

ISM Test Report

AIR-RM1520G-A-K9 802.11b/g Radio Module

FCC ID: LDK102064

Against the following Specifications: CFR47 Part 15.247 RSS210

Cisco Systems

170 West Tasman Drive San Jose, CA 95134

> Author: James Nicholson Approved By: Title:

Page No: 1 of 50

uluulu cisco

This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

SECTION 1: OVERVIEW	3
1.1 TEST SUMMARY	3
SECTION 2: ASSESSMENT INFORMATION	4
2.1 GENERAL	4
2.4 TESTING FACILITIES	5
2.6 EUT DESCRIPTION	5
SECTION 3: SAMPLE DETAILS	6
APPENDIX A: CONDUCTED EMISSION TEST RESULTS	7
APPENDIX B: RADIATED EMISSION TEST RESULTS	
APPENDIX C: ABBREVIATION KEY AND DEFINITIONS	48
APPENDIX E: TEST EQUIPMENT/SOFTWARE USED TO PERFORM THE TEST	49

Page No: 2 of 50

Section 1: Overview

1.1 Test Summary

samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

Emission	Immunity
CFR47 Part 15.247(a) CFR47 Part 15.247(a)(2) CFR47 Part 15.247a3 (RSS210)	N/A
CFR47 Part 15: 2005 CFR47 Part 15: 2005 (CAN/CSA-CISPR 22-02)	

The specifications listed above represent actual tests performed to demonstrate compliance against the specifications

and basic standards listed on the front cover of this report. This list is not a one to one match to the front cover for one

or more of the following reasons.

- 1. Basic standards call up many different test phenomena specifications such as the 61000-4-X series. The basic standards define which elements and levels shall be applied from these specifications and as such it is not appropriate to list the individual specifications on the front cover.
- 2. A Standard listed on the front cover may be required in a particular country but is not appropriate for the particular technologies included in the equipment under test. E.g. You cannot test a DC product to the mains Harmonics requirements in EN61000-3-2. See section 3.2.
- 3. Test results against a particular standard or specification may be included in a different test report. See section 3.2 for an EDCS reference of this data.
- 4. Where appropriate, Cisco may have substituted a later revision of a basic standard to those referenced in the specification on the front sheet of this test report. This decision was based upon improved test methodology and repeatability and/or where the newer revision represented a more stringent test.
- 5. Where relevant, testing has been carried out to the requirements of both EN and IEC Specifications. This was possible because of the similarities of the test methods involved and the Cisco EMC test procedures.
- 6. Testing may have been performed to an equivalent test that satisfies the requirements of the standards and specifications listed on the front cover of the report. See section 3.2.
- 7. Where radiated emissions testing has been performed to EN55022/CISPR22 the additional requirements of VCCI: V- 3/2006.04, EN55022: 1994 +A1/2 and CAN/CSA- CISPR 22-02 have also been evaluated unless otherwise stated.
- 8. Testing to the requirements of CFR47 Part 15 was performed against the CISPR22 limits. The results are therefore deemed satisfactory evidence of compliance with Industry Canada Interference Causing Equipment Standard ICES-003.
- 9. Where assessment has been performed to CISPR24, all the applicable test requirements may have not been covered. Refer to the results section for the tests performed.

Notes:

- 1) Where a specification listed on the front cover of this report has deviations from the basic standards listed above, the additional technical requirements of the specification were also assessed.
- 2) Where appropriate, Cisco may have substituted a later revision of a basic standard to those referenced in the specification on the front sheet of this test report. This decision was based upon improved test methodology and repeatability and/or where the newer revision represented a more stringent test.
- 3) Where relevant, testing has been carried out to the requirements of both EN and IEC Specifications. This was possible because of the similarities of the test methods involved and the Cisco EMC test procedures.

Page No: 3 of 50

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature15°C to 35°C (54°F to 95°F)

Atmospheric Pressure 860mbar to 1060mbar (25.4" to 31.3")

Humidity 10% to 75*%

*[Where applicable] For ESD testing the humidity limits used were 30% to 60% and for EFT/B tests the humidity limits used were 25% to 75%.

e) All AC testing was performed at one or more of the following supply voltages:

110V 60 Hz (+/-20%) 220V 50 Hz (+/-20%)

This report must not be reproduced except in full, without written approval of Cisco Systems.

