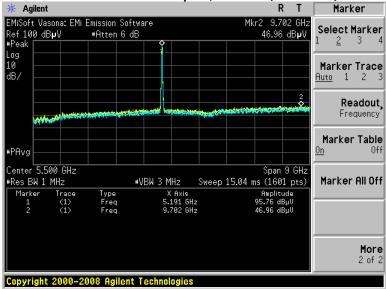

B.1.A.6 Radiated Transmitter Spurs, 5240 MHz, Non HT20, 6 to 54 Mbps, Average (1-18GHz)

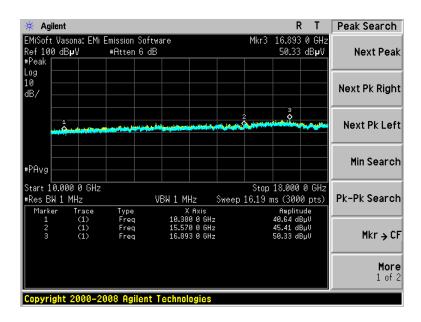
No emissions seen above 18GHz. The plots above are representative of all modes tested.

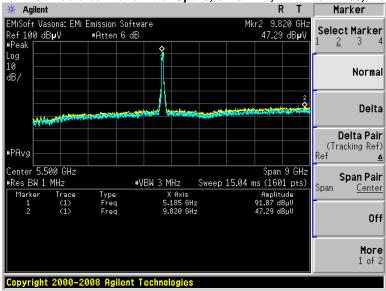

B.1.P Transmitter Radiated Spurious Emissions-Peak Worst Case

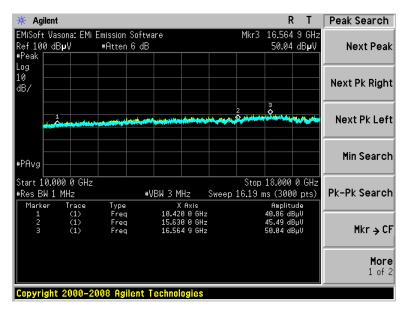

Frequency (MHz)	Mode	Data Rate (Mbps)	Spurious Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
5180	Non HT20, 6 to 54 Mbps	6	50.7	74	23.3
5190	HT/VHT40, M0 to M15	M0	50.3	74	23.7
5200	Non HT20, 6 to 54 Mbps	6	51.5	74	22.5
5210	Non-HT/VHT80, M0 to M15	M0x1	50.1	74	23.9
5230	HT/VHT40, M0 to M15	M0	50.2	74	23.8
5240	Non HT20, 6 to 54 Mbps	6	50.3	74	23.7

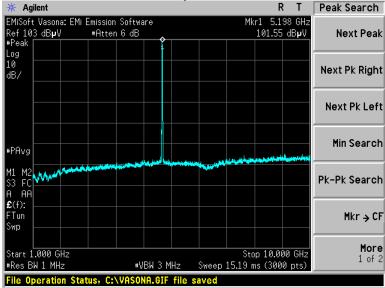
Page No: 62 of 81

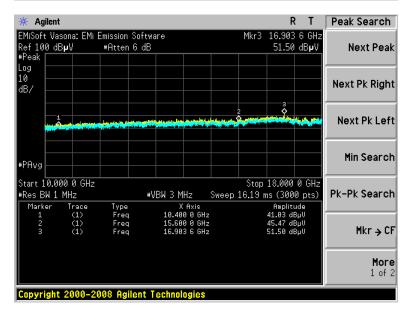

B.1.P.1 Radiated Transmitter Spurs, 5180 MHz, Non HT20, 6 to 54 Mbps, Peak (1-18GHz)

