

Test Report AIR-CAP1532E-B-K9

FCC ID: LDK102089P

5180-5240 MHz

Antenna Gain 8dBi

Against the following Specifications:

CFR47 Part 15.407

Cisco Systems

170 West Tasman Drive San Jose, CA 95134

Author: Jose Aguirre

lete L Agrune

Tested By

Approved By: Jim Nicolson

Title: Technical Leader, Engineering

Revision: 2

This report replaces any previously entered test report under EDCS – **EDCS 1518106**. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

SECTION 1: OVERVIEW	3
SECTION 2: ASSESSMENT INFORMATION	4
2.1 General	4
2.2 Date of testing.	6
2.3 REPORT ISSUE DATE	6
2.4 TESTING FACILITIES	
2.5 EQUIPMENT ASSESSED (EUT)	
2.6 EUT DESCRIPTION	7
SECTION 3: RESULT SUMMARY	8
3.1 Results Summary Table	8
SECTION 4: SAMPLE DETAILS	10
APPENDIX A: EMMISSION TEST RESULTS	11
CONDUCTED TEST SETUP DIAGRAM	11
TARGET MAXIMUM CHANNEL POWER	11
A.1 99% and 26dB Bandwidth	
A.2 MAXIMUM CONDUCTED OUTPUT POWER/ POWER SPECTRAL DENSITY	
A.3 CONDUCTED SPURIOUS EMISSIONS	
A.4 CONDUCTED BANDEDGE	35
APPENDIX B: EMISSION TEST RESULTS	41
RADIATED EMISSION SETUP DIAGRAM-BELOW 1G	41
RADIATED EMISSION SETUP DIAGRAM-ABOVE 1G	
B.1 RADIATED SPURIOUS EMISSIONS	42
B.2 RADIATED EMISSIONS 30MHZ TO 1GHZ	
B.3 AC CONDUCTED EMISSIONS	
PHOTOGRAPHS OF SETUP	55
APPENDIX C: LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST	59
ADDENDIY E. ADDDEVIATION KEV AND DEFINITIONS	61

Section 1: Overview

The samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

Specifications:	
CFR47 Part 15.407	

Measurements were made in accordance with

- ANSI C63.10:2013
- KDB 789033 D02 General UNII Test Procedures New Rules v01
- KDB 662911 D01 Multiple Transmitter Output

Radio Test Report No: EDCS - 1518106

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature 15°C to 35°C (54°F to 95°F)

Atmospheric Pressure 860mbar to 1060mbar (25.4" to 31.3")

Humidity 10% to 75*%

e) All AC testing was performed at one or more of the following supply voltages:

110V 60 Hz (+/-20%)

Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB] The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss..

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Measurement Uncertainty Values

voltage and power measurements	± 2 dB
conducted EIRP measurements	± 1.4 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7
temperature measurements	± 0.54°
humidity measurements	± 2.3%
DC and low frequency measurements	± 2.5%

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

2.2 Date of testing

07-Jul-15 - 08-Aug-15

2.3 Report Issue Date

18-August-2015

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled.

2.4 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc., 125 West Tasman Drive San Jose, CA 95134, USA

Test Engineers

Jose Aguirre

2.5 Equipment Assessed (EUT)

AIR-CAP1532E-B-K9

2.6 EUT Description

The AIR-CAP1532 Cisco Aironet 802.11N Radio support the following modes of operation. The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst case data for all modes.

```
802.11n - Non HT-20, One Antenna, 6 to 54 Mbps
802.11n - Non HT-20, Two Antennas, 6 to 54 Mbps
```

802.11n - HT-20, One Antenna, M0 to M7

802.11n - HT-20, Two Antennas, M0 to M7

802.11n - HT-20, Two Antennas, M8 to M15

802.11n - HT-20 Beam Forming, Two Antennas, M0 to M7

802.11n - HT-20 Beam Forming, Two Antennas, M8 to M15

802.11n - HT-20 STBC, Two Antennas, M0 to M7

802.11n - Non HT-40 Duplicate, One Antenna, 6 to 54 Mbps

802.11n - Non HT-40 Duplicate, Two Antennas, 6 to 54 Mbps

802.11n - HT-40, One Antenna, M0 to M7

802.11n - HT-40, Two Antennas, M0 to M7

802.11n - HT-40, Two Antennas, M8 to M15

802.11n - HT-40 Beam Forming, Two Antennas, M0 to M7

802.11n - HT-40 Beam Forming, Two Antennas, M8 to M15

802.11n - HT-40 STBC, Two Antennas, M0 to M7

The following antennas are supported by this product series.

The data included in this report represent the worst case data for all antennas.

			Antenna	>30 degree 5 GHz Antenna Gain
Frequency	Part Number	Antenna Type	Gain (dBi)	(dBi)
	AIR-ANT5180V-N	Single Band Omni	8	-3
5 GHz		Single Band,		5
	AIR-ANT5114P2M-N	Directional Patch	14	
	AIR-ANT2547V-N=	Dual-band Omni	4 / 7	-6
2.4/5	AIR-ANT2547VG-N=	Dual-band Omni, Gray	4/7	-6
		Dual-band/Dual		1
GHz		Polarized Directional,		
	AIR-ANT2588P3M-N=	Patch	8/8	

Section 3: Result Summary

3.1 Results Summary Table

Conducted emissions

Basic Standard	Technical Requirements / Details	Result
FCC 15.407	99% & 26 dB Bandwidth: The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW. The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.	Pass
FCC 15.407	Output Power: 15.407: (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm). (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	Pass
FCC 15.407	Power Spectral Density: 15.407 The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	Pass
FCC 15.407	Conducted Spurious Emissions / Band-Edge: For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.25 GHz band shall not exceed an EIRP of -27dBm/MHz.	Pass
FCC 15.407 FCC 15.209 FCC 152.05	Restricted band: Unwanted emissions falling within the restricted bands, as defined in FCC 15.205 (a) must also comply with the radiated emission limits specified in FCC 15.209 (a).	Pass

Radiated Emissions (General requirements)

Basic Standard	Technical Requirements / Details	Result
FCC 15.209 FCC 15.205 TX Spurious Emissions: Except as provided elsewhere in this subpart, the emissions from an intentional		Pass
F00.45.007	radiator shall not exceed the field strength levels specified in the filed strength limits table in this section.	
FCC 15.207	AC conducted Emissions: Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.	Pass

^{*} MPE calculation is recorded in a separate report

Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing.

4.1 Sample Details

Sample No.	Equipment Details	Manufacturer	Hardware Rev.	Firmware Rev.	Software Rev.	Serial Number
S01	AIR-CAP1532E-B-K9	Cisco Systems	P2	ap1g3-k9w7- mx.153	Cisco IOS 15.3	RFDPP1AE004
S02*	AIR-PWR-C	Meanwell	A0	NA	NA	EB46E93226

^(*) S02 and S04 are support equipment Power supplies for EUT S01 and S03

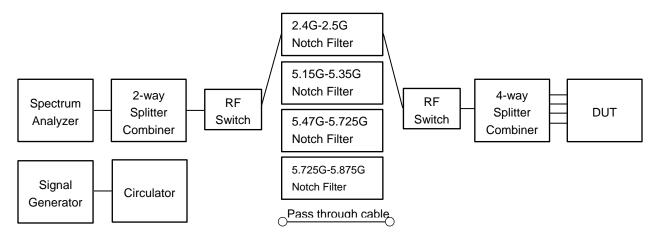
4.2 System Details

	System #	Description	Samples
Ī	1	AIR-CAP1532E-B-K9	S01
Ī	2	AIR-PWR-C	S02

4.3 Mode of Operation Details

Mode#	Description	Comments	
1	Continuous Transmitting	Continuous Transmitting >= 98% duty cycle	

All measurements were made in accordance with


- ANSI C63.10:2013
- KDB 789033 D02 General UNII Test Procedures New Rules v01
- KDB 662911 D01 Multiple Transmitter Output

Page No: 10 of 62

Appendix A: Emmission Test Results

Conducted Test Setup Diagram

Target Maximum Channel Power

The following table details the maximum supported Total Channel Power for all operating modes.

	Maximum Channel Power (dBm)	
	Frequen	cy (MHz)
Operating Mode	5180	5240
Non HT-20, 6 to 54 Mbps	18	20
Non HT-20 Beam Forming, 6 to 54 Mbps	15 20	
HT-20, M0 to M15, M0 to M9 1-0ss	18 20	
HT-20 Beam Forming, M0 to M15, M0 to M9 1-0ss	15 20	
HT-20 STBC, M0 to M7	15 20	
	5190	5230
Non HT-40, 6 to 54 Mbps	15	21
HT-40, M0 to M15, M0 to M9 1-0ss	14	21
HT-40 Beam Forming, M0 to M15, M0 to M9 1-0ss	14	21
HT-40 STBC, M0 to M7	14	21

A.1 99% and 26dB Bandwidth

FCC 15.407 The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW.