Page No: 4 of 50

2.2 Date of start of testing

06-Mar-2007

2.3 Report Issue Date

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled

2.4 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc.,	Cisco Systems, Inc.
4125 Highlander Parkway	170 West Tasman Drive
Richfield, OH 44286	San Jose, CA 95134
USA	USA

Test Engineers

James Nicholson

2.5 Equipment Assessed (EUT)

AIR-RM1520G-A-K9 802.11b/g Radio Module.

2.6 EUT Description

The AIR-RM1520G-A-K9 802.11b/g radio module operates exclusively in the AIR-LAP1520 series access point, and may operate simultaneously with the AIR-RM1520A-A-K9 802.11a radio module.

The following antennas are supported by this product.

AIR-ANT2450V-N	2400-2483.5 MHz	5.5 dBi Omni-directional
AIR-ANT2480V-N	2400-2483.5 MHz	8.0 dBi Omni-directional

Page No: 5 of 50

Section 3: Sample Details

Sample No.	Equipment Details	Part Number	Manufacturer	Hardware Rev.	Firmware Rev.	Software Rev.	Serial Number
S01	802.11b/g Radio Module	AIR-RM1520G -A-K9	Cisco Systems	NA	NA	NA	NA
S02	Mesh Access Point	AIR-LAP1522A G-A-K9	Cisco Systems	NA	NA	NA	NA
S03	8.0 dBi Omni Antenna	AIR-ANT2480 V-N	Cisco Systems	NA	NA	NA	NA
S04	5.5 dBi Patch Antenna	AIR-ANT2450 V-N	Cisco Systems	NA	NA	NA	NA

Page No: 6 of 50

Appendix A: Emission Test Results

Testing Laboratory: Cisco Systems, Inc., 4125 Highlander Parkway, Richfield, OH, USA

rijulu cisco

Average Output Power

Frequency (MHz)	Data Rate (Mbps)	Antenna Gain (dBi)	Target Power Level (dBm)	Actual Power Level (dBm)
2412	11	8	28	27.8
2412	36	5.5	25	24.8
2412	36	8	24	23.7
2437	11	8	28	28.0
2437	36	8	27	26.8
2462	11	8	28	27.7
2462	36	5.5	25	24.8
2462	36	8	24	23.9

Average Power with up to 5.5 and 8 dBi Antennas

Page No: 7 of 50

6dB Bandwidth

15.247: Systems using digital modulation techniques may operate in the 2400-2483.5 MHz band. The minimum 6 dB bandwidth shall be at least 500 kHz.

Frequency (MHz)	Data Rate (Mbps)	6dB BW (MHz)	Limit (kHz)	Margin (kHz)
2412	11	9.5	>500	9000
2412	36	16.5	>500	16000
2437	11	9.6	>500	9100
2437	36	16.6	>500	16100
2462	11	10.0	>500	9500
2462	36	16.5	>500	16000

6 dB BW, 2412 MHz, 11 Mbps, 28 dBm

Page No: 8 of 50

6 dB BW, 2412 MHz, 36 Mbps, 25 dBm

6 dB BW, 2437 MHz, 11 Mbps, 28 dBm

Page No: 9 of 50

🔆 Agilent 11:51:13 Feb 27, 2007 Freq/Channel L Center Freq Ch Frea 2.437 GHz Trig Free 2.43700000 GHz Occupied Bandwidth Start Freq 2.41200000 GHz Ref 30 dBm Atten 30 dB Stop Freq #Peak 2.46200000 GHz Log ٥ Δ 10 **CF** Step dB/ de Ma 5.00000000 MHz Offst 10.6 Auto Man dB Freq Offset 0.00000000 Hz Center 2.437 00 GHz Span 50 MHz #Res BW 100 kHz #Sweep 5 s (601 pts) #VBW 100 kHz Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % 0n <u>0ff</u> -6.00 dB x dB 16.5336 MHz **Transmit Freg Error** -6.938 kHz x dB Bandwidth 16.563 MHz* Copyright 2000-2004 Agilent Technologies

6 dB BW, 2437 MHz, 36 Mbps, 27 dBm

6 dB BW, 2462 MHz, 11 Mbps, 28 dBm

Page No: 10 of 50

🔆 Agilent 11:53:39 Feb 27, 2007 Freq/Channel L **Center Freq** 2.462 GHz Trig Free Ch Freq 2.46200000 GHz Occupied Bandwidth Start Freq 2.43700000 GHz Ref 30 dBm #Peak Atten 30 dB Stop Freq 2.48700000 GHz Log ٥ ÷ ÷ 10 **CF** Step dB/ 5.00000000 MHz Offst 10.6 Auto Man mul dB Freq Offset 0.00000000 Hz Center 2.462 00 GHz Span 50 MHz #Res BW 100 kHz #VBW 100 kHz #Sweep 5 s (601 pts) Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % 0n <u>0ff</u> x dB -6.00 dB 16.4808 MHz Transmit Freq Error -19.603 kHz 16.502 MHz* x dB Bandwidth Copyright 2000-2004 Agilent Technologies

