cisco.

Channels and Maximum Power Settings for Cisco Aironet Lightweight Access Points

November, 2007

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA

http://www.cisco.com Tel: 408 526-4000

800 553-NETS (6387)

Fax: 408 527-0883

Text Part Number: OL-11321-07

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The following information is for FCC compliance of Class A devices: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio-frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case users will be required to correct the interference at their own expense.

The following information is for FCC compliance of Class B devices: The equipment described in this manual generates and may radiate radio-frequency energy. If it is not installed in accordance with Cisco's installation instructions, it may cause interference with radio and television reception. This equipment has been tested and found to comply with the limits for a Class B digital device in accordance with the specifications in part 15 of the FCC rules. These specifications are designed to provide reasonable protection against such interference in a residential installation. However, there is no guarantee that interference will not occur in a particular installation.

Modifying the equipment without Cisco's written authorization may result in the equipment no longer complying with FCC requirements for Class A or Class B digital devices. In that event, your right to use the equipment may be limited by FCC regulations, and you may be required to correct any interference to radio or television communications at your own expense.

You can determine whether your equipment is causing interference by turning it off. If the interference stops, it was probably caused by the Cisco equipment or one of its peripheral devices. If the equipment causes interference to radio or television reception, try to correct the interference by using one or more of the following measures:

- · Turn the television or radio antenna until the interference stops.
- Move the equipment to one side or the other of the television or radio.
- Move the equipment farther away from the television or radio.
- Plug the equipment into an outlet that is on a different circuit from the television or radio. (That is, make certain the equipment and the television or radio are on circuits controlled by different circuit breakers or fuses.)

Modifications to this product not authorized by Cisco Systems, Inc. could void the FCC approval and negate your authority to operate the product.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CCVP, the Cisco logo, and Welcome to the Human Network are trademarks of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and Learn is a service mark of Cisco Systems, Inc.; and Access Registrar, Aironet, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Enterprise/Solver, EtherChannel, EtherFast, EtherSwitch, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, IP/TV, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, LightStream, Linksys, MeetingPlace, MGX, Networkers, Networking Academy, Network Registrar, PIX, ProConnect, ScriptShare, SMARTnet, StackWise, The Fastest Way to Increase Your Internet Quotient, and TransPath are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0711R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

Channels and Maximum Power Settings for Cisco Aironet Lightweight Access Points ©2007 Cisco Systems, Inc. All rights reserved.

CONTENTS

D	ro	fa	20	v::
М	re	ıa	ce	VII

Audience i-vii

Purpose i-vii

Organization i-viii

Conventions i-viii

Related Publications i-ix

Obtaining Documentation, Obtaining Support, and Security Guidelines i-ix

CHAPTER 1 Cisco Aironet 1000 Series Access Points 1-1

Channels and Maximum Power Levels 1-2

IEEE 802.11b/g (2.4-GHz Band) 1-2

IEEE 802.11a (5-GHz Band) 1-3

Special Country Restrictions 1-6

Changing the Lightweight Access Point Output Power 1-6

CHAPTER 2 Cisco Aironet 1100 Series Access Points 2-9

Channels 2-10

AIR-LAP1121G IEEE 802.11g (2.4-GHz Band) 2-10

Maximum Power Levels 2-11

IEEE 802.11b (2.4-GHz Band) 2-11

IEEE 802.11g (2.4-GHz Band) **2-11**

Changing the Lightweight Access Point Output Power 2-12

CHAPTER 3 Cisco Aironet 1130 Series Access Points 3-1

IEEE 802.11b/g (2.4-GHz Band) 3-2

Channels and Maximum Power Levels 3-3

IEEE 802.11b/g (2.4-GHz Band) 3-3

IEEE 802.11a (5-GHz Band) 3-3

Special Country Restrictions 3-5

Changing the Lightweight Access Point Output Power 3-5

CHAPTER 4 Cisco Aironet 1200 Series Access Points 4-1

Channels 4-2

```
IEEE 802.11g (2.4-GHz Band)
                             IEEE 802.11a (5-GHz Band)
                         Maximum Power Levels and Antenna Gains
                             IEEE 802.11g (2.4-GHz Band)
                             IEEE 802.11a (5-GHz Band)
                             Maximum Power Levels in Some Regulatory Domains with External Antennas 4-8
                             Special Country Restrictions
                         Power Conversion Table 4-9
                         Changing the Lightweight Access Point Output Power 4-10
                     Cisco Aironet 1240 Series Access Points
CHAPTER 5
                         Channels and Maximum Power Levels 5-2
                             IEEE 802.11g (2.4-GHz Band)
                             IEEE 802.11g (2.4-GHz Band)
                                 IEEE 802.11a (5-GHz Band) 5-4
                             Maximum Power Levels in Some Regulatory Domains with External Antennas 5-5
                         Special Country Restrictions 5-7
                         Changing the Lightweight Access Point Output Power
                     Cisco Aironet 1250 Series Lightweight
CHAPTER 6
                     Access Points 6-1
                         Channels and Maximum Power Levels
                             2.4 GHz Band (Draft IEEE 802.11n Version 2.0) 6-2
                             5 GHz Band (Draft IEEE 802.11n Version 2.0) 6-7
                         Special Country Restrictions 6-17
                         Changing Lightweight Access Point Output Power
                     Cisco Aironet 1300 Series Access Points 7-1
CHAPTER 7
                         Channels 7-2
                             IEEE 802.11g (2.4-GHz Band) 7-2
                         Maximum Power Levels and Antenna Gains 7-3
                             IEEE 802.11b/g (2.4-GHz Band) 7-3
                         Changing the Lightweight Access Point Output Power 7-4
                         Power Conversion Table 7-6
                     Cisco Aironet 1500 Series Mesh Access Points
CHAPTER 8
                         Channels and Maximum Power Levels 8-2
                             IEEE 802.11b/g (2.4-GHz Band) 8-2
```

IEEE 802.11a (5-GHz Band) 8-3

Antenna Settings 8-5

Maximum Power Levels Allowed in Some Regulatory Domains 8-5

Special Country Restrictions 8-7

Changing the Lightweight Access Point Output Power 8-8

CHAPTER 9 Cisco Aironet 1520 Series Mesh Access Points 9-1

Channels and Maximum Power Levels 9-2

AIR-LAP1521G 9-2

IEEE 802.11b/g (2.4-GHz Band) 9-2

AIR-LAP1522AG 9-4

IEEE 802.11b/g (2.4-GHz Band) 9-4

IEEE 802.11a (5-GHz Band) 9-5

Minimum 5-GHz Radio Power Levels 9-12

Special Country Restrictions 9-13

Changing the Lightweight Access Point Output Power 9-14

Contents

Preface

Audience

This guide is for the networking professional who installs and manages Cisco Aironet access points and bridges.

To use this guide with lightweight access points, you should have experience working with a Cisco Wireless LAN Controller and be familiar with the concepts and terminology of wireless local area networks.

Purpose

This guide provides the channel and maximum power settings you need to install your lightweight access points and bridges in supported regulatory regions.

For hardware information about Cisco Aironet access points and bridges, refer to the product hardware installation guides for your access points and bridges available from the Cisco.com at this URL:

http://www.cisco.com/en/US/products/hw/wireless/

The access point products are listed under the "Access Points" and "Outdoor Wireless" sections. Choose the needed product, then click **Install and Upgrade** in the Support box.

For information about Cisco Wireless LAN Controllers, refer to the Cisco documentation sets available under the "Wireless LAN Controllers" section. Choose the needed controller, then click on the documentation type in the Support box.

Organization

This guide is organized into these chapters:

Chapter 1, "Cisco Aironet 1000 Series Access Points," lists the 1000 series lightweight access point radio channels and the maximum power levels supported by the world's regulatory domains.

Chapter 2, "Cisco Aironet 1100 Series Access Points," lists the 1100 series lightweight access point radio channels and the maximum power levels supported by the world's regulatory domains.

Chapter 3, "Cisco Aironet 1130 Series Access Points," lists the 1130 series lightweight access point radio channels and the maximum power levels supported by the world's regulatory domains.

Chapter 4, "Cisco Aironet 1200 Series Access Points," lists the 1200 series lightweight access point radio channels and the maximum power levels supported by the world's regulatory domains.

Chapter 5, "Cisco Aironet 1240 Series Access Points," lists the 1240 series lightweight access point radio channels and the maximum power levels supported by the world's regulatory domains.

Chapter 6, "Cisco Aironet 1250 Series Lightweight Access Points," lists the 1250 series lightweight access point radio channels and the maximum power levels supported by the world's regulatory domains.

Chapter 7, "Cisco Aironet 1300 Series Access Points," lists the 1300 series lightweight outdoor access point/bridge radio channels and the maximum power levels supported by the world's regulatory domains.

Chapter 8, "Cisco Aironet 1500 Series Mesh Access Points," lists the 1500 series lightweight outdoor mesh access point radio channels and the maximum power levels supported by the world's regulatory domains.

Chapter 9, "Cisco Aironet 1520 Series Mesh Access Points," lists the 1520 series lightweight outdoor mesh access point radio channels and the maximum power levels supported by the world's regulatory domains.

Conventions

This publication uses these conventions to convey instructions and information:

Interactive examples use these conventions:

- Terminal sessions and system displays are in screen font.
- Information you enter is in boldface screen font.
- Nonprinting characters, such as passwords or tabs, are in angle brackets (<>).

Notes, cautions, and timesavers use these conventions and symbols:

Tip

Means the following will help you solve a problem. The tips information might not be troubleshooting or even an action, but could be useful information.

Note

Means reader take note. Notes contain helpful suggestions or references to materials not contained in this manual.

Means reader be careful. In this situation, you might do something that could result equipment damage or loss of data.

Related Publications

These documents provide information about the access points and bridges:

- Cisco Aironet 1000 Series Lightweight Access Point Hardware Installation Guide
- · Cisco Aironet 1100 Series Access Point Hardware Installation Guide
- Cisco Aironet 1130AG Series Access Point Hardware Installation Guide
- Cisco Aironet 1200 Series Access Point Hardware Installation Guide
- Cisco Aironet 1240AG Series Access Point Hardware Installation Guide
- Cisco Aironet 1250 Series Access Point Hardware Installation Guide
- Cisco Aironet 1300 Series Access Point/Bridge Hardware Installation Guide
- Cisco Aironet 1500 Series Outdoor Mesh Access Point Hardware Installation Guide
- Cisco Aironet 1520 Series Outdoor Mesh Access Point Hardware Installation Guide
- Cisco IOS Software Configuration Guide for Cisco Aironet Access Points
- · Cisco Wireless LAN Controller Configuration Guide

Click this link to browse to the Cisco Wireless documentation home page:

http://www.cisco.com/en/US/products/hw/wireless/

To browse to the access point and bridge documentation, click a product listed under "Access Points" or "Outdoor Wireless." The documentation is available from the Support box.

To browse to the Cisco Wireless LAN Controller documentation, click **Cisco 4400 Series Wireless LAN Controllers** or **Cisco 2100 Series Wireless LAN Controllers** listed under "Wireless LAN Controllers." The documentation is available from the Support box.

Obtaining Documentation, Obtaining Support, and Security Guidelines

For information on obtaining documentation, obtaining support, providing documentation feedback, security guidelines, and also recommended aliases and general Cisco documents, see the monthly *What's New in Cisco Product Documentation*, which also lists all new and revised Cisco technical documentation, at:

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

Obtaining Documentation, Obtaining Support, and Security Guidelines

CHAPTER

Cisco Aironet 1000 Series Access Points

This chapter lists the IEEE 802.11b/g (2.4-GHz) and the IEEE 802.11a (5-GHz) channels and maximum power levels supported by the world's regulatory domains for the Cisco Aironet 1000 Series Lightweight Access Point. For additional product hardware information refer to the *Cisco Aironet 1000 Series Lightweight Access Point Hardware Installation Guide*.

The following topic is covered in this appendix:

• Channels and Maximum Power Levels, page 1-2

Channels and Maximum Power Levels

IEEE 802.11b/g (2.4-GHz Band)

When shipped from the factory, the access points support the channels and maximum power levels listed in Table 1-1 and Table 1-2 for their regulatory domain.

In Table 1-1 and Table 1-2, the operating data rates (in Mbps) are shown in the CCK and OFDM table cells. For example: CCK 1-11 indicates CCK data rates of 1 to 11 Mbps.

