

EMC Test Report: EDCS - 501969

For

AIR-RM23A-A-K9 5GHz Radio Module (FCC ID: LDK102059)

Against the following Specifications :

FCC CFR 47 Part 15.247

and

FCC CFR 47 Part 15.407

Cisco Systems

EMC Laboratory 170 West Tasman Drive San Jose, CA 95134

Certificate Number : 1178-01

Author: James Nicholson Approved By: Title:

Page No: 1 of 174

This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

SECTION 1: OVE	CRVIEW	3
SECTION 2: ASS	ESSMENT INFORMATION	4
SECTION 3: SAM	IPLE DETAILS	7
APPENDIX A:	FORMAL EMISSION TEST RESULTS	8
	UT Power	
	Н	
	Н	
	OWER	
	AL DENSITY	
	OWER	
	URIOUS EMISSIONS	
	SMITTER SPURIOUS EMISSIONS	
	ANSMITTER SPURIOUS EMISSIONS	
	ISSIBLE EXPOSURE (MPE) CALCULATIONS	
	RADIATED SPURIOUS EMISSIONS	
	-30MHz Conducted Emissions	
DFS TEST RESU	JLTS	122 <u>4</u>
APPENDIX C:	ABBREVIATION KEY AND DEFINITIONS	164
	G TABLE DEFINES ABBREVIATIONS USED WITHIN THIS TEST REPORT	164
APPENDIX D:	RADIATED EMISSIONS TEST PROCEDURE	165
APPENDIX E:	CONDUCTED EMISSIONS TEST PROCEDURE	168
APPENDIX F:	TEST PROCEDURES	170
APPENDIX G:	SCOPE OF ACCREDITATION: A2LA CERTIFICATE NUMBER 1178-01	171
APPENDIX H:	TEST EQUIPMENT/SOFTWARE USED TO PERFORM THE TEST	173
APPENDIX H:	TEST EQUIPMENT/SOFTWARE USED TO PERFORM THE TEST	173
SOFTWARE USE	D IN THE TESTS	174
SOFTWARE USE	D IN THE TESTS	174
A: VASONA FI	LE VERSION	174
B: OTHER SOL	FTWARE USED	174

Page No: 2 of 174

Section 1: Overview

Test Summary

The samples were assessed against the tests detailed in section 3 under the requirements of the following standards:

Emissions:

CFR47 Parts 15.247 ,15.249, 15.407.

Notes:

- 1) Where a specification listed on the front cover of this report has deviations from the basic standards listed above, the additional technical requirements of the specification were also assessed.
- 2) Where appropriate, Cisco may have substituted a later revision of a basic standard to those referenced in the specification on the front sheet of this test report. This decision was based upon improved test methodology and repeatability and/or where the newer revision represented a more stringent test.
- 3) Where relevant, testing has been carried out to the requirements of both EN and IEC Specifications. This was possible because of the similarities of the test methods involved and the Cisco EMC test procedures.
- 4) For Radiated and Conducted emissions results refer to section 2.9 for measurement uncertainty considerations
- 5) Where applicable, details of the precise distance used when performing radiated immunity measurements can be found in Cisco document EDCS-221012.
- 6) Where testing has been performed to EN61000-4-3, additional measurements were conducted to establish the field strength at a 40cm height in both the horizontal and vertical antenna polarities (applies to floor standing EUT's only). This field strength data can be found in Cisco document ENG-72588.

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted.

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal Government.

This report may contain data that are not covered by the A2LA accreditation (Certificate number 1178-01). Please refer to Appendix F for further details.

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature 15°C to 35°C (54°F to 95°F)

 Atmospheric Pressure
 860mbar to 1060mbar (25.4" to 31.3")

 Humidity
 10% to 75*%

*[Where applicable] For ESD testing the humidity limits used were 30% to 60% and for EFT/B tests the humidity limits used were 25% to 75%.

- All AC testing was performed at one or more of the following supply voltages: 110V (+/-10%) 60Hz
 220V (+/-10%) 50 or 60Hz
- f) Cisco Systems Inc., are accredited by the American Association for Laboratory Accreditation (A2LA). For the specific scope of accreditation under certificate number 1178-01.see appendix F for further details.

This report must not be reproduced except in full, without written approval of Cisco Systems.

Page No: 4 of 174

2.2 Date of start of testing

06-Feb-2006

2.3 Report Issue Date

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled

2.4 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc., 170 West Tasman Drive San Jose, CA 95134, USA

Test Engineers

James Nicholson

2.5 Equipment Assessed (EUT)

AIR-RM23A-A-K9 5GHz 802.11a Radio Module

2.6 EUT Description

The AIR-RM23A-A-K9 5GHz radio module operates in the AIR-AP1250 series access point, and may operate simultaneously with the AIR-RM23G-A-K9 2.4GHz radio module, to provide data rates up to 54 Mbps in accordance with IEEE 802.11a standard.

2.7 Scope of Assessment

Tests have been performed in accordance with the relevant Test and Assessment Plan (TAP), a copy of which is contained in Appendix H of this report, and the relevant Cisco EMC compliance test procedures (ENG-23438). This test report may not cover all of the tests highlighted in the test plan.

Page No: 5 of 174

2.8 Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, these are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in dBuV and current in dBuA.

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB]

The components of factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss, Current Probe Factors.

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

2.9 Measurement Uncertainty

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

10kHz - 30 MHz	+/- 2.8 dB (E Field)
10kHz - 30 MHz	+/- 2.8 dB (H Field)
30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

4 kHz - 30 MHz	+/- 2.2 dB (using Current Probe)
9 kHz - 150 kHz	+/- 4.1 dB (using LISN)
10 kHz - 30 MHz	+/- 2.6 dB (using Current Probe)
150 kHz - 30 MHz	+/- 3.7 dB (using LISN)
150 kHz - 30 MHz	+/- 3.1 dB (using CDN)
150 kHz - 30 MHz	+/- 2.7 dB (using CVP-1)
150 KHz - 30 MHz	+/1 2.7 dB (using TISN)

Page No: 6 of 174

Section 3: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing. Please also refer to the "Justification for worst Case test Configuration" section of this report for further details on the selection of EUT samples.

Sample No.	Equipment Details	Part Number	Manufacturer	Hardware Rev.	Firmware Rev.	Software Rev.	Serial Number
S01	AIR-RM23A-A-K9	NA	Cisco Systems	3	NA	NA	NA
S02	AIR-ANT5195P-R	NA	Cisco Systems	NA	NA	NA	NA
S03	AIR-ANT5160V-R	NA	Cisco Systems	NA	NA	NA	NA
S04	AIR-AP1250	NA	Cisco Systems	NA	NA	NA	NA

The following antennas are included in this filing:

AIR-ANT5135D-R (5 GHz, 3.5 dBi Omnidirectional) AIR-ANT5145V-R (5 GHz, 4.5 dBi Diversity Omnidirectional) AIR-ANT5160V-R (5 GHz, 6.0dBi Diversity Omnidirectional) AIR-ANT5170P-R (5 GHz, 7.0 dBi Diversity Patch) AIR-ANT5195P-R (5 GHz, 9.5 dBi Patch)

3.2 System Details

System #	Description	Samples
1	5GHz Radio Module installed in host Access Point with 9.5dBi Patch Antenna	S01, S02 and S04
2	5GHz Radio Module installed in host Access Point with 6dBi Omni Antenna	S01, S03 and S04

3.3 Mode of Operation Details

Mode#	Description	Comments
1	IOS Test Interface	The various radio parameters will be invoked in the IOS test interface via
		either a telnet session or serial interface.

Page No: 7 of 174

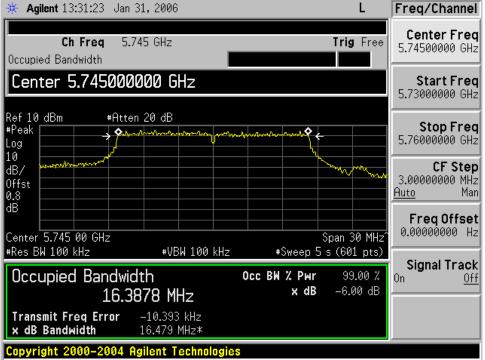
Appendix A: Formal Emission Test Results

Average Output Power

5GHz Average Power with up to 9.5dBi Antennas

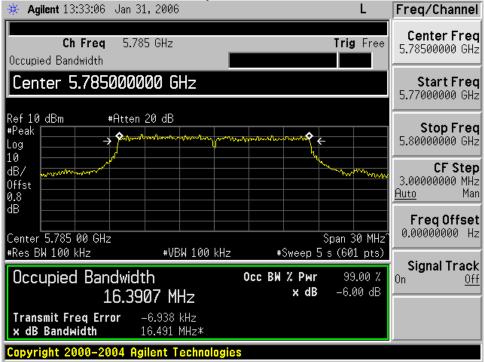
Frequency (MHz)	Data Rate (Mbps)	Target Power (dBm)	Measured Power (dBm)
5150	54	11	11.4
5260	54	17	17.2
5320	54	11	11.5
5500	54	17	17.1
5600	54	17	17.0
5700	54	17	16.7
5745	54	17	16.7
5785	54	14	13.5
5825	54	11	10.6

Page No: 8 of 174

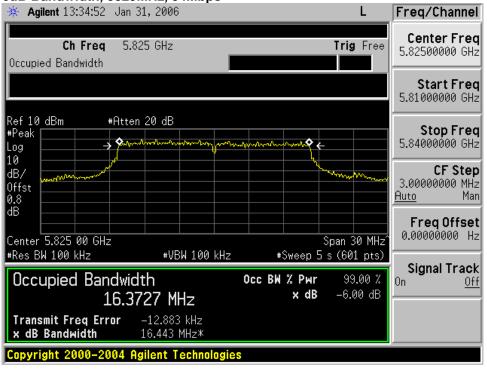


6dB Bandwidth

15.247: Systems using digital modulation techniques may operate in the 5725-5850MHz band. The minimum 6 dB bandwidth shall be at least 500 kHz.


	Frequency (MHz)	Data Rate (Mbps)	6dB Bandwidth (kHz)	Limit (kHz)	Margin (kHz)
	5745	36	16,479	>500	15,979
	5785	36	16,491	>500	15,991
ſ	5805	36	16,443	>500	15,943

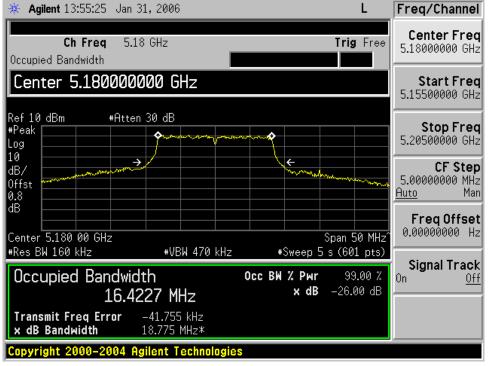
6dB Bandwidth, 5745MHz, 54Mbps



Page No: 9 of 174

6dB Bandwidth, 5785MHz, 54Mbps

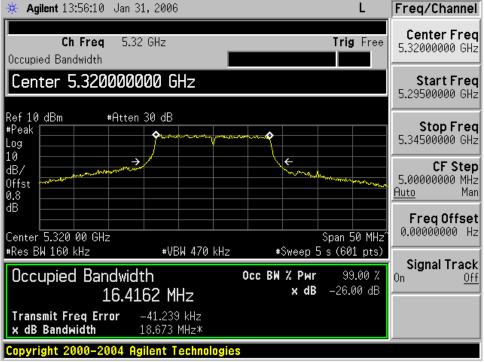
6dB Bandwidth, 5825MHz, 54Mbps


Page No: 10 of 174

99% and 26dB Bandwidth

Frequency (MHz)	Data Rate (Mbps)	99% Bandwidth (MHz)	26dB Bandwidth (MHz)
5180	54	16.42	18.78
5260	54	16.44	18.75
5320	54	16.42	18.67
5500	54	16.42	18.61
5600	54	16.42	18.51
5700	54	16.44	19.15
5745	54	16.44	18.72
5785	54	16.43	18.69
5805	54	16.42	18.65

99% and 26dB Bandwidth, 5180MHz, 54Mbps

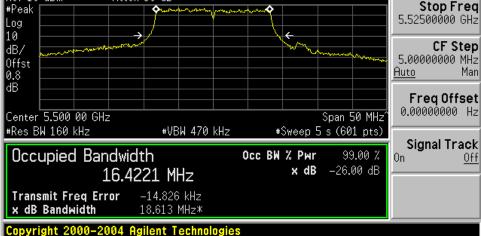


Page No: 11 of 174

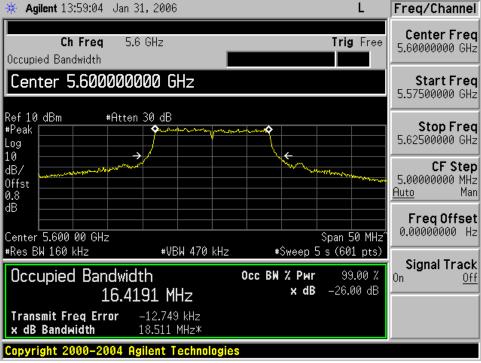
🔆 Agilent 13:57:41 Jan 31, 2006 L Freq/Channel Center Freq Ch Freq 5.26 GHz Trig Free 5.26000000 GHz Occupied Bandwidth Center 5.260000000 GHz Start Freq 5.23500000 GHz Ref 10 dBm #Atten 30 dB Stop Freq #Peak 5.28500000 GHz Log 10 CF Step dB/ 5.00000000 MHz Offst Auto Man 0.8 dB Freq Offset 0.00000000 Hz Center 5.260 00 GHz Span 50 MHz #Res BW 160 kHz #VBW 470 kHz #Sweep 5 s (601 pts) Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % 0n Off x dB -26.00 dB 16.4377 MHz Transmit Freq Error -43.152 kHz x dB Bandwidth 18.749 MHz* Copyright 2000-2004 Agilent Technologies

99% and 26dB Bandwidth, 5260MHz, 54Mbps

99% and 26dB Bandwidth, 5320MHz, 54Mbps


Page No: 12 of 174

Center Freg

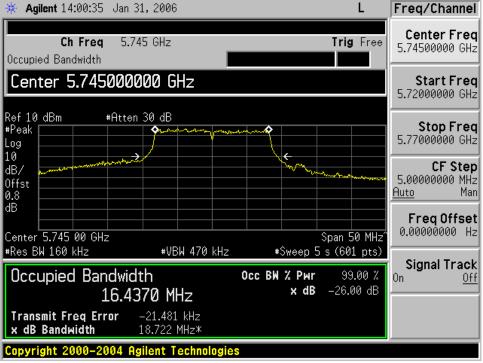

Start Freq 5.47500000 GHz

5.50000000 GHz

🔆 Agilent 13:58:28 Jan 31, 2006 L Freq/Channel 5.5 GHz Ch Freq Trig Free Occupied Bandwidth Center 5.500000000 GHz Ref 10 dBm #Atten 30 dB

99% and 26dB Bandwidth, 5600MHz, 54Mbps

Page No: 13 of 174

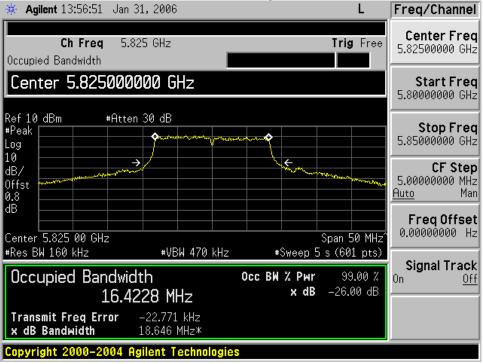

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

99% and 26dB Bandwidth, 5500MHz, 54Mbps

🔆 Agilent 13:59:47 Jan 31, 2006 L Freq/Channel Center Freg 5.7 GHz Ch Freq Trig Free 5.70000000 GHz Occupied Bandwidth Center 5.700000000 GHz Start Freq 5.67500000 GHz Ref 10 dBm #Atten 30 dB Stop Freq #Peak Ô 5.72500000 GHz Log 10 CF Step dB/ 5.00000000 MHz Offst Auto Man 0.8 dB Freq Offset 0.00000000 Hz Center 5.700 00 GHz Span 50 MHz #Res BW 160 kHz #VBW 470 kHz #Sweep 5 s (601 pts) Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % 0n Off x dB -26.00 dB 16.4406 MHz Transmit Freq Error -14.856 kHz x dB Bandwidth 19.153 MHz* Copyright 2000-2004 Agilent Technologies

99% and 26dB Bandwidth, 5700MHz, 54Mbps

99% and 26dB Bandwidth, 5745MHz, 54Mbps



Page No: 14 of 174

🔆 Agilent 14:01:17 Jan 31, 2006 L Freq/Channel Center Freg Ch Freq 5.785 GHz Trig Free 5.78500000 GHz Occupied Bandwidth Center 5.785000000 GHz Start Freq 5.76000000 GHz Ref 10 dBm #Atten 30 dB Stop Freq #Peak ۵ 5.81000000 GHz Log 10 ÷ CF Step dB/ 5.00000000 MHz Offst Auto Man 0.8 dB Freq Offset 0.00000000 Hz Center 5.785 00 GHz Span 50 MHz #Res BW 160 kHz #VBW 470 kHz #Sweep 5 s (601 pts) Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % 0n Off x dB -26.00 dB 16.4347 MHz Transmit Freq Error -13.035 kHz x dB Bandwidth 18.691 MHz* Copyright 2000-2004 Agilent Technologies

99% and 26dB Bandwidth, 5785MHz, 54Mbps

99% and 26dB Bandwidth, 5825MHz, 54Mbps

Page No: 15 of 174

Peak Output Power

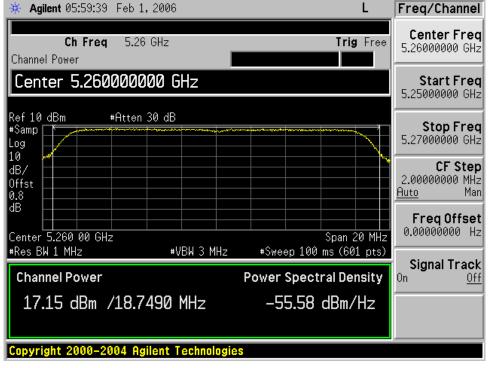
15.407: For the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The smallest 26dB bandwidth for all channels is 18.5 MHz. The maximum conducted output power is calculated as 4dBm+10*log(18.5MHz) = 16.7dBm

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

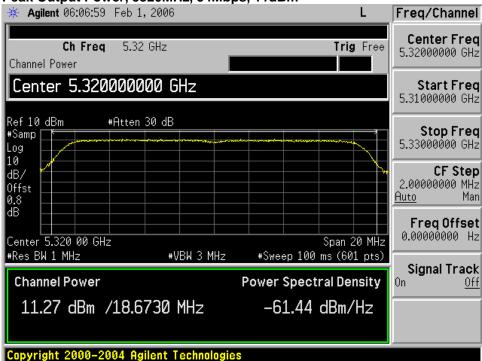
The smallest 26dB bandwidth for all channels is 18.5 MHz. The maximum conducted output power is calculated as 11dBm+10*log(18.5MHz) = 23.7dBm

15.247: The maximum conducted output power of the intentional radiator for systems using digital modulation in the 5725-5850MHz band shall not exceed 1 Watt (30dBm). If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

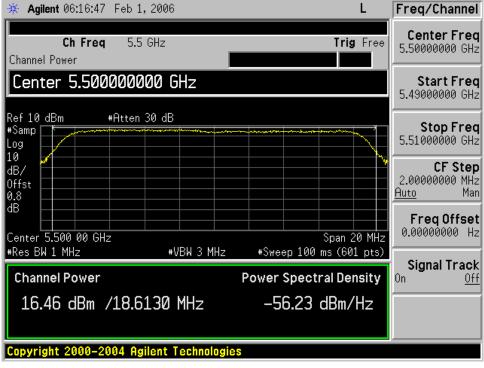

The maximum supported antenna gain for all bands is 9.5dBi. Therefore the maximum allowable output power for all bands must be reduced by 9.5dBi-6dbi = 3.5dBi.