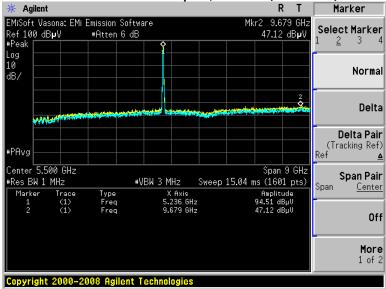


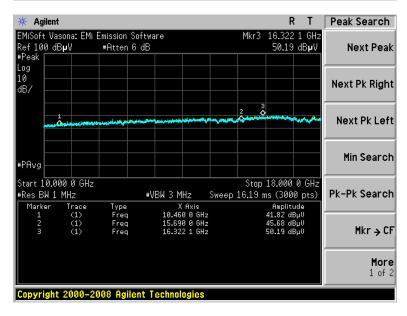

B.1.P.2 Radiated Transmitter Spurs, 5190 MHz, HT/VHT40, M0 to M15, Peak (1-18GHz)

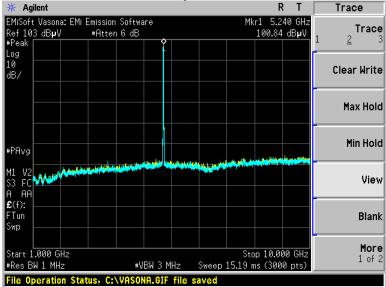


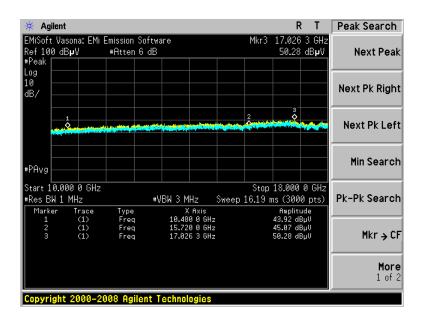

B.1.P.3 Radiated Transmitter Spurs, 5210 MHz, Non-HT/VHT80, M0 to M15, Peak (1-18GHz)

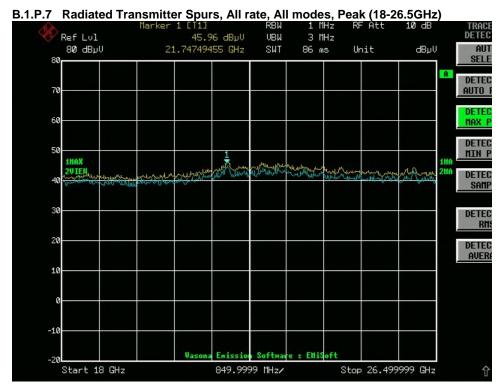


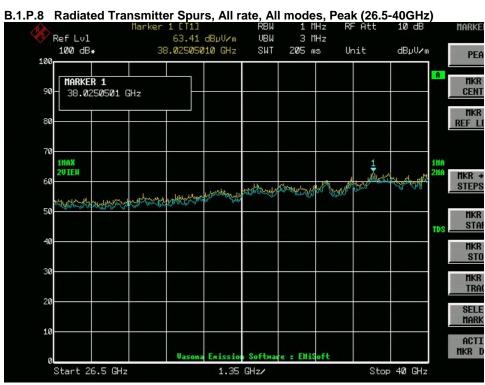

B.1.P.4 Radiated Transmitter Spurs, 5200 MHz, Non HT20, 6 to 54 Mbps, Peak (1-18GHz)

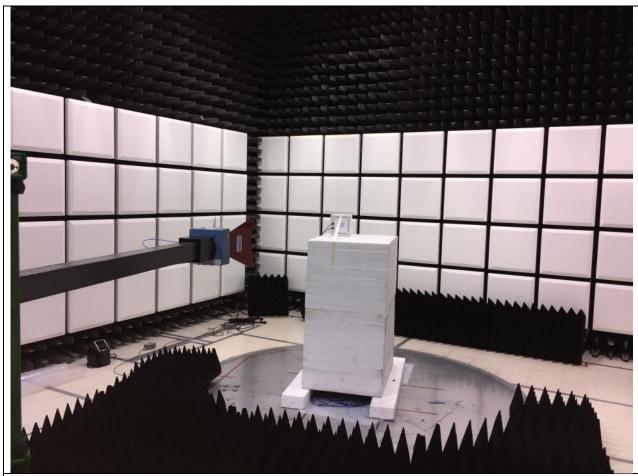



B.1.P.5 Radiated Transmitter Spurs, 5230 MHz, HT/VHT40, M0 to M15, Peak (1-18GHz)






B.1.P.6 Radiated Transmitter Spurs, 5240 MHz, Non HT20, 6 to 54 Mbps, Peak (1-18GHz)



No emissions seen above 18GHz. The plots above are representative of all modes tested.