Table 1-1 Channels and Maximum Conducted Power for the 802.11b/g Radio with Up to 6.5-dBi Antennas

					Maximum Conducted Power Levels (dBm) in the Regulatory Domains											
	Center		_	A and -	В				-C					–E		
Channel ID	Freq (MHz)	CCK 1-11	OFDM 9-24	OFDM 36	OFDM 48	OFDM 54	CCK 1-11	OFDM 9-24	OFDM 36	OFDM 48	OFDM 54	CCK 1-11	OFDM 9-24	OFDM 36	OFDM 48	OFDM 54
1	2412	20	17	17	17	17	14	14	14	14	14	14	14	14	14	14
2	2417	20	20	20	19	18	14	14	14	14	14	14	14	14	14	14
3	2422	20	20	20	19	18	14	14	14	14	14	14	14	14	14	14
4	2427	20	20	20	19	18	14	14	14	14	14	14	14	14	14	14
5	2432	20	20	20	19	18	14	14	14	14	14	14	14	14	14	14
6	2437	20	20	20	19	18	14	14	14	14	14	14	14	14	14	14
7	2442	20	20	20	19	18	14	14	14	14	14	14	14	14	14	14
8	2447	20	20	20	19	18	14	14	14	14	14	14	14	14	14	14
9	2452	20	20	20	19	18	14	14	14	14	14	14	14	14	14	14
10	2457	20	20	20	19	18	14	14	14	14	14	14	14	14	14	14
11	2462	20	17	17	17	17	14	14	14	14	14	14	14	14	14	14
12	2467	-	-	_			14	14	14	14	14	14	14	14	14	14
13	2472	-	-	_			14	14	14	14	14	14	14	14	14	14
14	2484	-	-	_			-	_	-	_	_	-	_	_	_	_

Table 1-2 Channels and Maximum Conducted Power for the 802.11b/g Radio with Up to 6.5-dBi Antennas

						Maxin	num Con	ducted P	ower Lev	els (dBm)	in the R	tegulatory Do	mains				
	Center	-I	-К			-N			-J	–P –U	–R	- S			-T		
Channel ID	Freq (MHz)	AII CO		CCK 1-11	OFDM 9-24	OFDM 36	OFDM 448	OFDM 54		AII CCK	and OFI	DM	CCK 1-11	OFDM 9-24	OFDM 36	OFDM 448	OFDM 54
1	2412	14	14	20	17	17	17	17	17	17	14	14	20	17	17	17	17
2	2417	14	14	20	20	20	19	18	17	17	14	14	20	20	20	19	18
3	2422	14	14	20	20	20	19	18	17	17	14	14	20	20	20	19	18
4	2427	14	14	20	20	20	19	18	17	17	14	14	20	20	20	19	18
5	2432	14	14	20	20	20	19	18	17	17	14	14	20	20	20	19	18
6	2437	14	14	20	20	20	19	18	17	17	14	14	20	20	20	19	18
7	2442	14	14	20	20	20	19	18	17	17	14	14	20	20	20	19	18
8	2447	14	14	20	20	20	19	18	17	17	14	14	20	20	20	19	18
9	2452	14	14	20	20	20	19	18	17	17	14	14	20	20	20	19	18
10	2457	14	14	20	20	20	19	18	17	17	14	14	20	20	20	19	18
11	2462	14	14	20	17	17	17	17	17	17	14	14	20	17	17	17	17
12	2467	14	14	-	-	-	-	-	17	17	14	14	-	-		-	-
13	2472	14	14	-	-	_	_	-	17	17	14	14	-	-	-	_	-
14	2484	Ī	-	-		-	-	-	17 ¹	17 ¹	-	14 ¹			-	-	-

^{1.} Channel 14 allowed for 802.11b data rates only.

IEEE 802.11a (5-GHz Band)

When shipped from the factory, the outdoor access points support the channels and maximum power levels listed in Table 1-3 and Table 1-4 for their regulatory domain.

In Table 1-3 and Table 1-4, the operating data rates (in Mbps) are shown in the OFDM table cells. For example: OFDM 9-24 indicates OFDM data rates of 9 to 24Mbps.

To obtain the most current maximum power levels for the EMEA (–E) regulatory domain, refer to the EMEA (–E) regulatory document that shipped with your access point.

Table 1-3 Channels and Maximum Conducted Power for IEEE 802.11a Radio with Up to 6-dBi Antennas

					Maximu	m Condu			s (dBm) i	n the Rec		Domains			
	Center		_	Α			_	В			-C			–E	
Channel ID	Freq (MHz)	OFDM 9-24	OFDM 36	OFDM 48	OFDM 54	OFDM 9-24	OFDM 36	OFDM 48	OFDM 54	OFDM 9-36	OFDM 48	OFDM 54	OFDM 9-36	OFDM 48	OFDM 54
			1		1	UNII	-1 (5150	-5350 M	Hz)				1	1	4
34	5170	_	-	_		_	-	-	_	-	-	_	-	-	_
36	5180	15	15	15	15	15	15	15	15	-	-	-	14.5	14.5	14.5
38	5190	-	-	-	-	-	_	-	-	-	-	-	-	-	_
40	5200	17	17	17	17	17	17	17	17	_	_	_	14.5	14.5	14.5
42	5210	-	-	_	_	-	_	_	-	_	_	_	_	-	_
44	5220	17	17	17	17	17	17	17	17	_	_	_	14.5	14.5	14.5
46	5230	-	-	_	_	-	_	_	-	_	_	_	_	-	_
48	5240	15	15	15	15	15	15	15	15	_	-	-	14.5	14.5	14.5
52	5260	20	20	18	17	-	_	-	_	_	_	-	14.5 ¹	14.5 ¹	14.5 ¹
56	5280	20	20	18	_	-	_	-	_	_	_	-	14.5 ¹	14.5 ¹	14.5 ¹
60	5300	20	20	18	_		_	-		_			14.5 ¹	14.5 ¹	14.5 ¹
64	5320	17	17	17	17		_	-		_			14.5 ¹	14.5 ¹	14.5 ¹
					1	5-	470 to 57	25 MHz							
100	5500	_	_	_	_	-	_	-	-	_	-	_	20^{1}	18 ¹	17 ¹
104	5520	_	_	_	_	_	_	-	_	_	-	_	20 ¹	18 ¹	17 ¹
108	5540	_	_	_	_	-	_	_	_	_	_	_	20 ¹	18 ¹	17 ¹
112	5560	_	_	_	_	-	_	-	-	_	-	-	20 ¹	18 ¹	17 ¹
116	5580	_	_	_	_	-	_	-	-	_	-	-	20 ¹	18 ¹	17 ¹
120	5600	_	_	_	_	-	_	-	-	_	-	-	20 ¹	18 ¹	17 ¹
124	5620	_	_	_	_	-	_	-	-	_	-	-	20 ¹	18 ¹	17 ¹
128	5640	_	_	_	_	-	_	-	-	_	-	-	20 ¹	18 ¹	17 ¹
132	5660	_	_	_	_		_	-		_			20^{1}	18 ¹	17 ¹
136	5680	_	_	_	_		_	-		_			20^{1}	18 ¹	17 ¹
140	5700	_	_	_	_	-	_	-		-	-	-	20 ¹	18 ¹	17 ¹
	1	1	1	1	1	5	725 to 58	350 MHz		1	1	1	1	1	1
149	5745	20	19	18	16	20	19	18	16	19.5	18	16	-	-	-
153	5765	20	19	18	16	20	19	18	16	19.5	18	16	-	-	-
157	5785	20	19	18	16	20	19	18	16	19	18	16	_	-	-
161	5805	20	19	18	16	20	19	18	16	19	18	16	_	-	-
165	5825	20	19	18	16	20	19	18	16	_	_	_	_	_	_

^{1.} Dynamic frequency selection (DFS) and transmit power control (TPC) are required (uniform spreading is not required for the -P and -U regulatory domains).

Table 1-4 Channels and Maximum Conducted Power for IEEE 802.11a Radio with Up to 6-dBi Antennas

				Max	imum Co	onducted	l Power	Levels (dBm) in	the Regu	latory D	omains		
	Center	-I	-K		_	N		–J	-P	-U	-R	-S	_	T
Channel ID	Frequency (MHz)	OFDM All	OFDM All	OFDM 9-24	OFDM 36	OFDM 48	OFDM 54	OFDM All	OFDM All	OFDM All	OFDM All	OFDM All	OFDM 9-484	OFDM 54
	П		1	1	UN	NII-1 (51	50-5350) MHz)	1		1		- 1	
34	5170		-	-		-		18		-		_	_	-
36	5180	15	15	15	15	15	15		15	15		15	_	-
38	5190	-	_	-	-	-	-	18	-	-				-
40	5200	15	15	17	17	17	17	-	15	15	-	15	_	-
42	5210	_	-	_	_	-	_	18	_	_	-	-	_	_
44	5220	15	15	17	17	17	17	_	15	15	-	15	_	_
46	5230	_	-	-	-	_	_	18	-	_	-	-	_	_
48	5240	15	15	15	15	15	15	-	15	15	-	15	_	_
52	5260	15 ¹	17 ¹	20	20	18	17		11 ¹	-		14 ¹	_	_
56	5280	15 ¹	17 ¹	20	20	18	17		11 ¹	-		14 ¹	15	15
60	5300	15 ¹	17 ¹	20	20	18	17	-	11 ¹	_	_	14 ¹	15	15
64	5320	15 ¹	17 ¹	17	17	17	17	_	11 ¹	_	-	141	15	15
	1					5470 to	5725 N	1Hz					II.	
100	5500		17 ¹	-		-					_	_	_	-
104	5520	-	17 ¹	-	_	_	_	-	-	_	-	_	_	-
108	5540		17 ¹	-		-				-	_	_	_	-
112	5560	-	17 ¹	-	_	_	_	-	-	_	-	_	_	-
116	5580	-	17 ¹	_		-	-		-	-		_	_	_
120	5600	_	17 ¹	_	_	-	-	_	_	_	-	_	_	-
124	5620	-	17 ¹	_		-	-		-	-		_	_	_
128	5640	_	-	_	_	-	_	_	_	_	-	_	_	-
132	5660	_	-	_	_	-	_	_	_	_	-	_	_	-
136	5680	-	_	-	-	-	_	_	_	_			_	-
140	5700	-	_	_	_	-	_	_	_	_	-	_	_	_
				1	1	5725 to	5850 N	1Hz	1					
149	5745	_	16	20	19	18	16	_	_	_	-	16	17	16
153	5765	_	16	20	19	18	16	_	_	_	-	16	17	16
157	5785	_	16	20	19	18	16	_	_	_	-	16	17	16
161	5805	-	16	20	19	18	16		-	_	-	16	17	16
165	5825	_	_	_	_	_	_	_	_	_	_	_	_	_

^{1.} Dynamic frequency selection (DFS) and transmit power control (TPC) are required (uniform spreading is not required for the -P and -U regulatory domains).

1-5

Special Country Restrictions

Table 1-5 lists special restrictions for wireless operation in some countries.

Table 1-5 Special Country Restrictions for Wireless Operation

Country	Frequency Band (GHz)	Regulatory Domain	Special Limitation and Restrictions
Japan	5	–J, –P, and –U	Operation limited to indoor use only.
Mexico	2.4	-N	End user must limit 2.4 GHz operation to 2450 to 2483.5 MHz and 36 dBm EIRP ¹ .
Russian Federation	5	-E	End user must limit 5 GHz operation to 5150-5250 MHz and 5650 to 5725 MHz.
United States	5	-A and -B	Operation limited to indoor use only from 5150-5250 MHz.

^{1.} EIRP (dBm) = maximum output power (dBm) + antenna gain (dBi)

Changing the Lightweight Access Point Output Power

This section provides instructions for changing the 1000 series lightweight access point output power.

The output power on the 1000 series lightweight access points can be changed only using a 2600 series or 4400 series controller, the controllers on a Cisco Wireless Services Module (WiSM), or a Cisco Wireless Control System (WCS).

Administrator privileges may be required in order to change access point settings.

Note

Regulatory domains are set at the factory and cannot be changed by the user.

See the Cisco Wireless LAN Controller Configuration Guide for more details on how to to configure your access point.

Follow these steps to change the access point's output power to meet local regulations or special country restrictions using a controller running software release 4.1.x or later:

- Step 1 Open your Internet browser. You must use Microsoft Internet Explorer 6.0.2800 or later.
- Step 2 Enter https://IP address (where *IP address* is the controller's IP address) in the browser address line and press Enter. A user login screen appears.
- **Step 3** Enter the username and password and press **Enter**. The controller's summary page appears.

Note

The username and password are case-sensitive.

Step 4 Click Wireless on the upper tabs of the screen. The All APs screen appears.

- Step 5 On the left side of the screen under Access Points, click **802.11a Radios** or **802.11b/g Radios** and a list of accociated access points appears.
- Step 6 Choose the desired access point from the displayed list and click **Configure** from the drop down arrow. The radio settings page appears.
- Step 7 Scroll down to the Tx Power Level Assignment field, and click **Custom**.

Custom—indicates that the radio output power is manually controlled by the Tx Power Configuration setting field.

Step 8 In the Tx Power Level field, select the appropriate power level setting (1 to 5).

Based on the operating channel, the regulatory domain, and the controller power level setting (1 to 5), the actual transmit power at the access point can be reduced to comply with special regulatory or country restrictions.

Table 1-1, Table 1-2, Table 1-3, and Table 1-4 lists the access point maximum output power levels supported for its regultory domain when shipped from the factory.

Table 1-6 lists the controller power settings and the corresponding output power levels for two examples:

- 2.4 GHz (802.11b/g) operation:
 - Non-FCC (-N) regulatory domain
 - Channel 2 using 11 Mbps data rates
- 5 GHz (802.11a) operation:
 - Non-FCC (-N) regulatory domain
 - Channel 36 using 36 Mbps data rates

Table 1-6 Example of Output Power Levels

	Radio Output Power						
Controller Tx Power Settings ¹	802.11b/g (dBm)	802.11a (dBm)					
1 (maximum)	20^{2}	15 ³					
2	17	12					
3	14	9					
4	11	6					
5	8	3					

- The Tx Power Level setting of 1 represents the maximum conducted power setting for the access point. Each subsequent controller power level (such as 2, 3, 4, etc) represents approximately a 3-dBm reduction in transmit power from the previous power level.
- 2. The maximum output power level obtained from Table 1-2.
- 3. The maximum output power level obtained from Table 1-4.

Step 9 Click Apply.

Step 10 Close your Internet browser.

For additional configuration information, refer to the $Cisco\ Wireless\ LAN\ Controller\ Configuration\ Guide.$

CHAPTER 2

Cisco Aironet 1100 Series Access Points

This chapter lists the 1100 series lightweight (AIR-LAP1121G) access point IEEE 802.11b (2.4-GHz) and IEEE 802.11g (2.4-GHz) channels and the maximum power levels supported by the world's regulatory domains. For additional product hardware information refer to the *Cisco Aironet 1100 Series Access Point Hardware Installation Guide*.