6 dB BW, 2462 MHz, 36 Mbps, 25 dBm

Page No: 11 of 50

99% and 26dB Bandwidth

Frequency (MHz)	Data Rate (Mbps)	26dB BW (MHz)	99% BW (MHz)
2412	11	16.6	13.2
2412	36	20.2	16.6
2437	11	16.4	13.3
2437	36	20.4	16.7
2462	11	16.4	13.2
2462	36	20.1	16.6

26dB BANDWIDTH, 2412 MHz, 11 Mbps

Page No: 12 of 50

26dB BANDWIDTH, 2412 MHz, 36 Mbps

26dB BANDWIDTH, 2437 MHz, 11 Mbps

Page No: 13 of 50

26dB BANDWIDTH, 2437 MHz, 36 Mbps

26dB BANDWIDTH, 2462 MHz, 11 Mbps

Page No: 14 of 50

26dB BANDWIDTH, 2462 MHz, 36 Mbps

Page No: 15 of 50

Peak Output Power

- 15.247: The maximum conducted output power of the intentional radiator for systems using digital modulation in the 2400-2483.5 MHz band shall not exceed 1 Watt (30dBm). If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
 - For the 8 dBi Omni-directional antenna, the maximum allowable output power must be reduced by 8dBi-6dbi = 2dB, for a maximum peak conducted output power of 28 dBm.

Frequency (MHz)	Data Rate (Mbps)	Antenna Gain (dBi)	Target Power Level (dBm)	Peak Power (dBm)
2412	11	8	28	28.1
2412	36	5.5	25	24.8
2412	36	8	24	24.0
2437	11	8	28	28.3
2437	36	8	27	26.9
2462	11	8	28	28.2
2462	36	5.5	25	25.1
2462	36	8	24	24.1

PEAK POWER, 2412 MHz, 11 Mbps, 28 dBm

Page No: 16 of 50

PEAK POWER, 2412 MHz, 36 Mbps, 25 dBm

PEAK POWER, 2412 MHz, 36 Mbps, 24 dBm

Page No: 17 of 50

PEAK POWER, 2437 MHz, 11 Mbps, 28 dBm

PEAK POWER, 2437 MHz, 36 Mbps, 27 dBm

Page No: 18 of 50

PEAK POWER, 2462 MHz, 11 Mbps, 28 dBm

PEAK POWER, 2462 MHz, 36 Mbps, 25 dBm

Page No: 19 of 50

PEAK POWER, 2462 MHz, 36 Mbps, 24 dBm

Page No: 20 of 50

Power Spectral Density

15.247: For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Frequency (MHz)	Data Rate (Mbps)	Target Power Level (dBm)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Margin (dB)
2412	11	28	4.1	8.0	3.9
2412	36	25	-1.5	8.0	9.5
2437	11	28	6.6	8.0	1.4
2437	36	27	0.6	8.0	7.4
2462	11	28	3.9	8.0	4.1
2462	36	25	-1.4	8.0	9.4

Power Spectral Density, 2412 MHz, 11 Mbps, 28 dBm

Page No: 21 of 50

🔆 Agilent 03:55:16 Mar 15, 2007 Peak Search L Mkr1 2.420 10 GHz Ref 20 dBm #Peak Atten 10 dB -1.54 dBm Next Peak Log 10 Next Pk Right dB/ Offst 20.5 dB mmmmmmmm manannanan Next Pk Left L. Min Search LgAv V1 S2 S3 FS Pk-Pk Search £(f): FTun Mkr → CF Swp More Center 2.412 00 GHz Span 20 MHz 1 of 2 #Res BW 3 kHz #VBW 10 kHz #Sweep 100 s (601 pts) Copyright 2000-2004 Agilent Technologies