Title: Radiated Emissions Configuration Photograph

B.2 Radiated Emissions 30MHz to 1GHz

FCC 15.209 / 15.205 / 15.407 Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Ref. ANSI C63.10: 2013 section 6.5

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span: 30MHz – 1GHz
Reference Level: 80 dBuV
Attenuation: 10 dB
Sweep Time: Coupled
Resolution Bandwidth: 100kHz
Video Bandwidth: 300kHz

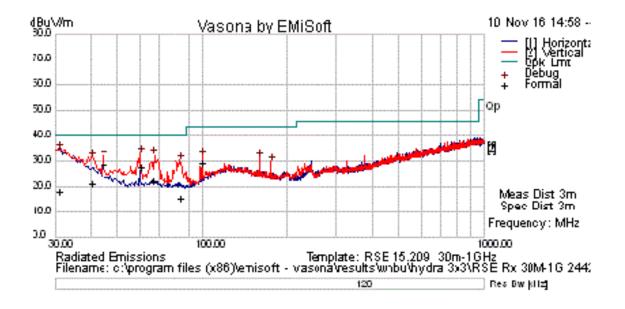
Detector: Peak for Pre-scan, Quasi-Peak

Compliance shall be determined using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak

detection.

Terminate the access Point RF ports with 50 ohm loads.

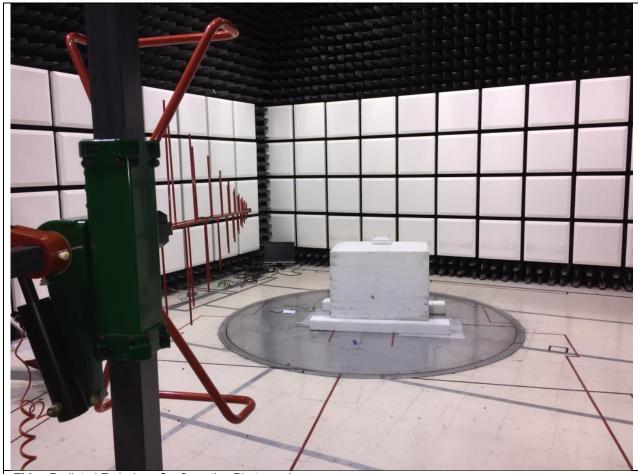
Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)


This report represents the worst case data for all supported operating modes and antennas.

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\searrow	
1	Support	S02		\triangleright

Tested By :	Date of testing:
Jose Aguirre	10-Nov-16
Test Result : PASS	

See Appendix C for list of test equipment



Test Results Table

rest Result	STable										
Frequency	Raw	Cable	AF	Level	Measurement	Pol	Hgt	Azt	Limit	Margin	Pass
MHz	dBuV	Loss	dB	dBuV/m	Туре		cm	Deg	dBuV/m	dB	/Fail
30.97	-2.9	0.5	20.7	18.2	Quasi Max	Н	222	186	40	-21.8	Pass
60.003	19.6	0.7	7.4	27.7	Quasi Max	V	146	171	40	-12.3	Pass
66.358	14	0.7	8	22.6	Quasi Max	V	145	39	40	-17.4	Pass
44.236	17.2	0.6	10.8	28.6	Quasi Max	V	105	280	40	-11.4	Pass
40.185	6.9	0.5	13.9	21.3	Quasi Max	V	115	85	40	-18.7	Pass
83.35	7.2	0.8	7.5	15.4	Quasi Max	V	139	228	40	-24.6	Pass
100	18.4	0.8	10.2	29.4	Quasi Max	٧	124	352	43.5	-14.1	Pass