The following topics are covered in this chapter:

- Channels, page 2-10
- Maximum Power Levels, page 2-11
- Changing the Lightweight Access Point Output Power, page 2-12

Channels

AIR-LAP1121G IEEE 802.11g (2.4-GHz Band)

The channel identifiers, channel center frequencies, and regulatory domains of each IEEE 802.11g 22-MHz-wide channel are shown in Table 2-2.

Table 2-1 Channels for IEEE 802.11g

	Center		F	Regulato	ry Domaii	15	
Channel	Frequency	Ameri	cas (-A)	EME	A (-E)	Japa	ın (-J)
Identifier	(MHz)	CCK	OFDM	CCK	OFDM	CCK	OFDM
1	2412	X	X	X	X	X	X
2	2417	X	X	X	X	X	X
3	2422	X	X	X	X	X	X
4	2427	X	X	X	X	X	X
5	2432	X	X	X	X	X	X
6	2437	X	X	X	X	X	X
7	2442	X	X	X	X	X	X
8	2447	X	X	X	X	X	X
9	2452	X	X	X	X	X	X
10	2457	X	X	X	X	X	X
11	2462	X	X	X	X	X	X
12	2467	_	_	X	X	X	X
13	2472	_	_	X	X	X	X
14	2484	_	-	-	-	X	_

Mexico is included in the Americas (-A) regulatory domain; however, channels 1 through 8 are for indoor use only while channels 9 through 11 can be used indoors and outdoors. Users are responsible for ensuring that the channel set configuration is in compliance with the regulatory standards of Mexico.

Maximum Power Levels

IEEE 802.11b (2.4-GHz Band)

An improper combination of power level and antenna gain can result in equivalent isotropic radiated power (EIRP) above the amount allowed per regulatory domain. Table 2-2 indicates the maximum power levels allowed with the Cisco integrated antenna for each IEEE 802.11b regulatory domain.

Table 2-2 Maximum Power Levels Per Antenna Gain for IEEE 802.11b

Regulatory Domain	Antenna Gain (dBi)	Maximum Power Level (mW)
Americas (-A) (4 watts EIRP maximum)	2.2	100
EMEA (-E) (100 mW EIRP maximum)	2.2	50
Japan (-J) (10 mW/MHz EIRP maximum)	2.2	30

IEEE 802.11g (2.4-GHz Band)

An improper combination of power level and antenna gain can result in equivalent isotropic radiated power (EIRP) above the amount allowed per regulatory domain. Table 2-3 shows the maximum power levels allowed with the Cisco integrated antenna for each IEEE 802.11g regulatory domain.

Table 2-3 Maximum Power Levels Per Antenna Gain for IEEE 802.11g

		Maximum Pow	er Level (mW)
Regulatory Domain	Antenna Gain (dBi)	ССК	OFDM
Americas (-A) (4 watts EIRP maximum)	2.2	100	30
EMEA (-E) (100 mW EIRP maximum)	2.2	50	30
Japan (-J) (10 mW/MHz EIRP maximum)	2.2	30	30

Changing the Lightweight Access Point Output Power

This section provides instructions for changing the 1100 series lightweight access point output power to comply with the maximum power limits imposed by regulatory domains (see the "Maximum Power Levels" section on page 2-11). Follow these instructions to change the output power settings using your browser:

Administrator privileges may be required in order to change access point settings.

lote

Regulatory domains are set at the factory and cannot be changed by the user.

The output power on the AIR-LAP1121G-x-K9 (where *x* is the regulatory domain) access points can be changed only by using a Cisco wireless LAN controller (2600 series or 4400 series), the controllers on a Cisco Wireless Services Module (WiSM), or using Cisco Wireless Control System (WCS).

See the *Cisco Wireless LAN Controller Configuration Guide* for more details on how to configure your access point using the web-browser interface.

Follow these steps to change the AIR-LAP1121G-x-K9 (where x is the regulatory domain) access point's output power to meet local regulations using a controller:

- **Step 1** Open your Internet browser. You must use Microsoft Internet Explorer 6.0.2800 or a later release.
- Step 2 Enter https://IP address (where *IP address* is the controller's IP address) in the browser address line and press Enter. A user login screen appears.
- Step 3 Enter the username and password and press Enter. The controller's summary page appears.

The username and password are case-sensitive.

- Step 4 Click Wireless > 802.11b/g Radio and a list of associated access points appears.
- Step 5 Choose the desired access point from the displayed list and click **Configure**. The radio settings page appears.
- Step 6 Scroll down to the Tx Power Level Assignment field, and click **Custom**. Custom indicates that the radio output power is manually controlled by the Tx Power Configuration setting field.
- Step 7 In the Tx Power Level field, select the appropriate power level setting (1 to 8).

Table 2-4 lists the controller power settings and the corresponding output power levels for this example:

- 2.4-GHz (802.11b/g) operation:
 - EMEA (-E) regulatory domain

Table 2-4 Available Output Power Levels

Controller	Radio Ou	tput Power
Tx Power Settings ¹	802.11b (mW)	802.11g (mW)
1 (maximum) ²	50	30
2	25	15
3	12	8
4	6	4
5	3	2
6	2	1
7	-1	_
8		_

^{1.} The Tx Power Level setting of 1 represents the maximum conducted power setting for the access point. Each subsequent power level (such as 2, 3, 4, etc.) represents an approximate 3-dBm reduction in transmit power from the previous power level.

Step 8 Click Apply.

Step 9 Close your Internet browser.

For additional configuration information, refer to the *Cisco Wireless LAN Controller Configuration Guide*.

^{2.} See Table 2-3 for the maximum power levels in the -E regulatory domain.

Changing the Lightweight Access Point Output Power

CHAPTER 3

Cisco Aironet 1130 Series Access Points

This chapter lists the 1130 series lightweight access point (models: AIR-LAP1131G-x-K9 and AIR-LAP1131AG-x-K9) IEEE 802.11b/g (2.4-GHz) and the IEEE 802.11a (5-GHz) channels and maximum power levels supported by the world's regulatory domains. For additional product hardware information refer to the *Cisco Aironet 1130AG Series Access Point Hardware Installation Guide*.

The following topics are covered in this chapter:

- Channels and Maximum Power Levels, page 3-3
- Special Country Restrictions, page 3-5
- Changing the Lightweight Access Point Output Power, page 3-5

IEEE 802.11b/g (2.4-GHz Band)

When shipped from the factory, the AIR-LAP1131G-x-K9 (single radio) access points support the channels and maximum power levels listed in Table 3-1 for their regulatory domain.

The B columns indicate IEEE 802.11b data rates and the G colums indicate IEEE 802.11g data rates.

Table 3-1 Channels and Maximum Conducted Power for the 802.11g Radio ' with 3-dBi Integrated Antenna

		Max	wer Level y Domains	s (dBm) in	the			
Channel	Center Freq	-	Α	_	E	_P		
ld	(MHz)	В	G	В	G	В	G	
1	2412	20	17	14	14	14	14	
2	2417	20	17	14	14	14	14	
3	2422	20	17	14	14	14	14	
4	2427	20	17	14	14	14	14	
5	2432	20	17	14	14	14	14	
6	2437	20	17	14	14	14	14	
7	2442	20	17	14	14	14	14	
8	2447	20	17	14	14	14	14	
9	2452	20	17	14	14	14	14	
10	2457	20	17	14	14	14	14	
11	2462	20	17	14	14	14	14	
12	2467	_		14	14	14	14	
13	2472	_		14	14	14	14	
14	2484	_	-	-	_	14	-	

Channels and Maximum Power Levels

IEEE 802.11b/g (2.4-GHz Band)

When shipped from the factory, the AIR-AP1131AG-x-K9 (dual radio) access points support the channels and maximum power levels listed in Table 3-2 for their regulatory domain.

The B columns indicate IEEE 802.11b data rates and the G colums indicate IEEE 802.11g data rates .

Table 3-2 Channels and Maximum Conducted Power for the 802.11b/g Radio with 3-dBi Integrated Antenna

		Maximum Conducted Power Levels (dBm) in the Regulatory Dom							/ Doma	ains											
Channel	Center Freq	-	Α	-	С	_	E	-	.	-	J	-	K	_	N	-	Р	-	S	_	T
ld	(MHz)	В	G	В	G	В	G	В	G	В	G	В	G	В	G	В	G	В	G	В	G
1	2412	20	17	14	14	14	14	14	14	14	14	14	14	20	17	14	14	14	14	20	17
2	2417	20	17	14	14	14	14	14	14	14	14	14	14	20	17	14	14	14	14	20	17
3	2422	20	17	14	14	14	14	14	14	14	14	14	14	20	17	14	14	14	14	20	17
4	2427	20	17	14	14	14	14	14	14	14	14	14	14	20	17	14	14	14	14	20	17
5	2432	20	17	14	14	14	14	14	14	14	14	14	14	20	17	14	14	14	14	20	17
6	2437	20	17	14	14	14	14	14	14	14	14	14	14	20	17	14	14	14	14	20	17
7	2442	20	17	14	14	14	14	14	14	14	14	14	14	20	17	14	14	14	14	20	17
8	2447	20	17	14	14	14	14	14	14	14	14	14	14	20	17	14	14	14	14	20	17
9	2452	20	17	14	14	14	14	14	14	14	14	14	14	20	17	14	14	14	14	20	17
10	2457	20	17	14	14	14	14	14	14	14	14	14	14	20	17	14	14	14	14	20	17
11	2462	20	17	14	14	14	14	14	14	14	14	14	14	20	17	14	14	14	14	20	17
12	2467	_	_	14	14	14	14	14	14	14	14	14	14	_	_	14	14	14	14	_	_
13	2472	_	_	14	14	14	14	14	14	14	14	14	14	_	_	14	14	14	14	_	_
14	2484	_	_	-	_	_	_	_	_	14	-	_	_	_	-	14	-	_	_	-	_

IEEE 802.11a (5-GHz Band)

When shipped from the factory, the AIR-AP1131AG-x-K9 (dual radio) access points support the channels and maximum power levels listed in Table 3-3 for their regulatory domain.

Access points with FCC Certification Number (LDK102054) do not support dynamic frequency selection (DFS) on channels 100 to 140 in the US, Canada, and the Philippines. The FCC Certification Number (also called FCC ID number) is shown on the product label on the bottom of the unit. Only access points with LDK102054E on the product label and running the 4.1.170.0 software release can support DFS in the US, Canada, and the Philippines.

Table 3-3 Channels and Maximum Conducted Power for IEEE 802.11a Radio with 4.5-dBl Integrated Antenna

	Center		Maximum Conducted Power Levels (dBm) in the Regulatory Domains													
Channel ID	Freq (MHz)	-A	-С	-Е	-I	- J	-K	-N	-P	–U	- S	-T				
	1				51	50 to 5250	MHz	1				-				
34	5170	-	_	_	-	15	-	_	-	-	_	_				
36	5180	15	_	17	17	-	15	15	15	15	17	_				
38	5190	-	_	_	_	15	_	_	_	_	_	_				
40	5200	15	_	17	17	_	15	15	15	15	17	_				
42	5210	_	_	_	_	15	_	_	_	_	_	_				
44	5220	15	_	17	17	_	15	15	15	15	17	_				
46	5230	_	_	_	_	15	_	_	_	-	_	_				
48	5240	15	_	17	17	_	15	15	15	15	17	_				
	1				52	50 to 5350	MHz	1		-		-				
52	5260	17	_	17 ¹	17 ¹	_	17 ¹	17 ¹	15 ¹	_	14 ¹	_				
56	5280	17	_	17 ¹	17 ¹	_	17 ¹	17 ¹	15 ¹	_	14 ¹	15				
60	5300	17	_	17 ¹	17 ¹	_	17 ¹	17 ¹	15 ¹	_	14 ¹	15				
64	5320	17	_	17 ¹	17 ¹	_	17 ¹	17 ¹	15 ¹	_	14 ¹	15				
	1		1	Ш	54	50 to 5725	MHz			1	II.	- 1				
100	5500	17^{1}	_	17 ¹	_	_	17 ¹	_	_	_	_	17 ¹				
104	5520	17 ¹	_	17 ¹	_	_	17 ¹	_	_	_	-	17 ¹				
108	5540	17^{1}	_	17 ¹	_	_	17 ¹	_	_	_	_	17 ¹				
112	5560	17^{1}	_	17 ¹	_	_	17 ¹	_	_	_	_	17 ¹				
116	5580	17^{1}	_	17 ¹	_	-	17 ¹	_	_	_	_	17 ¹				
120	5600	_	_	17 ¹	_	_	17 ¹	_	_	_	_	17 ¹				
124	5620	_	_	17 ¹	_	_	17 ¹	_	_	_	_	17 ¹				
128	5640	_	_	17 ¹	_	_	_	_	_	_	_	17 ¹				
132	5660	17 ¹	_	17 ¹	_	_	_	_	_	_	_	17 ¹				
136	5680	17 ¹	_	17 ¹	_	_	_	_	_	_	_	17 ¹				
140	5700	17^{1}	_	17 ¹	_	_	_	_	_	_	_	17 ¹				
	1		1	1	57	25 to 5850	MHz	1	1	1	1	1				
149	5745	17	17	_	_	_	17	17	_	_	17	17				
153	5765	17	17	_	_	_	17	17	_	_	17	17				
157	5785	17	17	_	_	_	17	17	_	_	17	17				
161	5805	17	17	_	_	-	17	17	_	_	17	17				
165	5825	-	-	_	_	_	-	_	_	-	_	_				

^{1.} Frequencies require DFS (Uniform spreading not required for the -P and -U regulatory domains).

Special Country Restrictions

Table 3-4 lists special restrictions for wireless operation in some countries.