Frequency (MHz)	Data Rate (Mbps)	Peak Output Power (dBm)	Limit (dBm)	Margin (dB)
5180	54	11.2	13.2	2.0
5260	54	17.2	20.2	3.0
5320	54	11.3	20.2	8.9
5500	54	16.5	20.2	3.7
5600	54	17.0	20.2	3.2
5700	54	16.3	20.2	3.9
5745	54	16.2	26.5	10.3
5785	54	13.1	26.5	13.4
5805	54	10.6	26.5	15.9

Peak Output Power, 5180MHz, 54Mbps, 11dBm

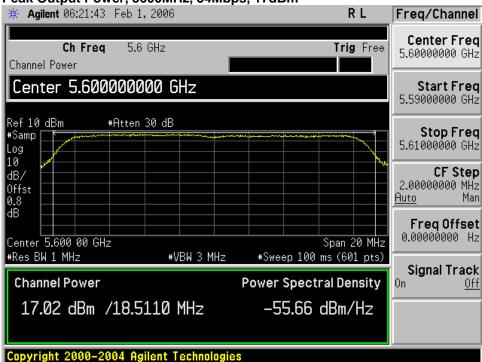


Peak Output Power, 5260MHz, 54Mbps, 17dBm

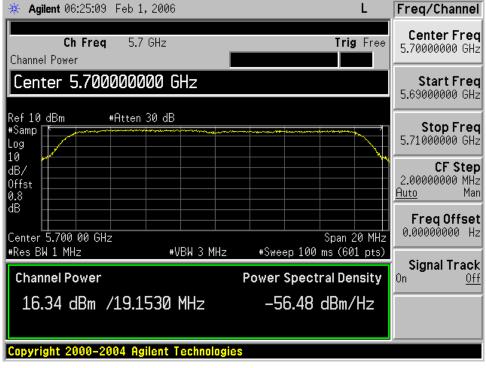


Page No: 17 of 174

Peak Output Power, 5320MHz, 54Mbps, 11dBm



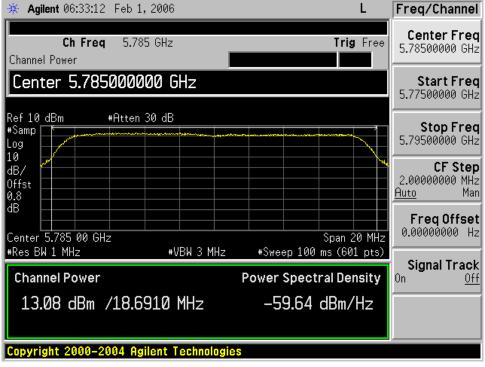
Peak Output Power, 5500MHz, 54Mbps, 17dBm



Page No: 18 of 174

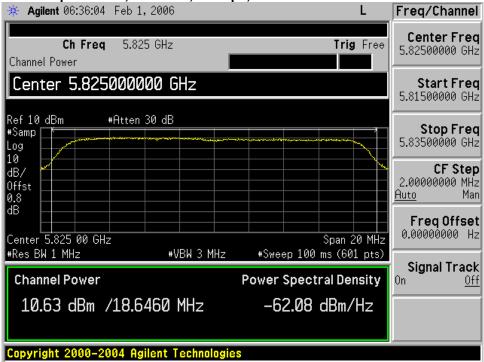
Peak Output Power, 5600MHz, 54Mbps, 17dBm

Peak Output Power, 5700MHz, 54Mbps, 17dBm



Page No: 19 of 174

🔆 Agilent 06:30:24 Feb 1, 2006 L Freq/Channel Center Freq Ch Freq 5.745 GHz Trig Free 5.74500000 GHz Channel Power Center 5.745000000 GHz Start Freq 5.73500000 GHz Ref 10 dBm #Atten 30 dB Stop Freq #Samp 5.75500000 GHz Log 10 CF Step dB/ 2.00000000 MHz Offst 0.8 dB Auto Man Freq Offset 0.00000000 Hz Center 5.745 00 GHz #Res BW 1 MHz Span 20 MHz #VBW 3 MHz #Sweep 100 ms (601 pts) Signal Track Channel Power **Power Spectral Density** 0n Off 16.24 dBm /18.7220 MHz -56.48 dBm/Hz Copyright 2000–2004 Agilent Technologies


Peak Output Power, 5745MHz, 54Mbps, 17dBm

Peak Output Power, 5785MHz, 54Mbps, 14dBm

Page No: 20 of 174

Peak Output Power, 5825MHz, 54Mbps, 11dBm

Page No: 21 of 174

Power Spectral Density

15.407: For the band 5.15-5.25 GHz, the peak power spectral density shall not exceed 4 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum supported antenna gain is 9.5dBi. Therefore the maximum allowable peak power spectral density must be reduced by 9.5dBi-6dbi = 3.5dBi.

15.247: For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Frequency (MHz)	Data Rate (Mbps)	Peak Power Spectral Density (dBm/MHz)	Limit (dBm)	Margin (dB)
5180	11	0.4	0.5	0.1
5260	11	6.5	7.5	1.0
5320	11	0.6	7.5	6.9
5500	36	6.2	7.5	1.3
5600	36	6.5	7.5	1.0
5700	36	5.9	7.5	1.4

Frequency (MHz)	Data Rate (Mbps)	Peak Power Spectral Density (dBm/3kHz)	Limit (dBm)	Margin (dB)
5745	36	-10.4	8	18.4
5785	36	-11.6	8	19.6
5805	36	-14.1	8	22.1

	lent 08:11:0			2 / -		, -			L	Peak Search
Ref 10 #Samp	dBm	#Atten	30 dB				Mkr1		57 GHz 9 dBm	Next Peak
Log 10 dB/ Offst	1		onevlære, ≬s. a ⊥ayar	and a strength of the strength	aga an	alan an a	nyan ditanan	and the second	*_	Next Pk Right
0.8 dB	Marker									Next Pk Left
dBm ≢PAvg	5.1745 0.439		GHz							Min Search
100 W1 S2 S3 FS										Pk-Pk Search
£ (f): FTun Swp										Mkr → CF
	5.180 00 (V 1 MHz	Hz	#1	 BW 3 M	Hz	#\$J	veep 1	Span 2 ms (60	20 MHz 1 pts)	More 1 of 2
	ght 2000-	-2004 Ag					toob t	110- (00	- 0.07	

Peak Power Spectral Density, 5180MHz, 54Mbps, 11dBm

Peak Power Spectral Density, 5260MHz, 54Mbps, 17dBm

🔆 Agilent 08:16:14 Feb 1	, 2006		L	Peak Search
#Samp	30 dB	Mkr1	5.254 20 GHz 6.537 dBm	Next Peak
Log T 10 dB/ 0ffst				Next Pk Right
0.8 dB #			\u	Next Pk Left
^{7.5} dBm 5.254200000 ≢PAvg 6.537 dBm	GHz			Min Search
100 W1 \$2 \$3 F\$				Pk-Pk Search
£(f): FTun Swp				Mkr → CF
Center 5.260 00 GHz #Res BW 1 MHz	#VBW 3 MHz		Span 20 MHz ms (601 pts)	More 1 of 2
Copyright 2000-2004 Ag	ilent Technolog	lies		

Page No: 23 of 174

Agilent 08:15:14 F			,	• •		L	Peak Search
Ref10dBm #An #Samp	tten 30 dB			Mkr1	5.318 0.63	47 GHz 7 dBm	Next Peak
Log 10 dB/	Mandalanda		112-26-79-99-90-90-60-60-69-99-99-99	hanya bi Aybi	a far a construction of the second	<u>\</u>	Next Pk Right
0ffst 0.8 dB DI 7.5 Marker							Next Pk Left
HPAvg 0.637 dB							Min Search
100 W1 S2 S3 FS							Pk-Pk Search
£ (f): FTun Swp							Mkr → CF
Center 5.320 00 GHz #Res BW 1 MHz		BW 3 MHz	#\$	weep 1		20 MHz 1 pts)	More 1 of 2
Copyright 2000-2004	4 Agilent To	echnologi	es				

Peak Power Spectral Density, 5320MHz, 54Mbps, 11dBm

Peak Power Spectral Density, 5500MHz, 54Mbps, 17dBm

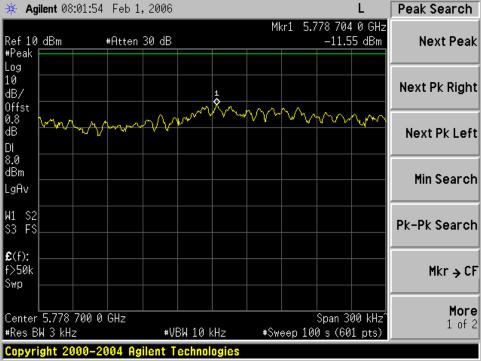
🔆 Agilent 08:17:02 Feb 1, 20	06	L Peak Search
Ref 10 dBm #Atten 30 #Samp	Mkr1 5.497 B 6.23	33 GHz ØdBm NextPeak
Log 10 dB/ 0ffst		Next Pk Right
		Next Pk Left
7.5 dBm 5.497330000 GH #PAvg 6.230 dBm 100	z	Min Search
W1 S2 S3 FS		Pk-Pk Search
£(f): FTun Swp		Mkr → CF
Center 5.500 00 GHz #Res BW 1 MHz	#VBW 3 MHz #Sweep 1 ms (60	20 MHz 1 of 2
Copyright 2000-2004 Agiler	t Technologies	

Page No: 24 of 174

Agilent 08:17:39			, , ,	L	Peak Search
Ref10dBm #f	Atten 30 dB		Mkr1	5.595 10 GHz 6.540 dBm	Next Peak
Log 10 dB/			and the second		Next Pk Right
Offst 0.8 DI DI Marker					Next Pk Left
^{7.5} dBm 5.5951000 ≢PAvg 6.540 d					Min Search
100 W1 S2 S3 FS					Pk-Pk Search
£(f): FTun Swp					Mkr → CF
Center 5.600 00 GHz #Res BW 1 MHz		BW 3 MHz	#Succe 1	Span 20 MHz ms (601 pts)	More 1 of 2
Copyright 2000-200			#Oweeh I	ms (601 pts)	

Peak Power Spectral Density, 5600MHz, 54Mbps, 17dBm

Peak Power Spectral Density, 5700MHz, 54Mbps, 17dBm


🔆 Agilent 08:18:19 Feb 1	1,2006		L Peak Search
#Samp	30 dB	Mkr1 5.695 5 5.869	7 GHz) dBm Next Peak
Log 10 dB/ 0ffst			Next Pk Right
0.8 dB DI 7.5 F COFFZ2000			Next Pk Left
dBm 5.695570000	GHz		Min Search
100 W1 S2 S3 FS			Pk-Pk Search
£(f): FTun Swp			Mkr → CF
Center 5.700 00 GHz #Res BW 1 MHz	#VBW 3 MHz	Span 2 #Sweep 1 ms (601	
Copyright 2000-2004 Ag	gilent Technologies		

Page No: 25 of 174

* Agilent 07:58:51 Feb		,	• /	L	Peak Search
#Peak	n 30 dB		Mkr1 5.7	43 743 2 GHz -10.41 dBm	Next Peak
Log 10 dB/ Offst			N 0		Next Pk Right
0.8 dB DI Marker	~~~~	<u>v </u>	v√√,+	mm	Next Pk Left
8.0 dBm 5.743743200 LgAv -10.41 dBm	GHz				Min Search
W1 S2 S3 FS					Pk-Pk Search
€(f): f>50k Swp					Mkr → CF
Center 5.743 700 0 GHz #Res BW 3 kHz	#VBW 10	kHz #S		òpan 300 kHz^ s (601 pts)	More 1 of 2
Copyright 2000-2004 A	gilent Techn	ologies			

Peak Power Spectral Density, 5745MHz, 54Mbps, 17dBm

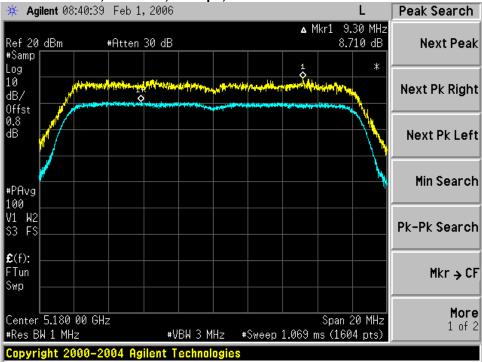
Peak Power Spectral Density, 5785MHz, 54Mbps, 14dBm

Page No: 26 of 174

🔆 Agilent 08:05:59 Feb 1,		., e	L	Peak Search
Ref 10 dBm #Atten 3 #Peak	0 dB	Mkr1 5.818 70 –14.1	35GHz L2dBm	Next Peak
Log 10 dB/ Offst	1			Next Pk Right
0.8 dB Warker	WWWWWW	M My	hum	Next Pk Left
8.0 dBm 5.818703500 G LgAv -14.12 dBm	ЭНz			Min Search
W1 S2 S3 FS				Pk-Pk Search
£(f): f>50k Swp				Mkr → CF
Center 5.818 700 0 GHz #Res BW 3 kHz	#VBW 10 kHz	Span 3 #Sweep 100 s (60	00 kHz^ 01 pts)	More 1 of 2
Copyright 2000-2004 Agil	ent Technologies			

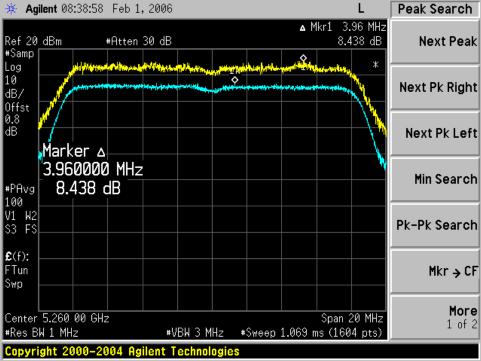
Peak Power Spectral Density, 5825MHz, 54Mbps, 11dBm

Page No: 27 of 174

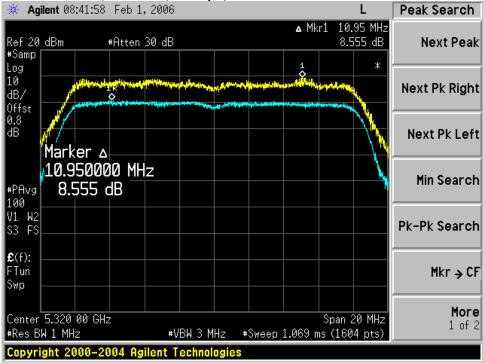


Peak Excursion

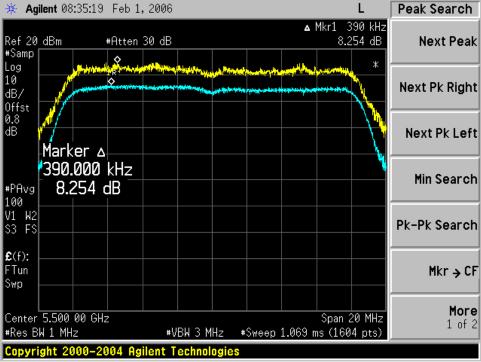
15.407: The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.


Frequency (MHz)	Data Rate (Mbps)	Peak Excursion (dB)	Limit (dBm)	Margin (dB)
5180	54	8.71	13	4.29
5260	54	8.44	13	4.56
5320	54	8.56	13	4.44
5500	54	8.25	13	4.75
5600	54	8.21	13	4.79
5700	54	7.69	13	5.31

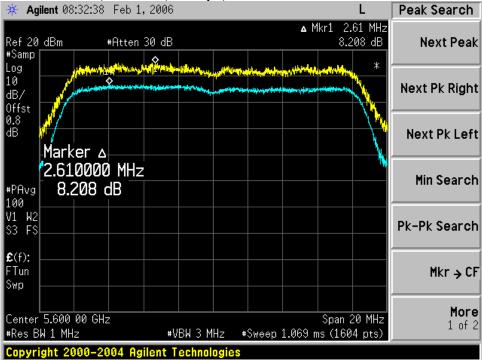
Page No: 28 of 174


Peak Excursion, 5180MHz, 54Mbps, 11dBm

Peak Excursion, 5260MHz, 54Mbps, 17dBm

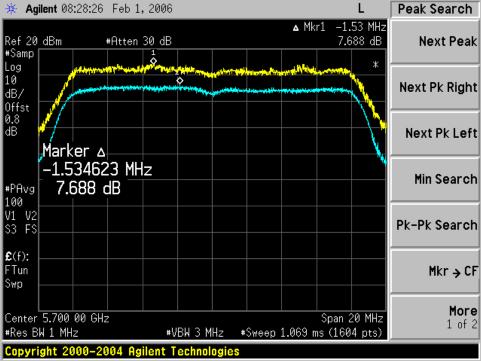

Page No: 29 of 174

CISCO SYSTEMS



Peak Excursion, 5320MHz, 54Mbps, 11dBm

Peak Excursion, 5500MHz, 54Mbps, 17dBm



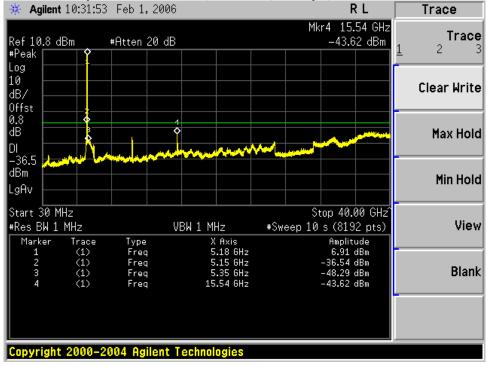
Page No: 30 of 174

Peak Excursion, 5600MHz, 54Mbps, 17dBm

Peak Excursion, 5700MHz, 54Mbps, 17dBm

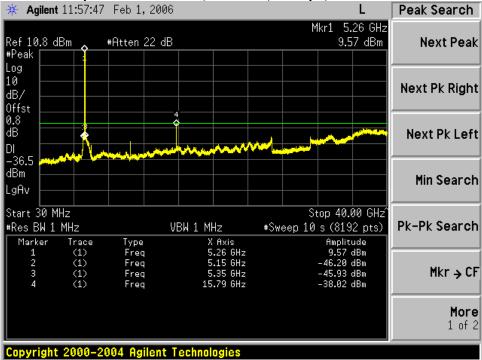
Page No: 31 of 174

Conducted Spurious Emissions

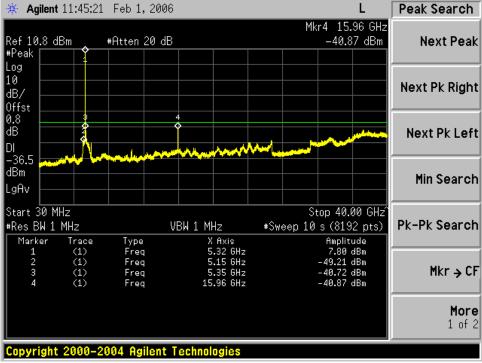

15.407: For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27dBm/MHz. Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band.

For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27dBm/MHz.

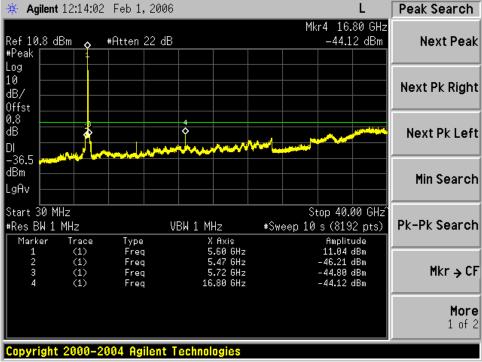

The maximum supported antenna gain for all bands is 9.5dBi. Therefore the maximum allowable conducted spurious emissions for all bands is -27dBm/MHz-9.5dBi = -36.5 dBm/MHz.

15.247: In any 100 kHz bandwidth outside the frequency band in which the digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

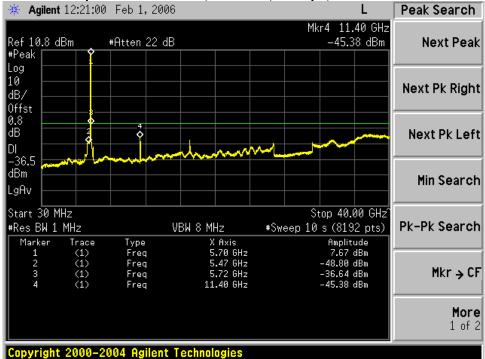

Conducted Spurious Emissions, 5180MHz, 54Mbps, 11dBm

Page No: 32 of 174

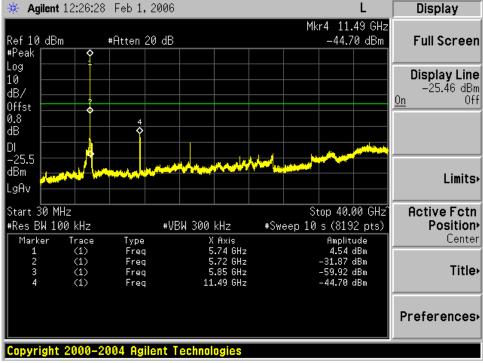
Conducted Spurious Emissions, 5260MHz, 54Mbps, 17dBm



Page No: 33 of 174

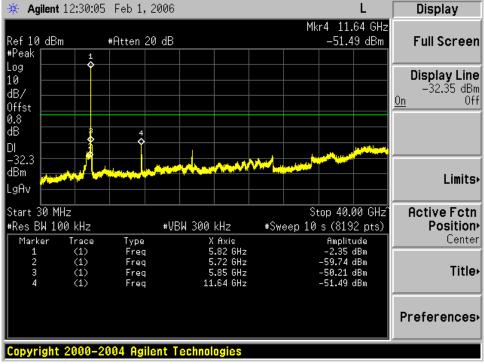


Conducted Spurious Emissions, 5500MHz, 54Mbps, 17dBm



Page No: 34 of 174

Conducted Spurious Emissions, 5700MHz, 54Mbps, 17dBm

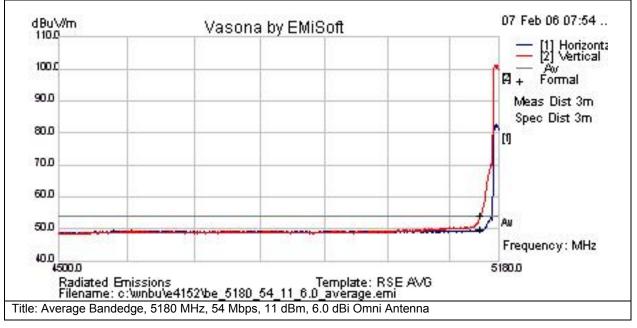


Conducted Spurious Emissions, 5785MHz, 54Mbps, 14dBm

Conducted Spurious Emissions, 5825MHz, 54Mbps, 11dBm

Page No: 36 of 174

Radiated Transmitter Spurious Emissions


Radiated emissions which fall in the restricted bands, as defined in Sec. 15.205(a), must also comply with the radiated emission limits specified in Sec. 15.209(a).