Power Spectral Density, 2412 MHz, 36 Mbps, 25 dBm

Power Spectral Density, 2437 MHz, 11 Mbps, 28 dBm

Page No: 22 of 50

🔆 Agilent 04:17:00 Mar 15, 2007 Peak Search L Mkr1 2.430 73 GHz Ref 20 dBm #Peak Atten 10 dB 0.61 dBm Next Peak Log 10 Next Pk Right dB/ Offst 20.5 dB MW www.hummin Next Pk Left ų, Min Search LgAv V1 S2 S3 FS Pk-Pk Search £(f): FTun Mkr → CF Swp More Center 2.437 00 GHz Span 20 MHz 1 of 2 #VBW 10 kHz #Sweep 100 s (601 pts) #Res BW 3 kHz Copyright 2000-2004 Agilent Technologies

Power Spectral Density, 2437 MHz, 36 Mbps, 27 dBm

Power Spectral Density, 2462 MHz, 11 Mbps, 28 dBm

Page No: 23 of 50

🔆 Ag	j ilent 03	:57:58	Mar 15	5,2007						L	Peak Search
Ref 20 #Peak	dBm		Atten	10 dB				Mkr1	2.455 -1.3	73 GHz 8 dBm	Next Peak
Log 10 dB/ 0ffst		1									Next Pk Right
20.5 dB		MMM	VWYVV	AWW W	MAAAA	MVW	MV////1	WW	www		Next Pk Left
LgAv	Murr									·~4	Min Search
V1 S2 S3 FS											Pk-Pk Search
£ (f): FTun Swp											Mkr → CF
Center #Res B	2.462 W 3 kH	00 GHz z	2	#V{	3W 10 K	(Hz	#Swe	eep 100	Span 2 0 s (60	20 MHz^ 1 pts)	More 1 of 2
Copyri	ight 20	000-20	104 Ag	ilent T	echnol	ogies					

Power Spectral Density, 2462 MHz, 36 Mbps, 25 dBm

Page No: 24 of 50

Conducted Spurious Emissions

15.247: In any 100 kHz bandwidth outside the frequency band in which the digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

Frequency (MHz)	Data Rate (Mbps)	Target Power Level (dBm)	Conducted Spurs
2412	11	28	>30dBc
2412	36	25	>30dBc
2437	11	28	>30dBc
2437	36	27	>30dBc
2462	11	28	>30dBc
2462	36	25	>30dBc

CONDUCTED SPURS, 2412 MHz, 11 Mbps, 28 dBm

Page No: 25 of 50

CONDUCTED SPURS, 2412 MHz, 36 Mbps, 25 dBm

CONDUCTED SPURS, 2437 MHz, 11 Mbps, 28 dBm

Page No: 26 of 50

CONDUCTED SPURS, 2437 MHz, 36 Mbps, 27 dBm

CONDUCTED SPURS, 2462 MHz, 11 Mbps, 28 dBm

Page No: 27 of 50

CONDUCTED SPURS, 2462 MHz, 36 Mbps, 25 dBm

CONDUCTED Rx SPURS

Page No: 28 of 50

Appendix B: Emission Test Results

Testing Laboratory: Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134, USA

Radiated Band Edge Emissions

Radiated emissions which fall in the restricted bands, as defined in Sec. 15.205(a), must also comply with the radiated emission limits specified in Sec. 15.209(a).

միսի

Frequency (MHz)	Data Rate (Mbps)	Antenna Gain (dBi)	Target Power Level (dBm)	Radiated Bandedge Margin
2412	11	8	28	3.8
2412	36	5.5	25	0.5
2412	36	8	24	0.1
2462	11	8	28	5.2
2462	36	5.5	25	0.2
2462	36	8	24	0.2

Radiated Band Edge, 2412 MHz, 11 Mbps, 28 dBm, 8 dBi Antenna, AVG

Page No: 29 of 50

Radiated Band Edge, 2412 MHz, 11 Mbps, 28 dBm, 8 dBi Antenna, PK

Radiated Band Edge, 2412 MHz, 36 Mbps, 25 dBm, 5.5 dBi Antenna, AVG

Page No: 30 of 50

EMiSoft Vasona: EMi Emission Software Mkr1 2.390 3 GHz	elect Marker
*Deels 1	2 3 4
Implementation Impleme	Normal
DI. Marker	Delta
74.0 dBµV #LgAv	Delta Pair (Tracking Ref) f <u>∆</u>
Start 2.310 0 GHz Stop 2.412 0 GHz #Res BW 1 MHz #VBW 1 MHz Sweep 1.069 ms (1604 pts) Marker Trace Type X Avis Amoltude	Span Pair Ian <u>Center</u>
1 (1) Freq 2.390 3 GHz 73.12 dBµU	Off
Conversite 2000 2005 Arilant Technologian	More 1 of 2

