Test Report AIR-CAP1552xx-A-K9 Series

Cisco Aironet 802.11n Single Band Mesh Access Points

FCC ID: LDK102074P

IC: 2461B-102074P

(Also covers AIR-CAP1552xx-N-K9 and AIR-CAP1552xx-T-K9 Series)

2400-2483.5 MHz

Class II Permissive Change

Against the following Specifications: CFR47 Part 15.247 RSS210

> **Cisco Systems** 170 West Tasman Drive San Jose, CA 95134

No. 1178-01

This test report cannot be reproduced, except in full and with written permission from the laboratory

Page No: 1 of 37

This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

SECTION 1: OVER	RVIEW	3
1.1		3
SECTION 2: ASSE	ESSMENT INFORMATION	4
2.1 GENERAL		4
2.4 TESTING FACILI	TIES	5
2.6 EUT DESCRIPTION	ON	5
SECTION 4: SAMI	PLE DETAILS	7
APPENDIX A:	EMISSION TEST RESULTS	8
AVERAGE OUTPUT F PEAK OUTPUT POW CONDUCTED BANDE MAXIMUM PERMI	YOWER ER DGE SSIBLE EXPOSURE (MPE) CALCULATIONS	8 9 21 40

Page No: 2 of 37

Section 1: Overview

Test Summary – This report presents data to support the addition of higher gain antennas to the AIR-CAP1552xx series 802.11n Dual Band Mesh Access Point

1.1

Samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

Emission	Immunity
CFR47 Part 15.247 RSS210	N/A

The specifications listed above represent actual tests performed to demonstrate compliance against the specifications and basic standards listed on the front cover of this report.

Notes:

 Measurements were made in accordance with FCC 789033 D01 UNII General Test Procedures v01, ET docket 96-8, KDB Publication No. 558074, ANSI C63.10 & measurement method of spurious emission tolerance to the International Telecommunication Union (ITU) Recommendation SM329.

Page No: 3 of 37

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

 Temperature
 15°C to 35°C (54°F to 95°F)

 Atmospheric Pressure
 860mbar to 1060mbar (25.4" to 31.3")

Humidity 10% to 75*%

 e) All AC testing was performed at one or more of the following supply voltages: 110V 60 Hz (+/-20%)

This report must not be reproduced except in full, without written approval of Cisco Systems.

Page No: 4 of 37

2.2 Date of start of testing

26 January 2012

2.3 Report Issue Date

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled

2.4 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc.,	Cisco Systems, Inc.
4125 Highlander Parkway	170 West Tasman Drive
Richfield, OH 44286	San Jose, CA 95134
USA	USA

Test Engineers

Bud Chiller

James Nicholson

2.5 Equipment Assessed (EUT)

AIR-CAP1552E-A-K9 Cisco Aironet 802.11n Dual Band Mesh Access Point

2.6 EUT Description

The AIR-CAP1552 Series Cisco Aironet 802.11n Uni-Band Mesh Access Points require professional installation, and supports the following modes of operation. The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst case data for all modes.

Legacy CCK, Single Antenna, 1 to 11 Mbps Legacy CCK, Dual Antennas, 1 to 11 Mbps Legacy OFDM, Non HT-20, Single Antenna, 6 to 54 Mbps Legacy OFDM, Non HT-20, Dual Antennas, 6 to 54 Mbps Legacy OFDM, Non HT-20 Dual Antennas with Beam Forming, 6 to 54 Mbps HT-20, Single Antenna, M0 to M7 HT-20, Dual Antennas, M0 to M15

Page No: 5 of 37

The following antennas are being added to this product series. The data included in this report represent the worst case data for all antennas.

Frequency	Part Number	Antenna Type	Antenna Gain (dBi)
21	AIR-ANT2450V-N	2.4GHz Omni,	5
Z. 4	AIR-ANT2480V-N	2.4GHz Omni,	8
GHz		2.5GHz 2x2	
		Patch array,	
	AIR-ANT2413P2M-N=	dual polarized	13

Page No: 6 of 37

Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing.