Radiated Bandedge with 6.0dBi Omni-directional Antenna

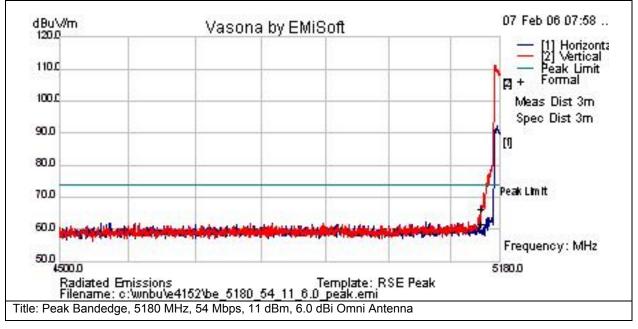
Subtest Number: 2009	7 - 13 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Bandedge, 5180 MHz, 54 Mbps, 11 dBm, 6.0 dBi Omni Antenna
Subtest Result	Pass
Highest Frequency	5180.0
Lowest Frequency	4500.0
Comments on the above Test Results	1 MHZ RBW, 10 Hz VBW

Graphical Test Results

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

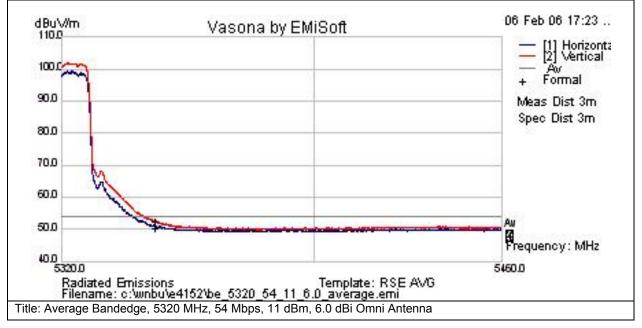
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5150	31	28.4	-7.5	51.9	Av	V	162	203	54	-2.1	Pass	
5150	27	28.4	-7.5	47.9	Av	Н	162	203	54	-6.1	Pass	


Page No: 37 of 174

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

Subtest Number: 2009	7 - 14 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Bandedge, 5180 MHz, 54 Mbps, 11 dBm, 6.0 dBi Omni Antenna
Subtest Result	Pass
Highest Frequency	5180.0
Lowest Frequency	4500.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

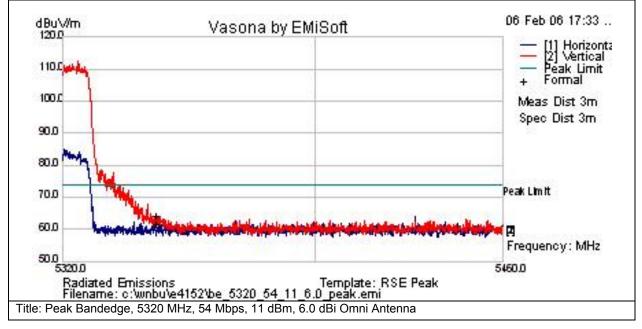
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Dow dBuV	Cable Loss		Level dBuV/m	Measurement Type	Pol	Hat cm	Azt Deg	Limit dBuV/m	Margin dP	Pass /Fail	Commonts
T requency winz	Kaw ubuv	Capie Luss	AI UD	uBuv/III	туре	FUI	ngi un	Dey	ubuv/m	iviaryiii ub	F 455 /I 411	Comments
5150	43.5	28.4	-7.5	64.4	Pk	V	162	203	74	-9.6	Pass	
5150	38.6	28.4	-7.5	59.6	Pk	Н	162	203	74	-14.4	Pass	

Subtest Number: 2009	7 - 9 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	•
Subtest Title	Average Bandedge, 5320 MHz, 54 Mbps, 11 dBm, 6.0 dBi Omni Antenna
Subtest Result	Pass
Highest Frequency	5460.0
Lowest Frequency	5320.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

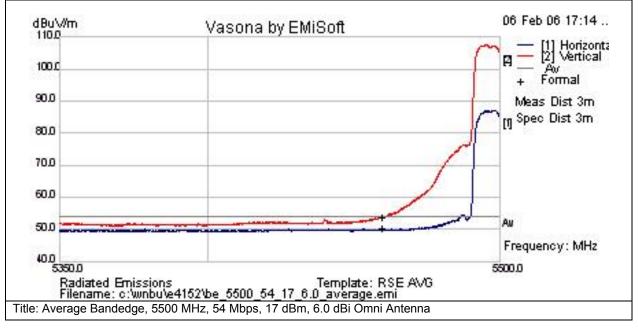
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hat cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5350	29.4	28.6	-7.5	50.6	Av	V	162	203	54	-3.4	Pass	
5350	27.1	28.6	-7.5	48.2	Av	Н	162	203	54	-5.8	Pass	

Subtest Number: 2009	O7 - 10 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Bandedge, 5320 MHz, 54 Mbps, 11 dBm, 6.0 dBi Omni Antenna
Subtest Result	Pass
Highest Frequency	5460.0
Lowest Frequency	5320.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

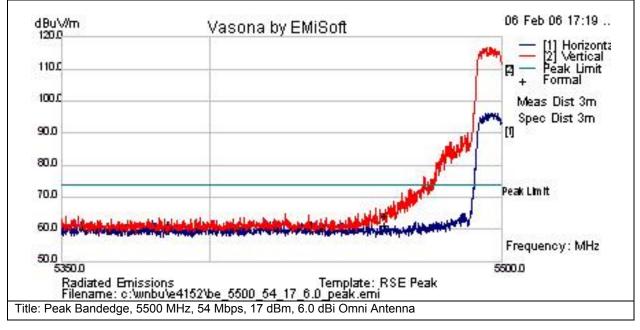
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBuV	Cable Loss	ΔE dB	Level dBuV/m	Measurement Type	Pol	Hat cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5350	40.8	28.6	-7.5	62	Pk	V	162	203	74	-12	Pass	comments
5350	38.3	28.6	-7.5	59.5	Pk	Н	162	203	74	-14.5	Pass	

Subtest Number: 2009	O7 - 7 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Bandedge, 5500 MHz, 54 Mbps, 17 dBm, 6.0 dBi Omni Antenna
Subtest Result	Pass
Highest Frequency	5500.0
Lowest Frequency	5350.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

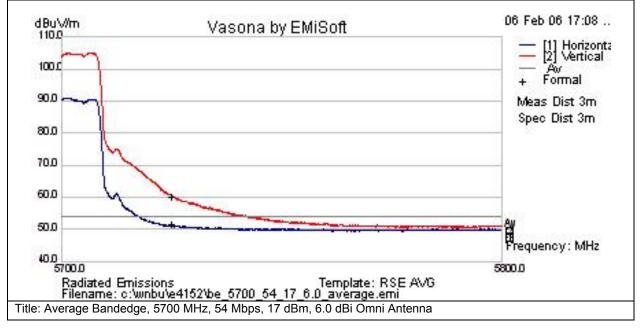
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz		Cable Loss		Level dBuV/m	Measurement Type	Pol	Hat cm	Azt Deg	Limit dBuV/m	Margin dB	Dace /Eail	Commonte
Frequency MITZ	Raw ubuv	Capie Loss	AF UD	UDUV/III	туре	PUI	⊓yi un	Deg	ubuv/III	ivialylli ud	Pass /Fall	Comments
5460	30.1	28.7	-7.2	51.6	Av	V	162	204	54	-2.4	Pass	
5460	26.7	28.7	-7.2	48.2	Av	Н	162	204	54	-5.8	Pass	

Subtest Number: 2009	7 - 8 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	·
Subtest Title	Peak Bandedge, 5500 MHz, 54 Mbps, 17 dBm, 6.0 dBi Omni Antenna
Subtest Result	Pass
Highest Frequency	5500.0
Lowest Frequency	5350.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



ſ	Frequency MHz	Paw dBuV	Cable Loss	VE 4B	Level dBuV/m	Measurement Type	Pol	Hat cm	Azt Deg	Limit dBuV/m	Margin dB	Dass /Fail	Comments
F	5460	40.5	28.7	-7.2	62	Pk	V	162	203	74	-12	Pass	Comments
	5460	37.5	28.7	-7.2	59.1	Pk	Н	162	203	74	-14.9	Pass	

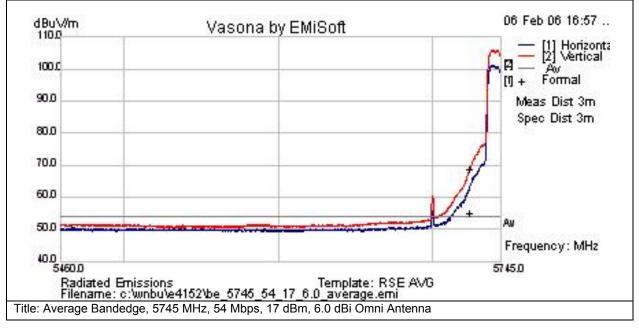
Subtest Number: 2009	7 - 5 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Bandedge, 5700 MHz, 54 Mbps, 17 dBm, 6.0 dBi Omni Antenna
Subtest Result	Pass
Highest Frequency	5800.0
Lowest Frequency	5700.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5725	36.1	28.8	-6.7	58.2	Av	V	162	204	68.2	-10.0	Pass	Limit=68.2dBuV
5725	27.3	28.8	-6.7	49.4	Av	Н	162	204	68.2	-18.8	Pass	Limit=68.2dBuV

Subtest Number: 2009	7 - 6 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Bandedge, 5700 MHz, 54 Mbps, 17 dBm, 6.0 dBi Omni Antenna
Subtest Result	Pass
Highest Frequency	5800.0
Lowest Frequency	5700.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

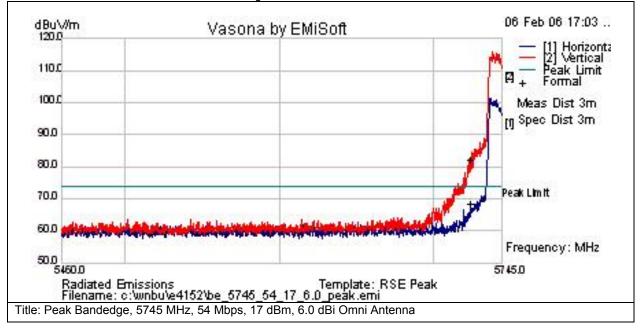
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



			Oshla Lasa		Level	Measurement	Del	11-4	Azt	Limit	Manala JD	D (E	O
L	requency MHz	Ram gran	Cable Loss	AF QR	dBuV/m	Туре	Pol	Hgt cm	Deg	dBuV/m	Margin dB	Pass /Fall	Comments
	5725	46	28.8	-6.7	68.1	Pk	V	162	204	88.2	-20.1	Pass	Limit=88.2dBuV
	5725	39.3	28.8	-6.7	61.4	Pk	Н	162	204	88.2	-26.8	Pass	Limit=88.2dBuV

Subtest Number: 2009	97 - 3 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Bandedge, 5745 MHz, 54 Mbps, 17 dBm, 6.0 dBi Omni Antenna
Subtest Result	Pass
Highest Frequency	5745.0
Lowest Frequency	5460.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

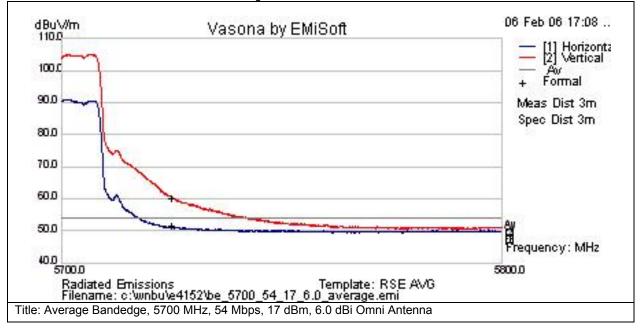
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MH	z Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5725	44.7	28.8	-6.7	66.8	Av	V	162	204	68.2	-1.4	Pass	Limit=68.2dBuV
5725	30.9	28.8	-6.7	53	Av	Н	162	204	68.2	-15.2	Pass	Limit=68.2dBuV

Subtest Number: 2009	7 - 4 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Bandedge, 5745 MHz, 54 Mbps, 17 dBm, 6.0 dBi Omni Antenna
Subtest Result	Pass
Highest Frequency	5745.0
Lowest Frequency	5460.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



	requency MHz	Paw dBuV	Cable Loss	AE dB	Level dBuV/m	Measurement Type	Pol	Hat cm	Azt Deg	Limit dBuV/m	Margin dB	Dass /Fail	Comments
Ľ	requency winz	Raw ubuv	Capie Loss	AI UD	ubuv/III	туре	FUI	ngi un	Dey	ubuv/III	waryin ub	F a 55 /1 all	COMMENTS
	5725	57.8	28.8	-6.7	79.9	Pk	V	162	204	88.2	-8.3	Pass	Limit=88.2dBuV
	5725	44.4	28.8	-6.7	66.5	Pk	Н	162	204	88.2	-21.7	Pass	Limit=88.2dBuV

Subtest Number: 2009	7 - 5 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Bandedge, 5700 MHz, 54 Mbps, 17 dBm, 6.0 dBi Omni Antenna
Subtest Result	Pass
Highest Frequency	5800.0
Lowest Frequency	5700.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5725	36.1	28.8	-6.7	58.2	Av	V	162	204	68.2	-10	Pass	Limit=68.2dBuV
5725	27.3	28.8	-6.7	49.4	Av	Н	162	204	68.2	-18.8	Pass	Limit=68.2dBuV

Subtest Number: 2009	7 - 6 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Bandedge, 5700 MHz, 54 Mbps, 17 dBm, 6.0 dBi Omni Antenna
Subtest Result	Pass
Highest Frequency	5800.0
Lowest Frequency	5700.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

			Oshla Lasa		Level	Measurement	Del	11-4	Azt	Limit	Manala JD	D (E	O
L	requency MHz	Ram gran	Cable Loss	AF QR	dBuV/m	Туре	Pol	Hgt cm	Deg	dBuV/m	Margin dB	Pass /Fall	Comments
	5725	46	28.8	-6.7	68.1	Pk	V	162	204	88.2	-20.1	Pass	Limit=88.2dBuV
	5725	39.3	28.8	-6.7	61.4	Pk	Н	162	204	88.2	-26.8	Pass	Limit=88.2dBuV

Physical Test arrangement Photograph:

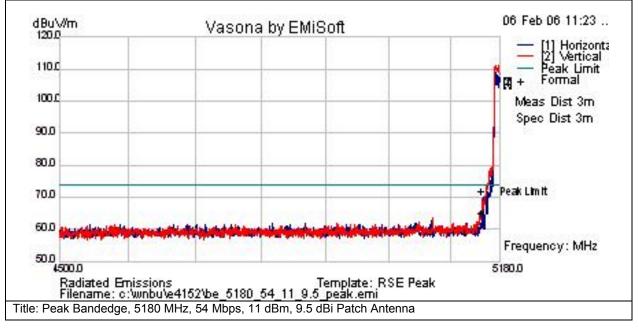
Radiated Bandedge with 9.5dBi Patch Antenna

Subtest Number: 2007	76 - 1 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Bandedge, 5180 MHz, 54 Mbps, 11 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	5180.0
Lowest Frequency	4500.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

Graphical Test Results

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table


Fragueney Mila		Cabla Lasa		Level	Measurement	Dal	List om	Azt	Limit	Morain dD	Daga /Fail	Commonto
Frequency MHz	Raw ubuv	Cable Loss	AF UB	dBuV/m	Туре	Pol	Hgt cm	Deg	dBuV/m	Margin dB	Pass /Fall	Comments
5149.99	30.3	28.4	-7.5	51.2	Av	٧	165	123	54	-2.8	Pass	
5149.99	26.9	28.4	-7.5	47.8	Av	Н	165	123	54	-6.2	Pass	

Page No: 50 of 174

Subtest Number: 2007	6 - 2 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Bandedge, 5180 MHz, 54 Mbps, 11 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	5180.0
Lowest Frequency	4500.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

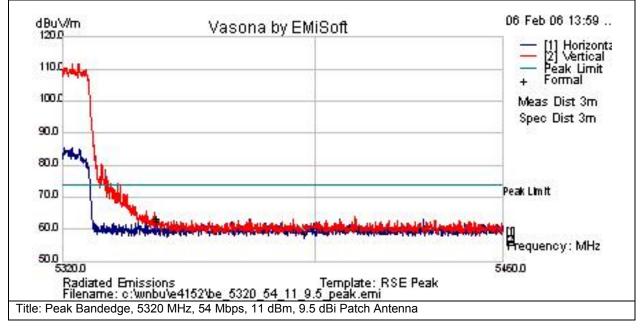
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



				Level	Measurement			Azt	Limit			
Frequency MHz	Raw dBuV	Cable Loss	AF dB	dBuV/m	Туре	Pol	Hgt cm	Deg	dBuV/m	Margin dB	Pass /Fail	Comments
5149.99	48.8	28.4	-7.5	69.7	Pk	V	165	123	74	-4.3	Pass	
5149.99	42.1	28.4	-7.5	63	Pk	Н	165	123	74	-11	Pass	

Subtest Number: 2007	'6 - 5 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Bandedge, 5320 MHz, 54 Mbps, 11 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	5460.0
Lowest Frequency	5320.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

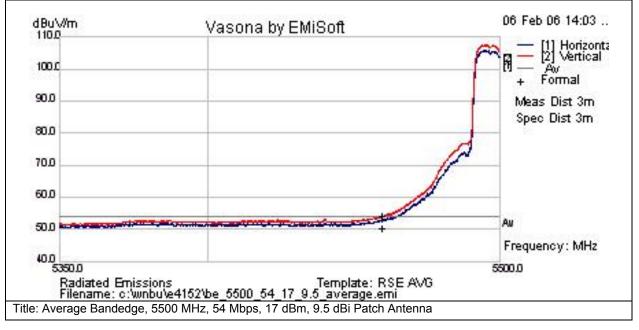
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency	MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5350)	29	28.6	-7.5	50.2	Av	V	165	123	54	-3.8	Pass	
5350)	27	28.6	-7.5	48.2	Av	Н	165	123	54	-5.8	Pass	

Subtest Number: 2007	6 - 6 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Bandedge, 5320 MHz, 54 Mbps, 11 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	5460.0
Lowest Frequency	5320.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

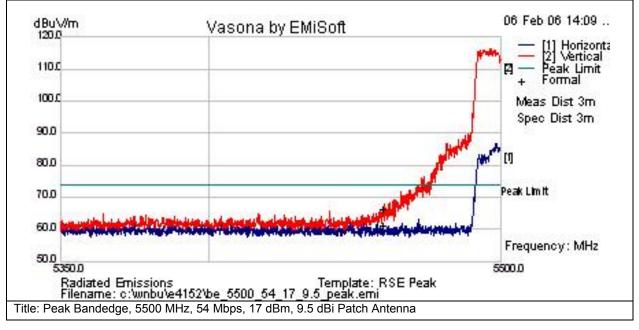
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hqt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5349.98	40	28.6	-7.5	61.1	Pk	V	165	123	74	-12.9	Pass	
5349.99	39.1	28.6	-7.5	60.3	Pk	Н	165	123	74	-13.7	Pass	

Subtest Number: 2007	Y6 - 7 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Bandedge, 5500 MHz, 54 Mbps, 17 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	5500.0
Lowest Frequency	5350.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

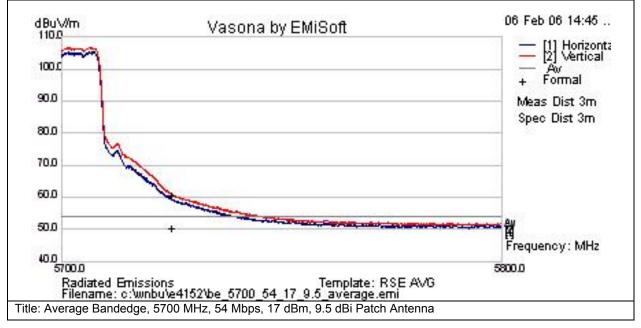
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency N	1Hz F	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5460		30.4	28.7	-7.2	51.9	Av	V	165	123	54	-2.1	Pass	
5460		26.7	28.7	-7.2	48.2	Av	Н	165	123	54	-5.8	Pass	

Subtest Number: 2007	6 - 8 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Bandedge, 5500 MHz, 54 Mbps, 17 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	5500.0
Lowest Frequency	5350.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBw

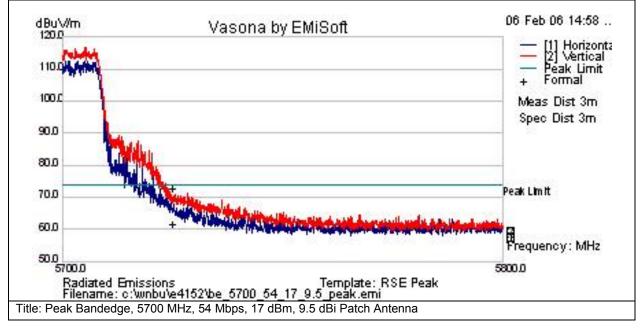
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency	MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5459.9	9	42.8	28.7	-7.2	64.4	Pk	V	165	123	74	-9.6	Pass	
5459.9	9	37.6	28.7	-7.2	59.2	Pk	Н	165	123	74	-14.8	Pass	

Subtest Number: 2007	6 - 9 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Bandedge, 5700 MHz, 54 Mbps, 17 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	5800.0
Lowest Frequency	5700.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

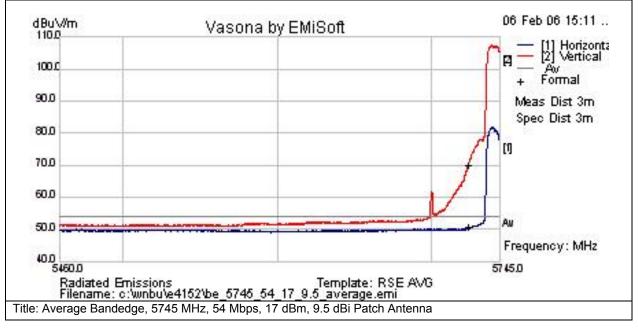
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MI	Iz Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5724.99	36.5	28.8	-6.7	58.6	Av	V	165	123	68.2	-9.6	Pass	Limit=68.2dBuV
5724.99	28.2	28.8	-6.7	50.3	Av	Н	165	123	68.2	-17.9	Pass	Limit=68.2dBuV

Subtest Number: 2007	6 - 10 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Bandedge, 5700 MHz, 54 Mbps, 17 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	5800.0
Lowest Frequency	5700.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