Title: Radiated Emissions Configuration Photograph

B.3 AC Conducted Emissions

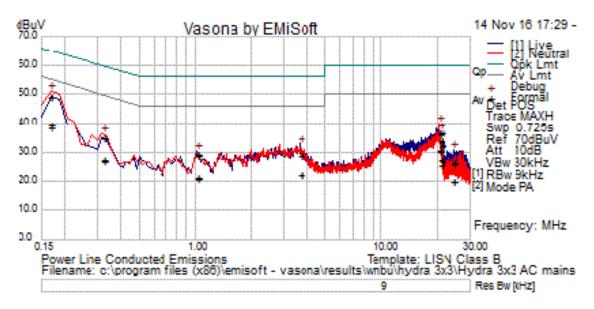
FCC 15.207 Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.

Measurement Procedure Accordance with ANSI C63.10:2013 section 6.2

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span: 150 KHz – 30 MHz

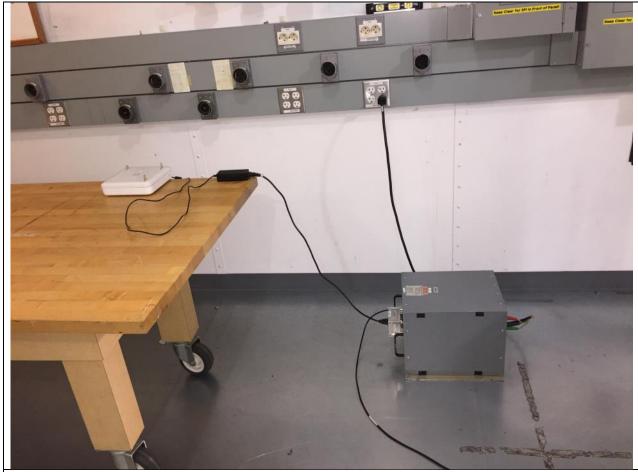
Attenuation: 10 dB Sweep Time: Coupled Resolution Bandwidth: 9 KHz Video Bandwidth: 30 KHz


Detector: Quasi-Peak / Average

System Number	Description	Samples	System under test	Support equipment
4	EUT	S01	Ŋ	
1	Support	S02		\checkmark