4.1 Sample Details

Sample No.	Equipment Details	Part Number	Manufacturer	Hardware Rev.	Firmware Rev.	Software Rev.	Serial Number
S01	AIR-CAP1552E-A-K9		Cisco Systems	NA	NA	NA	
S02	AIR-ANT2450V-N						

4.2 System Details

System #	Description	Samples
1	EUT	S01, S02

4.3 Mode of Operation Details

Mode#	Description	Comments
1	Continuous Transmitting	Continuous Transmitting

Page No: 7 of 37

Appendix A: Emission Test Results

Testing Laboratory: Cisco Systems, Inc., 4125 Highlander Parkway, Richfield, OH, USA

Average Output Power

Connect the antenna(s) to the power meter at the average power sensor input. Configure the power meter to measure average power for the transmitter frequencies listed below (enter all losses between the transmitter output and the power meter).

Place the radio in continuous transmit mode and record the reading on the power meter.

			Target Power Level			Actual Power Level
Frequency	Modek	Data Rate	Tx A Set	Tx B Set	Total Set	Total
2412	Legacy CCK Single Tx Path	11	25	Off	25	23.8
2412	Legacy CCK. Dual Tx Path	11	25	25	28	26.5
2412	Non HT-20, Single Tx Path	6	25	Off	25	23.9
2412	Non HT-20, Dual Tx Path	6	24	24	27	25.3
2412	Non HT-20 Beam Forming	6	22	22	25	23.4
2437	Legacy CCK, Dual Tx Path	11	25	25	28	27.4
2437	Non HT-20 Beam Forming	6	25	25	28	26.1
2462	Legacy CCK, Single Tx Path	11	25	Off	25	23.5
2462	Legacy CCK, Dual Tx Path	11	25	25	28	27.3
2462	Non HT-20, Single Tx Path	6	25	Off	25	23.5
2462	Non HT-20, Dual Tx Path	6	23	23	26	25.5
2462	Non HT-20 Beam Forming	6	22	22	25	23.0

Peak Output Power

15.247: The maximum conducted output power of the intentional radiator for systems using digital modulation in the 2400-2483.5 MHz band shall not exceed 1 Watt (30dBm). If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

The maximum supported antenna gains are listed in the tables below. The tables also list the calculated Maximum Peak Power for each of the listed gains, as well as the associated Peak Power levels supported by this product. All of the supported power levels comply with the Maximum Peak Power levels.

Antenna Gain	Required	Maximum Peak	Supported
(dBi)	Power	Power Limit	Peak Power
	Reduction	(dBm)	(dBm)
	(dB)		
8	2	30	28
13	3	30	27

beam Forming would				
Antenna	Required	Maximum	Supported	
Gain		Peak		
(dBi)	Power	Power	Peak Power	
		Limit		
	Reduction	(dBm)	(dBm)	
	(dB)			
11	2	28	28	
16	4	26	26	

am Earming Mada

Page No: 9 of 37

Connect the antenna port(s) to the spectrum analyzer input. Place the radio in continuous transmit mode. Configure the spectrum analyzer as shown below.

Enable "Channel Power	r" function of analyzer
Center Frequency:	Frequency from table below
Span:	20 MHz (must be greater than 26dB bandwidth, adjust as
necessary)	
Ref Level Offset:	Correct for attenuator and cable loss.
Reference Level:	20 dBm
Attenuation:	20 dB
Sweep Time:	100ms, Single sweep
Resolution Bandwidth:	1 MHz
Video Bandwidth:	3 MHz
Detector:	Sample
Trace:	Trace Average 100 traces in Power Averaging Mode
Integration BW:	=26 dB BW from 26 dB Bandwidth Data

After averaging 100 traces of the transmitter waveform on the spectrum analyzer, record the spectrum analyzer Channel Power.

Frequency (MHz)	Mode	Data Rate (Mbps)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
2412	Legacy CCK, Single Tx Path	11	24.3	27.5	3.2
2412	Legacy CCK, Dual Tx Path	11	27.1	27.5	0.4
2412	Non HT-20, Single Tx Path	6	24.1	27.5	3.4
2412	Non HT-20, Dual Tx Path	6	26.6	27.5	0.9
2412	Non HT-20 Beam Forming	6	23.4	26.5	3.1
2437	Legacy CCK, Dual Tx Path	11	26.4	27.5	1.1
2437	Non HT-20 Beam Forming	6	26.3	26.5	0.2
2462	Legacy CCK, Single Tx Path	11	23.4	27.5	4.1
2462	Legacy CCK, Dual Tx Path	11	26.4	27.5	1.1
2462	Non HT-20, Single Tx Path	6	23.5	27.5	4.1
2462	Non HT-20, Dual Tx Path	6	26.4	27.5	1.1
2462	Non HT-20 Beam Forming	6	22.8	26.5	3.7