Table 3-4 Special Country Restrictions for Wireless Operation

Country	Frequency Band (GHz)	Regulatory Domain	Special Limitation and Restrictions
Mexico	2.4	-N	End user must limit 2.4 GHz operation to 2450 to 2483.5 MHz and 36 dBm EIRP ¹ .
Russian Federation	5	-E	End user must limit 5 GHz operation to 5650 to 5725 MHz.
United States	5	-A	Operation limited to indoor use only from 5150-5250 MHz.

^{1.} EIRP (dBm) = maximum output power (dBm) + antenna gain (dBi)

Changing the Lightweight Access Point Output Power

This section provides instructions for changing the 1130AG series access point output power to comply with the maximum power limits imposed by special regulatory and country restrictions (see the "Special Country Restrictions" section on page 3-5). Follow these instructions to change the output power settings using a controller and your browser:

Administrator privileges may be required in order to change access point settings.

Regulatory domains are set at the factory and cannot be changed by the user.

To meet regulatory restrictions, the access point and the external antenna must be professionally installed. The network administration or other IT professional responsible for installing and configuring the unit is a suitable professional installer. Following installation, access to the unit should be password protected by the network administrator to maintain regulatory compliance.

The output power on the access points can be changed only using a Cisco wireless LAN controller (2600 series or 4400 series), the controllers on a Cisco Wireless Services Module (WiSM), or using Cisco Wireless Control System (WCS).

See the Cisco Wireless LAN Controller Configuration Guide for more details on how to to configure your access point using the web-browser interface.

Follow these steps to change the access point's output power to meet local regulations using a controller:

- **Step 1** Open your Internet browser. You must use Microsoft Internet Explorer 6.0.2800 or a later release.
- Step 2 Enter https://IP address (where IP address is the controller's IP address) in the browser address line and press Enter. A user login screen appears.

Step 3 Enter the username and password and press **Enter**. The controller's summary page appears.

The username and password are case-sensitive.

- Step 4 Click Wireless > 802.11a Radios or 802.11b/g Radios and a list of associated access points displays.
- Step 5 Choose the desired access point from the displayed list and click **Configure**. The radio settings page displays.
- **Step 6** Scroll down to the Tx Power Level Assignment field, and click **Custom**.

Custom indicates that the radio output power is manually controlled by the Tx Power Configuration setting field.

Step 7 In the Tx Power Level field, select the appropriate power level setting (1 to 8).

Based on the operating channel, the regulatory domain, and the controller power level setting (1 to 8), the actual transmit power at the access point can be reduced to comply with special regulatory or country restrictions.

Table 3-5 lists the controller power settings and the corresponding output power levels for these two examples:

- 2.4 GHz (802.11b/g) operation:
 - American regulatory domain and channel 2 using 11 Mbps data rates
- 5 GHz (802.11a) operation:
 - American regulatory domain and channel 149 using 36 Mbps data rates

Table 3-5 Example of Output Power Levels

Radio Output Power							
802.11b/g (dBm)	802.11a (dBm)						
20^{2}	17 ³						
17	14						
14	11						
11	8						
8	5						
5	2						
2	-1						
-1	_						
	802.11b/g (dBm) 20 ² 17 14 11 8 5 2						

^{1.} The Tx Power Level setting of 1 represents the maximum conducted power setting for the access point. Each subsequent controller power level (such as 2, 3, 4, etc) represents approximately a 3-dBm reduction in transmit power from the previous power level.

- 2. The maximum output power level obtained from Table 3-2.
- 3. The maximum output power level obtained from Table 3-3.

Step 8 Click Apply.

Step 9 Close your Internet browser.

For additional configuration information, refer to the Cisco Wireless LAN Controller Configuration Guide.

Changing the Lightweight Access Point Output Power

CHAPTER 4

Cisco Aironet 1200 Series Access Points

This section lists the 1200 series lightweight access point (models: AIR-LAP1231G and AIR-LAP1232AG) IEEE 802.11g (2.4-GHz) and IEEE 802.11a (5-GHz) channels, maximum power levels, and antenna gains supported by the world's regulatory domains. For additional product hardware information refer to the *Cisco Aironet 1200 Series Access Point Hardware Installation Guide*.

The following topics are covered in this section:

- Channels, page 4-2
- Maximum Power Levels and Antenna Gains, page 4-4
- Power Conversion Table, page 4-9
- Changing the Lightweight Access Point Output Power, page 4-10

Channels

IEEE 802.11g (2.4-GHz Band)

The channel identifiers, channel center frequencies, and regulatory domains of each IEEE 802.11g 22-MHz-wide channel are shown in Table 4-1.

Table 4-1 Channels for IEEE 802.11g

	Center	Regulatory Domains										
Channel	Frequency	_	·A	_	-E	_J						
Identifier	(MHz)	CCK	OFDM	ССК	OFDM	CCK	OFDM					
1	2412	X	X	X	X	X	X					
2	2417	X	X	X	X	X	X					
3	2422	X	X	X	X	X	X					
4	2427	X	X	X	X	X	X					
5	2432	X	X	X	X	X	X					
6	2437	X	X	X	X	X	X					
7	2442	X	X	X	X	X	X					
8	2447	X	X	X	X	X	X					
9	2452	X	X	X	X	X	X					
10	2457	X	X	X	X	X	X					
11	2462	X	X	X	X	X	X					
12	2467	-	_	X	X	X	X					
13	2472	-	_	X	X	X	X					
14	2484	_	-	_	-	X	_					

Mexico is included in the Americas (-A) regulatory domain; however, channels 1 through 8 are for indoor use only while channels 9 through 11 can be used indoors and outdoors. Users are responsible for ensuring that the channel set configuration is in compliance with the regulatory standards of Mexico.

IEEE 802.11a (5-GHz Band)

The channel identifiers, channel center frequencies, and regulatory domains of each IEEE 802.11a 20-MHz-wide channel are shown in Table 4-2.

•. Table 4-2 Channels for IEEE 802.11a for the RM21A and RM22A Radio Modules

-	Center	Regulatory Domains													
Channel ID	Frequency (MHz)	-A	-C	−E	-I	-J	-К	-N	-P	-U	-S	–Т			
					5150 to	5250 M	Hz	1			II.				
34	5170	-	_	_	_	X	_	-	_	_	_	_			
36	5180	X	_	X	X	_	X	X	X	X	X	_			
38	5190	_	_	_	_	X	_	-	_	_	_	_			
40	5200	X	_	X	X	_	X	X	X	X	X	_			
42	5210	_	_	_	_	X	_	-	_	_	_	_			
44	5220	X	_	X	X	_	X	X	X	X	X	_			
46	5230	_	_	_	_	X	_	-	_	_	_	_			
48	5240	X	_	X	X		X	X	X	X	X	_			
					5250 to	5350 M	Hz								
52	5260	X	_	X	X	_	X	X	X	_	X	_			
56	5280	X	_	X	X	_	X	X	X	_	X	X			
60	5300	X	_	X	X	_	X	X	X	_	X	X			
64	5320	X	_	X	X	_	X	X	X	_	X	X			
					5470 to	5725 M	Hz								
100	5500	_	_	X	_	_	X	_	_	_	_	_			
104	5520	_	_	X	_	_	X	_	_	_	_	-			
108	5540	_	_	X	_	_	X	_	_	_	_	_			
112	5560	_	_	X	_	_	X	_	_	_	_	_			
116	5580	_	_	X	_	_	X	_	_	_	_	_			
120	5600	_	_	X	_	_	X	_	_	_	_	_			
124	5620	_	_	X	_	_	X	_	_	_	_	-			
128	5640	_	_	X	_	_	_	_	_	_	_	_			
132	5660	_	_	X	_	_	_	_	_	_	_	_			
136	5680	_	_	X	_	_	_	_	_	_	_	_			
140	5700	_	_	X	_	_	_	_	_	_	_	_			
		-	-		5725 to	5850 M	Hz								
149	5745	X	X	_	_	-	X	X	_	_	X	X			
153	5765	X	X	-	_	-	X	X	_	_	X	X			
157	5785	X	X	-	_	-	X	X	_	_	X	X			
161	5805	X	X	-	-	-	X	X	_	_	X	X			
165	5825	_	_	_	_	_	_	_	_	_	_	_			

Maximum Power Levels and Antenna Gains

IEEE 802.11g (2.4-GHz Band)

An improper combination of power level and antenna gain can result in equivalent isotropic radiated power (EIRP) above the amount allowed per regulatory domain. Table 4-3 indicates the maximum power levels and antenna gains allowed for each IEEE 802.11g regulatory domain.

Table 4-3 Maximum Power Levels Per Antenna Gain for IEEE 802.11g

		Maximum Power Level (mW)					
Regulatory Domain	Antenna Gain (dBi)	CCK Modulation	OFDM Modulation				
–A	2.2	100	30				
(4 W EIRP maximum)	5	100	30				
	6	100	30				
	6.5	100	30				
	8.5	100	30				
	10	100	30				
–E	2.2	50	30				
(100 mW EIRP maximum)	5	30	10				
	6	30	10				
	6.5	20	10				
	8.5	10	5				
	10	10	5				
_I	2.2	50	30				
(100 mW EIRP maximum)	5	30	10				
	6	30	10				
	6.5	20	10				
	8.5	10	5				
	10	10	5				
_J	2.2	30	30				
(10 mW/MHz EIRP maximum)	5	30	30				
maximum)	6	30	30				
	6.5	30	30				
	8.5	_	_				
	10	_	_				

IEEE 802.11a (5-GHz Band)

When shipped from the factory, the RM21A radio modules (with the 5-dBi integrated antenna) support the channels and maximum power levels listed in Table 4-4 for their regulatory domain.

Table 4-4 Maximum Power for RM21A Radio Module with 5-dBi Integrated Antenna

	Center					Re	gulatory Dom	nains				
Channel ID	Frequency (MHz)	-A	-С	–Е	-I	-J	-К	-N	_P	-U	-S	-Т
				<u> </u>	5150 t	o 5250 M	Hz		-1	<u> </u>	1	
34	5170	_	_	_	_	15	_	_	_	-	_	_
36	5180	15	_	17	17	_	15	15	15	15	17	_
38	5190	_	_	_	_	15	_	-	_	_	_	_
40	5200	15	_	17	17	_	15	15	15	15	17	_
42	5210	_	_	_	_	15	_	_	_	-	_	_
44	5220	15	_	17	17	_	15	15	15	15	17	_
46	5230	_	_	_	_	14	_	_	_	_	_	_
48	5240	15	_	17	17	_	15	15	15	15	17	_
					5250 t	o 5350 M					1	
52	5260	17 ¹	_	17 ¹	17 ¹	_	17 ¹	17 ¹	14 ¹	-	14 ¹	_
56	5280	17^{1}	_	17 ¹	17 ¹	_	17 ¹	17 ¹	14 ¹	-	14 ¹	15
60	5300	17 ¹	_	17 ¹	17 ¹	_	17 ¹	17 ¹	14 ¹	-	14 ¹	15
64	5320	17^{1}	_	17 ¹	17 ¹	_	17 ¹²	17 ¹	14 ¹	_	14 ¹	15
					5470 to	o 5725 N	ИHz					
100	5500	17^{1}	_	17 ¹	_	_	17 ¹	_	_	_	_	_
104	5520	17 ¹	_	17 ¹	_	_	17 ¹	_	_	_	_	_
108	5540	17^{1}	_	17 ¹	_	_	17 ¹	-	_	_	_	_
112	5560	17^{1}	_	17 ¹	_	_	17 ¹	-	_	_	_	_
116	5580	17 ¹	_	17 ¹	_	_	17 ¹	_	-	-	_	_
120	5600	_	_	17 ¹	_	_	17 ¹	_	_	_	_	_
124	5620	_	_	17 ¹	_	_	17 ¹	-	_	_	_	_
128	5640	_	_	17 ¹	_	_	-	_	-	-	_	_
132	5660	17 ¹	_	17 ¹	_	_	-	_	_	-	_	_
136	5680	17^{1}	_	17 ¹	_	_	_	-	_	_	_	_
140	5700	17 ¹	_	17 ¹	_	_	-	_	_	-	_	_
					5725 t	o 5850 M	Hz					
149	5745	17	17	_	_	-	17	17	_	_	17	17
153	5765	17	17	-	_	-	17	17	-	_	17	17
157	5785	17	17	_	_	-	17	17	-	-	17	17
161	5805	17	17	_	_	-	17	17	_	-	17	17
165	5825	-	_	_	_	_	-	_	_	_	_	_

^{1.} Frequencies require DFS (Uniform spreading not required for -P and -U regulatory domains).

When shipped from the factory, the RM21A radio modules (with the 9-dBi integrated antenna) support the channels and maximum power levels listed in Table 4-5 for their regulatory domain.