Radiated Band Edge, 2412 MHz, 36 Mbps, 25 dBm, 5.5 dBi Antenna, PK

Radiated Band Edge, 2412 MHz, 36 Mbps, 24 dBm, 8 dBi Antenna, AVG

Page No: 31 of 50

Radiated Band Edge, 2412 MHz, 36 Mbps, 24 dBm, 8 dBi Antenna, PK

Radiated Band Edge, 2462 MHz, 11 Mbps, 28 dBm, 8 dBi Antenna, AVG

Page No: 32 of 50

Radiated Band Edge, 2462 MHz, 11 Mbps, 28 dBm, 8 dBi Antenna, PK

Radiated Band Edge, 2462 MHz, 36 Mbps, 25 dBm, 5.5 dBi Antenna, AVG

Page No: 33 of 50

Radiated Band Edge, 2462 MHz, 36 Mbps, 25 dBm, 5.5 dBi Antenna, PK

Radiated Band Edge, 2462 MHz, 36 Mbps, 24 dBm, 8 dBi Antenna, AVG

Page No: 34 of 50

🔆 Agilent					L	Marker
EMiSoft Vaso Ref 103 dBµ	na: EMi Emission V #Atten	n Software 14 dB		Mkr1 2.4 7	483 52 GHz 2.68 dB µ V	Select Marker
#Peak Log 10	And the second sec	Weither Barris and Street St			*-	
dB/						Normal
		and a second set of the second set of the second	nd Herigasjingtonatur Berigada PANJAS			Delta
74.0 dB µ V						Delta Pair (Tracking Ref)
#LgAv						Ref <u>A</u>
Start 2.462 #Res BW 1 M	00 GHZ Hz	#VBW 1 M	Hz Sweep	Stop 2.5 1.069 ms (00 00 GHz (1604 pts)	Span Pair Span <u>Center</u>
Marker 1	(1) Fre	≅ X q 2.483	Hxis 52 GHz	н 72.	mplitude 68 dBµV	
						Off
						More 1 of 2
Copyright 2	000-2005 Ag	ilent Technol	ogies			

Radiated Band Edge, 2462 MHz, 36 Mbps, 24 dBm, 8 dBi Antenna, PK

Page No: 35 of 50

Radiated Spurs and Harmonics with All Antennas

There were no measurable emissions above 18GHz for any of the channel/antenna combinations. The data is a worst case representation of all configurations.

Radiated Spurious Emissions, 2412 MHz, 11 Mbps, 28 dBm, 8 dBi Antenna Co-Located with 5785 MHz, 36 Mbps, 28 dBm, 17 dBi Antenna, PK

Page No: 36 of 50

Radiated Spurious Emissions, 2412 MHz, 36 Mbps, 25 dBm, 5.5 dBi Antenna Co-Located with 5785 MHz, 36 Mbps, 28 dBm, 17 dBi Antenna, AVG

միսին

Radiated Spurious Emissions, 2412 MHz, 36 Mbps, 25 dBm, 5.5 dBi Antenna Co-Located with 5785 MHz, 36 Mbps, 28 dBm, 17 dBi Antenna, PK

Page No: 37 of 50

Radiated Spurious Emissions, 2437 MHz, 11 Mbps, 28 dBm, 8 dBi Antenna Co-Located with 5785 MHz, 36 Mbps, 28 dBm, 17 dBi Antenna, AVG

Radiated Spurious Emissions, 2437 MHz, 11 Mbps, 28 dBm, 8 dBi Antenna Co-Located with 5785 MHz, 36 Mbps, 28 dBm, 17 dBi Antenna, PK

Page No: 38 of 50

Radiated Spurious Emissions, 2437 MHz, 36 Mbps, 25 dBm, 5.5 dBi Antenna Co-Located with 5785 MHz, 36 Mbps, 28 dBm, 17 dBi Antenna, AVG

Radiated Spurious Emissions, 2437 MHz, 36 Mbps, 25 dBm, 5.5 dBi Antenna Co-Located with 5785 MHz, 36 Mbps, 28 dBm, 17 dBi Antenna, PK

Page No: 39 of 50

Radiated Spurious Emissions, 2462 MHz, 11 Mbps, 28 dBm, 8 dBi Antenna Co-Located with 5785 MHz, 36 Mbps, 28 dBm, 17 dBi Antenna, AVG

Radiated Spurious Emissions, 2462 MHz, 11 Mbps, 28 dBm, 8 dBi Antenna Co-Located with 5785 MHz, 36 Mbps, 28 dBm, 17 dBi Antenna, PK