Page No: 10 of 37

* Agilent	Measure
Ch Freq 2.412 GHz Trig Free Channel Power Averages: 100	Meas Off
	Channel Power
Ref 20 dBm #Atten 6 dB #Samp Log	Occupied BW
16 dB/ 0ffst 26.5	ACP
dB Center 2.412 00 GHz Span 30 MHz Super 201 4 MHz	Multi Carrier Power
*Kes BW 1 MHz *VBW 3 MHz *Sweep 100 ms (601 pts) Channel Power Power Spectral Density	Power Stat CCDF
24.34 dBm /13.3000 MHz -46.90 dBm/Hz	More 1 of 2
Copyright 2000–2007 Agilent Technologies	

Peak Power, 2412 MHz, 11 Mbps, Legacy CCK, Right Transmit Path

Peak Power, 2412 MHz, 11 Mbps, Legacy CCK, Left Transmit Path

Page No: 11 of 37

Peak Power, 2412 MHz, 6 Mbps, Non HT-20, Right Transmit Path

Peak Power, 2412 MHz, 6 Mbps, Non HT-20, Left Transmit Path

Page No: 12 of 37

Peak Power, 2437 MHz, 11 Mbps, Legacy CCK, Right Transmit Path

Peak Power, 2437 MHz, 11 Mbps, Legacy CCK, Left Transmit Path

Page No: 13 of 37

Peak Power, 2437 MHz, 6 Mbps, Non HT-20 Beam Forming, Right Transmit Path

Peak Power, 2437 MHz, 6 Mbps, Non HT-20 Beam Forming, Left Transmit Path

Page No: 14 of 37

Peak Power, 2462 MHz, 11 Mbps, Legacy CCK, Right Transmit Path

Peak Power, 2462 MHz, 6 Mbps, Non HT-20 , Left Transmit Paths

Page No: 15 of 37

Peak Power, 2462 MHz, 6 Mbps, Non HT-20, Right Transmit Path

Peak Power, 2462 MHz, 6 Mbps, Non HT-20 Left Transmit Path

Page No: 16 of 37

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

cisco

Power Spectral Density

15.247: For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Connect the antenna port(s) to the spectrum analyzer input. Place the radio in continuous transmit mode. Configure the spectrum analyzer as shown below.

Center Frequency:	Frequency from table below
Span:	20 MHz
Ref Level Offset:	Correct for attenuator and cable loss
Reference Level:	20 dBm
Attenuation:	20 dB
Sweep Time:	10s
Resolution Bandwidth:	3 kHz
Video Bandwidth:	10 kHz
Detector:	Peak
Trace:	Single
Marker:	Peak Search

Record the Marker value.

Frequency (MHz)	Mode	Data Rate (Mbps)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Margin (dB)
2412	Legacy CCK, Single Tx Path	11	0.3	8	7.7
2412	Non HT-20, Single Tx Path	6	-3.5	8	11.5
2437	Legacy CCK, Single Tx Path	11	-12.9	8	20.9
2437	Non HT-20, Single Tx Path	6	-3.4	8	11.4
2462	Legacy CCK, Single Tx Path	11	0.0	8	8.0
2462	Non HT-20, Single Tx Path	6	-3.8	8	11.8

Power Spectral Density, 2412 MHz, 11 Mbps, Legacy CCK

Power Spectral Density, 2412 MHz, 6 Mbps, Non HT-20

Page No: 18 of 37

Power Spectral Density, 2437 MHz, 11 Mbps, Legacy CCK

Power Spectral Density, 2437 MHz, 6 Mbps, Non HT-20

Page No: 19 of 37

Power Spectral Density, 2462 MHz, 11 Mbps, Legacy CCK

Power Spectral Density, 2462 MHz, 6 Mbps, Non HT-20

Page No: 20 of 37

Conducted Bandedge

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Use the procedures in 718828 D01 DTS Meas Guidance v01 to substitute conducted measurements in place of radiated measurements.

Connect the antenna port(s) to the spectrum analyzer input. Place the radio in continuous transmit mode. Be sure to enter all losses between the transmitter output and the spectrum analyzer.

Reference Level:	10 dBm
Attenuation:	4 dB
Sweep Time:	Coupled
Resolution Bandwidth:	1MHz
Video Bandwidth:	1 MHz for peak, 100 Hz for average
Detector:	Peak

 Save 2 plots:
 1) Average Plot (Vertical and Horizontal), Limit= -41.25 dBm eirp (54dBuV @3m)

 2) Peak plot (Vertical and Horizontal), Limit = -21.25 dBm eirp (74dBuV @3m)

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units.