Table 4-5 Maximum Power for RM21A Radio Module with 9-dBi Integrated Antenna

-	Center	Regulatory Domains													
Channel ID	Frequency (MHz)	-A	-С	–Е	-1	-J	-K	−N	-P	–U	-S	-Т			
-			"	11	5150 to	5250 M	Hz	I	ı	I					
34	5170	_	_	_	_	11	_	_	_	_	_	_			
36	5180	11	_	14	14	_	15	11	11	11	14	_			
38	5190	_	_	_	_	11	_	_	_	_	_	_			
40	5200	11	_	14	14	_	15	11	11	11	14	_			
42	5210	_	_	_	_	11	_	_	_	_	_	_			
44	5220	11	_	14	14	_	15	11	11	11	14	_			
46	5230	_	_	_	_	11	_	_	_	_	_	_			
48	5240	11	_	14	14	_	15	11	11	11	14	_			
						5350 M									
52	5260	17 ¹	_	14 ¹	14 ¹	_	17 ¹	17 ¹	81	_	11 ¹	_			
56	5280	17^{1}	_	14 ¹	14 ¹	_	17 ¹	17 ¹	8 ¹	_	11 ¹	11			
60	5300	17 ¹	_	14 ¹	14 ¹	_	17 ¹	17 ¹	81	_	11 ¹	11			
64	5320	11^{1}	_	14 ¹	14 ¹	_	17 ¹	17 ¹	81	_	11 ¹	11			
					5470 to	5725 M									
100	5500	17^{1}	_	17 ¹	_	_	17 ¹	_	_	_	_	_			
104	5520	17^{1}	_	17 ¹	_	_	17 ¹	_	_	_	_	_			
108	5540	17 ¹	_	17 ¹	_	_	17 ¹	_	_	_	_	_			
112	5560	17^{1}	_	17 ¹	_	_	17 ¹	_	_	_	_	_			
116	5580	17 ¹	_	17 ¹	_	_	17 ¹	_	_	_	_	_			
120	5600	-	_	17 ¹	_	_	17 ¹	_	_	_	_	_			
124	5620	-	_	17 ¹	_	_	17 ¹	_	_	_	_	_			
128	5640	-	_	17 ¹	_	_	_	_	_	_	_	_			
132	5660	17 ¹	_	17 ¹	_	_	_	_	_	_	_	_			
136	5680	17 ¹	_	17 ¹	_	_	_	_	_	_	_	_			
140	5700	17 ¹	_	17 ¹	_	_	_	_	_	_	_				
					5725 to	5850 M	Hz								
149	5745	17	17	_	_	_	17	17	_	_	17	17			
153	5765	17	17	_	_	_	17	17	_	_	17	17			
157	5785	14	17	_	_	_	17	14	_	_	17	14			
161	5805	11	17	_	_	_	17	11	-	_	17	11			
165	5825	_	_	_	_	_	_	_	_	_	-	_			

^{1.} Frequencies require DFS (Uniform spreading not required for the -P and -U regulatory domains).

When shipped from the factory, the RM22A radio modules support the channels and maximum power levels listed in Table 4-6 for their regulatory domain.

Table 4-6 Maximum Power for the RM22A Radio Module with Up To 9.5-dBi External Antennas

	Center					Reg	ulatory Do	mains				
Channel ID	Frequency (MHz)	-A	-C	−E ¹	-l ¹	-J	-K ^{,2}	$-N^3$	-P	–U	-S	-T
				1	5150 to	o 5250 M	Hz		1			-
34	5170	_	_	_	_	11	_	_	_	_	-	_
36	5180	11	_	17	17	_	15	11	11	11	14	_
38	5190	_	-	_	_	11	_	_	_	_	_	_
40	5200	11	-	17	17	_	15	11	11	11	14	_
42	5210	_	-	_	_	11	_	_	_	_	_	_
44	5220	11	-	17	17	_	15	11	11	11	14	_
46	5230	_	_	_	_	11	_	_	_	_	_	_
48	5240	11	_	17	17	_	15	11	11	11	14	_
					5250 to	o 5350 M	Hz					
52	5260	17 ⁴	-	17 ⁴	17 ⁴	_	17 ⁴	17 ⁴	8 ⁴	_	11 ⁴	_
56	5280	17 ⁴	-	17 ⁴	17 ⁴	_	17 ⁴	17 ⁴	8 ⁴	_	11 ⁴	11
60	5300	17 ⁴	_	17 ⁴	17 ⁴	_	17 ⁴	17 ⁴	8 ⁴	_	11 ⁴	11
64	5320	11 ⁴	_	17 ⁴	17 ⁴	_	17 ⁴	11 ⁴	8 ⁴	_	11 ⁴	11
					5470 to	o 5725 M						
100	5500	17 ⁴	_	17 ⁴	_	_	17 ⁴	_	_	_	_	_
104	5520	17 ⁴	_	174	1	_	17 ⁴	_	_	_	_	_
108	5540	17 ⁴	_	17 ⁴	_	_	17 ⁴	_	_	_	_	_
112	5560	17 ⁴	_	17 ⁴	_	_	17 ⁴	_	_	_	_	_
116	5580	17 ⁴	_	17 ⁴	_	_	17 ⁴	_	_	_	_	_
120	5600	_	_	17 ⁴	_	_	17 ⁴	_	_	_	_	_
124	5620	_	_	17 ⁴	1	_	17 ⁴	_	_	_	_	_
128	5640	_	_	17 ⁴	_	_	_	_	_	_	_	_
132	5660	17 ⁴	_	17 ⁴	_	_	_	_	_	_	_	_
136	5680	17 ⁴	_	17 ⁴	_	_	_	_	_	_	_	_
140	5700	17 ⁴	_	174	_	_	_	_	_	_	_	_
					5725 to	o 5850 M	Hz					
149	5745	17	17	_	_	_	17	17	_	_	17	17
153	5765	17	17	_	_	_	17	17	_	_	17	17
157	5785	14	17	_	_	_	17	14	_	_	17	14
161	5805	11	17	_	_	_	17	11	_	_	17	11
165	5825	_	_	_	_	_	_	_	_	_	_	_

^{1.} For the -E and -I regulatory domains, see the "Maximum Power Levels in Some Regulatory Domains with External Antennas" section on page 4-8.

^{2.} In South Korea, the AIR-RM22A-N-K9 is approved only with antenna gains of 6 dBi or less.

^{3.} In Australia and New Zealand, the AIR-RM22A-N-K9 is approved only with antenna gains of 6 dBi or less.

^{4.} Frequencies require DFS (Uniform spreading not required for the -P and -U regulatory domains).

Maximum Power Levels in Some Regulatory Domains with External Antennas

To avoid exceeding maximum conducted power levels in the EMEA (-E) and Israel (-I) regulatory domains when using an external antenna, you must manually set the access point output power level as shown in Table 4-7. The Israel (-I) regulator domain does not support channels 100 to 140.

For the latest EMEA (-E) regulatory domain information, refer to the EU Directive 1999/5/EC Compliance Information document that ships with this product.

Table 4-7 RM22A Radio Module Maximum Power with External Antennas in the (–E) and (–I) Regulatory Domains

Channel	Center		Maxin	num Power Levels	s (dBm)	
Identifier	Frequency (MHz)	4-dBi Antenna	5-dBi Antenna	6-dBi Antenna	7-dBi Antenna	9.5-dBi Antenna
			5150 to 5250 M	Hz		
34	5170	_	_	-	-	_
36	5180	17	17	15	15	11
38	5190	_	_	_	_	_
40	5200	17	17	15	15	11
42	5210	_	_	_	_	_
44	5220	17	17	15	15	11
46	5230	_	_	_	_	-
48	5240	17	17	15	15	11
			5250 to 5350 Ml	Hz		
52	5260	17	17	15	15	11
56	5280	17	17	15	15	11
60	5300	17	17	15	15	11
64	5320	17	17	15	15	11
			5470 to 5725 M	Hz		
100	5500	17	17	17	17	17
104	5520	17	17	17	17	17
108	5540	17	17	17	17	17
112	5560	17	17	17	17	17
116	5580	17	17	17	17	17
120	5600	17	17	17	17	17
124	5620	17	17	17	17	17
128	5640	17	17	17	17	17
132	5660	17	17	17	17	17
136	5680	17	17	17	17	17
140	5700	17	17	17	17	17
			5725 to 5850 M	Hz		
149	5745	_	_	_	_	_
153	5765	_	_	_	_	_
157	5785	_	_	_	_	_
161	5805	_	_	_	_	_
165	5825	_	_	_	_	_

Special Country Restrictions

Table 4-8 lists special restrictions for wireless operation in some countries.

Table 4-8 Special Country Restrictions for Wireless Operation

Country	Frequency Band (GHz)	Regulatory Domain	Special Limitation and Restrictions
Australia and New Zealand	5	-N	2.4 and 5 GHz external antenna gain limited to 6 dBi. or less
South Korea	2.4 and 5	-K	2.4 and 5 GHz external antenna gain limited to 6 dBi or less.
Mexico	2.4	-N	End user must limit 2.4 GHz operation to 2450 to 2483.5 MHz and 36 dBm EIRP ¹ .
Russian Federation	5	-E	End user must limit 5 GHz operation to 5150 to 5350 and 5650 to 5725 MHz.
United States	2.4	-A	Operation limited to indoor use only from 5150-5250 MHz.

^{1.} EIRP (dBm) = maximum output power (dBm) + antenna gain (dBi)

Power Conversion Table

You can use Table 4-9 to convert power values from dBm to mW or from mW to dBm.

Table 4-9 Power Conversion Table

mW	dBm
200	23
150	22
125	21
100	20
80	19
60	18
50	17
40	16
30	15
25	14
20	13

mW	dBm
15	12
12	11
10	10
8	9
6	8
5	7
4	6
3	5
2	2
1	-1
_	

Changing the Lightweight Access Point Output Power

This section provides instructions for changing the 1200 series access point output power to comply with the maximum power limits imposed by special regulatory and country restrictions (see the "Maximum Power Levels in Some Regulatory Domains with External Antennas" section on page 4-8 and the "Special Country Restrictions" section on page 4-9). Follow these instructions to change the output power settings using a controller and your browser:

Administrator privileges may be required in order to change access point settings.

Regulatory domains are set at the factory and cannot be changed by the user.

To meet regulatory restrictions, the access point and the external antenna must be professionally installed. The network administration or other IT professional responsible for installing and configuring the unit is a suitable professional installer. Following installation, access to the unit should be password protected by the network administrator to maintain regulatory compliance.

The output power on the access points can be changed only using a Cisco wireless LAN controller (2600 series or 4400 series), the controllers on a Cisco Wireless Services Module (WiSM), or using Cisco Wireless Control System (WCS).

See the Cisco Wireless LAN Controller Configuration Guide for more details on how to to configure your access point using the web-browser interface.

Follow these steps to change the access point's output power to meet local regulations using a controller:

- **Step 1** Open your Internet browser. You must use Microsoft Internet Explorer 6.0.2800 or a later release.
- Step 2 Enter https://IP address (where IP address is the controller's IP address) in the browser address line and press Enter. A user login screen appears.
- **Step 3** Enter the username and password and press **Enter**. The controller's summary page appears.

The username and password are case-sensitive.

- Step 4 Click Wireless > 802.11a Radios or 802.11b/g Radios and a list of associated access points appears.
- Step 5 Choose the desired access point from the displayed list and click **Configure**. The radio settings page appears.
- **Step 6** Scroll down to the Tx Power Level Assignment field, and click **Custom**.

Custom indicates that the radio output power is manually controlled by the Tx Power Configuration setting field.

Step 7 In the Tx Power Level field, select the appropriate power level setting (1 to 8).

Based on the operating channel, the regulatory domain, and the controller power level setting (1 to 8), the actual transmit power at the access point can be reduced to comply with special regulatory or country restrictions.

Table 4-10 lists the controller power settings and the corresponding output power levels for these two examples:

- 2.4-GHz (802.11b/g) operation:
 - (-E) regulatory domain and channel 2 using 11-Mbps data rates
 - 6-dBi external antenna
- 5-GHz (802.11a) operation:
 - (-E) regulatory domain and channel 52 using 36-Mbps data rates
 - RM22A with 6-dBi external antenna

Table 4-10 Example of Output Power Levels

Controller	Radio Output Power										
Tx Power Settings ¹	802.11b (mW)	802.11g (mW)	802.11a (dBm)								
1 (maximum)	50 ²	30^{2}	17 3								
2	25	15	14								
3	12	8	11								
4	6	4	8								
5	3	2	5								
6	2	1	2								
7	1	_	-1								
8	_	_	_								

^{1.} The Tx Power Level setting of 1 represents the maximum conducted power setting for the access point. Each subsequent controller power level (such as 2, 3, 4, etc.) represents approximately a 3-dBm reduction in transmit power from the previous power level.

- 2. The maximum output power levels obtained from Table 4-3 and the values converted using Table 4-9.
- 3. The maximum output power level of 17 dBi obtained from Table 4-6.
- For 802.11b (CCK) and 802.11g (OFDM) data rates (see Table 4-3 and Table 4-10), the manual controller Tx Power Level setting is 3.
- For only 802.11b (CCK) data rates (see Table 4-3 and Table 4-10), the manual controller Tx Power Level setting is 2.
- For 802.11a (see Table 4-7 and Table 4-10), the manual controller Tx Power Level setting is 2.

Step 8 Click Apply.

Step 9 Close your Internet browser.

For additional configuration information, refer to the Cisco Wireless LAN Controller Configuration Guide.

Changing the Lightweight Access Point Output Power

CHAPTER 5

Cisco Aironet 1240 Series Access Points

This chapter lists the 1240 series lightweight access point (models: AIR-LAP1242AG-x-K9 and AIR-LAP1242G-x-K9) IEEE 802.11b/g (2.4-GHz) and the IEEE 802.11a (5-GHz) channels and maximum power levels supported by the world's regulatory domains. For additional product hardware information refer to the *Cisco Aironet 1240AG Series Access Point Hardware Installation Guide*.

The following topics are covered in this chapter:

- Channels and Maximum Power Levels, page 5-2
- Special Country Restrictions, page 5-7
- Changing the Lightweight Access Point Output Power, page 5-7

Channels and Maximum Power Levels

IEEE 802.11g (2.4-GHz Band)

When shipped from the factory, the AIR-AP1242G-x-K9 (single radio) access points support the channels and maximum power levels listed in Table 5-1 for their regulatory domain.

Table 5-1 lists the power levels shipped from the factory. The B columns indicate IEEE 802.11b data rates and the G columns indicate IEEE 802.11g data rates . In the –C, –E, –I, –K, and –S regulatory domains, you must manually adjust power levels depending upon the antenna being used (see Table 5-4).