The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.

Test Procedure

Ref. ANSI C63.10: 2013 Section 6.9.3

99%	BW	and	EBW	(-26dB)
-----	----	-----	------------	---------

Test Procedure

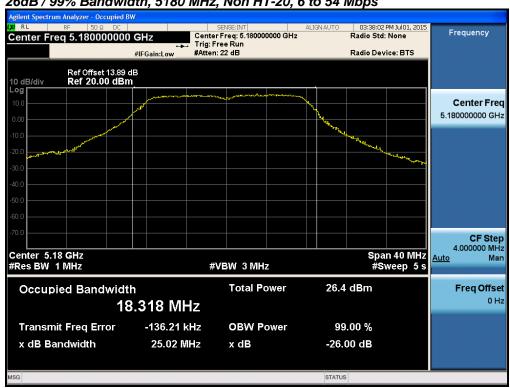
- 1. Set the radio in the continuous transmitting mode.
- 2. Allow the trace to stabilize.
- 3. Setting the x-dB bandwidth mode to -26dB and OBW power function to 99% within the measurement set up function.
- 4. Select the automatic OBW measurement function of an instrument to perform bandwidth measurement.
- 5. Capture graphs and record pertinent measurement data.

Ref. ANSI C63.10: 2013 Section 6.9.3

1011 7 11 101 000:10: 2010 0001011 0:0:0
99% BW and EBW (-26dB)
Test parameters
Span = 1.5 x to 5.0 times OBW
RBW = approx. 1% to 5% of the OBW
VBW ≥ 3 x RBW
Detector = Peak or where practical sample shall be used
Trace = Max. Hold

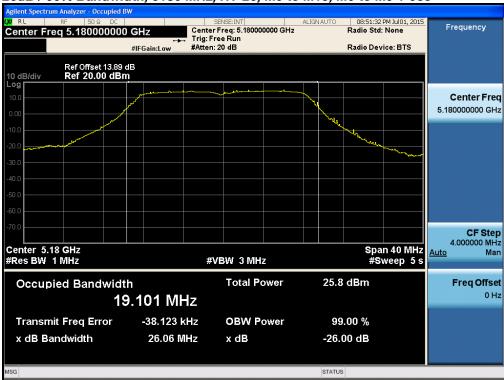
System Number	Description	Samples S01 S02	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support	S02		\triangleright

Tested By :	Date of testing:
Jose Aguirre	07-Jul-15 - 08-Aug-15
Test Result : PASS	

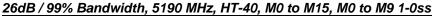

See Appendix C for list of test equipment

Page No: 12 of 62



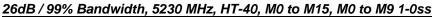

Frequency (MHz)	Mode	Data Rate (Mbps)	26dB BW (MHz)	99% BW (MHz)
5180	Non HT-20, 6 to 54 Mbps	6	25.0	18.3
2180	HT-20, M0 to M15, M0 to M9 1-0ss	m0	26.1	19.1
5190	Non HT-40, 6 to 54 Mbps	6	47.3	37.4
5190	HT-40, M0 to M15, M0 to M9 1-0ss	m0	50.2	37.6
5230	Non HT-40, 6 to 54 Mbps	6	45.1	36.5
5230	HT-40, M0 to M15, M0 to M9 1-0ss	m0	46.5	36.5
•				
5240	Non HT-20, 6 to 54 Mbps	6	22.0	16.6
3240	HT-20, M0 to M15, M0 to M9 1-0ss	m0	22.8	17.7



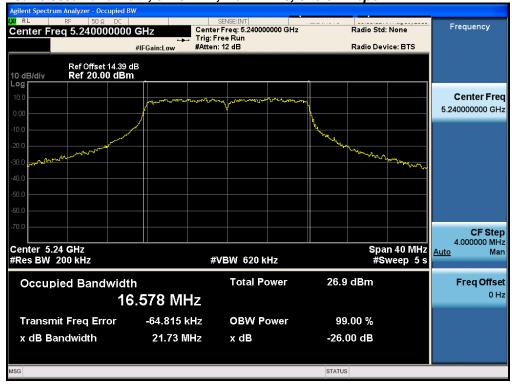


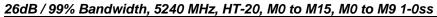
26dB / 99% Bandwidth, 5190 MHz, Non HT-40, 6 to 54 Mbps


Page No: 14 of 62



26dB / 99% Bandwidth, 5230 MHz, Non HT-40, 6 to 54 Mbps


Page No: 15 of 62



26dB / 99% Bandwidth, 5240 MHz, Non HT-20, 6 to 54 Mbps

Page No: 16 of 62

A.2 Maximum Conducted Output Power/ Power Spectral Density

15.407 (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density.

Test Procedure

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01 ANSI C63.10: 2013

Output Power

Test Procedure

- 1. Set the radio in the continuous transmitting mode at full power
- 2. Compute power by integrating the spectrum across the EBW (or alternatively entire 99% OBW) of the signal using the instrument's band power measurement function. The integration shall be performed using the spectrum analyzer band-power measurement function with band limits set equal to the EBW or the OBW band edges.
- 3. Capture graphs and record pertinent measurement data.

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01 ANSI C63.10: 2013 section 12.3.2.2 Method SA-1

Output Power

Test parameters

Span = >1.5 times the OBW

RBW = 1MHz

VBW ≥ 3 x RBW

Sweep = Auto couple

Detector = sample

Trace = Trace Average 100

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. (See ANSI C63.10 section 14.3.2.2)

Page No: 18 of 62

System Number	Description	S01	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support	S02		\triangleright

Tested By :	Date of testing:
Jose Aguirre	07-Jul-15 - 08-Aug-15
Test Result : PASS	

See Appendix C for list of test equipment

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Tx 2 Max Power (dBm)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
	Non HT-20, 6 to 54 Mbps	1	8	18.2		18.2	28.0	9.8
	Non HT-20, 6 to 54 Mbps	2	8	13.2	13.5	16.4	28.0	11.6
	Non HT-20 Beam Forming, 6 to 54 Mbps	2	11	11.6	11.5	14.6	25.0	10.4
0	HT-20, M0 to M7	1	8	17.6		17.6	28.0	10.4
5180	HT-20, M0 to M7	2	8	11.6	12.3	15.0	28.0	13.0
5	HT-20, M8 to M15	2	8	11.6	12.3	15.0	28.0	13.0
	HT-20 Beam Forming, M0 to M7	2	11	11.0	11.3	14.2	25.0	10.8
	HT-20 Beam Forming, M8 to M15	2	8	11.6	12.3	15.0	28.0	13.0
	HT-20 STBC, M0 to M7	2	8	11.6	12.3	15.0	28.0	13.0
	Non HT-40, 6 to 54 Mbps	1	8	14.8		14.8	28.0	13.2
	Non HT-40, 6 to 54 Mbps	2	8	12.1	12.5	15.3	28.0	12.7
	HT-40, M0 to M7	1	8	12.1		12.1	28.0	15.9
90	HT-40, M0 to M7	2	8	10.5	11.1	13.8	28.0	14.2
5190	HT-40, M8 to M15	2	8	10.5	11.1	13.8	28.0	14.2
	HT-40 Beam Forming, M0 to M7	2	11	6.7	7.1	9.9	25.0	15.1
	HT-40 Beam Forming, M8 to M15	2	8	10.5	11.1	13.8	28.0	14.2
	HT-40 STBC, M0 to M7	2	8	10.5	11.1	13.8	28.0	14.2
	Non HT-40, 6 to 54 Mbps	1	8	20.0		20.0	28.0	8.0
	Non HT-40, 6 to 54 Mbps	2	8	17.1	18.0	20.6	28.0	7.4
	HT-40, M0 to M7	1	8	20.6		20.6	28.0	7.4
30	HT-40, M0 to M7	2	8	17.4	18.4	20.9	28.0	7.1
52	HT-40, M8 to M15	2	8	17.4	18.4	20.9	28.0	7.1
	HT-40 Beam Forming, M0 to M7	2	11	17.4	18.4	20.9	25.0	4.1
	HT-40 Beam Forming, M8 to M15	2	8	17.4	18.4	20.9	28.0	7.1
	HT-40 STBC, M0 to M7	2	8	17.4	18.4	20.9	28.0	7.1
	Non HT-20, 6 to 54 Mbps	1	8	19.9		19.9	28.0	8.1
	Non HT-20, 6 to 54 Mbps	2	8	16.8	17.8	20.3	28.0	7.7
5240	Non HT-20 Beam Forming, 6 to 54 Mbps	2	11	16.8	17.8	20.3	25.0	4.7
52	HT-20, M0 to M7	1	8	19.8		19.8	28.0	8.2
	HT-20, M0 to M7	2	8	16.7	17.7	20.2	28.0	7.8
	HT-20, M8 to M15	2	8	16.7	17.7	20.2	28.0	7.8