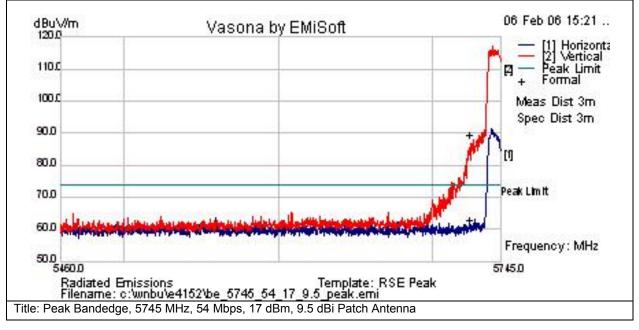
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5725	48.4	28.8	-6.7	70.5	Pk	V	165	123	88.2	-17.7	Pass	Limit=88.2dBuV
5725	37.4	28.8	-6.7	59.5	Pk	Н	165	123	88.2	-28.7	Pass	Limit=88.2dBuV

Subtest Number: 2007	Y6 - 11 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Bandedge, 5745 MHz, 54 Mbps, 17 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	5745.0
Lowest Frequency	5460.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

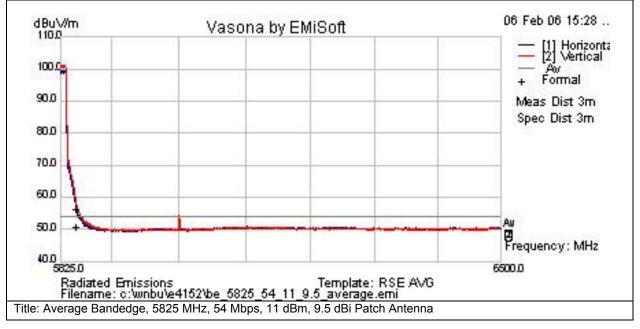
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



F	Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
	5725	45.8	28.8	-6.7	67.9	Av	V	165	123	68.2	-0.3	Pass	Limit=68.2dBuV
	5725	26.7	28.8	-6.7	48.8	Av	Н	165	123	68.2	-19.4	Pass	Limit=68.2dBuV

Subtest Number: 2007	6 - 12 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	•
Subtest Title	Peak Bandedge, 5745 MHz, 54 Mbps, 17 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	5745.0
Lowest Frequency	5460.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

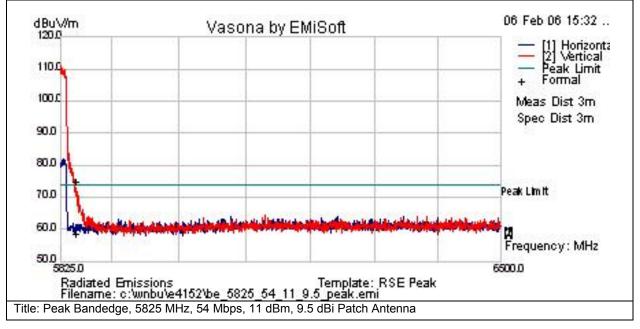
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



F	requency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hat cm	Azt Dea	Limit dBuV/m	Margin dB	Pass /Fail	Comments
	5725	65.5	28.8	-6.7	87.6	Pk	V	165	123	88.2	-0.6		Limit=88.2dBuV
	5725	38.7	28.8	-6.7	60.8	Pk	Н	165	123	88.2	-27.4	Pass	Limit=88.2dBuV

Subtest Number: 2007	Y6 - 13 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Bandedge, 5825 MHz, 54 Mbps, 11 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	6500.0
Lowest Frequency	5825.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Fraguanay	IHz Raw dBuV	Cable Loss		Level dBuV/m	Measurement	Pol	List om	Azt	Limit dBuV/m	Margin dB	Daga /Fail	Commonto
Frequency iv	HZ RAW UBUV	Capie Loss	AF UB	ubuv/m	Туре	P01	Hgt cm	Deg	uBuv/m	wargin ub	Pass /Fall	Comments
5850	31.3	29	-6.3	54	Av	V	165	123	68.2	-14.2	Pass	Limit=68.2dBuV
5850	25.7	29	-6.3	48.5	Av	Н	165	123	68.2	-19.7	Pass	Limit=68.2dBuV

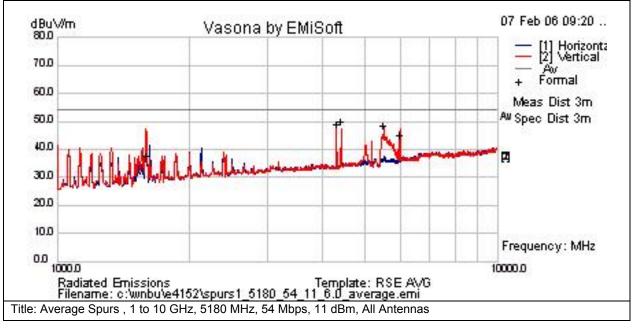
Subtest Number: 2007	Y6 - 14 Subtest Date: 06-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Bandedge, 5825 MHz, 54 Mbps, 11 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	6500.0
Lowest Frequency	5825.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5850	49.9	29	-6.3	72.6	Pk	V	165	123	88.2	-15.6	Pass	Limit=88.2dBuV
5850	33.9	29	-6.3	56.7	Pk	Н	165	123	88.2	-31.5	Pass	Limit=88.2dBuV

Physical Test arrangement Photograph:

Page No: 62 of 174

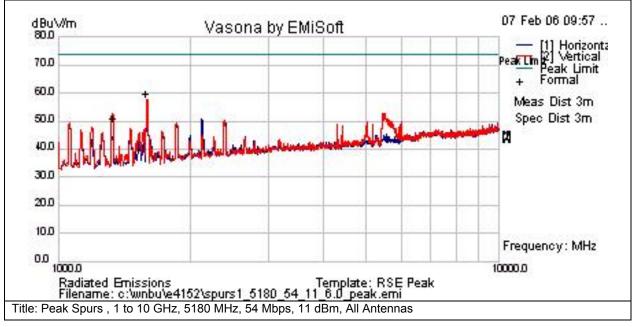

Radiated Spurs and Harmonics with All Antennas (1-18GHz)

There were no measurable emissions above 18GHz for any of the channel/antenna combinations.

Subtest Number: 2010	0 - 1 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Spurs , 1 to 10 GHz, 5180 MHz, 54 Mbps, 11 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

Graphical Test Results

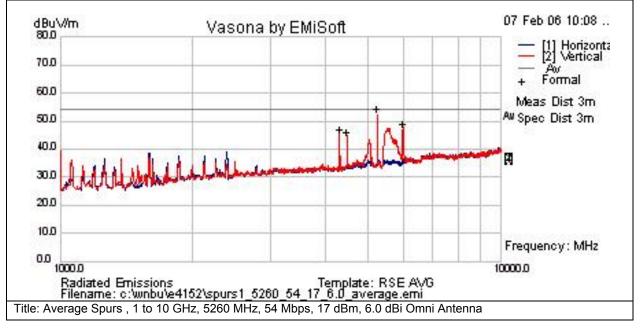
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements


Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1592.1	44.7	4.7	-14.1	35.2	Av	V	99	46	54	-18.8	Pass	
4309.32	47.2	7.9	-8.7	46.4	Av	V	113	182	54	-7.6	Pass	
4410	47.7	8	-8.3	47.5	Av	V	139	90	54	-6.5	Pass	
5514.92	43.7	9.6	-7	46.3	Av	V	154	137	54	-7.7	Pass	
6000.21	39	9.5	-5.8	42.6	Av	V	133	75	54	-11.4	Pass	

Page No: 63 of 174

Subtest Number: 2010	0 - 2 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Spurs , 1 to 10 GHz, 5180 MHz, 54 Mbps, 11 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

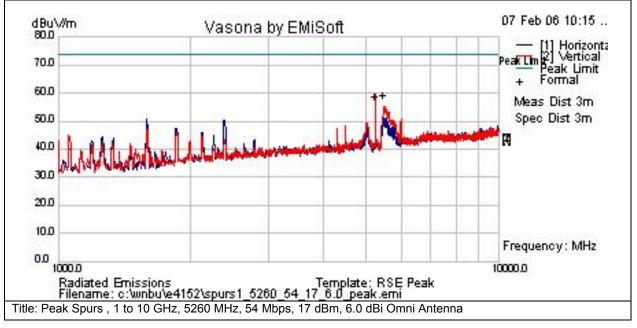
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



				Level	Measurement							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	dBuV/m	Туре	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1584.58	67	4.7	-14.2	57.4	Pk	V	126	49	74	-16.6	Pass	
1328.52	57.8	4.3	-13.4	48.6	Pk	٧	119	54	74	-25.4	Pass	

Subtest Number: 2010	00 - 5 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Spurs , 1 to 10 GHz, 5260 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

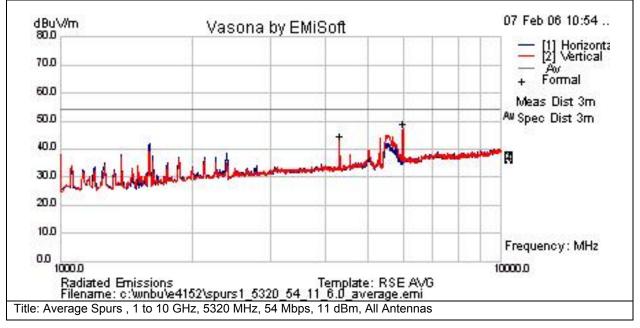
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
4309.33	45.5	7.9	-8.7	44.6	Av	V	166	140	54	-9.4	Pass	
4489.97	43.4	8.1	-7.8	43.7	Av	V	166	140	54	-10.3	Pass	
5260	49.8	9.8	-7.4	52.2	Av	V	166	140	54	-1.8	Pass	Notched Carrier
6000.02	42.9	9.5	-5.8	46.6	Av	V	166	140	54	-7.4	Pass	

Subtest Number: 2010	0 - 6 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Spurs , 1 to 10 GHz, 5260 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

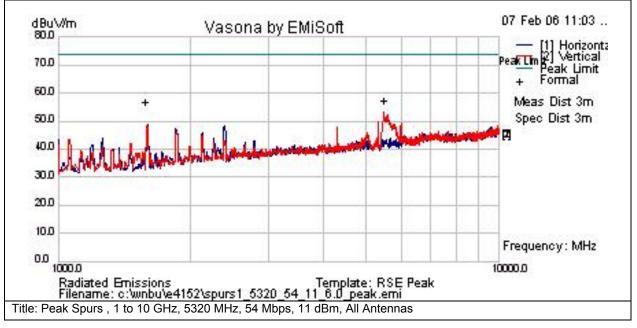
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



					Level	Measurement			Azt	Limit			
ŀ	Frequency MHz	Raw dBuV	Cable Loss	AF dB	dBuV/m	Туре	Pol	Hgt cm	Deg	dBuV/m	Margin dB	Pass /Fail	Comments
	5260	54.21	9.75	-7.43	56.53	Pk	V	166	140	74	-17.47	Pass	Notched Carrier
	5482.5	54.16	9.69	-7.13	56.73	Pk	V	166	140	74	-17.27	Pass	Notched Carrier

Subtest Number: 2010	00 - 7 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Spurs , 1 to 10 GHz, 5320 MHz, 54 Mbps, 11 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

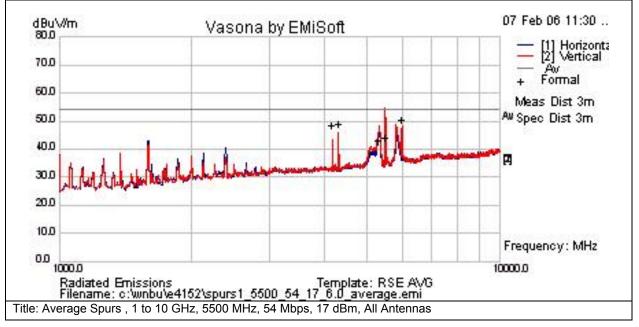
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Fred	quency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hat cm	Azt Dea	Limit dBuV/m	Margin dB	Pass /Fail	Comments
	4309.46	42.9	7.9	-8.7	42	Av	V	150	193	54	-12	Pass	oominionto
	6000.08	42.8	9.5	-5.8	46.5	Av	V	176	107	54	-7.5	Pass	

Subtest Number: 2010	00 - 8 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Spurs , 1 to 10 GHz, 5320 MHz, 54 Mbps, 11 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



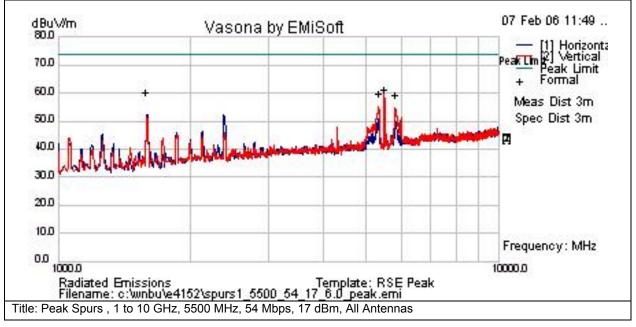
					Level	Measurement			Azt	Limit			
Frequency	MHz Raw dl	BuV Ca	able Loss	AF dB	dBuV/m	Туре	Pol	Hgt cm	Deg	dBuV/m	Margin dB	Pass /Fail	Comments
1584.53	64.1		4.7	-14.2	54.6	Pk	V	164	215	74	-19.4	Pass	Notched Carrier
5518.1	52.4		9.6	-7.1	55	Pk	V	164	226	74	-19	Pass	Notched Carrier

Subtest Number: 2010	0 - 9 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Spurs , 1 to 10 GHz, 5500 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
4179.9	47.2	7.7	-8.4	46.4	Av	V	167	229	54	-7.6	Pass	
4309.34	47.3	7.9	-8.7	46.4	Av	V	167	202	54	-7.6	Pass	
5337.5	37.9	10.1	-7.5	40.5	Av	V	157	234	54	-13.5	Pass	
5500	38.4	10.5	-7	41.9	Av	V	177	226	54	-12.1	Pass	Notched carrier
6000.06	44	9.7	-5.8	47.9	Av	V	161	126	54	-6.1	Pass	

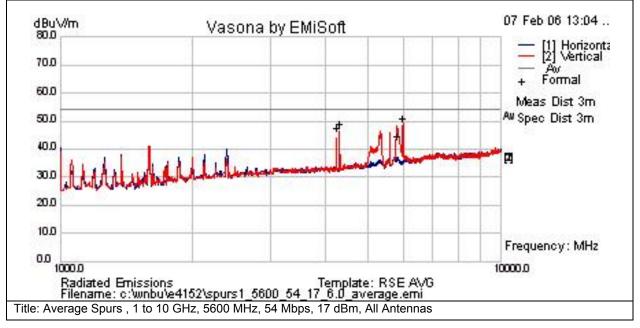

Page No: 69 of 174

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

Subtest Number: 2010	0 - 10 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Spurs , 1 to 10 GHz, 5500 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

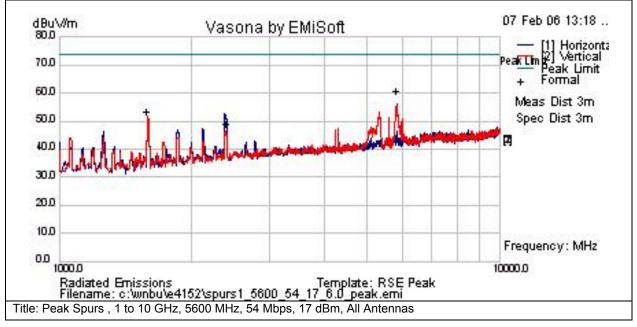
Test Results Table


Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1584.53	67.6	4.6	-14.2	58	Pk	V	112	189	74	-16	Pass	
5347.3	55	10.1	-7.5	57.6	Pk	٧	163	224	74	-16.4	Pass	
5500	55.5	10.5	-7	59	Pk	V	165	173	74	-15	Pass	Notched Carrier
5830.5	52.5	10.5	-6.2	56.8	Pk	٧	174	207	74	-17.2	Pass	

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

Subtest Number: 2010	0 - 11 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Spurs , 1 to 10 GHz, 5600 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

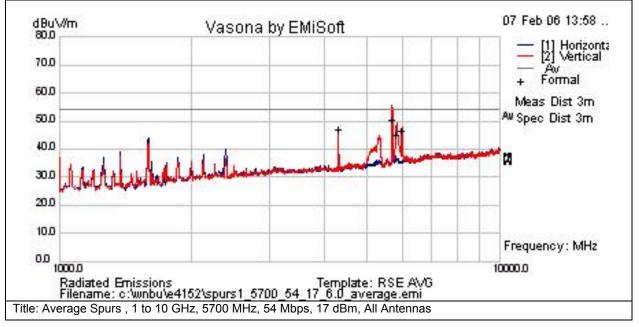
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
4246.68	46.2	7.8	-8.6	45.4	Av	V	182	234	54	-8.6	Pass	
4309.35	47.4	7.9	-8.7	46.6	Av	V	188	196	54	-7.4	Pass	
5820.9	37.4	11	-6.2	42.2	Av	V	146	127	54	-11.8	Pass	
5999.99	44.8	9.7	-5.8	48.7	Av	V	150	201	54	-5.3	Pass	

Subtest Number: 2010	0 - 12 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Spurs , 1 to 10 GHz, 5600 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

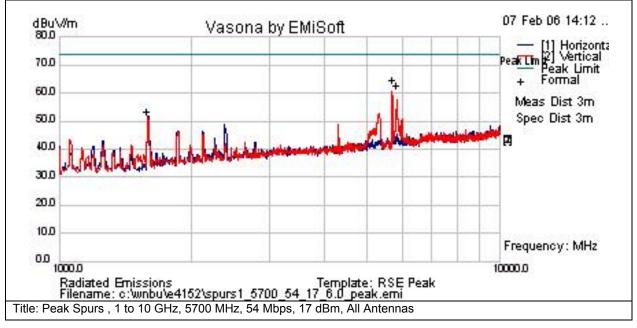
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBuV	Cable Loss	ΔF dB	Level dBuV/m	Measurement Type	Pol	Hat cm	∆zt Dea	Limit dBuV/m	Margin dB	Pass /Fail	Comments
TTEQUENCY MITZ	Naw ubuv	Cable LU33	AI UD	uDuv/III	турс	1.01	ngi un	AZI DEY		waryin ub	1 033 /1 01	Comments
1584.56	60.6	4.6	-14.2	51	Pk	V	99	252	74	-23	Pass	
2391.68	51.4	5.8	-10.4	46.8	Pk	Н	197	151	74	-27.2	Pass	
5824.1	53.8	10.8	-6.2	58.4	Pk	V	174	190	74	-15.6	Pass	

Subtest Number: 2010	0 - 13 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Spurs , 1 to 10 GHz, 5700 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

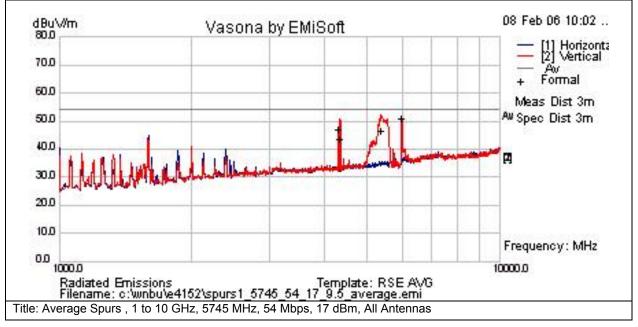


Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
4309.29	45.4	7.9	-8.7	44.6	Av	V	144	101	54	-9.4	Pass	
5700	43.7	10.9	-6.6	48	Av	V	165	116	54	-6	Pass	Notched Carrier
5851	38.8	10	-6.2	42.6	Av	V	158	191	54	-11.4	Pass	
6000.15	40.2	9.7	-5.8	44.1	Av	V	180	208	54	-9.9	Pass	

Subtest Number: 2010	0 - 14 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Spurs , 1 to 10 GHz, 5700 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

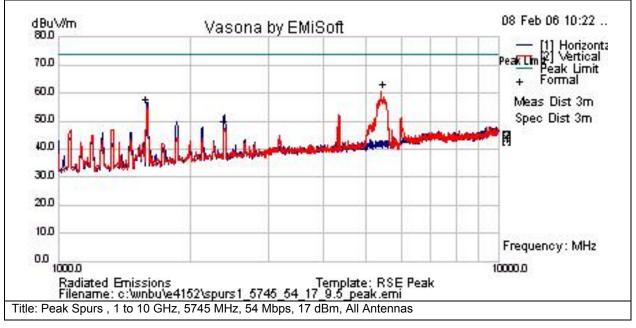
Test Results Table


Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hqt cm	Azt Dea	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1584.56	60.5	4.6	-14.2	50.9	Pk	V	192	168	74	-23.1	Pass	
5700	57.8	10.9	-6.6	62.1	Pk	V	163	202	74	-11.9	Pass	Notched Carrier
5851.7	56.6	10	-6.2	60.4	Pk	V	182	199	74	-13.6	Pass	

Page No: 74 of 174

Subtest Number: 2010	0 - 37 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Spurs , 1 to 10 GHz, 5745 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

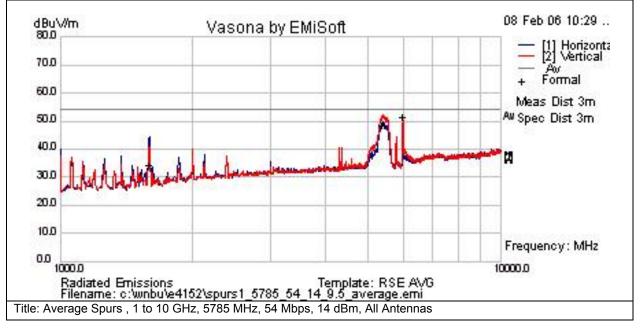
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
4309.34	45.7	7.8	-8.7	44.7	Av	V	201	204	54	-9.3	Pass	
4343.35	42.1	7.8	-8.5	41.4	Av	V	209	178	54	-12.6	Pass	
5377.7	42.8	9	-7.4	44.4	Av	V	182	153	54	-9.6	Pass	
6000	44.5	10	-5.8	48.6	Av	V	148	147	54	-5.4	Pass	