Page No: 40 of 50

Radiated Spurious Emissions, 2462 MHz, 36 Mbps, 25 dBm, 5.5 dBi Antenna Co-Located with 5785 MHz, 36 Mbps, 28 dBm, 17 dBi Antenna, AVG

Radiated Spurious Emissions, 2462 MHz, 36 Mbps, 25 dBm, 5.5 dBi Antenna Co-Located with 5785 MHz, 36 Mbps, 28 dBm, 17 dBi Antenna, PK

Page No: 41 of 50

Radiated Spurious Rx Emissions, AVG

Radiated Spurious Rx Emissions, PK

Page No: 42 of 50

Powerline Conducted emissions

Test Number: 2	Test Number: 26067 Spec ID: 484									
Basic Standard	Applied to	Class	Freq Range	Test Details / Comments						
CFR47 Part 15.207 (LP0002 2.2.3, RSS210)	AC Power Line	В	0.150MHz - 30MHz							
Operating Mode	Mode: 1, Continuo	bus								
Power Input	110, 60Hz (+/-20%)								
Overall Result	Pass	Pass								
Comments	No further commer	No further comments								
Deviation	There were no dev	iations from th	e specification							

Subtest Number: 26067	7 - 1 Subtest Date: 07-Mar-2007
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Line Under Test	Power Input
Transducer	LISN
Subtest Result	Pass
Highest Frequency	30.0
Lowest Frequency	0.15
Comments on the above Test Results	No further comments

Page No: 43 of 50

Test Results Table

Frequency	Raw	Cable	Factors	Level	Measureme	Line	Limit	Margin	Pass /Fail	Comments
MHz	dBuV	Loss	dB	dBuV	nt Type		dBuV	dB		
0.187	20.2	20.3	0.2	40.8	Av	L	54.2	-13.4	Pass	
0.187	21.5	20.3	0.2	42	Qp	L	64.2	-22.1	Pass	
0.236	17.8	20.2	0.1	38.2	Qp	L	62.2	-24	Pass	
0.236	16.9	20.2	0.1	37.3	Av	L	52.2	-14.9	Pass	
0.283	17.2	20.2	0.1	37.6	Qp	L	60.7	-23.2	Pass	
0.283	16.4	20.2	0.1	36.6	Av	L	50.7	-14.1	Pass	
4.03	10.9	20	0.1	31	Qp	N	56	-25	Pass	
4.03	4.3	20	0.1	24.4	Av	Ν	46	-21.6	Pass	
14.338	20.9	20.2	0.2	41.3	Qp	L	60	-18.7	Pass	
14.338	9.3	20.2	0.2	29.7	Av	L	50	-20.3	Pass	
27.091	16.1	20.5	1.2	37.8	Qp	L	60	-22.2	Pass	
27.091	6.3	20.5	1.2	28	Av	L	50	-22	Pass	

Page No: 44 of 50

Unintentional Radiated emissions

Subtest Number: 26044	4 - 1 Subtest Date: 07-Mar-2007						
Engineer	James Nicholson						
Lab Information	Building P, 10m Anechoic						
Subtest Results							
Subtest Title	RE						
Subtest Result	Pass						
Highest Frequency	1000.0						
Lowest Frequency	30.0						
Comments on the above Test Results	No further comments						

Graphical Test Results

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

Frequency	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measureme nt Type	Pol	Hgt cm	Azt Dea	Limit dBuV	Margin dB	Pass /Fail	Comments
16 162	16.0	0.7	7.8	25 /	ni type On	V	138	216	40 S	uD _15.1	Pass	
40.102	10.7	0.7	7.0	23.4	αþ	v	130	210	40.5	-13.1	1 433	
58.599	16.5	0.7	5.6	22.7	Qp	V	105	241	40.5	-17.8	Pass	
67.554	19	0.7	6.2	26	Qp	V	103	212	40.5	-14.4	Pass	
80.113	23.4	0.8	5.8	30.1	Qp	Н	233	249	40.5	-10.4	Pass	
80.778	19.4	0.8	5.8	25.9	Qp	V	107	56	40.5	-14.6	Pass	
328.239	12.5	1.7	13.3	27.4	Qp	V	115	204	47.5	-20.1	Pass	

Page No: 45 of 50

Maximum Permissible Exposure (MPE) Calculations

15.247: ISM devices are subject to the radio frequency radiation exposure requirements specified in Sec. 1.1307(b), Sec. 2.1091 and Sec. 2.1093 of this chapter, as appropriate. All equipment shall be considered to operate in a ``general population/uncontrolled" environment. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request.