Page No: 20 of 62

Radio Test Report No: EDCS - 1518106

HT-20	Beam Forming, M0 to M7	2	11	16.7	17.7	20.2	25.0	4.8
HT-20	Beam Forming, M8 to M15	2	8	16.7	17.7	20.2	28.0	7.8
HT-20	STBC, M0 to M7	2	8	16.7	17.7	20.2	28.0	7.8

Page No: 21 of 62

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/MHz)	Tx 2 PSD (dBm/MHz)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
	Non HT-20, 6 to 54 Mbps	1	8	7.7		7.7	15.0	7.3
	Non HT-20, 6 to 54 Mbps	2	8	2.7	3.0	5.9	15.0	9.1
	Non HT-20 Beam Forming, 6 to 54 Mbps	2	11	1.1	0.9	4.0	12.0	8.0
0	HT-20, M0 to M7	1	8	6.9		6.9	15.0	8.1
5180	HT-20, M0 to M7	2	8	0.7	1.6	4.2	15.0	10.8
_,	HT-20, M8 to M15	2	8	0.7	1.6	4.2	15.0	10.8
	HT-20 Beam Forming, M0 to M7	2	11	0.3	0.7	3.5	12.0	8.5
	HT-20 Beam Forming, M8 to M15	2	8	0.7	1.6	4.2	15.0	10.8
	HT-20 STBC, M0 to M7	2	8	0.7	1.6	4.2	15.0	10.8
	Non HT-40, 6 to 54 Mbps	1	8	1.7		1.7	15.0	13.3
	Non HT-40, 6 to 54 Mbps	2	8	-1.5	-0.8	1.9	15.0	13.1
	HT-40, M0 to M7	1	8	-1.9		-1.9	15.0	16.9
5190	HT-40, M0 to M7	2	8	-3.5	-2.5	0.0	15.0	15.0
51	HT-40, M8 to M15	2	8	-3.5	-2.5	0.0	15.0	15.0
	HT-40 Beam Forming, M0 to M7	2	11	-7.1	-6.8	-3.9	12.0	15.9
	HT-40 Beam Forming, M8 to M15	2	8	-3.5	-2.5	0.0	15.0	15.0
	HT-40 STBC, M0 to M7	2	8	-3.5	-2.5	0.0	15.0	15.0
	Non HT-40, 6 to 54 Mbps	1	8	6.4		6.4	15.0	8.6
	Non HT-40, 6 to 54 Mbps	2	8	3.4	4.3	6.9	15.0	8.1
	HT-40, M0 to M7	1	8	6.7		6.7	15.0	8.3
5230	HT-40, M0 to M7	2	8	3.6	4.6	7.1	15.0	7.9
52	HT-40, M8 to M15	2	8	3.6	4.6	7.1	15.0	7.9
	HT-40 Beam Forming, M0 to M7	2	11	3.6	4.6	7.1	12.0	4.9
	HT-40 Beam Forming, M8 to M15	2	8	3.6	4.6	7.1	15.0	7.9
	HT-40 STBC, M0 to M7	2	8	3.6	4.6	7.1	15.0	7.9
	Non HT-20, 6 to 54 Mbps	1	8	9.1		9.1	15.0	5.9
	Non HT-20, 6 to 54 Mbps	2	8	6.1	7.3	9.8	15.0	5.2
5240	Non HT-20 Beam Forming, 6 to 54 Mbps	2	11	6.1	7.3	9.8	12.0	2.2
52	HT-20, M0 to M7	1	8	9.0		9.0	15.0	6.0
	HT-20, M0 to M7	2	8	6.1	6.9	9.5	15.0	5.5
	HT-20, M8 to M15	2	8	6.1	6.9	9.5	15.0	5.5

Page No: 22 of 62

Radio Test Report No: EDCS - 1518106

HT-20 Beam Forming, M0 to M7	2	11	6.1	6.9	9.5	12.0	2.5
HT-20 Beam Forming, M8 to M15	2	8	6.1	6.9	9.5	15.0	5.5
HT-20 STBC, M0 to M7	2	8	6.1	6.9	9.5	15.0	5.5

Page No: 23 of 62

Frequency (MHz)	Mode	Tx Paths	Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Tx 2 Max Power (dBm)	Total Radiated Channel Power (dBm)	Limit (dBm)	Margin (dB)
	Non HT-20, 6 to 54 Mbps	1	1	<u>18.2</u>		18.2	21.0	2.8
	Non HT-20, 6 to 54 Mbps	2	1	<u>13.2</u>	<u>13.5</u>	16.4	21.0	4.6
	Non HT-20 Beam Forming, 6 to 54 Mbps	2	4	<u>11.6</u>	<u>11.5</u>	14.6	21.0	6.4
	HT-20, M0 to M7	1	1	<u>17.6</u>		17.6	21.0	3.4
5180	HT-20, M0 to M7	2	1	<u>11.6</u>	<u>12.3</u>	15.0	21.0	6.0
u)	HT-20, M8 to M15	2	1	<u>11.6</u>	<u>12.3</u>	15.0	21.0	6.0
	HT-20 Beam Forming, M0 to M7	2	4	<u>11.0</u>	<u>11.3</u>	14.2	21.0	6.8
	HT-20 Beam Forming, M8 to M15	2	1	<u>11.6</u>	<u>12.3</u>	15.0	21.0	6.0
	HT-20 STBC, M0 to M7	2	1	<u>11.6</u>	<u>12.3</u>	15.0	21.0	6.0
	Non HT-40, 6 to 54 Mbps	1	1	<u>14.8</u>		14.8	21.0	6.2
	Non HT-40, 6 to 54 Mbps	2	1	<u>12.1</u>	<u>12.5</u>	15.3	21.0	5.7
06	HT-40, M0 to M7	1	1	<u>12.1</u>		12.1	21.0	8.9
	HT-40, M0 to M7	2	1	<u>10.5</u>	<u>11.1</u>	13.8	21.0	7.2
5190	HT-40, M8 to M15	2	1	<u>10.5</u>	<u>11.1</u>	13.8	21.0	7.2
	HT-40 Beam Forming, M0 to M7	2	4	<u>6.7</u>	<u>7.1</u>	9.9	21.0	11.1
	HT-40 Beam Forming, M8 to M15	2	1	<u>10.5</u>	<u>11.1</u>	13.8	21.0	7.2
	HT-40 STBC, M0 to M7	2	1	<u>10.5</u>	<u>11.1</u>	13.8	21.0	7.2
	Non HT-40, 6 to 54 Mbps	1	1	<u>20.0</u>		20.0	21.0	1.0
	Non HT-40, 6 to 54 Mbps	2	1	<u>17.1</u>	<u>18.0</u>	20.6	21.0	0.4
	HT-40, M0 to M7	1	1	<u>20.6</u>		20.6	21.0	0.4
30	HT-40, M0 to M7	2	1	<u>17.4</u>	<u>18.4</u>	20.9	21.0	0.1
5230	HT-40, M8 to M15	2	1	<u>17.4</u>	<u>18.4</u>	20.9	21.0	0.1
	HT-40 Beam Forming, M0 to M7	2	4	<u>17.4</u>	<u>18.4</u>	20.9	21.0	0.1
	HT-40 Beam Forming, M8 to M15	2	1	<u>17.4</u>	<u>18.4</u>	20.9	21.0	0.1
	HT-40 STBC, M0 to M7	2	1	<u>17.4</u>	<u>18.4</u>	20.9	21.0	0.1
	Non HT-20, 6 to 54 Mbps	1	1	<u>19.9</u>		19.9	21.0	1.1
40	Non HT-20, 6 to 54 Mbps	2	1	<u>16.8</u>	<u>17.8</u>	20.3	21.0	0.7
5240	Non HT-20 Beam Forming, 6 to 54 Mbps	2	4	<u>16.8</u>	<u>17.8</u>	20.3	21.0	0.7
	HT-20, M0 to M7	1	1	19.8		19.8	21.0	1.2