Subtest Number: 2010	0 - 38 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Spurs , 1 to 10 GHz, 5745 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

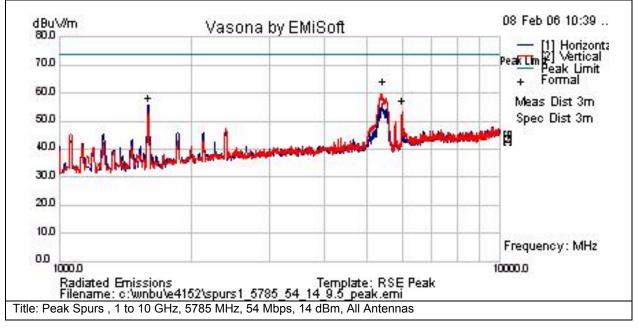
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hat cm	Azt Dea	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1584.63	65.1	4.6	-14.2	55.5	Pk	Н	164	124	74	-18.5	Pass	Notched Carrier
2390.37	52.3	5.7	-10.4	47.5	Pk	Н	164	124	74	-26.5	Pass	Notched Carrier
5460.2	58.8	9.3	-7.2	60.9	Pk	V	164	124	74	-13.1	Pass	Notched Carrier

Subtest Number: 2010	0 - 39 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Spurs , 1 to 10 GHz, 5785 MHz, 54 Mbps, 14 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

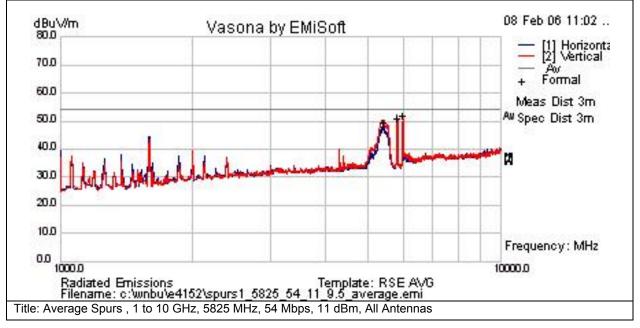


Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hat cm	Azt Dea	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1592.29	41.4	4.6	-14.1	31.9		ц	164	124	54	-22.1	Pass	Comments
			-14.1		Av	П				-ZZ.1		
5410.5	44.3	9.1	-7.4	46	Av	V	164	124	54	-8	Pass	
5999.94	45.1	10	-5.8	49.2	Av	V	164	124	54	-4.8	Pass	

Subtest Number: 2010	00 - 40 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Spurs , 1 to 10 GHz, 5785 MHz, 54 Mbps, 14 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

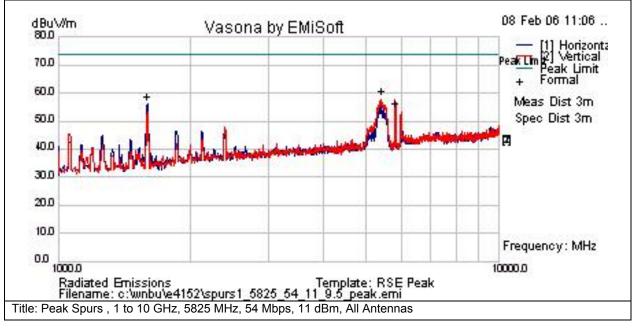

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1590.04	65.4	4.6	-14.1	55.9	Pk	Н	164	124	74	-18.1	Pass	Notched Carrier
5417.2	60	9.1	-7.3	61.7	Pk	V	164	124	74	-12.3	Pass	Notched Carrier
6000.1	50.8	10	-5.8	55	Pk	V	164	124	74	-19	Pass	Notched Carrier

Page No: 78 of 174

Subtest Number: 2010	00 - 41 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Spurs , 1 to 10 GHz, 5825 MHz, 54 Mbps, 11 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

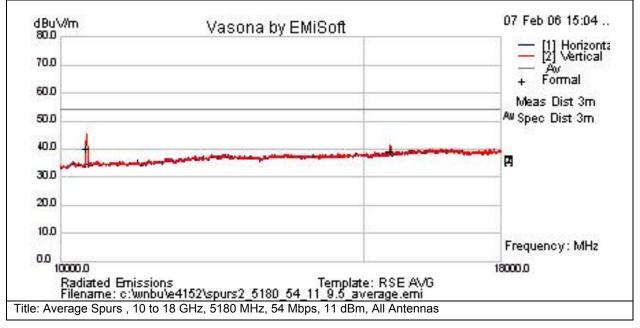

				Level	Measurement			Azt	Limit			
Frequency MHz	Raw dBuV	Cable Loss	AF ~dB	dBuV/m	Туре	Pol	Hgt cm	Deg	dBuV/m	Margin dB	Pass /Fail	Comments
5821.04	45.1	9.9	-6.2	48.8	Av	V	164	124	54	-5.2	Pass	Notched Carrier
5439.88	45.2	9.2	-7.2	47.2	Av	V	164	124	54	-6.8	Pass	
6000.003	45.6	10	-5.8	49.8	Av	V	164	124	54	-4.2	Pass	

Page No: 79 of 174

Subtest Number: 2010	00 - 42 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Spurs , 1 to 10 GHz, 5825 MHz, 54 Mbps, 11 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

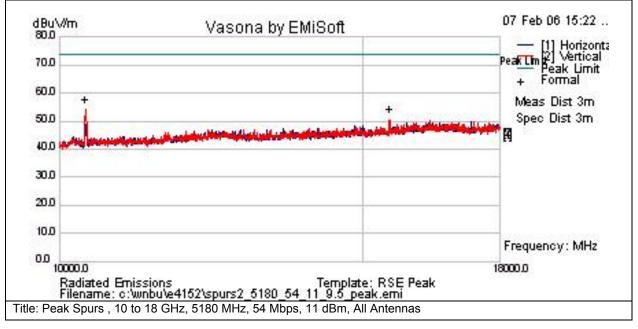
Test Results Table


				Level	Measurement			Azt	Limit			
Frequency MHz	Raw dBuV	Cable Loss	AF dB	dBuV/m	Туре	Pol	Hgt cm	Deg	dBuV/m	Margin dB	Pass /Fail	Comments
1596.29	65.6	4.6	-14	56.2	Pk	Η	164	124	74	-17.8	Pass	
5440.5	56.3	9.2	-7.2	58.3	Pk	V	164	124	74	-15.7	Pass	
5824.99	50.1	9.9	-6.2	53.8	Pk	V	164	124	74	-20.2	Pass	Notched Carrier

Page No: 80 of 174

Subtest Number: 2010	0 - 15 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Spurs , 10 to 18 GHz, 5180 MHz, 54 Mbps, 11 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	18000.0
Lowest Frequency	10000.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

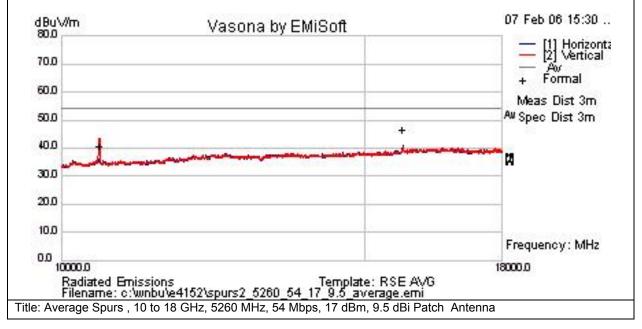
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hqt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
10360	40.3	12.4	-15	37.6	Av	V	170	136	54	-16.4	Pass	
15540	34.3	15.3	-12.6	37	Av	V	184	163	54	-17	Pass	

Subtest Number: 2010	0 - 16 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Spurs, 10 to 18 GHz, 5180 MHz, 54 Mbps, 11 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	18000.0
Lowest Frequency	10000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

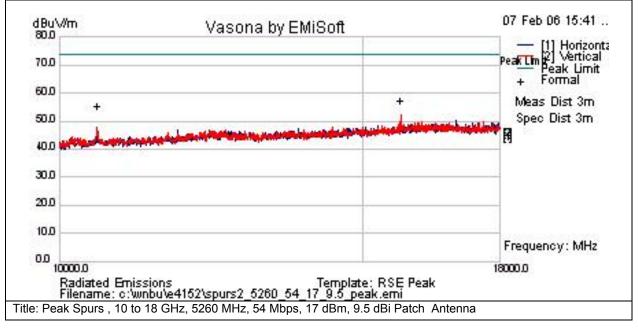
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
10360	58.1	12.4	-15	55.4	Pk	V	169	139	74	-18.6	Pass	
15540	49.4	15.3	-12.6	52	Pk	V	126	138	74	-22	Pass	

Subtest Number: 2010	0 - 19 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Spurs , 10 to 18 GHz, 5260 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	18000.0
Lowest Frequency	10000.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

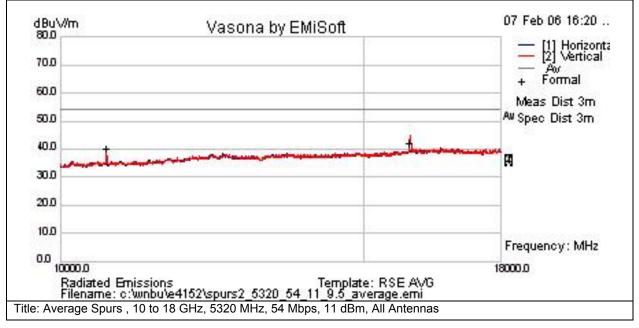
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency	MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
10520		40.63	12.47	-14.76	38.34	Av	V	131	110	54	-15.66	Pass	
15780		41.57	15.36	-12.59	44.34	Av	V	147	179	54	-9.66	Pass	

Subtest Number: 2010	0 - 20 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Spurs , 10 to 18 GHz, 5260 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	18000.0
Lowest Frequency	10000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

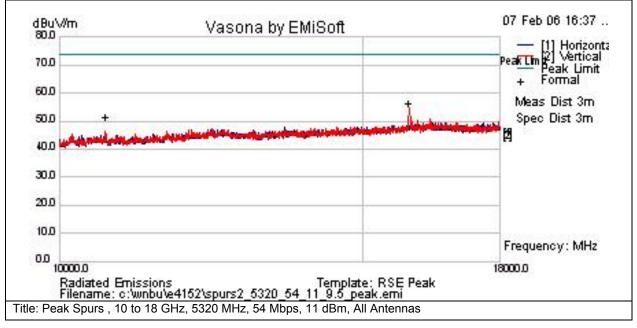
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
10520	55.53	12.47	-14.76	53.24	Pk	V	139	122	74	-20.76	Pass	
15780	51.95	15.36	-12.59	54.73	Pk	V	143	127	74	-19.27	Pass	

Subtest Number: 2010	0 - 21 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Spurs , 10 to 18 GHz, 5320 MHz, 54 Mbps, 11 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	18000.0
Lowest Frequency	10000.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

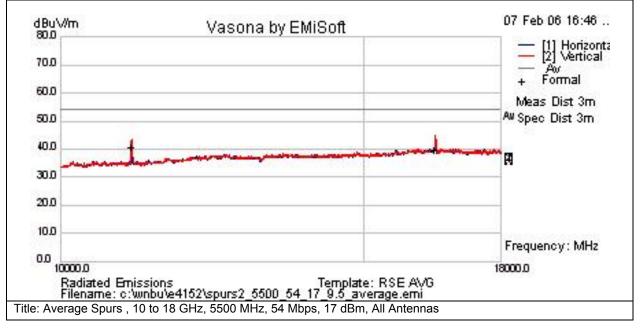
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MH	lz Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hat cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
10640	40.2	12.6	-14.7	38	Av	V	129	56	54	-16	Pass	
15960	36.5	15.4	-12.2	39.7	Av	V	146	173	54	-14.3	Pass	

Subtest Number: 2010	0 - 22 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Spurs, 10 to 18 GHz, 5320 MHz, 54 Mbps, 11 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	18000.0
Lowest Frequency	10000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

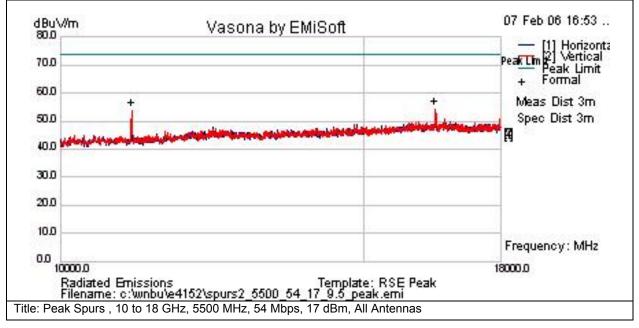
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
10640	51	12.6	-14.7	48.9	Pk	V	119	53	74	-25.1	Pass	
15960	50.9	15.4	-12.2	54.1	Pk	V	171	91	74	-19.9	Pass	

Subtest Number: 2010	0 - 23 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Spurs , 10 to 18 GHz, 5500 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	18000.0
Lowest Frequency	10000.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

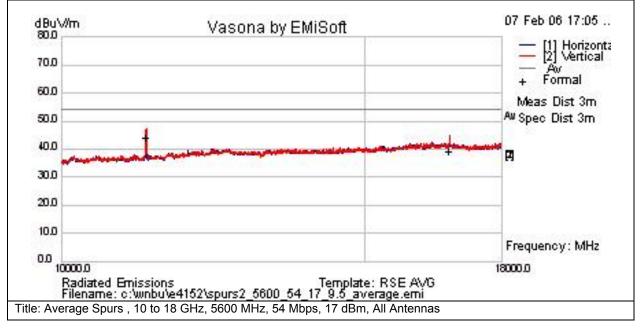
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MH	z Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hat cm	Azt Dea	Limit dBuV/m	Margin dB	Pass /Fail	Comments
11000	40.1	12.7	-14.4	38.4	Av	V	105	188	54	-15.6	Pass	Commente
16500	33.7	15.8	-12.2	37.2	Av	V	170	137	54	-16.8	Pass	

Subtest Number: 2010	0 - 24 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Spurs , 10 to 18 GHz, 5500 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	18000.0
Lowest Frequency	10000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

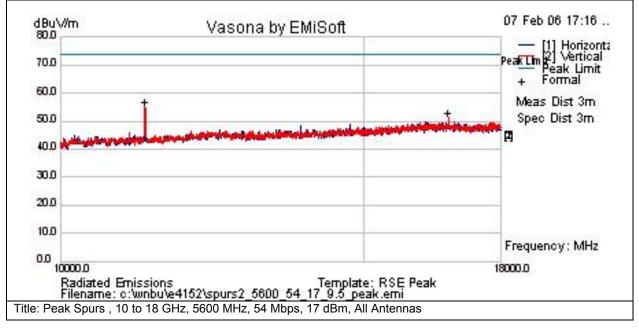
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hqt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
11000	56	12.7	-14.4	54.3	Pk	V	113	199	74	-19.7	Pass	
16500	51.4	15.8	-12.2	55	Pk	V	144	120	74	-19	Pass	

Subtest Number: 2010	0 - 25 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Spurs , 10 to 18 GHz, 5600 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	18000.0
Lowest Frequency	10000.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

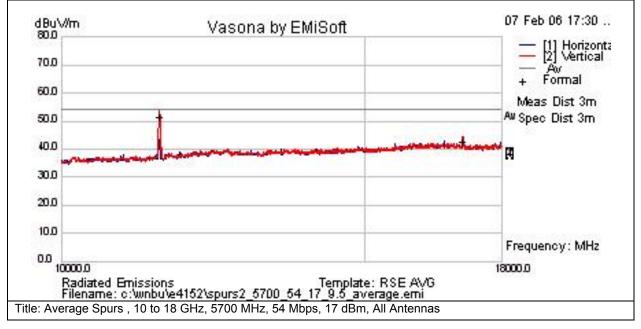


Fr	requency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hat cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
	11200	43.4	12.9	-14.3	41.9	Av	V	159	139	54	-12.1	Pass	
	16800	33	15.9	-12.1	36.8	Av	V	167	214	54	-17.2	Pass	

Subtest Number: 2010	0 - 26 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Spurs , 10 to 18 GHz, 5600 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	18000.0
Lowest Frequency	10000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

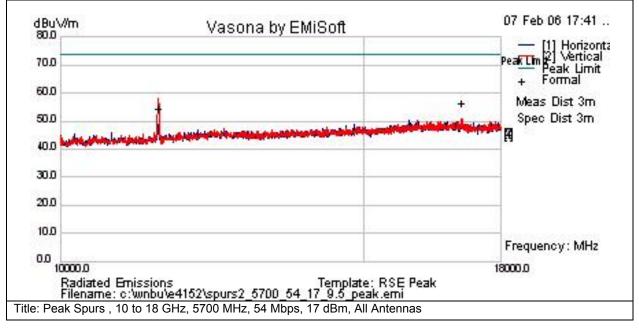
Test Results Table


Frequence	cy MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
112	00	56	12.9	-14.3	54.5	Pk	V	142	183	74	-19.5	Pass	
168	00	47	15.9	-12.1	50.8	Pk	V	145	179	74	-23.2	Pass	

Page No: 90 of 174

Subtest Number: 2010	0 - 27 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Spurs , 10 to 18 GHz, 5700 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	18000.0
Lowest Frequency	10000.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

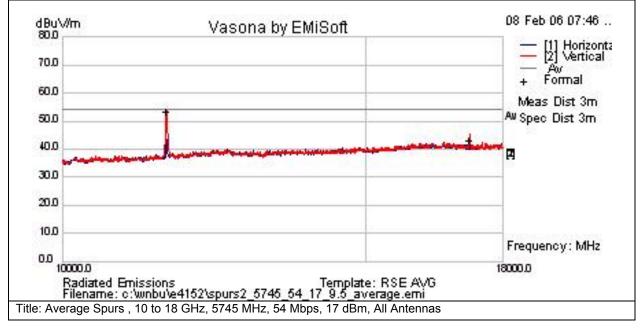
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hqt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
11400	49.9	13.1	-13.9	49.1	Av	V	163	145	54	-4.9	Pass	
17100	36.5	16.2	-12.4	40.2	Av	V	194	125	54	-13.8	Pass	

Subtest Number: 2010	0 - 28 Subtest Date: 07-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Spurs , 10 to 18 GHz, 5700 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	18000.0
Lowest Frequency	10000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

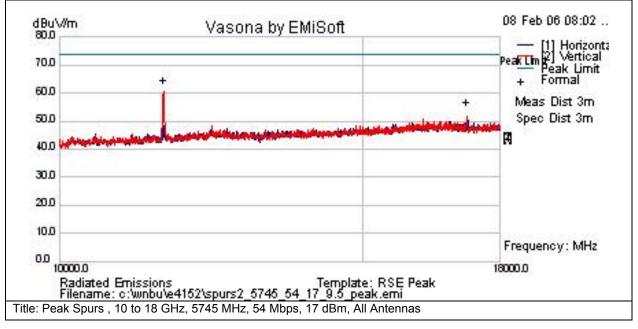
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
11400	53	13.1	-13.9	52.2	Pk	V	201	149	74	-21.8	Pass	
17100	50	16.2	-12.4	53.8	Pk	V	125	115	74	-20.2	Pass	

Subtest Number: 2010	0 - 29 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Spurs , 10 to 18 GHz, 5745 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	18000.0
Lowest Frequency	10000.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

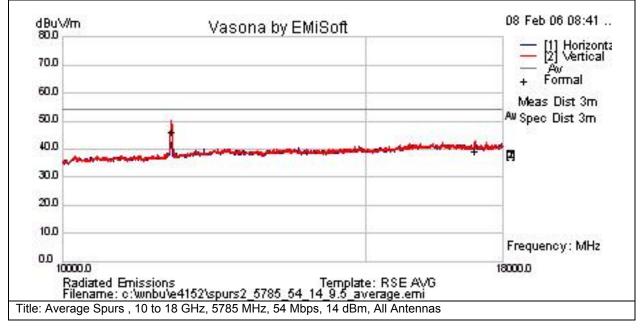
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
11490	51.3	13.3	-13.7	50.9	Av	V	154	208	54	-3.1	Pass	
17235	37.4	16.3	-13	40.7	Av	V	154	81	54	-13.3	Pass	

Subtest Number: 2010	00 - 30 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Spurs , 10 to 18 GHz, 5745 MHz, 54 Mbps, 17 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	18000.0
Lowest Frequency	10000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

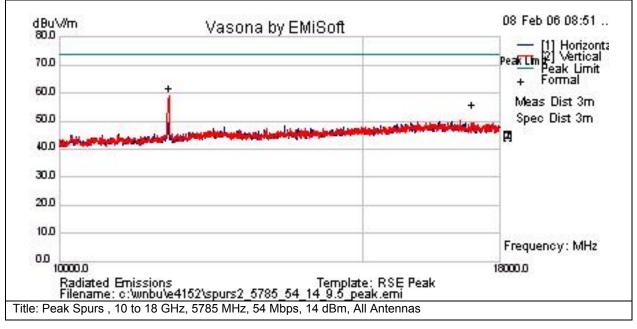
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
11490	62.6	13.3	-13.7	62.2	Pk	V	128	132	74	-11.8	Pass	
17235	51	16.3	-13	54.4	Pk	V	162	168	74	-19.6	Pass	

Subtest Number: 2010	0 - 31 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	·
Subtest Title	Average Spurs , 10 to 18 GHz, 5785 MHz, 54 Mbps, 14 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	18000.0
Lowest Frequency	10000.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW

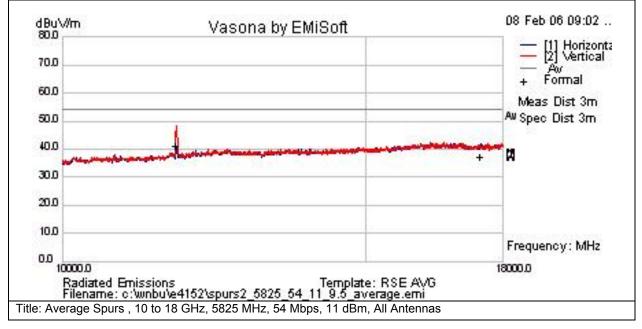
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Freque	ncy MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1	570	44.1	13.4	-13.7	43.8	Av	V	140	130	54	-10.2	Pass	
17	355	33.5	16.4	-13	37	Av	V	177	85	54	-17	Pass	

Subtest Number: 2010	0 - 32 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Spurs, 10 to 18 GHz, 5785 MHz, 54 Mbps, 14 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	18000.0
Lowest Frequency	10000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW

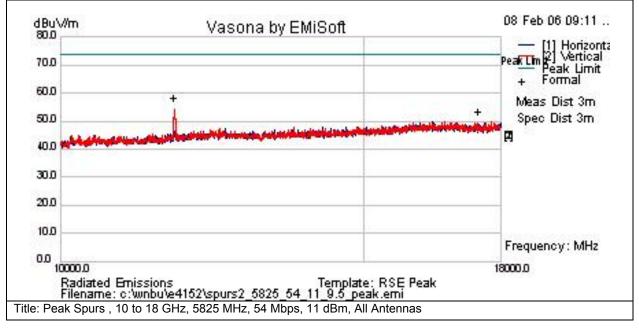
Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MI	Iz Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
11570	59.9	13.4	-13.7	59.6	Pk	V	171	132	74	-14.4	Pass	
17355	50.2	16.4	-13	53.6	Pk	V	167	82	74	-20.4	Pass	

Subtest Number: 2010	0 - 33 Subtest Date: 08-Feb-2006							
Engineer	James Nicholson							
Lab Information	Building P, 10m Anechoic							
Subtest Results								
Subtest Title	Average Spurs , 10 to 18 GHz, 5825 MHz, 54 Mbps, 11 dBm, All Antennas							
Subtest Result	Pass							
Highest Frequency	18000.0							
Lowest Frequency	10000.0							
Comments on the above Test Results	1 MGz RBW, 10 Hz VBW							

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements



Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
11650	38.9	13.5	-13.6	38.8	Av	V	159	131	54	-15.2	Pass	
17475	30.8	16.4	-12.4	34.8	Av	V	130	73	54	-19.2	Pass	

Subtest Number: 2010	0 - 34 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Spurs, 10 to 18 GHz, 5825 MHz, 54 Mbps, 11 dBm, All Antennas
Subtest Result	Pass
Highest Frequency	18000.0
Lowest Frequency	10000.0
Comments on the above Test Results	1 MHZ RBW, 1 MHz VBW

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
11650	56.2	13.5	-13.6	56.1	Pk	V	144	169	74	-17.9	Pass	
17475	46.9	16.4	-12.4	50.9	Pk	V	163	107	74	-23.1	Pass	

Radiated Transmitter Co-Located Spurious Emissions (Co-Located with AIR-RM23G-A-K9)

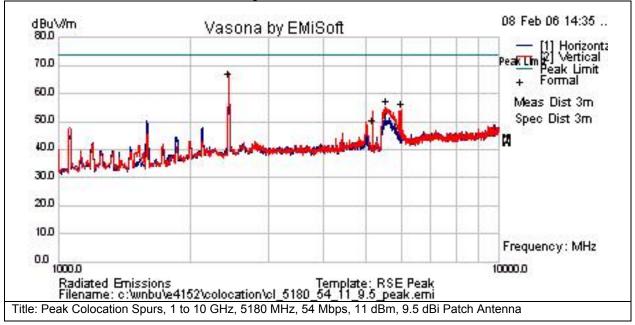
Radiated emissions which fall in the restricted bands, as defined in Sec. 15.205(a), must also comply with the radiated emission limits specified in Sec. 15.209(a).

Subtest Number: 2012	21 - 13 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Colocation Spurs, 1 to 10 GHz, 5180 MHz, 54 Mbps, 11 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 10 Hz VBW Colocated with AIR-RM23G-A-K9: 2437MHz, 11 Mbps, 20 dBm, 10.0 dBi Yagi Antenna

Graphical Test Results

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

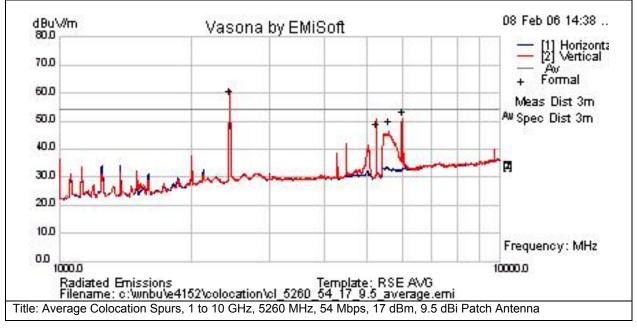

				Level	Measurement			Azt	Limit			
Frequency MHz	Raw dBuV	Cable Loss	AF ~dB	dBuV/m	Туре	Pol	Hgt cm	Deg	dBuV/m	Margin dB	Pass /Fail	Comments
2437	59.4	9.2	-10.2	58.4	Av	V	166	124	54	4.4	Fail	2.4GHz Carrier
5180	40.1	9.2	-7.4	42	Av	V	166	124	54	-12	Pass	5GHz Carrier
5515.2	44.9	9.9	-7	47.8	Av	V	166	124	54	-6.2	Pass	
5999.97	47.3	10.4	-5.8	51.8	Av	V	166	124	54	-2.2	Pass	

Page No: 99 of 174

Subtest Number: 2012	1 - 14 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Colocation Spurs, 1 to 10 GHz, 5180 MHz, 54 Mbps, 11 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW Colocated with AIR-RM23G-A-K9: 2437MHz, 11 Mbps, 20 dBm, 10.0 dBi Yagi Antenna

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

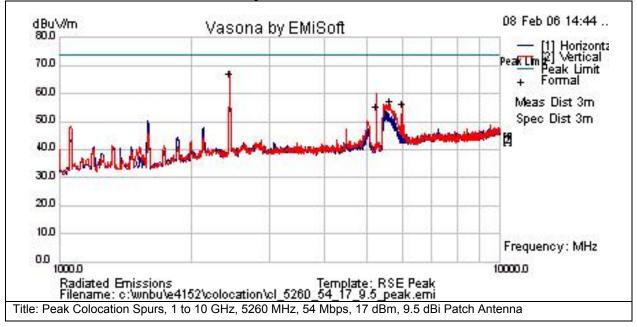

F	Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
	2437	65.8	9.2	-10.2	64.8	Pk	٧	166	124	74	-9.2	Pass	2.4GHz Carrier
	5180	46.3	9.2	-7.4	48.2	Pk	V	166	124	74	-25.8	Pass	5GHz Carrier
	5538	52	10	-7	55	Pk	V	166	124	74	-19	Pass	
	6000.2	49.6	10.4	-5.8	54.2	Pk	V	166	124	74	-19.8	Pass	

Page No: 100 of 174

Subtest Number: 2012	1 - 17 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Colocation Spurs, 1 to 10 GHz, 5260 MHz, 54 Mbps, 17 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW Colocated with AIR-RM23G-A-K9: 2437MHz, 11 Mbps, 20 dBm, 10.0 dBi Yagi Antenna

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

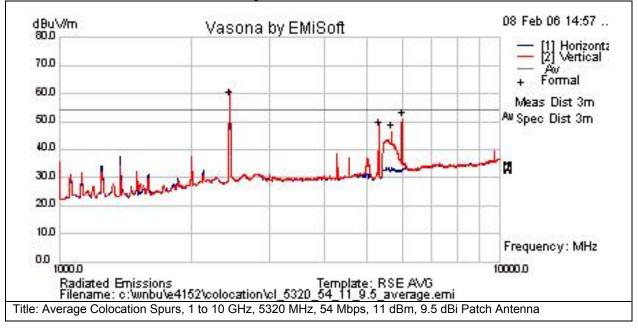

				Level	Measurement			Azt	Limit			
Frequency MHz	Raw dBuV	Cable Loss	AF ~dB	dBuV/m	Туре	Pol	Hgt cm	Deg	dBuV/m	Margin dB	Pass /Fail	Comments
2437	59.4	9.2	-10.2	58.4	Av	V	166	124	54	4.4	Fail	2.4GHz Carrier
5260	44.8	9.3	-7.43	46.67	Av	V	166	124	54	-7.33	Pass	5GHz Carrier
5610	44.49	10.18	-6.91	47.76	Av	V	166	124	54	-6.24	Pass	
5999.95	46.5	10.4	-5.8	51.1	Av	V	166	124	54	-2.9	Pass	

Page No: 101 of 174

Subtest Number: 2012	1 - 18 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Colocation Spurs, 1 to 10 GHz, 5260 MHz, 54 Mbps, 17 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW Colocated with AIR-RM23G-A-K9: 2437MHz, 11 Mbps, 20 dBm, 10.0 dBi Yagi Antenna

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table


Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2437	65.8	9.2	-10.2	64.8	Pk	V	166	124	74	-9.2	Pass	2.4GHz Carrier
5260	51.1	9.3	-7.4	53.02	Pk	V	166	124	74	-21	Pass	5GHz Carrier
5615	51.76	10.18	-6.9	55.05	Pk	V	166	124	74	-18.95	Pass	
6030.02	49.39	10.42	-5.62	54.2	Pk	V	166	124	74	-19.8	Pass	

Page No: 102 of 174

Subtest Number: 2012	1 - 19 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Colocation Spurs, 1 to 10 GHz, 5320 MHz, 54 Mbps, 11 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW Colocated with AIR-RM23G-A-K9: 2437MHz, 11 Mbps, 20 dBm, 10.0 dBi Yagi Antenna

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

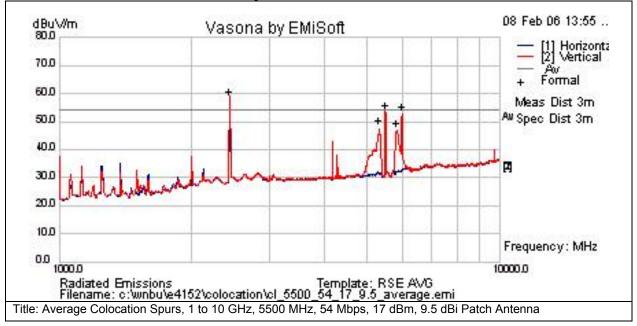

				Level	Measurement			Azt	Limit			
Frequency MHz	Raw dBuV	Cable Loss	A⊦dB	dBuV/m	Туре	Pol	Hgt cm	Deg	dBuV/m	Margin dB	Pass /Fail	Comments
2437	59.4	9.2	-10.2	58.4	Av	V	166	124	54	4.4	Fail	2.4GHz Carrier
5320	45.7	9.4	-7.5	47.6	Av	V	166	124	54	-6.4	Pass	5GHz Carrier
5684.9	43.1	10.3	-6.8	46.6	Av	V	166	124	54	-7.4	Pass	
5999.94	46.5	10.4	-5.8	51.1	Av	V	166	124	54	-2.9	Pass	

Page No: 103 of 174

Subtest Number: 2012	1 - 20 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Colocation Spurs, 1 to 10 GHz, 5320 MHz, 54 Mbps, 11 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW Colocated with AIR-RM23G-A-K9: 2437MHz, 11 Mbps, 20 dBm, 10.0 dBi Yagi Antenna

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

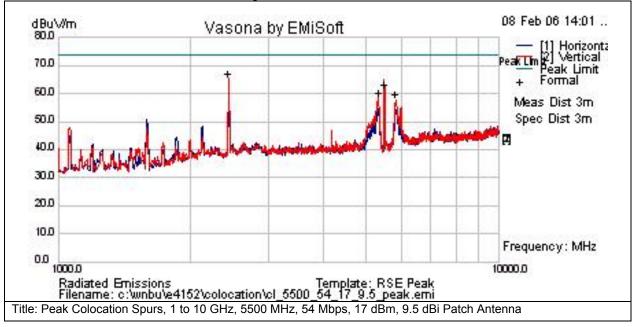

Fre	equency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
	2437	65.8	9.2	-10.2	64.8	Pk	V	166	124	74	-9.2	Pass	2.4GHz Carrier
	5320	53.6	9.4	-7.5	55.5	Pk	V	166	124	74	-18.5	Pass	5GHz Carrier
	5581.3	51.1	10.2	-7	54.2	Pk	V	166	124	74	-19.8	Pass	
	6000	49.3	10.4	-5.8	53.9	Pk	V	166	124	74	-20.1	Pass	

Page No: 104 of 174

Subtest Number: 2012	Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Colocation Spurs, 1 to 10 GHz, 5500 MHz, 54 Mbps, 17 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW Colocated with AIR-RM23G-A-K9: 2437MHz, 11 Mbps, 20 dBm, 10.0 dBi Yagi Antenna

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

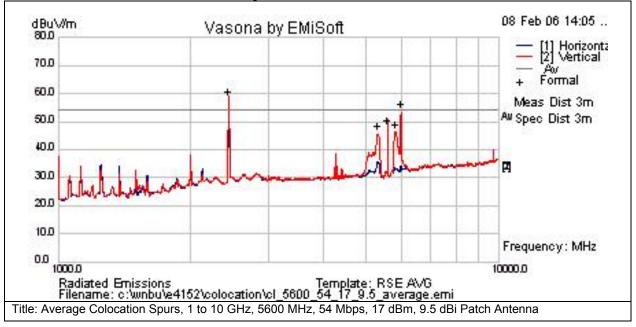

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2437	59.4	9.2	-10.2	58.4	Av	V	166	124	54	4.4	Fail	2.4GHz Carrier
5335.3	46.2	9.4	-7.5	48.1	Av	V	166	124	54	-5.9	Pass	
5500	50.7	9.8	-7	53.6	Av	V	166	124	54	-0.4	Pass	5GHz Carrier
5840	43	10.4	-6.2	47.1	Av	V	166	124	54	-6.9	Pass	
6000	48.2	10.4	-5.8	52.8	Av	V	166	124	54	-1.2	Pass	

Page No: 105 of 174

Subtest Number: 2012	Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Colocation Spurs, 1 to 10 GHz, 5500 MHz, 54 Mbps, 17 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW Colocated with AIR-RM23G-A-K9: 2437MHz, 11 Mbps, 20 dBm, 10.0 dBi Yagi Antenna

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

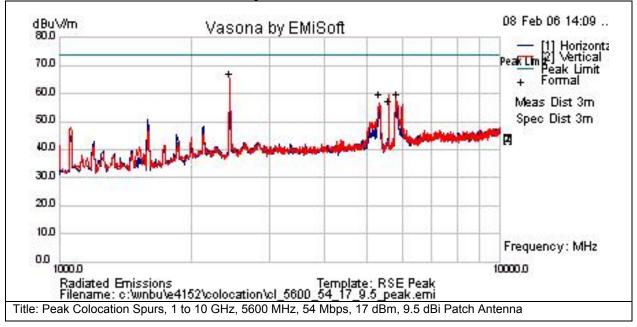

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2437	65.8	9.2	-10.2	64.8	Pk	٧	166	124	74	-9.2	Pass	2.4GHz Carrier
5340.7	56	9.4	-7.5	57.9	Pk	V	166	124	74	-16.1	Pass	
5500	57.9	9.8	-7	60.8	Pk	V	166	124	74	-13.2	Pass	5GHz Carrier
5831.4	53.3	10.3	-6.2	57.4	Pk	V	166	124	74	-16.6	Pass	

Page No: 106 of 174

Subtest Number: 2012	Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Colocation Spurs, 1 to 10 GHz, 5600 MHz, 54 Mbps, 17 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW Colocated with AIR-RM23G-A-K9: 2437MHz, 11 Mbps, 20 dBm, 10.0 dBi Yagi Antenna

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

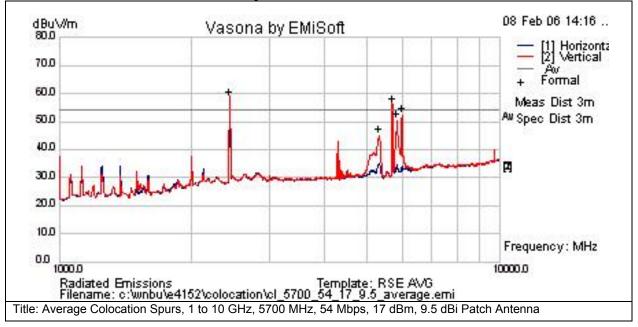

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2437	59.4	9.2	-10.2	58.4	Av	V	166	124	54	4.4	Fail	2.4GHz Carrier
5332.09	44.2	9.4	-7.4	46.2	Av	V	166	124	54	-7.8	Pass	
5600	45.1	10.2	-7	48.3	Av	V	166	124	54	-5.7	Pass	5GHz Carrier
5820	42.8	10.3	-6.2	46.9	Av	V	166	124	54	-7.1	Pass	
5999.99	49.2	10.4	-5.8	53.8	Av	V	166	124	54	-0.2	Pass	

Page No: 107 of 174

Subtest Number: 2012	1 - 10 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Colocation Spurs, 1 to 10 GHz, 5600 MHz, 54 Mbps, 17 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW Colocated with AIR-RM23G-A-K9: 2437MHz, 11 Mbps, 20 dBm, 10.0 dBi Yagi Antenna

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

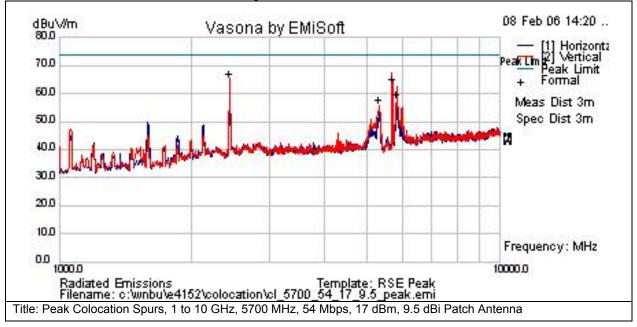

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2437	65.8	9.2	-10.2	64.8	Pk	V	166	124	74	-9.2	Pass	2.4GHz Carrier
5311	55.3	9.4	-7.4	57.2	Pk	V	166	124	74	-16.8	Pass	
5600	52	10.2	-7	55.2	Pk	V	166	124	74	-18.8	Pass	5GHz Carrier
5819.7	53.2	10.3	-6.2	57.3	Pk	V	166	124	74	-16.7	Pass	

Page No: 108 of 174

Subtest Number: 2012	1 - 11 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Colocation Spurs, 1 to 10 GHz, 5700 MHz, 54 Mbps, 17 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW Colocated with AIR-RM23G-A-K9: 2437MHz, 11 Mbps, 20 dBm, 10.0 dBi Yagi Antenna

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

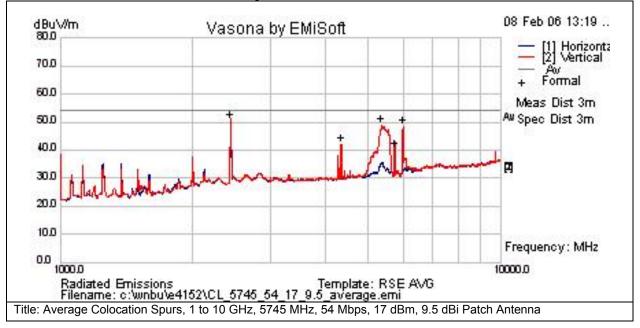

Fre	equency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
	2437	59.4	9.2	-10.2	58.4	Av	V	166	124	54	4.4	Fail	2.4GHz Carrier
	5330.22	43	9.4	-7.4	45	Av	V	166	124	54	-9	Pass	
	5700	52.5	10.2	-6.6	56.1	Av	V	166	124	54	2.1	Fail	5GHz Carrier
	5851.9	46.3	10.4	-6.2	50.4	Av	V	166	124	54	-3.6	Pass	
	5999.98	47.9	10.4	-5.8	52.5	Av	V	166	124	54	-1.5	Pass	

Page No: 109 of 174

Subtest Number: 2012	1 - 12 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Colocation Spurs, 1 to 10 GHz, 5700 MHz, 54 Mbps, 17 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW Colocated with AIR-RM23G-A-K9: 2437MHz, 11 Mbps, 20 dBm, 10.0 dBi Yagi Antenna

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

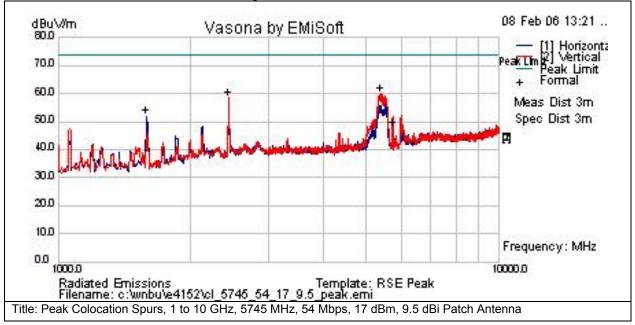

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2437	65.8	9.2	-10.2	64.8	Pk	٧	166	124	74	-9.2	Pass	2.4GHz Carrier
5319.2	53.4	9.4	-7.5	55.3	Pk	V	166	124	74	-18.7	Pass	
5700	59.1	10.2	-6.6	62.7	Pk	V	166	124	74	-11.3	Pass	5GHz Carrier
5852.5	53.2	10.4	-6.2	57.3	Pk	V	166	124	74	-16.7	Pass	

Page No: 110 of 174

Subtest Number: 2012	1 - 1 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Colocation Spurs, 1 to 10 GHz, 5745 MHz, 54 Mbps, 17 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW Colocated with AIR-RM23G-A-K9: 2437MHz, 11 Mbps, 20 dBm, 10.0 dBi Yagi Antenna