Table 5-1 Channels and Maximum Conducted Power for the 802.11g Radio with up to 10-dBi External Antennas

		Maxim	Maximum Conducted Power Levels (dBm) in the Regulatory Domains										
Channel	Center Frequency		A	-,	J	-1	P						
ld	(MHz)	В	G	В	G	В	G						
1	2412	20	17	14	14	14	14						
2	2417	20	17	14	14	14	14						
3	2422	20	17	14	14	14	14						
4	2427	20	17	14	14	14	14						
5	2432	20	17	14	14	14	14						
6	2437	20	17	14	14	14	14						
7	2442	20	17	14	14	14	14						
8	2447	20	17	14	14	14	14						
9	2452	20	17	14	14	14	14						
10	2457	20	17	14	14	14	14						
11	2462	20	17	14	14	14	14						
12	2467	_	-	14	14	14	14						
13	2472	_	-	14	14	14	14						
14	2484	-	-	14	-	14	-						

IEEE 802.11g (2.4-GHz Band)

When shipped from the factory, the AIR-LAP1242AG-x-K9 (dual radio) access points support the channels and maximum power levels listed in Table 5-1 for their regulatory domain.

Table 5-2 lists the power levels shipped from the factory. The B columns indicate IEEE 802.11b data rates and the G columns indicate IEEE 802.11g data rates. In the -C, -E, -I, -K, and -S regulatory domains, you must manually adjust power levels depending upon the antenna being used (see Table 5-4).

Table 5-2 Channels and Maximum Conducted Power for the 802.11b/g Radio with up to 10-dBi External Antennas

						Max	cimum	Cond	ucted F	Power	Level	s (dBn	n) in th	e Reg	ulatory	Doma	ains				
Channel	Center Freq	-	Α	_	С	_	E	_	·I		J	-	K	-1	N	-	Р	-:	S	_	T
Id	(MHz)	В	G	В	G	В	G	В	G	В	G	В	G	В	G	В	G	В	G	В	G
1	2412	20	17	17	17	17	17	17	17	14	14	17	17	20	17	14	14	17	17	20	17
2	2417	20	17	17	17	17	17	17	17	14	14	17	17	20	17	14	14	17	17	20	17
3	2422	20	17	17	17	17	17	17	17	14	14	17	17	20	17	14	14	17	17	20	17
4	2427	20	17	17	17	17	17	17	17	14	14	17	17	20	17	14	14	17	17	20	17
5	2432	20	17	17	17	17	17	17	17	14	14	17	17	20	17	14	14	17	17	20	17
6	2437	20	17	17	17	17	17	17	17	14	14	17	17	20	17	14	14	17	17	20	17
7	2442	20	17	17	17	17	17	17	17	14	14	17	17	20	17	14	14	17	17	20	17
8	2447	20	17	17	17	17	17	17	17	14	14	17	17	20	17	14	14	17	17	20	17
9	2452	20	17	17	17	17	17	17	17	14	14	17	17	20	17	14	14	17	17	20	17
10	2457	20	17	17	17	17	17	17	17	14	14	17	17	20	17	14	14	17	17	20	17
11	2462	20	17	17	17	17	17	17	17	14	14	17	17	20	17	14	14	17	17	20	17
12	2467	_	_	17	17	17	17	17	17	14	14	17	17	_	_	14	14	17	17	_	_
13	2472	_	_	17	17	17	17	17	17	14	14	17	17	_	_	14	14	17	17	_	_
14	2484	_	_	_	_	_	_	_	_	14	_	_	-	_	_	14	_	_	_	_	-

IEEE 802.11a (5-GHz Band)

When shipped from the factory, the AIR-LAP1242AG-x-K9 (dual radio) access points support the channels and maximum power levels listed in Table 5-3 for their regulatory domain.

Table 5-3 lists the power levels shipped from the factory. In the –E and –I regulatory domains, you must manually adjust power levels depending upon the antenna being used (see Table 5-5).

Table 5-3 Channels and Maximum Conducted Power for IEEE 802.11a Radio with up to 9.5-dBl External Antennas

	Center			Maxin	num Cond	ucted Pow	ver Levels (dBr	n) in the Regu	latory Do	mains			
Channel ID	Freq (MHz)	-A	-C	- Е	-I	-J	-K	-N	-P	–U	-S	- T	
						5150 to 52	50 MHz					1	
34	5170	_	_	_	_	11	_	_	_	_	_	_	
36	5180	11	_	17	17	_	15	11	11	11	14	_	
38	5190	ı	_	_	_	11	_	_	_	_	-	-	
40	5200	11	-	17	17	_	15	11	11	11	14	_	
42	5210	-	-	_	-	11	_	_	_	_	-	_	
44	5220	11	-	17	17	_	15	11	11	11	14	_	
46	5230	-	-	_	-	11	_	_	_	_	_	_	
48	5240	11	_	17	17	_	15	11	11	11	14	_	
						5250 to 53	50 MHz	*				-	
52	5260	17	_	17 ¹	17 ¹	_	17 ¹	17 ¹	81	_	11 ¹	_	
56	5280	17	_	17 ¹	17 ¹	_	17 ¹	17 ¹	81	_	11 ¹	11	
60	5300	17	_	17 ¹	17 ¹	_	17 ¹	17 ¹	81	_	11 ¹	11	
64	5320	11	_	17 ¹	17 ¹	_	17 ¹	11 ¹	81	_	11 ¹	11	
	5450 to 5725 MHz												
100	5500	17^{1}	_	17 ¹	_	_	17 ¹	_	_	_	_	17 ¹	
104	5520	17^{1}	_	17 ¹	_	_	17 ¹	_	_	_	_	17 ¹	
108	5540	17^{1}		17 ¹		_	17 ¹	_	_	_	-	17 ¹	
112	5560	17^{1}	_	17 ¹	_	_	17 ¹	_	_	_	-	171	
116	5580	17^{1}	_	17 ¹	_	_	17 ¹	_	_	_	-	171	
120	5600	ı	_	17 ¹	_	_	17 ¹	_	_	_	_	17 ¹	
124	5620	ı	_	17 ¹	_	_	17 ¹	_	_	_	_	17 ¹	
128	5640	ı	_	17 ¹	_	_	_	_	_	_	_	17 ¹	
132	5660	17^{1}	_	17 ¹	_	_	_	_	_	_	-	17 ¹	
136	5680	17^{1}	_	17 ¹	_	_	_	_	_	_	-	171	
140	5700	17 ¹	1	17 ¹	1	_	_	_	_	_	-	17 ¹	
						5725 to 58	50 MHz						
149	5745	17	17	_	_	_	17	17	_	_	17	17	
153	5765	17	17	_	_	_	17	17	_	_	17	17	
157	5785	14	17	_	_	_	17	14	_	_	17	14	
161	5805	11	17	_	_	_	17	11	_	_	17	11	
165	5825	_	_	_	_	_	_	_	_	_	_	_	

^{1.} Frequencies require DFS (Uniform spreading not required for the -P and -U regulatory domains).

Maximum Power Levels in Some Regulatory Domains with External Antennas

To avoid exceeding maximum conducted power levels in the China (-C), EMEA (-E), South Korea (-K), Israel (-I), and Singapore (-S) regulatory domains when using an 802.11b/g radio with 2.2- to 10-dBi external antennas, you must manually set the access point output power level as shown in Table 5-4.

Table 5-4 Maximum Power Levels for the 802.11b/g Radio in the (-C), (-E), (-K), (-I), and (-S) Regulatory Domains

	Center			Maximum Powe	er Levels (dBm)		
Channel Identifier	Frequency (MHz)	2.2 dBi Antenna	5.2 dBi Antenna	6.0 dBi Antenna	6.5dBi Antenna	9.0 dBi Antenna	10 dBi Antenna
1	2412	17	14	14	11	11	8
2	2417	17	14	14	11	11	8
3	2422	17	14	14	11	11	8
4	2427	17	14	14	11	11	8
5	2432	17	14	14	11	11	8
6	2437	17	14	14	11	11	8
7	2442	17	14	14	11	11	8
8	2447	17	14	14	11	11	8
9	2452	17	14	14	11	11	8
10	2457	17	14	14	11	11	8
11	2462	17	14	14	11	11	8
12	2467	17	14	14	11	11	8
13	2472	17	14	14	11	11	8
14	2484	-	-	_	_	_	-

To avoid exceeding maximum conducted power levels in the EMEA (-E) and Israel (-I) regulatory domains when using a IEEE 802.11a radio with 6.0- to 9.5-dBi external 5-MHz antennas, you must manually set the access point output power level as shown in Table 5-5.

Table 5-5 Maximum Power Levels for IEEE 802.11a Radio in the EMEA(-E) and Israel (-I) Regulatory Domains

	Center		Maxi	mum Power Levels	(dBm)	
Channel Identifier	Frequency (MHz)	3.5 dBi Antenna	4.5 dBi Antenna	6.0 dBi Antenna	7.0 dBi Antenna	9.5 dBi Antenna
	1		UNII-1 (5150-52	50 MHz)		
34	5170	_	_	_	_	_
36	5180	17	17	15	15	11
38	5190	_	_	_	_	_
40	5200	17	17	15	15	11
42	5210	_	_	_	_	_
44	5220	17	17	15	15	11
46	5230	_	_	_	_	_
48	5240	17	17	15	15	11
		1	5250 to 5350	MHz	1	1
52	5260	17	17	15	15	11
56	5280	17	17	15	15	11
60	5300	17	17	15	15	11
64	5320	17	17	15	15	11
	1		5470 to 5725	MHz		
100	5500	17	17	17	17	17
104	5520	17	17	17	17	17
108	5540	17	17	17	17	17
112	5560	17	17	17	17	17
116	5580	17	17	17	17	17
120	5600	17	17	17	17	17
124	5620	17	17	17	17	17
128	5640	17	17	17	17	17
132	5660	17	17	17	17	17
136	5680	17	17	17	17	17
140	5700	17	17	17	17	17
			5725 to 5850	MHz		
149	5745	_	_	_	_	_
153	5765	_	_	_	_	_
157	5785	_	_	_	_	_
161	5805	_	_	_	_	_
165	5825	_	_	_	_	_

Special Country Restrictions

Table 5-6 lists special restrictions for wireless operation in some countries.

Table 5-6 Special Country Restrictions for Wireless Operation

Country	Frequency Bands (GHz)	Regulatory Domain	Special Limitation and Restrictions
Japan	5	−J, −P, and −U	Operation limited to indoor only.
South Korea	2.4 and 5	-K	Maximum antenna gain limited to 6 dBi.
Mexico	2.4	-N	End user must limit 2.4 GHz operation to 2450 to 2483.5 MHz and 36 dBm EIRP ¹ .
Russian Federation	5	–Е	End user must limit 5 GHz operation to 5150-5350 and 5650 to 5725 MHz.
United States	5	-A	Indoor use only from 5150-5250 MHz.

^{1.} EIRP (dBm) = Maximum output power (dBm) + antenna gain (dBi)

Changing the Lightweight Access Point Output Power

This section provides instructions for changing the 1240 series access point output power to comply with the maximum power limits imposed by special regulatory and country restrictions (see the "Special Country Restrictions" section on page 5-7). Follow these instructions to change the output power settings using a controller and your browser:

Administrator privileges may be required in order to change access point settings.

Regulatory domains are set at the factory and cannot be changed by the user.

To meet regulatory restrictions, the access point and the external antenna must be professionally installed. The network administration or other IT professional responsible for installing and configuring the unit is a suitable professional installer. Following installation, access to the unit should be password-protected by the network administrator to maintain regulatory compliance.

The output power on the access points can be changed only using a Cisco controllers (such as the 2600 series or 4400 series), the controllers on a Cisco Wireless Services Module (WiSM), or using Cisco Wireless Control System (WCS).

See the *Cisco Wireless LAN Controller Configuration Guide* for more details on how to to configure your access point using the web-browser interface.

Follow these steps to change the access point's output power to meet local regulations using a controller:

- **Step 1** Open your Internet browser. You must use Microsoft Internet Explorer 6.0.2800 or a later release.
- Step 2 Enter https://IP address (where *IP address* is the controller's IP address) in the browser address line and press Enter. A user login screen appears.
- **Step 3** Enter the username and password and press **Enter**. The controller's summary page appears.

Note The username and password are case-sensitive.

- Step 4 Click Wireless > 802.11a Radios or 802.11b/g Radios and a list of associated access points displays.
- **Step 5** Choose the desired access point and click **Configure**. The radio settings page appears.
- Step 6 Scroll down to the Tx Power Level Assignment field, and click **Custom**.

Custom indicates that the radio output power is manually controlled by the Tx Power Configuration setting field.

Step 7 In the Tx Power Level field, select the appropriate power level setting (1 to 8).

Based on the operating channel, the regulatory domain, and the controller power level setting (1 to 8), the actual transmit power at the access point can be reduced to comply with special regulatory or country restrictions.

Table 5-7 lists the controller power settings and the corresponding output power levels for these two examples:

- 2.4 GHz (802.11b/g) operation in –E regulatory domain:
 - Channel 2 using 11-Mbps data rates with 6-dBi external antenna
- 5 GHz (802.11a) operation:
 - Channel 52 with 6-dBi external antenna

Table 5-7 Example of Output Power Levels

Controller	Radio	Output Power
Tx Power Settings ¹	802.11b/g (dBm)	802.11a (dBm)
1 (maximum)	17 ²	17 ²
2	14	14
3	11	11
4	8	8
5	5	5
6	2	2
7	-1	-1
8	-	_

The Tx Power Level setting of 1 represents the maximum conducted power setting for the
access point. Each subsequent controller power level (such as 2, 3, 4, etc.) represents
approximately a 3-dBm reduction in transmit power from the previous power level.

^{2.} The maximum output power levels obtained from Table 5-2 and Table 5-3.