Page No: 24 of 62

		-						
	HT-20, M0 to M7	2	1	<u>16.7</u>	<u>17.7</u>	20.2	21.0	0.8
	HT-20, M8 to M15	2	1	<u>16.7</u>	<u>17.7</u>	20.2	21.0	0.8
	HT-20 Beam Forming, M0 to M7	2	4	<u>16.7</u>	<u>17.7</u>	20.2	21.0	0.8
	HT-20 Beam Forming, M8 to M15	2	1	<u>16.7</u>	<u>17.7</u>	20.2	21.0	0.8
	HT-20 STBC, M0 to M7	2	1	16.7	17.7	20.2	21.0	0.8

Page No: 25 of 62

Peak Output Power, 5230 MHz, HT-40 Beam Forming, Mo to M7



Antenna A Antenna B

Power Spectral Density, 5240 MHz, Non HT-20 Beam Forming, 6 to 54 Mbps

Antenna A Antenna B

A.3 Conducted Spurious Emissions

15.407 (i) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. However, any unwanted emissions that fall into the band 5250-5350 MHz must be 26 dBc, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth, above 5.25 GHz.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Test Procedure

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01 ANSI C63.10: 2013

Conducted Spurious Emissions

Test Procedure

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Place the radio in continuous transmit mode. Use the procedures in KDB 789033 D02 General UNII Test Procedues New Rules v01 to substitute conducted measurements in place of radiated measurements.
- 3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).
- 4. Record the marker waveform peak to spur difference. Also measure any emissions in the restricted bands.
- 5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded.
- 6. Capture graphs and record pertinent measurement data.

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01 ANSI C63.10: 2013 section 12.7.7.3 (average) & 12.7.6 (peak)

Conducted Spurious Emissions

Test parameters

Span = 30MHz to 18GHz / 18GHz to 40GHz

RBW = 1 MHz

VBW ≥ 3 x RBW for Peak, 1kHz for Average

Sweep = Auto couple

Detector = Peak

Trace = Max Hold.

Page No: 28 of 62

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support	S02		\

Tested By :	Date of testing:		
Jose Aguirre	07-Jul-15 - 08-Aug-15		
Test Result : PASS			

See Appendix C for list of test equipment

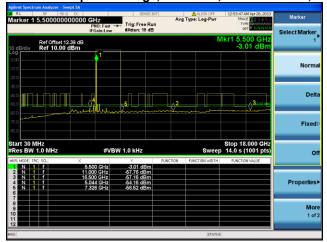
Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	Non HT-20, 6 to 54 Mbps	1	8	-60.7		-52.7	-27.00	25.7
	Non HT-20, 6 to 54 Mbps	2	8	-62.3	-63.1	-51.7	-27.00	24.7
	Non HT-20 Beam Forming, 6 to 54 Mbps	2	11	-61.7	-61.9	-47.8	-27.00	20.8
0	HT-20, M0 to M7	1	8	-62.1		-54.1	-27.00	27.1
5180	HT-20, M0 to M7	2	8	-63.0	-61.2	-51.0	-27.00	24.0
_,	HT-20, M8 to M15	2	8	-63.0	-61.2	-51.0	-27.00	24.0
	HT-20 Beam Forming, M0 to M7	2	11	-62.6	-61.9	-48.2	-27.00	21.2
	HT-20 Beam Forming, M8 to M15	2	8	-63.0	-61.2	-51.0	-27.00	24.0
	HT-20 STBC, M0 to M7	2	8	-63.0	-61.2	-51.0	-27.00	24.0
	Non HT-40, 6 to 54 Mbps	1	8	-64.4		-56.4	-27.00	29.4
	Non HT-40, 6 to 54 Mbps	2	8	-61.9	-64.7	-52.1	-27.00	25.1
	HT-40, M0 to M7	1	8	-63.0		-55.0	-27.00	28.0
5190	HT-40, M0 to M7	2	8	-63.1	-63.3	-52.2	-27.00	25.2
51	HT-40, M8 to M15	2	8	-63.1	-63.3	-52.2	-27.00	25.2
	HT-40 Beam Forming, M0 to M7	2	11	-62.9	-62.0	-48.4	-27.00	21.4
	HT-40 Beam Forming, M8 to M15	2	8	-63.1	-63.3	-52.2	-27.00	25.2
	HT-40 STBC, M0 to M7	2	8	-63.1	-63.3	-52.2	-27.00	25.2
	Non HT-40, 6 to 54 Mbps	1	8	-61.5		-53.5	-27.00	26.5
	Non HT-40, 6 to 54 Mbps	2	8	-63.9	-62.0	-51.8	-27.00	24.8
	HT-40, M0 to M7	1	8	-63.3		-55.3	-27.00	28.3
30	HT-40, M0 to M7	2	8	-62.8	-63.6	-52.2	-27.00	25.2
523	HT-40, M8 to M15	2	8	-62.8	-63.6	-52.2	-27.00	25.2
	HT-40 Beam Forming, M0 to M7	2	11	-62.8	-63.6	-49.2	-27.00	22.2
	HT-40 Beam Forming, M8 to M15	2	8	-62.8	-63.6	-52.2	-27.00	25.2
	HT-40 STBC, M0 to M7	2	8	-62.8	-63.6	-52.2	-27.00	25.2
	·							
	Non HT-20, 6 to 54 Mbps	1	8	-61.2		-53.2	-27.00	26.2
	Non HT-20, 6 to 54 Mbps	2	8	-61.0	-62.7	-50.8	-27.00	23.8
10	Non HT-20 Beam Forming, 6 to 54 Mbps	2	11	-61.0	-62.7	-47.8	-27.00	20.8
5240	HT-20, M0 to M7	1	8	-61.5		-53.5	-27.00	26.5
	HT-20, M0 to M7	2	8	-60.0	-60.6	-49.3	-27.00	22.3
	HT-20, M8 to M15	2	8	-60.0	-60.6	-49.3	-27.00	22.3

Page No: 30 of 62

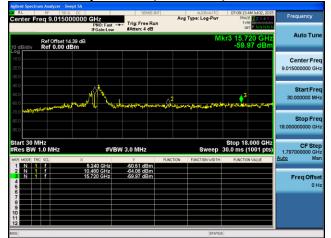
Radio Test Report No: EDCS - 1518106

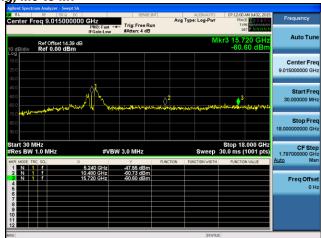
HT-20 Beam Forming, M0 to M7	2	11	-60.0	-60.6	-46.3	-27.00	19.3
HT-20 Beam Forming, M8 to M15	2	8	-60.0	-60.6	-49.3	-27.00	22.3
HT-20 STBC, M0 to M7	2	8	-60.0	-60.6	-49.3	-27.00	22.3


Page No: 31 of 62


Conducted Spurs Peak Upper, All Antennas

Page No: 32 of 62


Conducted Spurs Average, 5500 MHz, Non HT/VHT20, 6 to 54 Mbps



Antenna A

Conducted Spurs Peak, 5240 MHz, HT-20 Beam Forming, M0 to M7

Antenna A Antenna B

A.4 Conducted Bandedge

15.407 (i) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Test Procedure

Ref. ANSI C63.10: 2013

Conducted Bandedge

Test Procedure

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Place the radio in continuous transmit mode. Use the procedures in ANSI C63.10: 2013 to substitute conducted measurements in place of radiated measurements.
- 3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).
- 4. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.
- 5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded.
- 6. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands
- 7. Capture graphs and record pertinent measurement data.

Ref. ANSI C63.10: 2013 section 12.7.6 (peak) & 12.7.7.3 (average, Method VB-A (Alternative))

Conducted Bandedge

Test parameters restricted Band

RBW = 1 MHz

VBW ≥ 3 x RBW for Peak, 100Hz for Average

Sweep = Auto couple

Detector = Peak

Trace = Max Hold.