Frequency (MHz)	Mode	Data Rate (Mbps)	Target Total TransmitPower Level (dBm)	Radiated Band Edge Level (dBm)	Limit (dBm)	Margin (dB)
2412	Legacy CCK, Single Tx Path	11	23	-58.1	-41.5	16.6
2412	Legacy CCK, Dual Tx Path	11	26	-55.4	-41.5	13.9
2412	Non HT-20, Single Tx Path	6	22	-51.8	-41.5	10.3
2412	Non HT-20, Dual Tx Path	6	24	-49.4	-41.5	7.9
2412	Non HT-20 Beam Forming	6	23	-53.6	-41.5	12.1
2462	Legacy CCK, Single Tx Path	11	23	-56.9	-41.5	15.4
2462	Legacy CCK, Dual Tx Path	11	26	-54.3	-41.5	12.8
2462	Non HT-20, Single Tx Path	6	22	-54.0	-41.5	12.5
2462	Non HT-20, Dual Tx Path	6	23	-52.1	-41.5	10.6
2462	Non HT-20 Beam Forming	6	21	-55.7	-41.5	14.2

The following data represents the worst case data for all supported antennas from 4.1 – 8 dBi.

Page No: 21 of 37

Conducted Bandedge, 2412 MHz, 11 Mbps, Legacy CCK, Right Transmit Path, Average

Mkr1 2.390 00 GHz **Center Freq** Ref 10 dBm #Peak #Atten 4 dB -58.06 dBm 2.36100000 GHz Log 10Start Fred dB/ 2.31000000 GHz Offst 26.5 Stop Freq dB 2.41200000 GHz CF Step 10.2000000 MHz LgAv Auto Man V1 S2 S3 FC 1 Freq Offset 0.0000000 Hz £(f): Signal Track FTun 0n Off Swp Center 2.361 00 GHz Span 102 MHz #Res BW 1 MHz #VBW 100 Hz Sweep 795.4 ms (601 pts) Copyright 2000-2007 Agilent Technologies

Page No: 22 of 37

Conducted Bandedge, 2412 MHz, 6 Mbps, Non HT-20, Left Transn	nit Paths, Average
👋 Anilent	Ereq/Channel

Mkr1 2.390 00 GHz Center Freq Ref 10 dBm #Atten 4 dB -51.78 dBm 2.36100000 GHz #Peak Log 10 Start Freq dB/ 2.31000000 GHz Offst 26.5 dB Stop Freq 2.41200000 GHz **CF** Step 10.2000000 MHz LgAv Auto Man V1 S2 S3 FC Freq Offset 0.00000000 Hz £(f): Signal Track FTun 0n <u>Off</u> Swp Center 2.361 00 GHz Span 102 MHz #Res BW 1 MHz #VBW 100 Hz Sweep 795.4 ms (601 pts) Copyright 2000–2007 Agilent Technologies

Page No: 23 of 37

Mkr1 2.390 00 GHz Center Frea -57.09 dBm Ref 10 dBm #Atten 4 dB 2.36100000 GHz #Peak Log 10 Start Freq dB/ 2.31000000 GHz 0ffst 26.5 Stop Freq dB 2.41200000 GHz CF Step 10.2000000 MHz LgAv <u>Auto</u> Man V1 S2 S3 FC 1 Freq Offset 0.0000000 Hz **£**(f): Signal Track FTun 0n <u> 0ff</u> Swp Center 2.361 00 GHz Span 102 MHz #VBW 100 Hz Sweep 795.4 ms (601 pts) #Res BW 1 MHz Copyright 2000-2007 Agilent Technologies

Page No: 24 of 37

Page No: 25 of 37

Conducted Bandedge, 2462 MHz, 6 Mbps, Non HT-20, Right Transmit Path, Average

Page No: 26 of 37

Conducted	Bandedge 2462 MHz,	Non HT-20 Beamforming,	Left transmit Path, Average
🔆 Aailent			Freg/Channel

Page No: 27 of 37

The following data represents the worst case data for all supported antennas from 8.1 - 13 dBi.