Tested By :	Date of testing:
Jose Aguirre	14-Nov-16
Test Result : PASS	

See Appendix C for list of test equipment



Test Results Table

lest Results		1		1				1	
Frequency	Raw	Cable	Factors	Level	Measurement	Line	Limit	Margin	Pass
MHz	dBuV	Loss	dB	dBuV	Туре		dBuV	dB	/Fail
24.552	5.6	20.5	0.3	26.4	Quasi Peak	Live	60	-33.6	Pass
1.027	9	20	0	29	Quasi Peak	Live	56	-27	Pass
20.421	15.7	20.4	0.2	36.4	Quasi Peak	Live	60	-23.6	Pass
0.169	28	21.2	0.1	49.3	Quasi Peak	Live	65	-15.7	Pass
21.145	11.6	20.4	0.2	32.3	Quasi Peak	Live	60	-27.7	Pass
3.657	8.6	20.1	0.1	28.7	Quasi Peak	Live	56	-27.3	Pass
20.668	12.9	20.4	0.2	33.6	Quasi Peak	Live	60	-26.4	Pass
0.324	14.3	20.5	0.1	34.9	Quasi Peak	Live	59.6	-24.7	Pass
0.324	14.4	20.5	0.1	34.9	Quasi Peak	Neutral	59.6	-24.7	Pass
20.668	13.3	20.4	0.2	34	Quasi Peak	Neutral	60	-26	Pass
21.145	11.8	20.4	0.2	32.5	Quasi Peak	Neutral	60	-27.5	Pass
0.169	27.9	21.2	0.1	49.2	Quasi Peak	Neutral	65	-15.8	Pass
1.027	9.1	20	0	29.2	Quasi Peak	Neutral	56	-26.8	Pass
24.552	5.3	20.5	0.3	26.1	Quasi Peak	Neutral	60	-33.9	Pass
20.421	15.9	20.4	0.2	36.6	Quasi Peak	Neutral	60	-23.4	Pass
3.657	8.6	20.1	0.1	28.7	Quasi Peak	Neutral	56	-27.3	Pass
24.552	-0.5	20.5	0.3	20.3	Average	Live	50	-29.7	Pass
1.027	1.2	20	0	21.3	Average	Live	46	-24.7	Pass
20.421	9.9	20.4	0.2	30.6	Average	Live	50	-19.4	Pass
0.169	18	21.2	0.1	39.3	Average	Live	55	-15.7	Pass
21.145	6.3	20.4	0.2	26.9	Average	Live	50	-23.1	Pass
3.657	2.2	20.1	0.1	22.3	Average	Live	46	-23.7	Pass
20.668	5.1	20.4	0.2	25.8	Average	Live	50	-24.2	Pass
0.324	6.6	20.5	0.1	27.2	Average	Live	49.6	-22.4	Pass
0.324	6.8	20.5	0.1	27.3	Average	Neutral	49.6	-22.3	Pass
20.668	7	20.4	0.2	27.7	Average	Neutral	50	-22.3	Pass
21.145	6.4	20.4	0.2	27	Average	Neutral	50	-23	Pass
0.169	17.3	21.2	0.1	38.6	Average	Neutral	55	-16.5	Pass
1.027	1.6	20	0	21.6	Average	Neutral	46	-24.4	Pass
24.552	-0.6	20.5	0.3	20.2	Average	Neutral	50	-29.8	Pass
20.421	9.7	20.4	0.2	30.3	Average	Neutral	50	-19.7	Pass
3.657	2.2	20.1	0.1	22.4	Average	Neutral	46	-23.6	Pass

Title: Conducted Emissions Configuration Photograph

Appendix C: List of Test Equipment Used to perform the test

	Test Equipment used for Radiated Emissions									
Equip No	Model Manufacturer	Description	Last Cal	Next Cal	Test Item					
CIS049413	iBTHP-5-DB9 Newport	5 inch Temp/RH/ Press Sensor	18-Dec-15	18-Dec-16	B.1, B.2, B.3					
CIS040523	ESCI Rohde & Schwarz	EMI Test Receiver	30-Dec-15	30-Dec-16	B.3					
CIS001937	NSA 5m Chamber Cisco	NSA 5m Chamber	12-Feb-16	12-Feb-17	B.3					
CIS049535	Above 1GHz Site Cal Cisco	Above 1GHz CISPR Site Validation	13-Feb-16	13-Feb-17	B.1, B.2					
CIS028072	1840 Cisco	18-40GHz EMI Test Head	22-Feb-16	22-Feb-17	B.1, B.2					
CIS045588	JB1 Sunol Sciences	Combination Antenna, 30MHz-2GHz	9-Mar-16	9-Mar-17	B.3					
CIS042000	E4440A Agilent	Spectrum Analyzer	6-Jul-16	6-Jul-17	B.1, B.2					
CIS037581	3117 ETS-Lindgren	Horn Antenna	7-Oct-16	7-Oct-17	B.1, B.2					
CIS045098	TH0118 Cisco	Mast Mount Preamplifier Array, 1-18GHz	31-Oct-16	31-Oct-17	B.1, B.2					
CIS033602	CSY-NMNM-80-273001 Midwest Microwave	RF Coaxial Cable, to 18GHz	8-Nov-16	8-Nov-17	B.1, B.2, B.3					
CIS030443	UFB311A-0-1560-520520 Micro-Coax	RF Coaxial Cable, to 18GHz	8-Nov-16	8-Nov-17	B.1, B.2, B.3					
CIS008024	SF106A Huber + Suhner	3 meter Sucoflex cable	8-Nov-16	8-Nov-17	B.1, B.2, B.3					
CIS024201	FSEK30 Rohde & Schwarz	Spectrum Analyzer 20Hz - 40GHz	8-Nov-16	8-Nov-17	B.1, B.2					
CIS037235	50CB-015 JFW	GPIB Control Box	Cal not Required	Cal not Required	B.1, B.2					
CIS035244	926-8ME Klein Tools	8 Meter Tape Measure	Cal not Required	Cal not Required	B.1, B.2, B.3					