Page No: 35 of 62

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	\checkmark	
1	Support	S02		\

Tested By :	Date of testing:		
Jose Aguirre	07-Jul-15 - 08-Aug-15		
Test Result : PASS			

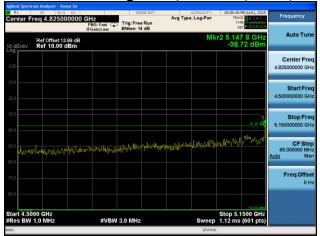
See Appendix C for list of test equipment

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dBm)	Margin (dB)
	Non HT-20, 6 to 54 Mbps	1	8	-50.3		-42.3	-41.25	1.1
	Non HT-20, 6 to 54 Mbps	2	8	-50.6	-57.4	-41.8	-41.25	0.5
	Non HT-20 Beam Forming, 6 to 54 Mbps	2	11	-53.6	-59.8	-41.7	-41.25	0.4
0	HT-20, M0 to M7	1	8	-50.2		-42.2	-41.25	1.0
5180	HT-20, M0 to M7	2	8	-49.7	-59.4	-41.3	-41.25	0.0
Δ,	HT-20, M8 to M15	2	8	-49.7	-59.4	-41.3	-41.25	0.0
	HT-20 Beam Forming, M0 to M7	2	11	-53.4	-59.9	-41.5	-41.25	0.3
	HT-20 Beam Forming, M8 to M15	2	8	-49.7	-59.4	-41.3	-41.25	0.0
	HT-20 STBC, M0 to M7	2	8	-49.7	-59.4	-41.3	-41.25	0.0
	Non HT-40, 6 to 54 Mbps	1	8	-49.9		-41.9	-41.25	0.7
	Non HT-40, 6 to 54 Mbps	2	8	-53.6	-54.3	-42.9	-41.25	1.7
	HT-40, M0 to M7	1	8	-49.9		-41.9	-41.25	0.7
5190	HT-40, M0 to M7	2	8	-53.3	-53.7	-42.5	-41.25	1.2
51	HT-40, M8 to M15	2	8	-53.3	-53.7	-42.5	-41.25	1.2
	HT-40 Beam Forming, M0 to M7	2	11	-53.8	-58.8	-41.6	-41.25	0.4
	HT-40 Beam Forming, M8 to M15	2	8	-53.3	-53.7	-42.5	-41.25	1.2
	HT-40 STBC, M0 to M7	2	8	-53.3	-53.7	-42.5	-41.25	1.2

Page No: 37 of 62

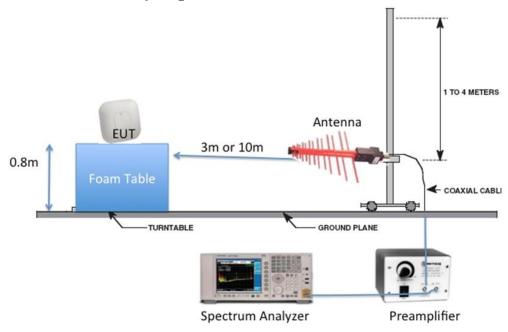
Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dBm)	Margin (dB)
	Non HT-20, 6 to 54 Mbps	1	8	-38.3		-30.3	-21.25	9.1
	Non HT-20, 6 to 54 Mbps	2	8	-45.2	-46.1	-34.6	-21.25	13.4
	Non HT-20 Beam Forming, 6 to 54 Mbps	2	11	-46.4	-47.8	-33.0	-21.25	11.8
0	HT-20, M0 to M7	1	8	-37.4		-29.4	-21.25	8.2
5180	HT-20, M0 to M7	2	8	-47.8	-48.4	-37.1	-21.25	15.8
Δ,	HT-20, M8 to M15	2	8	-47.8	-48.4	-37.1	-21.25	15.8
	HT-20 Beam Forming, M0 to M7	2	11	-46.6	-47.1	-32.8	-21.25	11.6
	HT-20 Beam Forming, M8 to M15	2	8	-47.8	-48.4	-37.1	-21.25	15.8
	HT-20 STBC, M0 to M7	2	8	-47.8	-48.4	-37.1	-21.25	15.8
	Non HT-40, 6 to 54 Mbps	1	8	-42.5		-34.5	-21.25	13.3
	Non HT-40, 6 to 54 Mbps	2	8	-43.9	-44.3	-33.1	-21.25	11.8
	HT-40, M0 to M7	1	8	-41.2		-33.2	-21.25	12.0
5190	HT-40, M0 to M7	2	8	-44.3	-45.3	-33.8	-21.25	12.5
51	HT-40, M8 to M15	2	8	-44.3	-45.3	-33.8	-21.25	12.5
	HT-40 Beam Forming, M0 to M7	2	11	-46.6	-48.4	-33.4	-21.25	12.1
	HT-40 Beam Forming, M8 to M15	2	8	-44.3	-45.3	-33.8	-21.25	12.5
	HT-40 STBC, M0 to M7	2	8	-44.3	-45.3	-33.8	-21.25	12.5

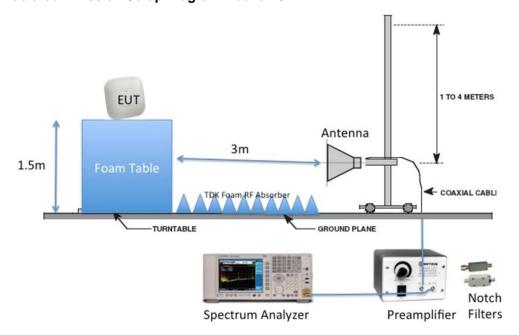
Page No: 38 of 62


Conducted Bandedge Average, 5180 MHz, HT-20, M0 to M7

Antenna A Antenna B

Conducted Bandedge Peak, 5180 MHz, HT-20, M0 to M7


Antenna A


Appendix B: Emission Test Results

Testing Laboratory: Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134, USA

Radiated Emission Setup Diagram-Below 1G

Radiated Emission Setup Diagram-Above 1G

B.1 Radiated Spurious Emissions

FCC 15.205 / 15.407 Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Ref. ANSI C63.10: 2013 section 12.7.6 (peak) & 12.7.7.3 (average)

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span: 1GHz – 18 GHz/18GHz-26G/26GHz-40GHz

Reference Level: 80 dBuV Attenuation: 10 dB Sweep Time: Coupled Resolution Bandwidth: 1MHz

Video Bandwidth: 3 MHz for peak, 1 KHz for average

Detector: Peak

Terminate the access Point RF ports with 50 ohm loads.

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

Save 2 plots: 1) Average plot (Vertical and Horizontal), Limit= 54dBuV/m @3m

2) Peak plot (Vertical and Horizontal), Limit = 74dBuV/m @3m

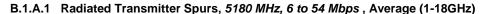
Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

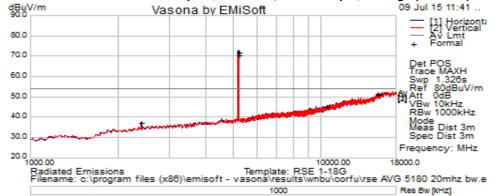
This report represents the worst case data for all supported operating modes and antennas. There are no measurable emissions above 18 GHz.

System Number	Description	Samples	System under test	Support equipment
4	EUT	S01	Ŋ	
1	Support	S02		\checkmark

Tested By :	Date of testing:
Jose Aguirre	07-Jul-15 - 08-Aug-15
Test Result : PASS	

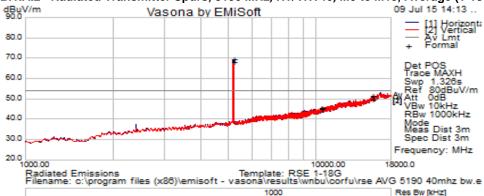
See Appendix C for list of test equipment

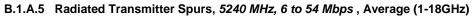



B.1.A Transmitter Radiated Spurious Emissions-Average worst case

Frequency (MHz)	Mode	Data Rate (Mbps)	Spurious Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (MHz)
5180	Non HT-20, 6 to 54 Mbps	6	51.7	54	2.3
5190	Non HT-40, 6 to 54 Mbps	6	51.8	54	2.2
5230	Non HT-40, 6 to 54 Mbps	6	50.2	54	3.8
5240	Non HT-20, 6 to 54 Mbps	6	50.9	54	3.1

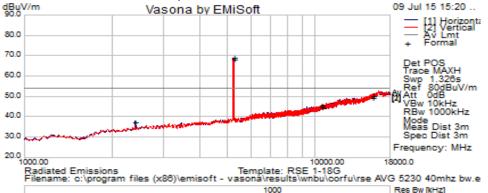
Page No: 43 of 62




Frequency	Raw	Cable		Level	Measurement	Р	Hgt	Azt	Limit	Margin	Pass
MHz	dBuV	Loss	AF dB	dBuV/m	Туре	ol	cm	Deg	dBuV/m	dB	/Fail
5182.688	63.99	9.4	-2.91	70.48	Average.	Н	145	171	1	1	1
5182.844	65.31	9.4	-2.91	71.8	Average.	٧	176	95	-	-	1
10360.453	28	13.5	3.8	45.3	Average.	Н	145	171	54	-8.7	Pass
10360.568	27.9	13.5	3.8	45.2	Average.	٧	176	95	54	-8.8	Pass
15537.256	30	17.2	4.5	51.7	Average.	Н	145	171	54	-2.3	Pass
15537.859	29.4	17.2	4.5	51.1	Average.	٧	176	95	54	-2.9	Pass
2402.727	32.73	6.35	-1.58	37.5	Average.	Н	145	171	54	-16.5	Pass