Frequency (MHz)	Mode	Data Rate (Mbps)	Target Total TransmitPower Level (dBm)	Radiated Band Edge Level (dBm)	Limit (dBm)	Margin (dB)
2412	Legacy CCK, Single Tx Path	11	20	-59.2	-41.5	17.7
2412	Legacy CCK, Dual Tx Path	11	21	-56.6	-41.5	15.1
2412	Non HT-20, Single Tx Path	6	20	-54.7	-41.5	13.2
2412	Non HT-20, Dual Tx Path	6	20	-52.3	-41.5	10.8
2412	Non HT-20 Beam Forming	6	18	-56.2	-41.5	14.7
2462	Legacy CCK, Single Tx Path	11	20	-57.7	-41.5	16.2
2462	Legacy CCK, Dual Tx Path	11	21	-55.3	-41.5	13.8
2462	Non HT-20, Single Tx Path	6	20	-55.5	-41.5	14.0
2462	Non HT-20, Dual Tx Path	6	19	-54.4	-41.5	12.9
2462	Non HT-20 Beam Forming	6	18	-56.9	-41.5	15.4

Page No: 28 of 37

Page No: 29 of 37

Mkr1 2.390 00 GHz Center Freq Ref 10 dBm #Peak #Atten 4 dB -56.05 dBm 2.36100000 GHz Log 10 Start Freq dB/ 2.31000000 GHz Offst 26.5 Stop Freq dB 2.41200000 GHz CF Step 10.2000000 MHz LgAv Auto Man V1 S2 S3 FC 1 Freq Offset 0.00000000 Hz £(f): Signal Track FTun 0n Off Swp Center 2.361 00 GHz Span 102 MHz Sweep 795.4 ms (601 pts) #Res BW 1 MHz #VBW 100 Hz Copyright 2000–2007 Agilent Technologie

Page No: 30 of 37

Conducted Bandedge 2412 MHz, Non HT-20 Beamforming, Right transmit Path, Average

Conducted Bandedge 2412 MHz, Non HT-20 Beamforming, Left transmit Path, Average

🔆 Ag	jilent										Freq/Channel
Ref 10 #Peak	dBm		#Atter	n 4 dB				Mkr1	2.390 -59.5	00 GHz 57 dBm	Center Freq 2.36100000 GHz
Log 10 dB/ Offst										\int	Start Freq 2.31000000 GHz
26.5 dB											Stop Freq 2.41200000 GHz
LgAv											CF Step 10.2000000 MHz <u>Auto</u> Man
V1 S2 S3 FC							·				FreqOffset 0.00000000 Hz
€(f): FTun Swp											Signal Track On <u>Off</u>
Center #Res B	2.361 W 1 MH	00 GH2 z	2	#V	BW 100	Hz	Sweep	795.4	Span 10 ms (60	02 MHz 11 pts)	
Copyri	ight 20	000-20	007 Ag	ilent T	echnol	ogies					

Page No: 31 of 37

Page No: 32 of 37

Conducted Bandedge.	2462 MHz. 6 Mbps.	Non HT-20, Left	Transmit Path.	Average
eenaactea zanacage,	- ···-, • ·····p•,		,	

Page No: 33 of 37

Conducted Bandedge 2462 MHz, Non HT-20 Beamforming, Right transmit Path, Average

Conducted Bandedge 2462 MHz, Non HT-20 Beamforming, Left Transm	it Path	, Averag	je
	-		1 11

Page No: 34 of 37

Maximum Permissible Exposure (MPE) Calculations

1.1307(b), Sec. 2.1091 and Sec. 2.1093 of this chapter, as appropriate. All equipment shall be considered to operate in a ``general population/uncontrolled" environment. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request. Given $E=\sqrt{(30^{*}P^{*}G)/d}$ and S=E^2/3770 where E=Field Strength in Volts/meter P=Power in Watts G=Numeric Antenna Gain d=Distance in meters S=Power Density in mW/cm^2 Combine equations and rearrange the terms to express the distance as a function of the remaining variables: $d=\sqrt{((30^{P}G)/(3770^{S}))}$ Changing to units of power in mW and distance in cm, using: P(mW) = P(W) / 1000d(cm) = 100*d(m)yields d=100*√((30*(P/1000)*G)/(3770*S)) d=0.282*√(P*G/S) where d=Distance in cm P=Power in mW G=Numerical Antenna Gain S=Power Density in mW/cm^2 Substituting the logarithmic form of power and gain using: $P(mW) = 10^{(P(dBm)/10)}$ G(numeric)=10^{(G(dBi)/10)} yields d=0.282*10^((P+G)/20)/√S Equation (1) and Equation (2) s=((0.282*10^((P+G)/20))/d)^2 where d=MPE distance in cm P=Power in dBm G=Antenna Gain in dBi S=Power Density in mW/cm^2

15.247: U-NII devices are subject to the radio frequency radiation exposure requirements specified in Sec.