Given

 $E=\sqrt{(30^{*}P^{*}G)/d}$ and S=E^2/3770

where

E=Field Strength in Volts/meter P=Power in Watts G=Numeric Antenna Gain d=Distance in meters S=Power Density in mW/cm^2

Combine equations and rearrange the terms to express the distance as a function of the remaining variables:

```
d=√((30*P*G)/(3770*S))
```

Changing to units of power in mW and distance in cm, using: P(mW)=P(W)/1000

d(cm)=100*d(m)

vields

d=100*√((30*(P/1000)*G)/(3770*S)) d=0.282*√(P*G/S)

where

d=Distance in cm P=Power in mW G=Numerica Antenna Gain S=Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using: $P(mW)=10^{(P(dBm)/10)}$ G(numeric)=10^{(G(dBi)/10)}

vields

and

d=0.282*10^((P+G)/20)/√S Equation (1) s=((0.282*10^((P+G)/20))/d)^2 Equation (2) where d=MPE distance in cm

P=Power in dBm G=Antenna Gain in dBi S=Power Density in mW/cm^2

Page No: 46 of 50

Equation (1) and the measured peak power are used to calculate the MPE distance. Note that for mobile or fixed location transmitters such as an access point, the minimum separation distance is 20 cm even if the calculations indicate that the MPE distance may be less.

S=1mW/cm² maximum. Using the peak power levels and antenna gains recorded in the test report along with Equation 1 above, the MPE distances are calculated as follows.

			Peak				
		Power	Transmit	Antenna	MPE		
Frequency	Bit Rate	Density	Power	Gain	Distance	Limit	Margin
(MHz)	(Mbps)	(mW/cm^2)	(dBm)	(dBi)	(cm)	(cm)	(cm)
2412	11	1	28.1	8	18.00	20	2.00
2412	36	1	24.8	5.5	9.23	20	10.77
2412	36	1	24.0	8	11.23	20	8.77
2437	11	1	28.3	8	18.42	20	1.58
2437	36	1	26.9	8	15.68	20	4.32
2462	11	1	28.2	8	18.21	20	1.79
2462	36	1	25.1	5.5	9.56	20	10.44
2462	36	1	24.1	8	11.36	20	8.64

MPE Calculations

To maintain compliance, installations will assure a separation distance of at least 20cm.

Using Equation 2, the MPE levels (s) at 20 cm are calculated as follows:

			Peak				
		MPE	Transmit	Antenna	Power		
Frequency	Bit Rate	Distance	Power	Gain	Density	Limit	Margin
(MHz)	(Mbps)	(cm)	(dBm)	(dBi)	(mW/cm^2)	(mW/cm^2)	(mW/cm^2)
2412	11	20	28.1	8	0.81	1	0.19
2412	36	20	24.8	5.5	0.21	1	0.79
2412	36	20	24.0	8	0.32	1	0.68
2437	11	20	28.3	8	0.85	1	0.15
2437	36	20	26.9	8	0.61	1	0.39
2462	11	20	28.2	8	0.83	1	0.17
2462	36	20	25.1	5.5	0.23	1	0.77
2462	36	20	24.1	8	0.32	1	0.68

Page No: 47 of 50

Appendix C: Abbreviation Key and Definitions

The following table defines abbreviations used within this test report.

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	°C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
TAP	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control System	Qp	Quasi Peak
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak
Cal	Calibration	kHz	Kilohertz (1x10 ³)
EN	European Norm	MHz	Megahertz (1x10 ⁶)
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)
CISPR	International Special Committee on Radio Interference	Н	Horizontal
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization Network	dB	decibel
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³)
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)
L2	Line2	A	Amp
L3	Line 3	μA	Micro Amp (1x10 ⁻⁶)
DC	Direct Current	mS	Milli Second (1x10 ⁻³)
RAW	Uncorrected measurement value, as indicated by the measuring device	μS	Micro Second (1x10 ⁻⁶)
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)
SLCE	Signal Line Conducted Emissions	m	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
P	Power Line	L	Live Line
N	Neutral Line	R	Return
S	Supply	AC	Alternating Current