B.1.A.2 Radiated Transmitter Spurs, 5190 MHz, HT/VHT40, M0 to M15, Average (1-18GHz)

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
5185.433	63	9.4	-2.9	69.5	Average.	Н	111	185	1	1	1
5187.868	61.7	9.4	-2.9	68.2	Average.	٧	106	45	-	-	1
10381.49	28.3	13.5	3.8	45.7	Average.	V	106	45	54	-8.3	Pass
10382.548	27.6	13.5	3.8	45	Average.	Н	111	185	54	-9	Pass
15568.894	28.3	17.2	4.4	49.8	Average.	Н	111	185	54	-4.2	Pass
15569.018	30.3	17.2	4.4	51.8	Average.	٧	106	45	54	-2.2	Pass



Frequency	Raw	Cable	AF	Level	Measurement	Р	Hgt	Azt	Limit	Margin	Pass
MHz	dBuV	Loss	dB	dBuV/m	Type	ol	cm	Deg	dBuV/m	dB	/Fail
5242.905	62	9.5	-2.8	68.7	Average.	Н	123	157			-
5246.27	62.4	9.5	-2.8	69.1	Average.	V	188	68			
10478.992	26.3	13.6	4.4	44.3	Average.	Н	124	157	54	-9.7	Pass
10480.3	26.5	13.6	4.3	44.5	Average.	٧	188	68	54	-9.5	Pass
15718.208	29.1	17.3	4.5	50.9	Average.	Н	124	157	54	-3.1	Pass
15719.792	27.7	17.3	4.5	49.6	Average.	٧	188	68	54	-4.4	Pass
			-1.5								
2403.171	31.8	6.35	7	36.58	Average.	Н	100	360	54	-17.42	Pass

B.1.A.6 Radiated Transmitter Spurs, 5230 MHz, HT/VHT40, M0 to M23, M0.0 to M9.4, Average (1-18GHz)

				- 10	300		I NEO DI	v [Ki iz]			
Frequency	Raw	Cable		Level	Measurement	Р	Hgt	Azt	Limit	Margin	Pass
MHz	dBuV	Loss	AF dB	dBuV/m	Type	ol	cm	Deg	dBuV/m	dB	/Fail
5228.125	62.7	9.5	-2.8	69.4	Average.	Н	100	196	1	1	1
5243.438	61.4	9.5	-2.8	68.1	Average.	٧	101	360			
10461.254	27.5	13.6	4.3	45.5	Average.	Н	101	360	54	-8.5	Pass
10462.129	26.61	13.62	4.35	44.58	Average.	٧	101	360	54	-9.42	Pass
15689.691	28.6	17.3	4.3	50.2	Average.	Н	101	360	54	-3.8	Pass
15690.933	27.58	17.3	4.33	49.21	Average.	٧	101	360	54	-4.79	Pass
2402.705	32.8	6.35	-1.58	37.57	Average.	Н	101	196	54	-16.43	Pass

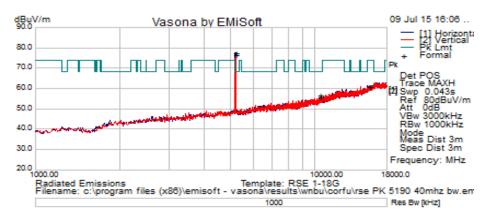
Page No: 45 of 62

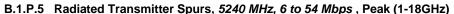
B.1.A.9 Radiated Transmitter Spurs, All rate, All modes, Average (26.5- 40GHz)

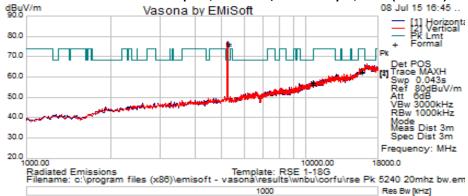

B.1.P Transmitter Radiated Spurious Emissions-Peak worst case

Frequency (MHz)	Mode	Data Rate (Mbps)	Spurious Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (MHz)
5180	Non HT-20, 6 to 54 Mbps	6	63.9	74	10.1
5190	Non HT-40, 6 to 54 Mbps	6	61.1	74	12.9
5230	Non HT-40, 6 to 54 Mbps	6	61.5	74	12.5
5240	Non HT-20, 6 to 54 Mbps	6	63.0	74	11.0

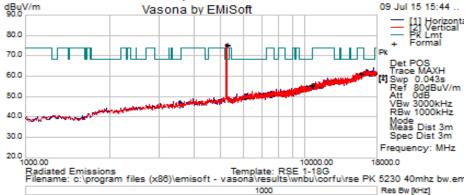
Page No: 47 of 62




Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	P ol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
5185.438	73.68	9.4	-2.92	80.16	Peak.	Н	145	168			
5185.438	72.21	9.4	-2.92	78.69	Peak.	٧	176	98	==		
10359.055	38.38	13.54	3.77	55.69	Peak.	Н	145	168	68.2	-12.51	Pass
10359.996	38.34	13.54	3.78	55.66	Peak.	٧	176	98	68.2	-12.54	Pass
15537.445	41.4	17.22	4.49	63.11	Peak.	Н	145	168	74	-10.89	Pass
15538.617	42.23	17.21	4.49	63.94	Peak.	٧	176	98	74	-10.06	Pass


B.1.P.2 Radiated Transmitter Spurs, 5190 MHz, HT/VHT40, M0 to M23, M0.0 to M9.4, Peak (1-18GHz)

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	P ol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
5185.433	71	9.4	-2.9	77.45	Peak.	Н	111	185	1	1	1
5187.868	70.1	9.4	-2.9	76.6	Peak.	٧	106	45	-	1	1
10382.166	38.5	13.54	3.83	55.87	Peak.	Н	111	185	68.2	-12.33	Pass
10382.816	39.6	13.54	3.83	56.97	Peak.	V	106	45	68.2	-11.23	Pass
15569.308	39.27	17.17	4.36	60.8	Peak.	Н	111	185	74	-13.2	Pass
15568.424	39.5	17.17	4.37	61.04	Peak.	V	106	45	74	-12.96	Pass



Frequency Raw Cable Level Measurement Р Hgt Azt Limit Margin **Pass** MHz dBuV Loss AF dB dBuV/m Type oΙ cm Deg dBuV/m dB /Fail 5242.905 69.14 9.48 -2.77 75.85 Peak. Н 123 157 5246.27 69.97 9.48 -2.77 76.68 Peak. ٧ 188 68 10478.992 Н 39.27 13.63 4.35 57.25 Peak. 124 157 68.2 -10.95 **Pass** 10480.3 38.56 4.34 56.53 Peak. ٧ 188 68 68.2 13.63 -11.67 Pass 15718.208 40.6 17.31 4.53 62.44 Peak. Н 124 157 74 -11.56 Pass 15719.792 41.1 17.32 4.54 62.96 Peak. 188 68 74 -11.04 Pass

B.1.P.6 Radiated Transmitter Spurs, 5230 MHz, HT/VHT40, M0 to M23, M0.0 to M9.4, Peak (1-18GHz)

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	P ol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail
IVIIIZ	ubuv	LUSS	AI UB	ubuv/III	туре	UI	CIII	Deg	ubuv/III	ub	/ I all
5228.125	69.1	9.45	-2.75	75.8	Peak.	Н	100	196			
5243.438	68.39	9.48	-2.77	75.1	Peak.	٧	101	360		-	
10461.254	37.9	13.6	4.3	55.9	Peak.	Н	101	360	68.2	-12.3	Pass
10462.129	37.2	13.6	4.3	55.2	Peak.	٧	101	360	68.2	-13	Pass
15689.691	39.6	17.3	4.3	61.2	Peak.	Н	101	360	74	-12.8	Pass
15690.933	39.9	17.3	4.3	61.5	Peak.	٧	101	360	74	-12.5	Pass

B.1.P.7 Radiated Transmitter Spurs, All rate, All modes, Peak (18-26.5GHz) Horizontal & Vertical

B.1.P.8 Radiated Transmitter Spurs, All rate, All modes, Peak (26.5-40GHz) Horizontal & Vertical

B.2 Radiated Emissions 30MHz to 1GHz

FCC 15.209 / 15.205 / 15.407 Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Ref. ANSI C63.10: 2013 section 6.5

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span: 30MHz – 1GHz
Reference Level: 80 dBuV
Attenuation: 10 dB
Sweep Time: Coupled
Resolution Bandwidth: 100kHz
Video Bandwidth: 300kHz

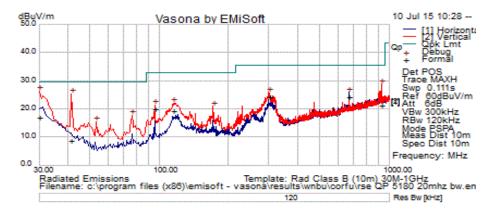
Detector: Peak for Pre-scan, Quasi-Peak

Compliance shall be determined using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak

detection.