- For 802.11b/g (see Table 5-4 and Table 5-7), the manual controller Tx Power Level setting is 2.
- For 802.11a (see Table 5-5 and Table 5-7), the manual controller Tx Power Level setting is 2.

Step 8 Click Apply.

Step 9 Close your Internet browser.

Changing the Lightweight Access Point Output Power

CHAPTER 6

Cisco Aironet 1250 Series Lightweight Access Points

This section lists the 1250 series lightweight access points (model: AIR-LAP1251) 2.4-GHz and 5-GHz (draft IEEE 802.11n version 2.0) radio channels and maximum power levels supported by the world's regulatory domains. The following topics are covered in this section:

- Channels and Maximum Power Levels, page 6-2
- Special Country Restrictions, page 6-17
- Changing Lightweight Access Point Output Power, page 6-17

Channels and Maximum Power Levels

The access point has been designed to operate with the antennas listed in the product hardware installation guide and having a maximum gain of 10 dBi for 2.4 GHz and 6 dBi for 5 GHz. Antennas not included in this list or having a higher gain are strictly prohibited for use with the access point. The required antenna impedance is 50 ohms.

To reduce potential radio interference to other users, the antenna type and its gain should be chosen so that the equivalent isotropically radiated power (e.i.r.p.) is not more than required for successful communication.

2.4 GHz Band (Draft IEEE 802.11n Version 2.0)

An improper combination of power level and antenna gain can result in equivalent isotropic radiated power (EIRP) above the amount allowed per regulatory domain. Table 6-1 indicates the channel identifiers, channel center frequencies, and maximum power levels for each channel allowed by the –A regulatory domain for a 2.4-GHz radio with up to 10-dBi antennas.

Table 6-1 Channels and Maximum Conducted Power in the –A Regulatory Domain with up to 10-dBi Antennas

Maximum Conducted Power Levels (dBm) in the –A Regulatory Domain for the 2.4-GHz Radio with up to 10-dBi Antennas

	Cer Cha		802.11b Single Antenna 1 to 11 Mbps				802.11 gle Ant to 54 M	enna	Dua	IT-20 M al Ante 10 to M	nnas	Du	IT-40 M al Ante 10 to M	nnas
Freq (MHz)	20 MHz	40 MHz	Тх А	Тх В	Total Power	Тх А	Тх В	Total Power	Тх А	ТхВ	Total Power	Тх А	Тх В	Total Power
2412	1	3	20	OFF	20	17	OFF	17	17	17	20	14	14	17
2417	2	4	20	OFF	20	17	OFF	17	17	17	20	14	14	17
2422	3	5	20	OFF	20	17	OFF	17	17	17	20	14	14	17
2427	4	6	20	OFF	20	17	OFF	17	17	17	20	14	14	17
2432	5	3, 7	20	OFF	20	17	OFF	17	17	17	20	14	14	17
2437	6	4, 8	23	OFF	23	20	OFF	20	17	17	20	17	17	20
2442	7	5, 9	20	OFF	20	17	OFF	17	17	17	20	14	14	17
2447	8	6, 10	20	OFF	20	17	OFF	17	17	17	20	14	14	17
2452	9	7, 11	20	OFF	20	17	OFF	17	17	17	20	14	14	17
2457	10	8	20	OFF	20	17	OFF	17	17	17	20	14	14	17
2462	11	9	20	OFF	20	17	OFF	17	17	17	20	14	14	17
2467	_	_	_	-	-	_	_	-	_	-	-	_	-	_
2472	_	-	-	-	-	-	-	-	_	_	-	_	_	_
2484	_	_	-	_	-	-	_	_	_	_	_	_	_	_

M0 to M15 corresponds to the Modulaton and Coding Schemes (MCS0 to MCS15). The MCS settings determine the number of spatial streams, the modulation, the coding rate, and the data rate values.

Table 6-2 indicates the channel identifiers, channel center frequencies, and maximum power levels for each channel allowed by the –E regulatory domain for a 2.4-GHz radio with up to 3-dBi antennas.

Table 6-2 Channels and Maximum Conducted Power for -E Regulatory Domain with up to 3-dBi Antennas

Maximum Conducted Power Levels (dBm) in the –E Regulatory Domain for the 2.4-GHz Radio with up to 3-dBi Anetnnas

Freq	Center Channel			802.11 gle Ant to 11 M	tenna		802.11 gle Ant to 54 M	enna	Dua	IT-20 IV al Ante 10 to IV	nnas	Dua	T-40 M al Ante 10 to M	nnas
(MHz)	20 MHz	40 MHz	Tx A	Tx B	Total Power	Tx A	Tx B	Total Power	Tx A	Tx B	Total Power	Tx A	Tx B	Total Power
2412	1	3	17	OFF	17	17	OFF	17	14	14	17	14	14	17
2417	2	4	17	OFF	17	17	OFF	17	14	14	17	14	14	17
2422	3	5	17	OFF	17	17	OFF	17	14	14	17	14	14	17
2427	4	6	17	OFF	17	17	OFF	17	14	14	17	14	14	17
2432	5	3, 7	17	OFF	17	17	OFF	17	14	14	17	14	14	17
2437	6	4, 8	17	OFF	17	17	OFF	17	14	14	17	14	14	17
2442	7	5, 9	17	OFF	17	17	OFF	17	14	14	17	14	14	17
2447	8	6, 10	17	OFF	17	17	OFF	17	14	14	17	14	14	17
2452	9	7, 11	17	OFF	17	17	OFF	17	14	14	17	14	14	17
2457	10	8	17	OFF	17	17	OFF	17	14	14	17	14	14	17
2462	11	9	17	OFF	17	17	OFF	17	14	14	17	14	14	17
2467	12	10	17	OFF	17	17	OFF	17	14	14	17	14	14	17
2472	13	11	17	OFF	17	17	OFF	17	14	14	17	14	14	17
2484	_	_	_	_	_	1	_	_	_	_	_	-	_	_

M0 to M15 corresponds to the Modulaton and Coding Schemes (MCS0 to MCS15). The MCS settings determine the number of spatial streams, the modulation, the coding rate, and the data rate values.

Table 6-3 indicates the channel identifiers, channel center frequencies, and maximum power levels for each channel allowed by the –E regulatory domain for a 2.4-GHz radio with up to 6-dBi antennas.

Table 6-3 Channels and Maximum Conducted Power in the –E Regulatory Domain with up to 6-dBi Antennas

Maximum Conducted Power Levels (dBm) in the –E Regulatory Domain for the 2.4-GHz Radio with up to 6-dBi Antennas

	Cer Cha		802.11b Single Antenna 1 to 11 Mbps				802.11 Igle Ant to 54 M	enna	Du	HT-20 M al Ante 10 to M	nnas	Du	IT-40 M al Ante 10 to M	nnas
Freq (MHz)	20 MHz	40 MHz	Tx A	Tx B	Total Power	Tx A	Tx B	Total Power	Tx A	Tx B	Total Power	Tx A	Tx B	Total Power
2412	1	3	14	OFF	14	14	OFF	14	11	11	14	11	11	14
2417	2	4	14	OFF	14	14	OFF	14	11	11	14	11	11	14
2422	3	5	14	OFF	14	14	OFF	14	11	11	14	11	11	14
2427	4	6	14	OFF	14	14	OFF	14	11	11	14	11	11	14
2432	5	3, 7	14	OFF	14	14	OFF	14	11	11	14	11	11	14
2437	6	4, 8	14	OFF	14	14	OFF	14	11	11	14	11	11	14
2442	7	5, 9	14	OFF	14	14	OFF	14	11	11	14	11	11	14
2447	8	6, 10	14	OFF	14	14	OFF	14	11	11	14	11	11	14
2452	9	7, 11	14	OFF	14	14	OFF	14	11	11	14	11	11	14
2457	10	8	14	OFF	14	14	OFF	14	11	11	14	11	11	14
2462	11	9	14	OFF	14	14	OFF	14	11	11	14	11	11	14
2467	12	10	14	OFF	14	14	OFF	14	11	11	14	11	11	14
2472	13	11	14	OFF	14	14	OFF	14	11	11	14	11	11	14
2484	_	_	-	_	_	_	_	_	_	_	_	_	_	_

^{1.} M0 to M15 corresponds to the Modulation and Coding Schemes (MCS0 to MCS15). The MCS settings determine the number of spatial streams, the modulation, the coding rate, and the data rate values.

Table 6-4 indicates the channel identifiers, channel center frequencies, and maximum power levels for each channel allowed by the –E regulatory domain for a 2.4-GHz radio with up to 9-dBi antennas.

Table 6-4 Channels and Maximum Conducted Power in the –E Regulatory Domain with up to 9-dBi Antennas

Maximum Conducted Power Levels (dBm) in the –E Regulatory Domain for the 2.4-GHz Radio with up to 9-dBi Antennas

Freq	Center Channel			802.11 Igle Ant to 11 M	enna		802.11 Igle Ant to 54 M	tenna	Dua	IT-20 IV al Ante 10 to M	nnas	Dua	IT-40 M al Ante 10 to M	nnas
(MHz)	20 MHz	40 MHz	Tx A	Tx B	Total Power	Tx A	Tx B	Total Power	Tx A	Tx B	Total Power	Tx A	Tx B	Total Power
2412	1	3	11	OFF	11	11	OFF	11	8	8	11	8	8	11
2417	2	4	11	OFF	11	11	OFF	11	8	8	11	8	8	11
2422	3	5	11	OFF	11	11	OFF	11	8	8	11	8	8	11
2427	4	6	11	OFF	11	11	OFF	11	8	8	11	8	8	11
2432	5	3, 7	11	OFF	11	11	OFF	11	8	8	11	8	8	11
2437	6	4, 8	11	OFF	11	11	OFF	11	8	8	11	8	8	11
2442	7	5, 9	11	OFF	11	11	OFF	11	8	8	11	8	8	11
2447	8	6, 10	11	OFF	11	11	OFF	11	8	8	11	8	8	11
2452	9	7, 11	11	OFF	11	11	OFF	11	8	8	11	8	8	11
2457	10	8	11	OFF	11	11	OFF	11	8	8	11	8	8	11
2462	11	9	11	OFF	11	11	OFF	11	8	8	11	8	8	11
2467	12	10	11	OFF	11	11	OFF	11	8	8	11	8	8	11
2472	13	11	11	OFF	11	11	OFF	11	8	8	11	8	8	11
2484	_	_	_	_	_	_	_	_	_	_	_	_	_	_

M0 to M15 corresponds to the Modulaton and Coding Schemes (MCS0 to MCS15). The MCS settings determine the number of spatial streams, the modulation, the coding rate, and the data rate values.

Table 6-5 indicates the channel identifiers, channel center frequencies, and maximum power levels for each channel allowed by the –E regulatory domain for a 2.4-GHz radio with up to 10-dBi antennas.

Table 6-5 Channels and Maximum Conducted Power in the –E Regulatory Domain with up to 10-dBi Antennas

Maximum Conducted Power Levels (dBm) in the –E Regulatory Domain for the 2.4-GHz Radio with up to 10-dBi Anetnnas

Freq	Center Channel			802.11 igle Ant to 11 M	enna		802.11 ngle Ant to 54 M	enna	Du	HT-20 IV al Ante 10 to IV	nnas	Du	IT-40 N al Ante 10 to N	ennas
(MHz)	20 MHz	40 MHz	Tx A	Tx B	Total Power	Tx A	Tx B	Total Power	Tx A	Tx B	Total Power	Tx A	Tx B	Total Power
2412	1	3	8	OFF	8	8	OFF	8	5	5	8	5	5	8
2417	2	4	8	OFF	8	8	OFF	8	5	5	8	5	5	8
2422	3	5	8	OFF	8	8	OFF	8	5	5	8	5	5	8
2427	4	6	8	OFF	8	8	OFF	8	5	5	8	5	5	8
2432	5	3, 7	8	OFF	8	8	OFF	8	5	5	8	5	5	8
2437	6	4, 8	8	OFF	8	8	OFF	8	5	5	8	5	5	8
2442	7	5, 9	8	OFF	8	8	OFF	8	5	5	8	5	5	8
2447	8	6, 10	8	OFF	8	8	OFF	8	5	5	8	5	5	8
2452	9	7, 11	8	OFF	8	8	OFF	8	5	5	8	5	5	8
2457	10	8	8	OFF	8	8	OFF	8	5	5	8	5	5	8
2462	11	9	8	OFF	8	8	OFF	8	5	5	8	5	5	8
2467	12	10	8	OFF	8	8	OFF	8	5	5	8	5	5	8
2472	13	11	8	OFF	8	8	OFF	8	5	5	8	5	5	8
2484	_	_	_	_	_	_	_	_	_	_	_	_	_	_

^{1.} M0 to M15 corresponds to the Modulation and Coding Schemes (MCS0 to MCS15). The MCS settings determine the number of spatial streams, the modulation, the coding rate, and the data rate values.

Table 6-6 indicates the channel identifiers, channel center frequencies, and maximum power levels for each channel allowed by the –P regulatory domain for a 2.4-GHz radio with up to 10-dBi antennas.