Page No: 48 of 50

Appendix E: Test Equipment/Software Used to perform the test

Equip#	Manufacturer/	Description	Last Cal	Next Due	Test
004883	EMC Test Systems/ 3115	Double Ridged Guide Horn Antenna	19-APR-06	19-APR-07	[26022], [26032], [26044]
005568	HP/ 8449B	PreAmplifier (1-26.5GHz)	08-SEP-06	08-SEP-07	[26044]
005691	Miteq/ NSP1800-25-S1	Broadband Preamplifier (1-18GHz)	09-OCT-06	09-OCT-07	[26022], [26032], [26044]
008136	Huber + Suhner/ SF106A	7m Sucoflex cable	05-JAN-07	05-JAN-08	[26044]
008370	Andrew/ F4A-PNMNM	49 ft Heliax Cable	16-MAR-06	16-MAR-07	[26067]
008591	Fischer Custom Communications/ FCC-RFM2F-520R	LISN AC Adaptor - Std 120V outlet	16-MAR-06	16-MAR-07	[26067]
019209	TTE/ H785-150K-50-2137 8	Hi Pass Filter 150KHz	02-JAN-07	02-JAN-08	[26067]
020975	Micro-Coax/ UFB311A-0-1344-5 20520	RF Coaxial Cable, to 18GHz, 134.4 in	16-MAR-06	16-MAR-07	[26022], [26032], [26044]
024905	Agilent/ E4440A	Precision Spectrum Analyzer	14-FEB-07	14-FEB-08	[26022], [26032], [26044]
025640	Micro-Coax/ UFB311A-0-2720-5 20520	RF Coaxial Cable, to 18GHz, 272 in	05-JAN-07	05-JAN-08	[26044]
025655	Micro-Coax/ UFB311A-1-0840-5 04504	RF Coaxial Cable, to 18GHz, 84 in	17-MAR-06	17-MAR-07	[26022], [26032], [26044]
025657	Micro-Coax/ UFB311A-1-0840-5 04504	RF Coaxial Cable, to 18GHz, 84 in	19-AUG-06	19-AUG-07	[26022], [26032], [26044], [26067]
025660	Micro-Coax/ UFB311A-1-0840-5 04504	Coaxial Cable, 84.0 in. to 18GHz	05-JAN-07	05-JAN-08	[26044]
030495	Agilent/ 8761B	SPDT RF Switch, to 18GHz	07-APR-06	07-APR-07	[26022], [26032], [26044]
030496	Agilent/ 8761B	SPDT RF Switch, to 18GHz	08-SEP-06	08-SEP-07	[26044]
030563	Micro-Coax/ UFB311A-1-0950-5 04504	RF Coaxial Cable, to 18GHz, 95 in	05-JAN-07	05-JAN-08	[26044]
030652	Sunol Sciences/ JB1	Combination Antenna, 30MHz-2GHz	06-JUL-06	06-JUL-07	[26044]
032455	Midwest Microwave/ CSY-MNMN-82-273 001	RF Coaxial Cable to 18 GHz	11-SEP-06	11-MAR-07	[26022], [26032], [26044]

Page No: 49 of 50

032801	ETS-Lindgren/ 3117	Double Ridged Waveguide Horn Antenna	28-JUL-06	28-JUL-07	[26044]
034188	Micro-Tronics/ BRC50703-02	Notch Filter, SB:5.150-5.350GHz, to 11GHz	17-JUL-06	17-JUL-07	[26044]
034189	Micro-Tronics/ BRC50704-02	Notch Filter, SB:5.470-5.725GHz, to 12GHz	17-JUL-06	17-JUL-07	[26044]
034304	Micro-Tronics/ BRM50702-02	Notch Filter, SB:2.4-2.5GHz, to 18GHz	17-JUL-06	17-JUL-07	[26044]
034974	Midwest Microwave/ ATT-0640-20-29M-0 2	Attenuator, 20dB, DC-40GHz	09-MAY-06	09-MAY-07	[26022], [26032]
035040	Micro-Tronics/ HPM50112-02	High pass Filter, 6.4-18GHz	17-JUL-06	17-JUL-07	[26044]
035624	Rohde & Schwarz/ ESCI	EMI Test Receiver	28-JUN-06	28-JUN-07	[26044], [26067]
036716	Cisco/ RF Coaxial Cable-SMA	Radio Test Cable, SMA-SMA	11-DEC-06	11-DEC-07	[26022], [26032], [26044]
038396	Micro-Coax/ UFB293C-Q-1200-5 0U50L	RF Coaxial Cable, 120 Inches, to 18GHz	13-JUL-06	13-JUL-07	[26044]

Page No: 50 of 50