Terminate the access Point RF ports with 50 ohm loads.

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)


This report represents the worst case data for all supported operating modes and antennas.

System Number	Description	Samples	System under test	Support equipment	
4	EUT	S01	\checkmark		
1	Support	S02		\square	

Tested By :	Date of testing:
Jose Aguirre	07-Jul-15 - 08-Aug-15
Test Result : PASS	

See Appendix C for list of test equipment

Frequency	Raw	Cable		Level	Measurement	Ро	Hgt	Azt	Limit	Margin	Pass
MHz	dBuV	Loss	AF dB	dBuV/m	Туре	I	cm	Deg	dBuV/m	dB	/Fail
924.752	23.1	3.4	-5.3	21.2	Quasi Max	٧	284	21	35.5	-14.4	Pass
30.001	23.4	0.6	-6.9	17.1	Quasi Max	٧	203	21	29.5	-12.4	Pass
41.371	23.4	0.8	-15.4	8.8	Quasi Max	٧	146	132	29.5	-20.7	Pass
115.497	32	1.3	-14.2	19.2	Quasi Max	٧	126	169	33	-13.8	Pass
300.022	35.8	2.1	-13.7	24.1	Quasi Max	٧	109	172	35.5	-11.4	Pass
670.009	30.1	2.8	-8.6	24.3	Quasi Max	Н	391	225	35.5	-11.2	Pass
95.374	37.6	1.1	-18.8	20	Quasi Max	٧	162	324	33	-13	Pass

B.3 AC Conducted Emissions

FCC 15.207 Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.

Measurement Procedure

Accordance with ANSI C63.10:2013 section 6.2

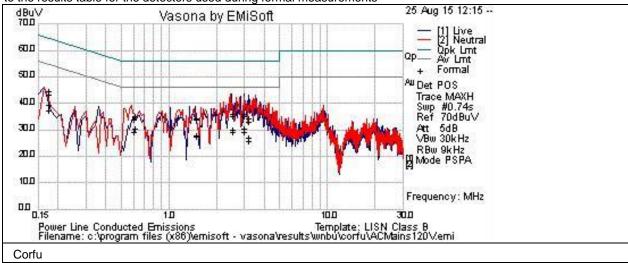
Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span: 150 KHz – 30 MHz

Attenuation: 10 dB Sweep Time: Coupled Resolution Bandwidth: 9 KHz Video Bandwidth: 30 KHz

Detector: Quasi-Peak / Average

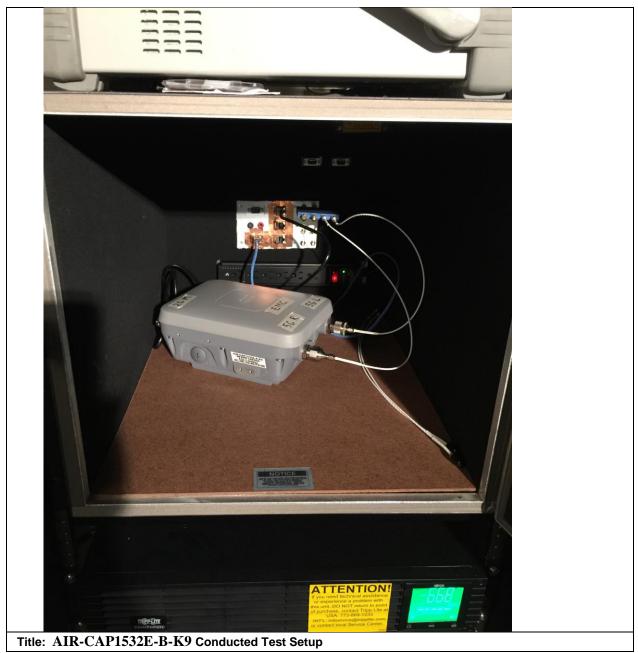
System Number	Description	Samples	System under test	Support equipment
4	EUT	S01	\searrow	
1	Support	S02		\checkmark


Tested By :	Date of testing:
Jose Aguirre	07-Jul-15 - 08-Aug-15
Test Result : PASS	

See Appendix C for list of test equipment

Graphical Test Results

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

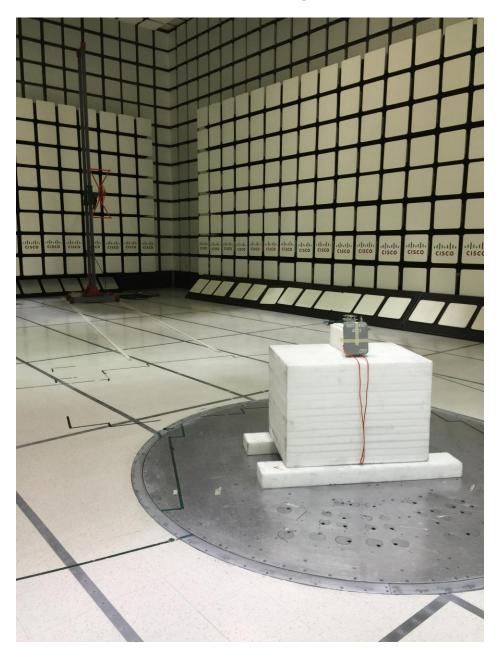


Test Results Table

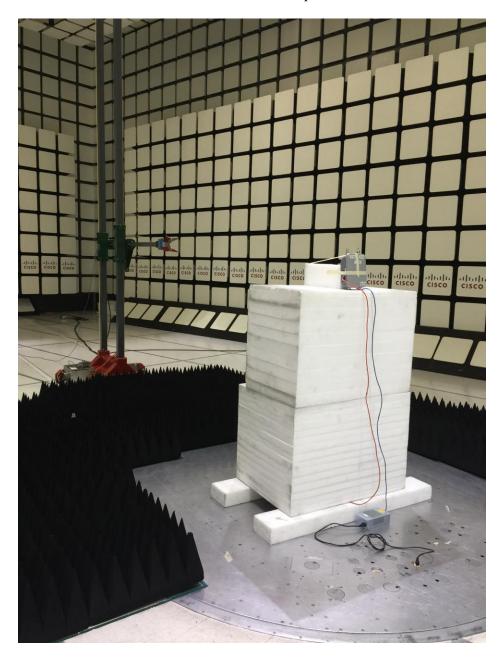
Test Nesults	IUDIC									
Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail	Comments
0.606	15	20	0	35	Qp	L	56	-21	Pass	
2.508	16.2	20	0	36.2	Qp	L	56	-19.8	Pass	
2.986	16.2	20	0.1	36.2	Qp	L	56	-19.8	Pass	
0.173	23.6	20.9	0	44.6	Qp	L	64.8	-20.2	Pass	
1.478	14.5	20	0	34.5	Qp	L	56	-21.5	Pass	
3.18	14.3	20	0	34.3	Qp	L	56	-21.7	Pass	
2.986	15	20	0.1	35	Qp	N	56	-21	Pass	
2.508	15.1	20	0	35.1	Qp	N	56	-20.9	Pass	
3.18	12.8	20	0	32.8	Qp	N	56	-23.2	Pass	
0.604	13.7	20	0	33.8	Qp	N	56	-22.2	Pass	
0.173	22.4	20.9	0	43.4	Qp	N	64.8	-21.4	Pass	
1.478	13.9	20	0	33.9	Qp	N	56	-22.1	Pass	
0.606	10.4	20	0	30.4	Av	L	46	-15.6	Pass	
2.508	10.1	20	0	30.1	Av	L	46	-15.9	Pass	
2.986	10.6	20	0.1	30.7	Av	L	46	-15.3	Pass	
0.173	18.5	20.9	0	39.5	Av	L	54.8	-15.3	Pass	
1.478	7.9	20	0	27.9	Av	L	46	-18.1	Pass	
3.18	7	20	0	27.1	Av	L	46	-18.9	Pass	
2.986	9.3	20	0.1	29.3	Av	N	46	-16.7	Pass	
2.508	9.3	20	0	29.3	Av	N	46	-16.7	Pass	
3.18	5.6	20	0	25.7	Av	N	46	-20.3	Pass	
0.604	9	20	0	29.1	Av	N	46	-16.9	Pass	
0.173	16.5	20.9	0	37.5	Av	N	54.8	-17.4	Pass	
1.478	7.4	20	0	27.4	Av	N	46	-18.6	Pass	

Photographs of setup

This is a dual band $2.4 \, \text{GHz} / 5 \, \text{GHz}$ device. All ports in this test set up photo are connected as all testing is automated. Section 2.6 of this test report given an overview of the different Tx antenna combinations used by this device.