	Test Equipment used for AC Mains Conducted Emissions								
Equip#	Manufacturer/ Model	Description	Last Cal	Next Cal	Test Item				
8510	Fischer Custom Communications FCC-450B-2.4-N	Instrumentation Limiter	16-May-16	16-May-17	B.4				
23802	Fischer Custom Communications FCC-801-M2-50A	CDN, 2-LINE 50A	12-Jan-16	12-Jan-17	B.4				
45995	Fischer Custom Communications F-090527-1009-2	Lisn Adapter	17-Jun-16	17-Jun-17	B.4				
49468	Coleman RG223	BNC 25 ft Cable	9-Mar-16	9-Mar-17	B.4				
31918	Midwest Microwave TRM-2048-MC-BNC-10	50 Ohm, 5W Terminator, Type BNC	11-Nov-16	11-Nov-17	B.4				

Page No: 77 of 81

49531	TTE H785-150K-50-21378	High Pass Filter	3-May-16	3-May-17	B.4
45994	Fischer Custom Communications F-090527-1009-1	Line Impedance Stabilization Network	17-Jun-16	17-Jun-17	B.4
18963	York CNE V	Comparison Noise Emitter, 30 - 1000MHz	Cal Not Required	Cal Not Required	B.4
45050	Rohde & Schwarz ESCI	EMI Test Receiver	11-Sep-16	11-Sep-17	B.4
51721	Teseq CDN ST08A	Coupling Decoupling Network	7-Jun-16	7-Jun-17	B.4
54231	Newport iBTHP-5-DB9	5 inch Temp/RH/Press Sensor w/20ft cable	10-Feb-16	10-Feb-17	B.4

	T	est Equipment used for RF Condu	ucted Tests		
Equip#	Manufacturer/ Model	Description	Last Cal	Next Cal	Test Item
CIS054666	RA08-S1S1-18	SMA 18" Cable	25-Sep-15	25-Sep-16	A1 thru
	MegaPhase				A5
CIS054667	RA08-S1S1-18	SMA 18" Cable	25-Sep-15	25-Sep-16	A1 thru
	MegaPhase				A5
CIS054668	RA08-S1S1-18	SMA 18" Cable	25-Sep-15	25-Sep-16	A1 thru
	MegaPhase				A5
CIS054669	RA08-S1S1-18	SMA 18" Cable	25-Sep-15	25-Sep-16	A1 thru
	MegaPhase				A5
CIS054686	NI PXI-2796	Plug-in switch module	6-Oct-15	6-Oct-16	A1 thru
	National Instruments				A5
CIS055166	RFLT4WDC40GK	4 Way Power Divider 40GHz	23-Nov-15	23-Nov-16	A1 thru
	RF Lambda				A5
CIS054662	RFLT4WDC40GK	SMA 36" cable	24-Sep-15	24-Sep-16	A1 thru
	RF Lambda				A5
CIS054656	BRC50705-02	Band Reject Filter	24-Sep-15	24-Sep-16	A1 thru
	Micro-Tronics				A5
CIS054655	BRC50704-02	Notch Filter,	24-Sep-15	24-Sep-16	A1 thru
	Micro-Tronics	SB:5.470-5.725GHz, to 12GHz			A5
CIS054654	BRC50703-02	Notch Filter,	24-Sep-15	24-Sep-16	A1 thru
	Micro-Tronics	SB:5.150-5.350GHz, to 11GHz			A5
CIS054653	BRM50702-02	Notch Filter,	24-Sep-15	24-Sep-16	A1 thru
	Micro-Tronics	SB:2.400-2.500GHz, to 18GHz			A5
CIS054678	RA08-S1S1-12	SMA 12" Cable	25-Sep-15	25-Sep-16	A1 thru
	MegaPhase				A5
CIS054677	RA08-S1S1-12	SMA 12" Cable	25-Sep-15	25-Sep-16	A1 thru
	MegaPhase				A5
CIS054676	RA08-S1S1-12	SMA 12" Cable	25-Sep-15	25-Sep-16	A1 thru
	MegaPhase				A5
CIS054675	RA08-S1S1-12	SMA 12" Cable	25-Sep-15	25-Sep-16	A1 thru
	MegaPhase				A5