Table 6-6 Channels and Maximum Conducted Power in the –P Regulatory Domain with up to 10-dBi Antennas

Maximum Conducted Power Levels (dBm) in the -P Regulatory Domain for the 2.4 GHz Radio with up to 10 dBi Antennas

		Center Channel		802.11k gle Anto to 11 MI	enna		802.11 ngle Ant to 54 M	enna	Du	HT-20 IV al Ante 110 to IV	nnas	Du	IT-40 N al Ante 10 to M	nnas
Freq (MHz)	20 MHz	40 MHz	Tx A	Tx B	Total Powe r	Tx A	Tx B	Total Power	Tx A	Tx B	Total Power	Tx A	Tx B	Total Power
2412	1	3	14	OFF	14	17	OFF	17	14	14	17	14	14	17
2417	2	4	14	OFF	14	17	OFF	17	14	14	17	14	14	17
2422	3	5	14	OFF	14	17	OFF	17	14	14	17	14	14	17
2427	4	6	14	OFF	14	17	OFF	17	14	14	17	14	14	17
2432	5	3, 7	14	OFF	14	17	OFF	17	14	14	17	14	14	17
2437	6	4, 8	14	OFF	14	17	OFF	17	14	14	17	14	14	17
2442	7	5, 9	14	OFF	14	17	OFF	17	14	14	17	14	14	17
2447	8	6, 10	14	OFF	14	17	OFF	17	14	14	17	14	14	17
2452	9	7, 11	14	OFF	14	17	OFF	17	14	14	17	14	14	17
2457	10	8	14	OFF	14	17	OFF	17	14	14	17	14	14	17
2462	11	9	14	OFF	14	17	OFF	17	14	14	17	14	14	17
2467	12	10	14	OFF	14	17	OFF	17	14	14	17	14	14	17
2472	13	11	14	OFF	14	17	OFF	17	14	14	17	14	14	17
2484	14	-	_	_	-	_	_	_	_	_	-	_	_	-

M0 to M15 corresponds to the Modulation and Coding Schemes (MCS0 to MCS15). The MCS settings determine the number of spatial streams, the modulation, the coding rate, and the data rate values.

5 GHz Band (Draft IEEE 802.11n Version 2.0)

An improper combination of power level and antenna gain can result in equivalent isotropic radiated power (EIRP) above the amount allowed per regulatory domain.

Table 6-7 indicates the channel identifiers, channel center frequencies, and maximum power levels for each channel allowed by the -A regulatory domain for a 5-GHz radio with up to 6-dBi antennas.

Table 6-7 Channels and Maximum Conducted Power in the –A Regulatory Domain with up to 6-dBi Antennas

 $\label{lem:maximum conducted Power Levels (dBm) in the -A Regulatory Domain for the 5-GHz Radio with up to 6-dBi Antennas$

			802.11 ngle Ant to 54 M	enna	Du	HT-20 IV al Ante 1/0 to IV	nnas	(Duplica 2x20 Ml gle Ante 6 Mbps	Hz) ennas	Du	HT-40 M al Ante 1/10 to N	ennas
Channel ID	Freq (MHz)	Tx A	Tx B	Total Power	Tx A	Tx B	Total Power	Tx A	_	-	Tx A	Tx B	Total Power
				1	51.	50-525	0 MHz						
36	5180	14	OFF	14	11	11	14	11	_	-	11	11	14
40	5200	14	OFF	14	11	11	14	11	_	_	11	11	14
44	5220	14	OFF	14	11	11	14	11	_	_	11	11	14
48	5240	14	OFF	14	11	11	14	11	_	_	11	11	14
					525	0 to 53	50 MHz		11	1		11	"
52	5260	17	OFF	17	17	17	20	17	_	_	17	17	20
56	5280	17	OFF	17	17	17	20	17	_	_	17	17	20
60	5300	17	OFF	17	17	17	20	11	_	_	11	11	14
64	5320	17	OFF	17	17	17	20	11	_	_	11	11	14
					547	0 to 57	25 MHz						
100	5500	17	OFF	17	17	17	20	14	_	_	14	14	17
104	5520	17	OFF	17	17	17	20	14	_	_	14	14	17
108	5540	17	OFF	17	17	17	20	17	_	_	17	17	20
112	5560	17	OFF	17	17	17	20	17	_	_	17	17	20
116	5580	17	OFF	17	17	17	20	_	_	_	_	_	_
120	5600	_	_	_	_	_	_	_	_	_	_	_	_
124	5620	_	_	_	_	_	_	_	_	_	_	_	_
128	5640	-	_	-	_	-	_	-	_	_	-	_	_
132	5660	17	OFF	17	17	17	20	17	_	_	17	17	20
136	5680	17	OFF	17	17	17	20	17	_	_	17	17	20
140	5700	17	OFF	17	17	17	20	_	_	-	-	_	_
			1	1	572	5 to 58	50 MHz		1	I.		1	1
149	5745	17	OFF	17	17	17	20	17	-	-	17	17	20
153	5765	17	OFF	17	17	17	20	17	_	_	17	17	20
157	5785	17	OFF	17	17	17	20	17	_	_	17	17	20
161	5805	17	OFF	17	17	17	20	17	_	_	17	17	20
165	5825	17	OFF	17	17	17	20	_	_	_	_	_	_

^{1.} M0 to M15 corresponds to the Modulaton and Coding Schemes (MCS0 to MCS15). The MCS settings determine the number of spatial streams, the modulation, the coding rate, and the data rate values.

Table 6-8 indicates the channel identifiers, channel center frequencies, and maximum power levels for each channel allowed by the –C regulatory domain for a 5-GHz radio with up to 6-dBi antennas.

Table 6-8 Channels and Maximum Conducted Power in the –C Regulatory Domain with up to 6-dBi Antennas

Maximum Conducted Power Levels (dBm) in the –C Regulatory Domain for a 5-GHz Radio with up to 6-dBi Antennas

	_		802.11 igle Ant to 54 IV	tenna	Dua	IT-20 M al Ante 10 to M	nnas	(:	Duplica 2x20 Mi al Ante 6 Mbp	Hz) nnas	Du	IT-40 N al Ante 10 to N	ennas
Channel ID	Freq (MHz)	Tx A	Tx B	Total Power	Tx A	Tx B	Total Power	Tx A	_	-	Tx A	Tx B	Total Power
				U	NII-1	(5150-	5250 MF	Hz)					
36	5180	_	_	_	_	_	_	_	_	_	_	_	_
40	5200	_	_	_	_	_	_	_	_	_	_	_	_
44	5220	_	_	_	_	_	_	_	_	_	_	_	_
48	5240	_	_	_	_	_	_	_	_	_	_	_	_
				1	5250) to 53	50 MHz	I	1				
52	5260	_	_	_	_	-	_	_	_	_	_	-	_
56	5280	_	_	_	_	_	_	_	_	_	_	_	_
60	5300	_	_	-	_	_	_	_	_	_	-	_	_
64	5320	_	_	_	_	_	_	_	_	_	-	_	_
		•			5470) to 57	25 MHz	-			•		
100	5500	_	_	_	_	_	_	_	_	_	-	_	_
104	5520	_	_	-	_	_	_	_	_	_	-	_	_
108	5540	_	-	-	_	-	-	_	-	_	-	_	_
112	5560	_	_	-	_	_	_	_	_	_	_	_	_
116	5580	_	_	-	_	_	_	_	_	_	_	_	_
120	5600	_	_	_	_	_	_	_	_	_	_	_	_
124	5620	_	_	_	_	_	_	_	_	_	_	_	_
128	5640	_	-	-	_	_	_	_	-	_	_	_	_
132	5660	_	_	_	_	_	_	_	_	_	_	_	_
136	5680	_	-	-	_	_	_	_	-	_	_	_	_
140	5700	_	_	_	_	_	_	_	-	_	_	_	_
					5725	5 to 58	50 MHz						
149	5745	17	OFF	17	17	17	20	17	_		17	17	20
153	5765	17	OFF	17	17	17	20	17	_	_	17	17	20
157	5785	17	OFF	17	17	17	20	17	_	_	17	17	20
161	5805	17	OFF	17	17	17	20	17	_	_	17	17	20
165	5825	17	OFF	17	17	17	20	_	_	_	_	_	_

^{1.} M0 to M15 corresponds to the Modulaton and Coding Schemes (MCS0 to MCS15). The MCS settings determine the number of spatial streams, the modulation, the coding rate, and the data rate values.

Table 6-9 indicates the channel identifiers, channel center frequencies, and maximum power levels for each channel allowed by the –E regulatory domain for a 5-GHz radio with up to 6-dBi antennas.

Table 6-9 Channels and Maximum Conducted Power in the –E Regulatory Domain with up to 6-dBi Antennas

Maximum Conducted Power Levels (dBm) in the –E Regulatory Domain for the 5-GHz Radio with up to 6-dBi Antennas

			802.11 gle Ant to 54 M	enna	Dua	IT-20 IV al Ante 10 to IV	nnas	(2	Duplica 2x20 Ml al Ante 6 Mbp	Hz) nnas	Dua	/IHz ennas 115 ¹	
Channel ID	Freq (MHz)	Tx A	Tx B	Total Power	Tx A	Tx B	Total Power	Tx A	-	_	Tx A	Tx B	Total Power
	•			U	NII-1	(5150-	5250 MF	Iz)			1		
36	5180	17	OFF	17	14	14	17	14	_	_	14	14	17
40	5200	17	OFF	17	14	14	17	14	-	_	14	14	17
44	5220	17	OFF	17	14	14	17	14	_	_	14	14	17
48	5240	17	OFF	17	14	14	17	14	_	_	14	14	17
	•				5250) to 53	50 MHz				•		
52	5260	17	OFF	17	14	14	17	14	_	_	14	14	17
56	5280	17	OFF	17	14	14	17	14	_	_	14	14	17
60	5300	17	OFF	17	14	14	17	14	_	_	14	14	17
64	5320	17	OFF	17	14	14	17	14	_	_	14	14	17
					5470	to 57	25 MHz				*		
100	5500	17	OFF	17	17	17	20	17	_	_	17	17	20
104	5520	17	OFF	17	17	17	20	17	_	_	17	17	20
108	5540	17	OFF	17	17	17	20	17	_	_	17	17	20
112	5560	17	OFF	17	17	17	20	17	_	_	17	17	20
116	5580	17	OFF	17	17	17	20	17	_	_	17	17	20
120	5600	17	OFF	17	17	17	20	17	_	_	17	17	20
124	5620	17	OFF	17	17	17	20	17	_	_	17	17	20
128	5640	17	OFF	17	17	17	20	17	_	_	17	17	20
132	5660	17	OFF	17	17	17	20	17	_	_	17	17	20
136	5680	17	OFF	17	17	17	20	17	_	_	17	17	20
140	5700	17	OFF	17	17	17	20		_	_			
			1		5725	5 to 58	50 MHz		1		1	1	1
149	5745	_	_	_	_	_	_	_	_	_	_	_	_
153	5765	_	_	-	_	_	-	_	-	_	_	-	-
157	5785	_	_	-	_	_	_	_	_	_	_	_	-
161	5805	_	_	-	_	_	-	_	-	_	-	-	-
165	5825	_	_	_	_	_	_	_	_	_	_	_	-

^{1.} M0 to M15 corresponds to the Modulaton and Coding Schemes (MCS0 to MCS15). The MCS settings determine the number of spatial streams, the modulation, the coding rate, and the data rate values.

Table 6-10 indicates the channel identifiers, channel center frequencies, and maximum power levels for each channel allowed by the –I regulatory domain for a 5-GHz radio with up to 6-dBi antenna.s

Table 6-10 Channels and Maximum Conducted Power in the –I Regulatory Domain with up to 6-dBi Antennas

Maximum Conducted Power Levels (dBm) in the –I Regulatory Domain for a 5-GHz Radio with up to 6-dBi Antennas

Antennas		1			ı			1 .					
		802.11a Single Antenna 6 to 54 Mbps			HT-20 MHz Dual Antennas M0 to M15 ¹			Duplicate (2x20 MHz) Dual Antennas 6 Mbps			HT-40 MHz Dual Antennas M0 to M15 ¹		
Channel ID	Freq (MHz)	Tx A	Tx B	Total Power	Tx A	Tx B	Total Power	Tx A	_	_	Tx A	Tx B	Total Power
		•	•	U	NII-1	(5150-	5250 MF	Iz)					
36	5180	17	OFF	17	14	14	17	14	_	_	14	14	17
40	5200	17	OFF	17	14	14	17	14	-	_	14	14	17
44	5220	17	OFF	17	14	14	17	14	_	_	14	14	17
48	5240	17	OFF	17	14	14	17	14	_	_	14	14	17
					5250) to 53	50 MHz						
52	5260	17	OFF	17	14	14	17	14	_	_	14	14	17
56	5280	17	OFF	17	14	14	17	14	-	_	14	14	17
60	5300	17	OFF	17	14	14	17	14	-	_	14	14	17
64	5320	17	OFF	17	14	14	17	14	-	_	14	14	17
	•	•	+		5470) to 57	25 MHz	•					1
100	5500	_	_	_	_	_	-	_	_	_	_	_	_
104	5520	_	_	-	_	-	-	_	_	_	-	_	_
108	5540	_	_	-	_	-	-	_	_	_	-	_	_
112	5560	_	-	-	_	-	-	_	-	_	-	-	_
116	5580	_	_	_	_	_	-	_	_	_	_	_	_
120	5600	_	_	-	_	-	-	_	_	_	-	_	_
124	5620	_	-	-	_	-	-	_	-	_	-	-	_
128	5640	_	-	-	_	-	-	_	-	_	-	-	_
132	5660	_	_	-	_	-	-	_	_	_	-	_	_
136	5680	-	_	-	_	-	-	-	-	_	-	_	-
140	5700	-	_	-	_	-	-	_	-	_	-	_	-
	-	_			5725	5 to 58	50 MHz	-		•		•	•
149	5745	_	_	-	_	_	-	_	_	_	-	_	_
153	5765	-	_	-	_	-	-	_	-	_	-	_	_
157	5785	_	_	-	_	-	-	_	-	_	-	-	-
161	5805	-	_	-	_	-	-	_	-	_	-	_	_
165	5825	_	_	-	_	-	-	_	_	_	_	_	_
	_	-						-					

^{1.} M0 to M15 corresponds to the Modulaton and Coding Schemes (MCS0 to MCS15). The MCS settings determine the number of spatial streams, the modulation, the coding rate, and the data rate values.