AIR-CAP1532E-B-K9 AC Mains Conducted Emissions setup



AIR-CAP1532E-B-K9 Radiated Emissions setup 30MHz – 1GHz

AIR-CAP1532E-B-K9 Radiated Emissions setup above 1GHz

Appendix C: List of Test Equipment Used to perform the test

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due	Test Item			
	Te	st Equipment used for Radiated Emission	s					
CIS008447	Cisco / NSA 10m Chamber	NSA 10m Chamber	14-Oct-14	14-Oct-15	B.2			
CIS030652	Sunol Sciences / JB1	Combination Antenna, 30MHz-2GHz	5-Nov-14	5-Nov-15	B.2			
CIS033988	Agilent /E4446A	PSA Spectrum Analyzer	9-Dec-14	9-Dec-15	B.1			
CIS041929	Newport /iBTHP-5-DB9	5 inch Temp/RH/Press Sensor w/20ft cable	20-Dec-14	20-Dec-15	B.1, B.2			
CIS024998	MICRO-COAX / UFB197C-1-0240-504504	Coaxial RF Cable, 26.5 GHz	11-Mar-15	11-Mar-16	B.1, B.2			
CIS035284	ETS Lindgren / 3117	Double Ridged Horn Antenna	16-Sep-14	16-Sep-15	B.1			
CIS049516	Keysight / N9030A	PXA Spectrum Analyzer	12-Nov-14	12-Nov-15	B.1, B.2			
CIS043124	Cisco /Above 1GHz Site Cal	Above 1GHz Cispr Site Verification	15-Jan-15	15-Jan-16	B.1			
CIS008166	HP / 8491B Opt 010	10dB Attenuator	2-Feb-15	2-Feb-16	B.1			
CIS020975	Micro-Coax / UFB311A-0-1344-520520	RF Coaxial Cable, to 18GHz, 134.4 in	18-Feb-15	18-Feb-16	B.1, B.2			
CIS030559	Micro-Coax / UFB311A-1-0950-504504	RF Coaxial Cable, to 18GHz, 95 in	20-Feb-15	20-Feb-16	B.1, B.2			
CIS003003	HP / 83731B	Synthesized Signal Generator	13-Mar-15	13-Mar-16	B.1			
CIS005691	Miteq / NSP1800-25-S1	Broadband Preamplifier (1-18GHz)	25-Jun-15	25-Jun-16	B.1			
CIS041979	Cisco / 1840	18-40GHz EMI Test Head/Verification Fixture	13-Jul-15	13-Jul-16	B.1			
CIS047410	Agilent / N9038A	EMI Receiver	17-Feb-15	17-Feb-16	B.1, B.2			
CIS051642	Huber+Suhner / Sucoflex 106PA	RF N Type Cable 8.5m	10-Feb-15	10-Feb-16	B.1, B.2			
	Test Equip	ment used for AC Mains Conducted E	missions					
CIS008192	Fischer Custom Communications FCC-450B-2.4-N	Instrumentation Limiter	28-JUL-15	28-JUL-16	B.3			
CIS008197	TTE /H613-150K-50-21378	Hi Pass Filter - 150KHz cutoff	16-APR-15	16-APR-16	B.3			
CIS008471	Bird / 5-T-MB	50 Ohm, 5W Terminator, Type BNC	18-SEP-14	18-SEP-15	B.3			
CIS019337	Fischer Custom Communications FCC-LISN-50/250-50-2-01	LISN	08-SEP-14	08-SEP-15	B.3			
CIS019136	Fischer Custom Communications FCC-801-M3-32A	Power Line Coupling/Decoupling Network	12-NOV-14	12-NOV-15	B.3			
CIS023874	Fischer Custom Communications FCC-LISN-PA-NEMA-5-15	Power Adaptor, Polarized 120VAC	08-SEP-14	08-SEP-15	B.3			
CIS035235	Lufkin / HY1035CME	5 Meter Tape Measure	Cal Not Required	N/A	B.3			
CIS036031	York / CNE V	Comparison Noise Emitter	Cal Not Required	N/A	B.3			
CIS039110	Coleman /RG-223	25 ft BNC cable	24-NOV-14	24-NOV-15	B.3			
CIS045050	ROHDE & SCHWARZ/ ESCI	EMI Test Receiver	31-Oct-2014	31 Oct 2015	B.3			
	RF Conducted at output antenna port							
CIS050721	N9030A/ Keysight	PXA Signal Analyzer	13-Apr-16	13-Apr-16	A1 thru A4			

Page No: 59 of 62

Radio Test Report No: EDCS - 1518106

CIS054609	ZFSC-2-10G /Mini-Circuits	Splitter	01-June-15	01-June-16	A1 thru A4
CIS054608	D3C2060 / Ditom	Splitter	01-June-15	01-June-16	A1 thru A4
CIS054607	PS4-09-452/4S/ Pulsar	Splitter	01-June-15	01-June-16	A1 thru A4
CIS054606	BRC50705-02/ Micro-Tronics	Notch Filter	01-June-15	01-June-16	A1 thru A4
CIS054605	BRC50703-02 / Micro-Tronics	Notch Filter	01-June-15	01-June-16	A1 thru A4
CIS054604	BRC50704-02/ Micro-Tronics	Notch Filter	01-June-15	01-June-16	A1 thru A4
CIS054603	BRM50702-02/ Micro-Tronics	Notch Filter	01-June-15	01-June-16	A1 thru A4
CIS054637	BWS30-W2/ Aeroflex	SMA 30dB Attenuator	02-June-15	02-June-16	A1 thru A4
CIS054636	BWS20-W2/ Aeroflex	20dB SMA Attenuator	02-June-15	02-June-16	A1 thru A4
CIS054625	RA08-S1S1-24/Megaphase	SMA cable 24"	02-June-15	02-June-16	A1 thru A4
CIS054624	RA08-S1S1-18/Megaphase	SMA cable 18"	02-June-15	02-June-16	A1 thru A4
CIS054623	RA08-S1S1-18/Megaphase	SMA cable 18"	02-June-15	02-June-16	A1 thru A4
CIS054622	RA08-S1S1-18/Megaphase	SMA cable 18"	02-June-15	02-June-16	A1 thru A4
CIS054621	RA08-S1S1-18/Megaphase	SMA cable 18"	02-June-15	02-June-16	A1 thru A4

Appendix E: Abbreviation Key and Definitions

The following table defines abbreviations used within this test report.

Abbreviation	Description	Abbreviation	Description		
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit		
EMI	Electro Magnetic Interference	°C	Degrees Celsius		
EUT	Equipment Under Test	Temp	Temperature		
ITE	Information Technology Equipment	S/N	Serial Number		
TAP	Test Assessment Schedule	Qty	Quantity		
ESD	Electro Static Discharge	emf	Electromotive force		
EFT	Electric Fast Transient	RMS	Root mean square		
EDCS	Engineering Document Control System	Qp	Quasi Peak		
Config	Configuration	Av	Average		
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak		
Cal	Calibration	kHz	Kilohertz (1x10 ³)		
EN	European Norm	MHz	MegaHertz (1x10 ⁶)		
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)		
CISPR	International Special Committee on Radio Interference	Н	Horizontal		
CDN	Coupling/Decoupling Network	V	Vertical		
LISN	Line Impedance Stabilization	dB	decibel		
DE	Network Family	V	1/-14		
PE	Protective Earth	kV	Volt		
GND L1	Ground	μV	Kilovolt (1x10 ³) Microvolt (1x10 ⁻⁶)		
L2	Line 1	Α	Amp		
L3	Line2 Line 3	μΑ	Micro Amp (1x10 ⁻⁶)		
DC		mS	Milli Second (1x10 ⁻³)		
RAW	Direct Current	μS	Micro Second (1x10 ⁻⁶)		
RAW	Uncorrected measurement value, as indicated by the measuring device	μο	Micro Second (1x10)		
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)		
SLCE	Signal Line Conducted Emissions	m	Meter		
Meas dist	Measurement distance	Spec dist	Specification distance		
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)		
Р	Power Line	L	Live Line		
N	Neutral Line	R	Return		
S	Supply	AC	Alternating Current		

Page No: 61 of 62

End