Page No: 78 of 81

CIS054674	RA08-S1S1-12	SMA 12" Cable	25-Sep-15	25-Sep-16	A1 thru
	MegaPhase				A5
CIS054673	RA08-S1S1-12	SMA 12" Cable	25-Sep-15	25-Sep-16	A1 thru
	MegaPhase				A5
CIS054672	RA08-S1S1-12	SMA 12" Cable	25-Sep-15	25-Sep-16	A1 thru
	MegaPhase				A5
CIS054671	RA08-S1S1-12	SMA 12" Cable	25-Sep-15	25-Sep-16	A1 thru
	MegaPhase				A5
CIS054670	RA08-S1S1-12	SMA 12" Cable	25-Sep-15	25-Sep-16	A1 thru
	MegaPhase				A5
CIS054664	GC12-8181-16	SMA 16" Cable	25-Sep-15	25-Sep-16	A1 thru
	MegaPhase				A5
CIS054663	F120-S1S1-48	SMA 48" Cable	25-Sep-15	25-Sep-16	A1 thru
	MegaPhase				A5
CIS054686	NI PXI-2796	Plug-in switch module	6-Oct-15	6-Oct-16	A1 thru
	National Instruments				A5
CIS042005	BWS30W2+	SMA 30dB Attenuator	16-Oct-15	16-Oct-16	A1 thru
	Mini-Circuits				A5
CIS041995	BW-S6W2	6dB Attenuator	16-Oct-15	16-Oct-16	A1 thru
	Mini-Circuits				A5
CIS054695	D3C2060	Circulator	20-Oct-15	20-Oct-16	A1 thru
	Ditom				A5
CIS055146	RA08-S1S1-12	12" SMA Cable	17-Nov-15	17-Nov-16	A1 thru
	Megaphase				A5
CIS050721	N9030A	PXA Signal Analyzer	30-Mar-16	30-Mar-17	A1 thru
	Keysight				A5
CIS054303	N5182B	MXG X-Series RF Vector Signal	6-Apr-16	6-Apr-17	A1 thru
	Keysight	Generator			A5
CIS055099	SMART2200RM2U	Power Supply	Cal Not Require	ed	A1 thru
	Tripp-Lite				A5
CIS055094	PXI-1042 National Instruments	Chassis	Cal Not Require	ed	A1 thru A5
	madonal modulinents		1		70

Appendix E: Abbreviation Key and Definitions

The following table defines abbreviations used within this test report.

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	°C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
TAP	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control System	Qp	Quasi Peak
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak
Cal	Calibration	kHz	Kilohertz (1x10 ³)
EN	European Norm	MHz	MegaHertz (1x10 ⁶)
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)
CISPR	International Special Committee on Radio Interference	Н	Horizontal
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization Network	dB	decibel
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³)
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)
L2	Line2	Α	Amp
L3	Line 3	μΑ	Micro Amp (1x10 ⁻⁶)
DC	Direct Current	mS	Milli Second (1x10 ⁻³)
RAW	Uncorrected measurement value, as indicated by the measuring device	μS	Micro Second (1x10 ⁻⁶)
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)
SLCE	Signal Line Conducted Emissions	m	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
N	Neutral Line	R	Return
S	Supply	AC	Alternating Current

Page No: 80 of 81

End