Equation (1) and the measured peak power are used to calculate the MPE distance. Note that for mobile transmitters the minimum separation distance is 20 cm even if the calculations indicate that the MPE distance may be less. For fixed outdoor installations the minimum separation distance is 40 cm.

Page No: 35 of 37

S=1mW/cm² maximum. The highest supported antenna gain is 13 dBi. Using the peak power levels recorded in the test report along with Equation 1 above, the MPE distances are calculated as follows.

Frequency (MHz)	Bit Rate (Mbps)	Power Density (mW/cm^2)	Peak Transmit Power (dBm)	Antenna Gain (dBi)	MPE Distance (cm)	Limit (cm)	Margin (cm)
2412	11	1	27.1	8	16.04	20	3.96
2437	11	1	26.4	8	14.80	20	5.20
2462	11	1	26.4	8	14.80	20	5.20
2412	6	1	26.6	13	26.93	40	13.07
2437	6	1	26.3	13	26.02	40	13.98
2462	6	1	22.8	13	17.39	40	22.61

MPE Calculations

Use is permitted with antenna gain not exceeding 13 dBi, as described in filing, with a minimum separation distance of 40 cm between the antenna and all persons during normal operation.

Use is permitted with antenna gain not exceeding 8 dBi, as described in filing, with a minimum separation distance of 20 cm between the antenna and all persons during normal operation.

Using Equation 2, the MPE levels (s) at 40 cm are calculated as follows:

			Peak				
		MPE	Transmit	Antenna	Power		
Frequency	Bit Rate	Distance	Power	Gain	Density	Limit	Margin
(MHz)	(Mbps)	(cm)	(dBm)	(dBi)	(mW/cm^2)	(mW/cm^2)	(mW/cm^2)
2412	11	40	27.1	11	0.32	1	0.68
2437	11	40	26.3	11	0.27	1	0.73
2462	11	40	26.4	11	0.27	1	0.73
2412	6	40	26.6	16	0.90	1	0.10
2437	6	40	26.4	16	0.86	1	0.14
2462	6	40	26.4	16	0.86	1	0.14

Page No: 36 of 37

Equip #	Manufacturer	Model	Description	Last Cal	Next Due
CIS004882	EMC Test Systems	3115	Double Ridged Guide Horn Antenna	26-May-11	26-May-12
CIS005691	Miteq	NSP1800-25-S1	Broadband Preamplifier	31-Jan-12	31-Jan-13
COM00021					
0	TTE	H785-150K-50-21378	Hi Pass Filter - 150KHz cutoff	17-Aug-11	17-Aug-12
COM00021 3	Fischer	FCC-LISN-50-50-2M	Turntable LISN (150KHz-30MHz)	5-Mar-11	5-Mar-12
CIS021117	Micro-Coax	UFB311A-0-2484-520520	RF Coaxial Cable, to 18GHz, 248.4 in	24-Aug-11	24-Aug-12
CIS030564	Micro-Coax	UFB311A-1-0950-504504	RF Coaxial Cable, to 18GHz, 95 in	24-Aug-11	24-Aug-12
COM00023 3	Sunol Sciences	JB1	Combination Antenna, 30MHz-2GHz	13-Jul-11	13-Jul-12
COM00023 9	Rohde & Schwarz	ESI40	EMI Test Receiver	21-Jun-11	21-Jun-12
COM00044 3	Sonoma Instrument	310N	Amplifier 9kHz-1GHz	8-Apr-11	8-Apr-12
CIS034972	Midwest Microwave	ATT-0640-20-29M-02	Attenuator, 20dB	17-May-11	16-May-12
CIS043116	Huber + Suhner	Sucoflex 104PE	N & SMA RF cable	14-Dec-11	14-Dec-12
CIS040603	Agilent	E4440A	Spectrum Analyzer	5-Aug-11	5-Aug-12
CIS040053	Agilent	E4448A	Spectrum Analyzer	29-Apr-11	28-Apr-12

Appendix C: Test Equipment/Software Used to perform the test

Page No: 37 of 37