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

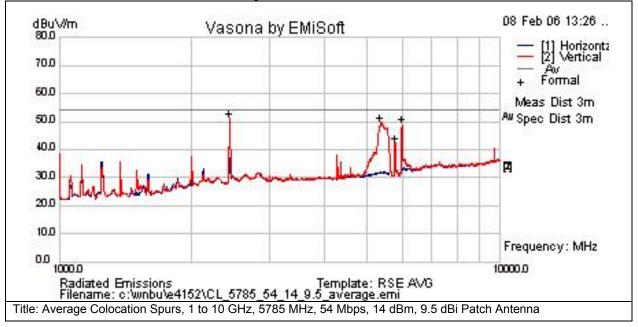

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2437	51.4	9.2	-10.2	50.4	Av	V	166	124	54	-3.6	Pass	2.4GHz Carrier
4343.35	42.4	8.2	-8.5	42.1	Av	V	166	124	54	-11.9	Pass	
5377.2	47.1	9.4	-7.4	49.1	Av	V	166	124	54	-4.9	Pass	
5745	36.6	10.2	-6.5	40.4	Av	V	166	124	54	-13.7	Pass	Notched Carrier
6000.02	44.1	10.4	-5.8	48.7	Av	V	166	124	54	-5.3	Pass	

Page No: 111 of 174

Subtest Number: 2012	1 - 2 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Colocation Spurs, 1 to 10 GHz, 5745 MHz, 54 Mbps, 17 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW Colocated with AIR-RM23G-A-K9: 2437MHz, 11 Mbps, 20 dBm, 10.0 dBi Yagi Antenna

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

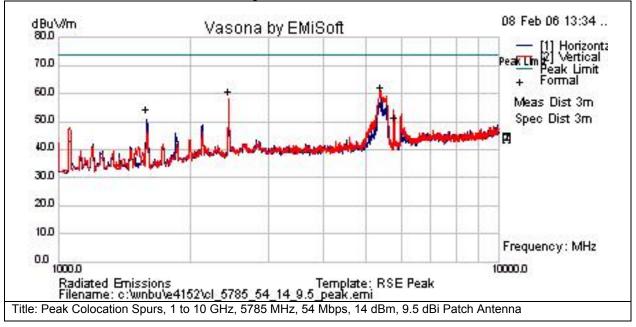

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1584.56	61.1	5.2	-14.2	52	Pk	Н	166	124	74	-22	Pass	
2437	59.2	9.2	-10.2	58.2	Pk	V	166	124	74	-15.8	Pass	2.4GHz Carrier
5405.7	57.9	9.5	-7.4	60	Pk	٧	166	124	74	-14	Pass	
5745	44	10.2	-6.5	47.7	Pk	V	166	124	74	-26.3	Pass	5GHz Carrier

Page No: 112 of 174

Subtest Number: 2012	21 - 3 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Colocation Spurs, 1 to 10 GHz, 5785 MHz, 54 Mbps, 14 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW Colocated with AIR-RM23G-A-K9: 2437MHz, 11 Mbps, 20 dBm, 10.0 dBi Yagi Antenna

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

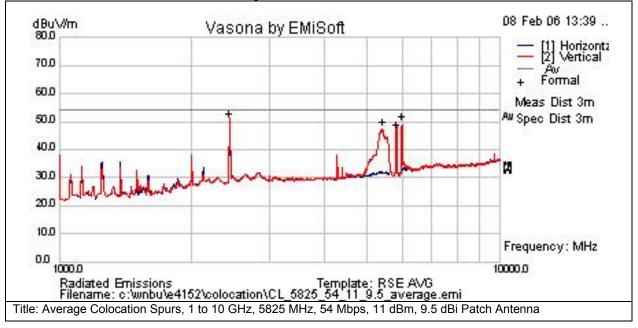

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2437	51.4	9.2	-10.2	50.4	Av	V	166	124	54	-3.6	Pass	2.4GHz Carrier
5377.2	47.1	9.4	-7.4	49.1	Av	V	166	124	54	-4.9	Pass	
5784.99	37.6	10.3	-6.4	41.5	Av	V	166	124	54	-12.5	Pass	5GHz Carrier
6000.02	44.1	10.4	-5.8	48.7	Av	V	166	124	54	-5.3	Pass	

Page No: 113 of 174

Subtest Number: 2012	1 - 4 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Colocation Spurs, 1 to 10 GHz, 5785 MHz, 54 Mbps, 14 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW Colocated with AIR-RM23G-A-K9: 2437MHz, 11 Mbps, 20 dBm, 10.0 dBi Yagi Antenna

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

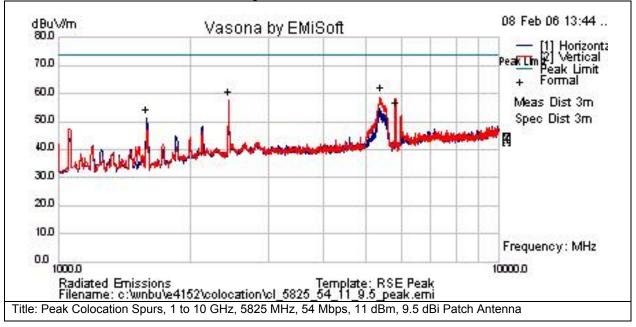

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1584.56	61.1	5.2	-14.2	52	Pk	Н	166	124	74	-22	Pass	
2437	59.2	9.2	-10.2	58.2	Pk	V	166	124	74	-15.8	Pass	2.4GHz Carrier
5405.7	57.9	9.5	-7.4	60	Pk	٧	166	124	74	-14	Pass	
5785	45.4	10.3	-6.4	49.3	Pk	V	166	124	74	-24.7	Pass	5GHz Carrier

Page No: 114 of 174

Subtest Number: 2012	21 - 5 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Average Colocation Spurs, 1 to 10 GHz, 5825 MHz, 54 Mbps, 11 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW Colocated with AIR-RM23G-A-K9: 2437MHz, 11 Mbps, 20 dBm, 10.0 dBi Yagi Antenna

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table


Frequency MI	Iz Daw dBuV	Cable Loss	VE 4B	Level dBuV/m	Measurement Type	Pol	Hat cm	Azt Dea	Limit dBuV/m	Margin dB	Dass /Fail	Comments
Trequency MI		Capie L033	AI UD	uDuv/III	туре	1.01	ngi un	Deg	ubuv/m	Maryin ub	1 033 /1 01	COMMENTS
2437	51.4	9.2	-10.2	50.4	Av	V	166	124	54	-3.6	Pass	2.4GHz Carrier
5440	45.2	9.6	-7.2	47.6	Av	V	166	124	54	-6.4	Pass	
5825	42.7	10.3	-6.2	46.8	Av	V	166	124	54	-7.2	Pass	5GHz Carrier
6000.01	44.8	10.4	-5.8	49.4	Av	V	166	124	54	-4.6	Pass	

Page No: 115 of 174

Subtest Number: 2012	1 - 6 Subtest Date: 08-Feb-2006
Engineer	James Nicholson
Lab Information	Building P, 10m Anechoic
Subtest Results	
Subtest Title	Peak Colocation Spurs, 1 to 10 GHz, 5825 MHz, 54 Mbps, 11 dBm, 9.5 dBi Patch Antenna
Subtest Result	Pass
Highest Frequency	10000.0
Lowest Frequency	1000.0
Comments on the above Test Results	1 MHz RBW, 1 MHz VBW Colocated with AIR-RM23G-A-K9: 2437MHz, 11 Mbps, 20 dBm, 10.0 dBi Yagi Antenna

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hat cm	Azt Dea	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1584.6	61.1	5.2	-14.2	52	Peak(Scan)	H	166	124	74	-22	Pass	Comments
2437	59.2	9.2	-10.2	58.2	Pk	V	166	124	74	-15.8	Pass	2.4GHz Carrier
5396	57.9	9.5	-7.4	60	Pk	V	166	124	74	-14	Pass	
5825	50.5	10.3	-6.2	54.6	Pk	V	166	124	74	-19.4	Pass	5GHz Carrier

Page No: 116 of 174

Physical Test arrangement Photograph:

Page No: 117 of 174

Maximum Permissible Exposure (MPE) Calculations

15.407: U-NII devices are subject to the radio frequency radiation exposure requirements specified in Sec. 1.1307(b). Sec. 2.1091 and Sec. 2.1093 of this chapter, as appropriate. All equipment shall be considered to operate in a ``general population/uncontrolled" environment. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request.

Given

 $E=\sqrt{(30^*P^*G)/d}$ and S=E^2/3770

where

E=Field Strength in Volts/meter P=Power in Watts G=Numeric Antenna Gain d=Distance in meters S=Power Density in mW/cm²

Combine equations and rearrange the terms to express the distance as a function of the remaining variables:

d=√((30*P*G)/(3770*S))

P(mW)=P(W)/1000

Changing to units of power in mW and distance in cm, using:

d(cm) = 100*d(m)

yields

```
d=100*√((30*(P/1000)*G)/(3770*S))
d=0.282*√(P*G/S)
```

where

d=Distance in cm P=Power in mW G=Numerica Antenna Gain S=Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using: $P(mW)=10^{(P(dBm)/10)}$ G(numeric)=10^{(G(dBi)/10)}

d=0.282*10^((P+G)/20)/√S

vields

and

s=((0.282*10^((P+G)/20))/d)^2

where

d=MPE distance in cm P=Power in dBm G=Antenna Gain in dBi S=Power Density in mW/cm² Equation (1)

Equation (2)

Page No: 118 of 174

Equation (1) and the measured peak power is used to calculate the MPE distance. Note that for mobile or fixed location transmitters such as an access point, the minimum separation distance is 20 cm even if the calculations indicate that the MPE distance may be less.

S=1mW/cm² maximum. The highest 2.4GHz antenna gain supported is 8 dBi, the highest 4.9GHz antenna gain supported is 6 dBi, and the highest 5 GHz antenna gain is 20 dBi. Using the peak power levels recorded in the test report along with Equation 1 above, the MPE distances are calculated as follows.

Frequency (MHz)	Bit Rate (Mbps)	Power Density (mW/cm^2)	Peak Transmit Power (dBm)	Antenna Gain (dBi)	MPE Distance (cm)	Limit (cm)	Margin (cm)
5180	54	1	11.17	9.5	3.05	20	16.95
5260	54	1	17.15	9.5	6.06	20	13.94
5320	54	1	11.27	9.5	3.08	20	16.92
5500	54	1	16.46	9.5	5.60	20	14.40
5600	54	1	17.02	9.5	5.97	20	14.03
5700	54	1	16.34	9.5	5.52	20	14.48
5745	54	1	16.24	9.5	5.46	20	14.54
5785	54	1	13.08	9.5	3.80	20	16.20
5825	54	1	10.48	9.5	2.81	20	17.19

MPE Calculations

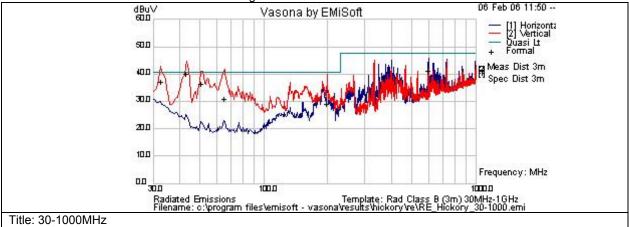
To maintain compliance, installations will assure a separation distance of at least 20cm.

Using Equation 2, the MPE levels (s) at 20 cm are calculated as follows:

Frequency (MHz)	Bit Rate (Mbps)	MPE Distance (cm)	Peak Transmit Power (dBm)	Antenna Gain (dBi)	Power Density (mW/cm^2)	Limit (mW/cm^2)	Margin (mW/cm^2)
5180	54	20	11.17	9.5	0.02	1	0.98
5260	54	20	17.15	9.5	0.09	1	0.91
5320	54	20	11.27	9.5	0.02	1	0.98
5500	54	20	16.46	9.5	0.08	1	0.92
5600	54	20	17.02	9.5	0.09	1	0.91
5700	54	20	16.34	9.5	0.08	1	0.92
5745	54	20	16.24	9.5	0.07	1	0.93
5785	54	20	13.08	9.5	0.04	1	0.96
5825	54	20	10.48	9.5	0.02	1	0.98

When operating as a dual-band co-located 2.4/5GHz system, the worst case MPE occurs at 2437MHz, 11Mbps, 20dBm power, 10dBi antenna and 5260MHz, 54Mbps, 17dBm power, 9.5dBi antenna. The MPE in this scenario is 0.2mW/cm^2 + 0.09mW/cm^2 = 0.29mW/cm^2.

Page No: 119 of 174


30MHz-1GHz Radiated Spurious Emissions

Radiated emissions which fall in the restricted bands, as defined in Sec. 15.205(a), must also comply with the radiated emission limits specified in Sec. 15.209(a).

Subtest Number: 2006	9 - 2 Subtest Date: 06-Feb-2006
Engineer	Jose Aguirre
Lab Information	Building P, 5m Anechoic
Subtest Results	
Subtest Title	30MHz-1GHz Radiated Emissions
Subtest Result	Pass
Highest Frequency	1000.0
Lowest Frequency	30.0
Comments on the above Test Results	

Graphical Test Results

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement	Туре	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments
43.083	26.1	0.8	11.6	38.4	Qp		۷	98	92	40.5	-2.1	Pass	
32.638	15.8	0.7	18.7	35.2	Qp		۷	103	354	40.5	-5.3	Pass	
65.036	20.3	1	7.9	29.1	Qp		۷	178	217	40.5	-11.4	Pass	
50.953	26.1	0.8	7.8	34.8	Qp		۷	98	93	40.5	-5.8	Pass	
199.044	13.6	1.7	12.1	27.4	Qp		۷	105	213	40.5	-13.1	Pass	
596.963	18.1	2.8	18.4	39.3	Qp		Η	118	22	47.5	-8.2	Pass	

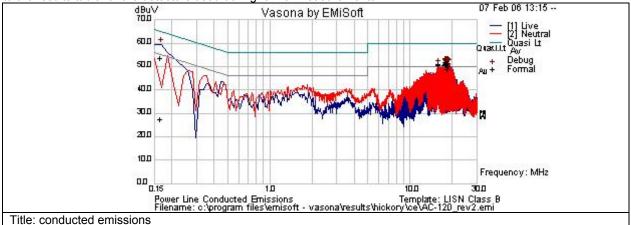
Page No: 120 of 174

Tite: Radiated Setup

Physical Test arrangement Photograph:

Comments on the above Photograph:

Bilog antenna in background used to measure 30Mhz to 1Ghz range.


Page No: 121 of 174

AC Mains .150-30MHz Conducted Emissions

Subtest Number: 2017	13 - 2 Subtest Date: 07-Feb-2006					
Engineer	Jose Aguirre					
Lab Information	Building P, 5m Anechoic					
Subtest Results						
Line Under Test	AC/DC Power Brick , 110v (+/-10%), 60Hz					
Transducer	LISN					
Subtest Result	Pass					
Highest Frequency	30.0					
Lowest Frequency	0.15					
Comments on the above Test Results	rev 2 board					

Graphical Test Results

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results Table

Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail	Comments
18.015	27.9	20.7	0.3	48.9	Av	L	50	-1.1	Pass	
16.031	28	20.6	0.1	48.8	Av	Ν	50	-1.2	Pass	
18.32	27.3	20.7	0.4	48.4	Av	Ν	50	-1.6	Pass	
18.775	27.1	20.7	0.4	48.2	Av	L	50	-1.8	Pass	
18.624	25.8	20.7	0.4	46.9	Av	L	50	-3.1	Pass	
18.015	28.6	20.7	0.3	49.6	Qp	L	60	-10.4	Pass	
18.624	28.3	20.7	0.4	49.4	Qp	L	60	-10.6	Pass	
18.775	28.3	20.7	0.4	49.3	Qp	L	60	-10.7	Pass	
18.32	28.2	20.7	0.4	49.3	Qp	Ν	60	-10.7	Pass	
16.031	27.9	20.6	0.1	48.7	Qp	Ν	60	-11.3	Pass	
0.165	30.8	20.4	0.2	51.4	Qp	L	65.2	-13.8	Pass	
0.165	4.6	20.4	0.2	25.2	Av	L	55.2	-30	Pass	

Physical Test arrangement Photograph:

Comments on the above Photograph:

Power supply plugged into LISN mounted under Turntable.

Page No: 123 of 174

Dynamic Frequency Selection (DFS) Test Results

15.407: U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for systems with an e.i.r.p. of less than 500 mW.

U-NII devices operating in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems.

1.0 UNII Device Description

- 1. The AIR-RM23A-A-K9 operates in the following bands:
 - a. 5150-5250 MHz
 - b. 5250-5350 MHz
 - c. 5470-5725 MHz
 - d. 5725-5850 MHz
- 2. The maximum EIRP of the equipment is 26.5 dBm, and the minimum possible EIRP is -1 dBm.

Below are the available 50 ohm antenna assemblies and their corresponding gains. 0dBi gain was used to set the -63 dBm threshold level (-64dBm +1 dB) during calibration of the test setup.

AIR-ANT5135D-R (5 GHz, 3.5 dBi Omnidirectional) AIR-ANT5145V-R (5 GHz, 4.5 dBi Diversity Omnidirectional) AIR-ANT5160V-R (5 GHz, 6.0dBi Diversity Omnidirectional) AIR-ANT5170P-R (5 GHz, 7.0 dBi Diversity Patch) AIR-ANT5195P-R (5 GHz, 9.5 dBi Patch)

Antenna gain measurement plots are included with this filing.

- 3. System testing was performed with the designated MPEG test file that streams full motion video at 30 frames per second from the Master to the Client IP based system.
- 4. This device does not exceed 27dBm eirp, so no transmit power control is implemented.
- 5. The Master requires 1.333 minutes to complete its power-on cycle.
- 6. Information regarding the parameters of the detected Radar Waveforms is not available to the end user.
- 7. For the 5250-5350 MHz and 5470-5725 MHz bands, the Master device provides, on aggregate, uniform loading of the spectrum across all devices by selecting an operating channel among the available channels using a random algorithm.

Page No: 124 of 174

2.0 DFS Detection Thresholds

1. Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value					
	(see note)					
≥ 200 milliwatt	-64 dBm					
< 200 milliwatt	-62 dBm					
Note 1: This is the level at the input of the receiver assu	Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna					
Note 2: Throughout these test procedures an additional						
amplitude of the test transmission waveforms to account for variations in measurement						
equipment. This will ensure that the test signal is at or above the detection threshold level to						
trigger a DFS response.						

2. **DFS Response requirement values**

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 80% of the 99% power bandwidth See Note 3.

Note 1: The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

- For the Short pulse radar Test Signals this instant is the end of the Burst.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar *Burst* generated.
- For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate *Channel* changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90%. Measurements are performed with no data traffic.

3.0 Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Rada	Pulse Width	PRI	Number	Minimum	Minimum
r	(µsec)	(µsec) of Pulses		Percentage of	Trials
Туре				Successful	
				Detection	
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggreg	ate (Radar Types 1	-4)		80%	120

1. Short Pulse Radar Test Waveforms

A minimum of 30 unique waveforms are required for each of the short pulse radar types 2 through 4. For short pulse radar type 1, the same waveform is used a minimum of 30 times. If more than 30 waveforms are used for short pulse radar types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

2. Long Pulse Radar Test Waveform

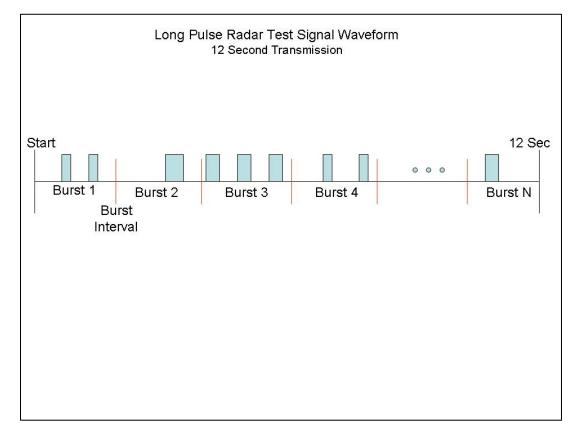
Radar	Pulse	Chirp	PRI	Number of	Number of	Minimum	Minimum
Туре	Width	Width	(µsec)	Pulses per	Bursts	Percentage of	Trials
	(µsec)	(MHz)		Burst		Successful	
						Detection	
5	50-100	5-20	1000-20	1-3	8-20	80%	30
			00				

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse radar test signal. If more than 30 waveforms are used for the Long Pulse radar test signal, then each additional waveform must also be unique and not repeated from the previous waveforms.

Each waveform is defined as follows:

- 1) The transmission period for the Long Pulse Radar test signal is 12 seconds.
- 2) There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst_Count.
- 3) Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.

Page No: 126 of 174


- 4) The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a Burst will have the same pulse width. Pulses in different Bursts may have different pulse widths.
- 5) Each pulse has a linear FM chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a Burst will have the same chirp width. Pulses in different Bursts may have different chirp widths. The chirp is centered on the pulse. For example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and ends at 5310 MHz.
- 6) If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the time between the first and second pulses is chosen independently of the time between the second and third pulses.
- 7) The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst_Count. Each interval is of length (12,000,000 / Burst_Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and [(12,000,000 / Burst_Count) (Total Burst Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen independently.

A representative example of a Long Pulse radar test waveform:

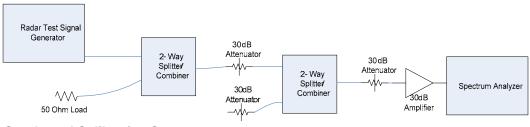
- 1) The total test signal length is 12 seconds.
- 2) 8 Bursts are randomly generated for the Burst_Count.
- 3) Burst 1 has 2 randomly generated pulses.
- 4) The pulse width (for both pulses) is randomly selected to be 75 microseconds.
- 5) The PRI is randomly selected to be at 1213 microseconds.
- 6) Bursts 2 through 8 are generated using steps 3 5.
- 7) Each Burst is contained in even intervals of 1,500,000 microseconds. The starting location for Pulse 1, Burst 1 is randomly generated (1 to 1,500,000 minus the total Burst 1 length + 1 random PRI interval) at the 325,001 microsecond step. Bursts 2 through 8 randomly fall in successive 1,500,000 microsecond intervals (i.e. Burst 2 falls in the 1,500,001 – 3,000,000 microsecond range).

3. Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Trials
					(Insec)	Delection	
6	1	333	9	.333	300	70%	30

For the Frequency Hopping Radar Type, the same *Burst* parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected¹ from the hopping sequence defined by the following algorithm:

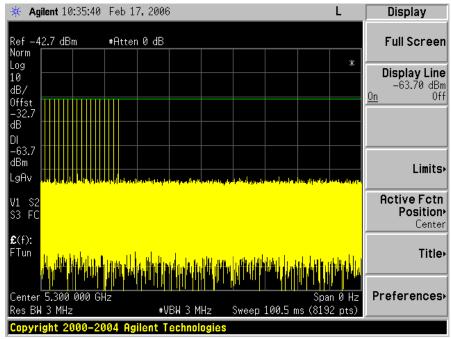
The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.


Page No: 128 of 174

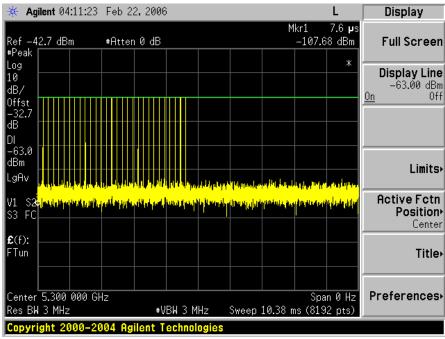
4.0 Radar Waveform Calibration

 The following equipment setup was used to calibrate the conducted Radar Waveform. A spectrum analyzer was used to establish the test signal level for each radar type. During this process there were no transmissions by either the Master or Client Device. The spectrum analyzer was switched to the zero span (Time Domain) mode at the frequency of the Radar Waveform generator. Peak detection was utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3 MHz.

The signal generator amplitude was set so that the power level measured at the spectrum analyzer was -63dBm. The 30dB amplifier gain was entered as an amplitude offset on the spectrum analyzer.



Conducted Calibration Setup

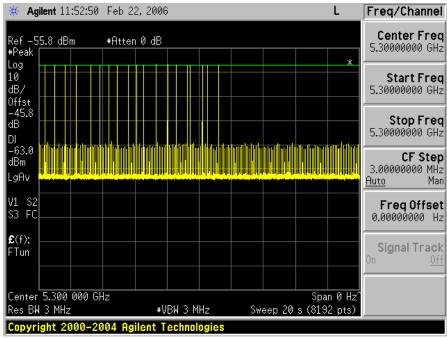

Page No: 129 of 174

2. Following are the calibration plots for each of the required radar waveforms.

Bin 1 Radar Calibration

Bin 2 Radar Calibration

Page No: 130 of 174


🔆 Agilent 04:13:11	Feb 22, 2000	6	L	Display
Ref -42.7 dBm	#Atten 0 dB		Mkr1 7.6 µs -103.10 dBm	Full Screen
#Peak Log			*	Display Line
10 dB/				-63.00 dBm On Off
Offst -32.7 dB				
DI -63.0				
dBm				Limits⊦
				Active Fctn
V1 S2 <mark>phpmanphoniph</mark> S3 FC		al many constructs a construction of the problem. All poly-construction of a large large by a	Phantonia a Unitrativada a	Position Center
£ (f):				
FTun				Title⊦
Center 5.300 000 GI]-		Span 0 Hz	Preferences
Res BW 3 MHz	#\		span 0 H2 ms (8192 pts)	
Copyright 2000-20	004 Agilent T	echnologies		

Bin 3 Radar Calibration

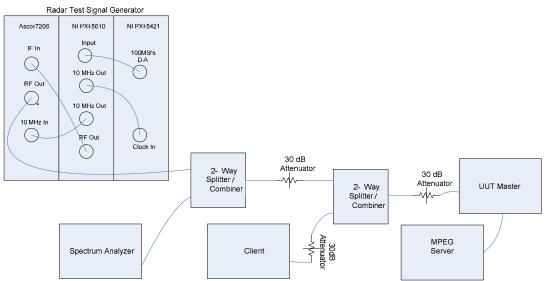
🔆 Agilent 04:14:23	1 Feb 22, 2006 L	Display
Ref -42.7 dBm	#Atten 0 dB	Full Screen
#Peak Log	k k k k k k k k k k k k k k k k k k k	
10 dB/		Display Line -63.00 dBm On Off
0ffst -32.7		
dB DI		
-63.0 dBm		Limiter
LgAv	որություն անհանարան որությունը հայ կումներ, ինք նաշտորներինը տես ընդուներին, որոնդիր թատնունը կուրնենին։	Limits⊦ M
V1 S2 <mark>Web distanted</mark> S3 FC	$\frac{1}{2} \int d^2 x \left[\left(\frac{1}{2} \int d^2 x \right) + \left(\frac{1}{2$	
£ (f):		Center
FTun		Title⊦
Center 5.300 000 (
Res BW 3 MHz	#VBW 3 MHz Sweep 10.38 ms (8192 pts	
Copyright 2000-2	2004 Agilent Technologies	

Bin 4 Radar Calibration

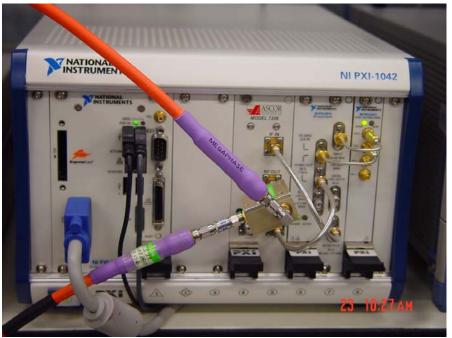
Page No: 131 of 174

Bin 5 Radar Calibration

🔆 Ag	ilent 04	:18:03	Feb 2	2, 2006	i					L	Display
Ref -4	2.7 dB	m	#Atte	n 0 dB							Full Screen
#Peak Log										*	
10 dB/											Display Line -63.00 dBm On Off
0ffst -32.7											<u>vii</u> ••••
dB DI											
-63.0 dBm											
LgAv	ا. مەرىمە	الالمر المرادر	ور برویل براز ا	الطروقوا والمطول	المعالية المعادي	الالدامية المراجع	ل أول من أوط أولو	ىلى لەھ ئەر يەر 🖞 لە	dan La dares	ويطلق المراجع	Limits≀
V1 S2 S3 FC	<mark>la junan</mark>	hall bega	100 C							N. B. B.	Active Fctn Position•
£ (f):											Center
FTun											Title∙
Center Res BW			Hz	لاس	вы з м	U-,	Sucon	10.00		n 0 Hz	Preferences.
			30 <u>4 0</u> 4	"" ilent T			sweep	10.38 m	15 (613	z pts)	
CONAL 1	Sur 2	/// Z	oon ny	mente l	Senno	ogilos					

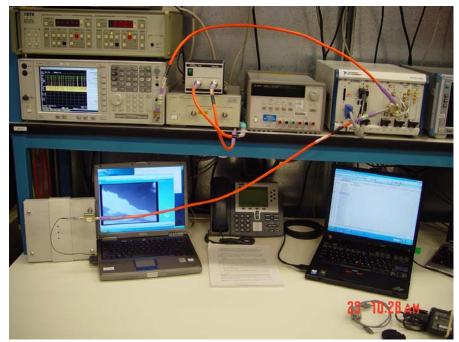

Bin 6 Radar Calibration

Page No: 132 of 174



5.0 Test Procedure/Results

- 1. A spectrum analyzer is used as a monitor to verify that the UUT has vacated the Channel within the (Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the detection and Channel move. It is also used to monitor UUT transmissions during the Channel Availability Check Time.
- 2. Following is the test setup used to generate the Radar Waveforms, and for all DFS tests described herein.


Conducted Setup: Radar Test Waveforms are injected into the Master

Radar Test Signal Generator

Page No: 133 of 174

DFS Test Setup

DFS Setup: UUT and Client

Page No: 134 of 174

The test setup is constructed of the following equipment:

Radar Test Signal Generator
National Instruments NI PXI-1042 8-Slot 3U Chassis
National Instruments NI PXI-5421 16-Bit 100MS/s Arbitrary Waveform Generator
National Instruments NI PXI-5610 2.7GHz RF Upconverter
Ascor 7206 PXI 4.9 to 6GHz Upconverter
Agilent E4448A Spectrum Analyzer
Mini-Circuits ZFSC-2-9G Splitter/Combiner (Qty. 2)
Mini-Circuits BW-S30W2 30dB Attenuator (Qty. 3)
Agilent 8449B Preamplifier (used for detection level calibration only)
Megaphase SF26 S1S1 36" Coaxial Cable (Qty. 2)
Dell 600M Laptop (Qty. 2: 1 for wireless client, 1 for MPEG server)
Cisco AIR-CB21AG 802.11a/b/g NIC card (wireless client)

The waveform parameters from within the bounds of the signal type are selected randomly using uniform distribution.

3. **UNII Detection Bandwidth**: All UNII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5300 MHz. The 99% channel bandwidth is 16.4MHz. (See the 26dB BW section of the RF report for further measurement details).

The generating equipment is configured as shown in the Conducted Test Setup above. A single *Burst* of the short pulse radar type 1 is produced at 5300MHz at a -63dBm level. The UUT is set up as a standalone device (no associated Client and no traffic).

A single radar Burst is generated for a minimum of 10 trials, and the response of the UUT is noted. The UUT must detect the Radar Waveform 90% or more of the time.

The radar frequency is increased in 1 MHz steps, repeating the above test sequence, until the detection rate falls below 90%. The highest frequency at which detection is greater than or equal to 90% is denoted as Fh.

The radar frequency is decreased in 1 MHz steps, repeating the above test sequence, until the detection rate falls below 90%. The lowest frequency at which detection is greater than or equal to 90% is denoted as FI.

The U-NII Detection Bandwidth is calculated as follows:

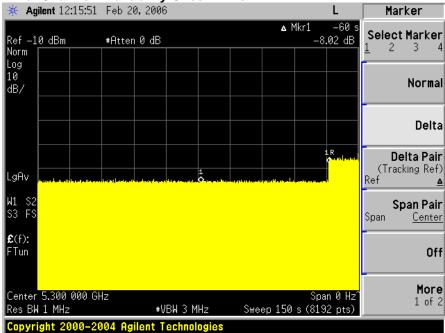
U-NII Detection Bandwidth = $F_H - F_L$

The U-NII Detection Bandwidth must be at least 80% of the UUT transmitter 99% power, otherwise, the UUT does not comply with DFS requirements.

Page No: 135 of 174

UNII Detection Bandwidth Results

DFS Detection Trials (1=Detection, Blank= No Detection)											
		~	2		_	~	7	0		10	Data atian Data (9()
Radar Frequency (MHz) 5292	1	2	3	4	5	6	7	8	9	10	Detection Rate (%) 0%
5292 5292	1	1	1	1	1	1	1	1	1	1	100%
5293 (FI)	1	1	1	1	1	1	1	1	1	1	100 %
5295	1	1	1	1	1	1	1	1	1	1	100 %
5296	1	1	1	1	1	1	1	1	1	1	100%
5297	1	1	1	1	1	1	1	1	1	1	100%
5298	1	1	1	1			1	1		1	100%
5299	1	1	1	1	1	1	1	1	1	1	100%
5300	1	1	1	1	1	1	1	1	1	1	100%
5301	1	1	1	1	1	1	1	1	1	1	100%
5302	1	1	1	1	1	1	1	1	1	1	100%
5303	1	1	1	1	1	1	1	1	1	1	100%
5304	1	1	1	1	1	1	1	1	1	1	100%
5305	1	1	1	1	1	1	1	1	1	1	100%
5306	1	1	1	1	1	1	1	1	1	1	100%
5307 (Fh)	1	1	1	1	1	1	1	1	1	1	100%
5308											0%



4. The **Initial Channel Availability Check Time** tests that the UUT does not emit beacon, control, or data signals on the test Channel until the power-up sequence has been completed and the U-NII device checks for Radar Waveforms for one minute on the test Channel. This test does not use any Radar Waveforms.

The U-NII device is powered on and be instructed to operate at 5300 MHz. At the same time the UUT is powered on, the spectrum analyzer is set to zero span mode with a 1 MHz resolution bandwidth at 5300MHz with a 2.5 minute sweep time. The analyzer's sweep will be started the same time power is applied to the U-NII device.

The UUT should not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle.

The initial power up time of the UUT is indicated by marker 1 in the plot. Initial beacons/data transmissions are indicated by marker 1R.

Page No: 137 of 174

5. Radar Burst at the Beginning of the Channel Availability Check Time: The steps below define the procedure to verify successful radar detection on the selected Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold + 1 dB (-63dBm) occurs at the beginning of the Channel Availability Check Time.

The UUT is powered on at T_0 . T_1 denotes the instant when the UUT has completed its power-up sequence. The Channel Availability Check Time commences at instant T_1 and will end no sooner than T_1 + 60 seconds.

A single Burst of short pulse of radar type 1 at -63 dBm will commence within a 6 second window starting at T_1 .

Visual indication on the UUT of successful detection of the radar Burst will be recorded and reported. Observation of emissions at 5300MHz will continue for 2.5 minutes after the radar Burst has been generated.

Verify that during the 2.5 minute measurement window no UUT transmissions occurred at 5300MHz.

🔆 Agilent 06:35:07	Feb 21,2006		L	Peak Search
Ref —10 dBm Norm	#Atten 0 dB	1	1kr1 83.33 s -17.97 dBm	Next Peak
Log 10 dB/				Next Pk Right
				Next Pk Left
LgAv			u an she far a she far a she far a she far she	Min Search
W1 S2 S3 FS				Pk-Pk Search
£ (f): FTun				Mkr → CF
Center 5.300 000 GH Res BW 1 MHz	lz #VBW 3 1	1Hz Sweep 240	Span 0 Hz^ s (8192 pts)	More 1 of 2
Copyright 2000-20	04 Agilent Techno	logies		

Radar Burst at the Beginning of the Channel Availability Check Time

Page No: 138 of 174

6. Radar Burst at the End of the Channel Availability Check Time: The steps below define the procedure to verify successful radar detection on the selected Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold + 1 dB (-63dBm) occurs at the end of the Channel Availability Check Time.

The UUT is powered on at T_0 . T_1 denotes the instant when the UUT has completed its power-up sequence. The Channel Availability Check Time commences at instant T_1 and will end no sooner than T_1 + 60 seconds.

A single Burst of short pulse of radar type 1 at -63 dBm will commence within a 6 second window starting at T_1 + 54 seconds.

Visual indication on the UUT of successful detection of the radar Burst will be recorded and reported. Observation of emissions at 5300MHz will continue for 2.5 minutes after the radar Burst has been generated.

Verify that during the 2.5 minute measurement window no UUT transmissions occurred at 5300MHz.

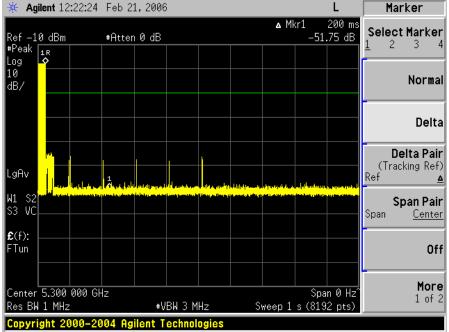
🔆 Agilent 08:49:	:04 Feb 21,2006		L Pe	ak Search
		Mkr1	123.6 s	
Ref —10 dBm Norm	#Atten 0 dB	-18	.00 dBm	Next Peal
Log				
10			No	ext Pk Righ
dB/				ALEK RIGH
			N	lext Pk Lef
LgAv				Min Search
ulterations	washi at transi ba basha kutu a mahayan b	leaters is a base bound as been been the second		
W1 S2			DI	Dk Caanal
S3 FS <mark> </mark>			PK	-Pk Search
£ (f):				
FTun				Mkr → Cl
				,
				М
Center 5.300 000) GHz	SI	oan 0 Hzî	More 1 of
Res BW 1 MHz	#VBW 3 M⊦	z - Sweep 300 s (81	.92 pts)	1 01
Query UNTERMIN	NATED			

Radar Burst at the End of the Channel Availability Check Time

Page No: 139 of 174

6. In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

These tests define how the following DFS parameters are verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time, and Non-Occupancy Period.

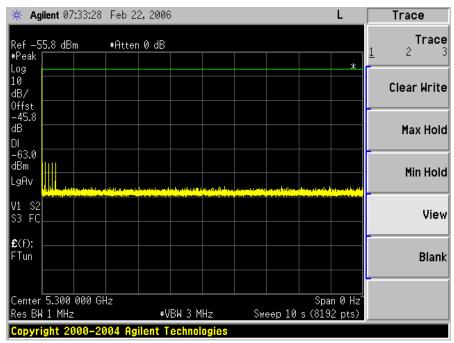

The steps below define the procedure to determine the above mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold + 1dB (-63dBm) is generated on the Operating Channel of the U-NII device.

A U-NII device operating as a Client Device will associate with the UUT (Master) at 5300 MHz. Stream the MPEG test file from the Master Device to the Client Device on the selected Channel for the entire period of the test.

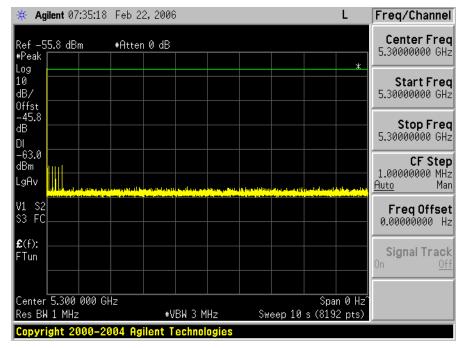
At time T_0 the Radar Waveform generator sends a Burst of pulses for each of the radar types at -63dBm.

Observe the transmissions of the UUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the UUT during the observation time (Channel Move Time). Compare the Channel Move Time and Channel Closing Transmission Time results to the limits defined in the *DFS Response requirement values table*.

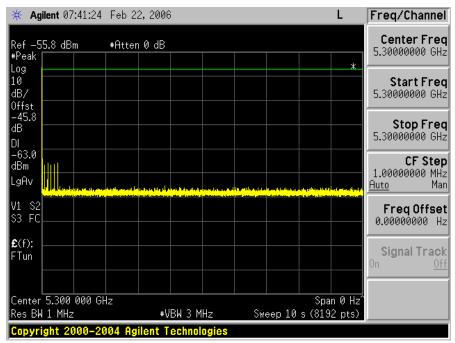
The following plot demonstrates a channel close time of 50ms, with an aggregate of no more than 50 ms. Type 1 radar was used for this data.

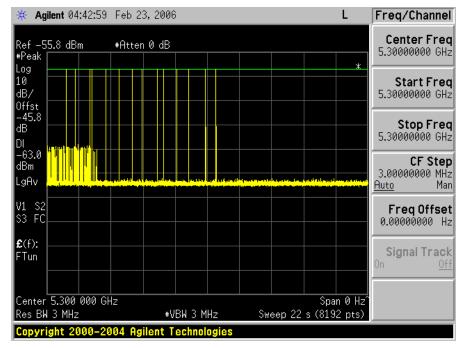

Page No: 140 of 174

🔆 Agilent 12:26:14	Feb 21, 2006	i		L	Marker
Ref — 10 dBm	#Atten 0 dB		∆ Mkr	1 200 ms -52.06 dB	Select Marker
#Peak _{1R} Log φ					<u> </u>
10 dB/					Normal
					Dalha
					Delta
LgAv					Delta Pair (Tracking Ref) Ref ▲
and the second second second	da na mutan na pratici da la				
W1 S2 S3 VC					Span Pair Span <u>Center</u>
£ (f):					- Off
					-
Center 5.300 000 Gł				Span 0 Hz^	More
Res BW 1 MHz		BW 3 MHz	Sweep 10 s	(8192 pts)	1 of 2
Copyright 2000-20	004 Agilent T	echnologies			

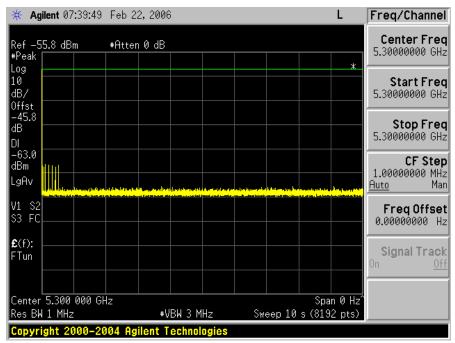

Channel Move Time, Channel Closing Transmission Time for Type 1 radar.

Channel Move Time, Channel Closing Transmission Time for Type 2 radar.

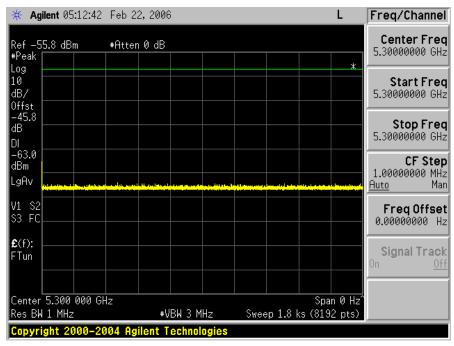

Page No: 141 of 174


Channel Move Time, Channel Closing Transmission Time for Type 3 radar.

Channel Move Time, Channel Closing Transmission Time for Type 4 radar.


Page No: 142 of 174

Channel Move Time, Channel Closing Transmission Time for Type 5 radar.


Channel Move Time, Channel Closing Transmission Time for Type 6 radar.

Page No: 143 of 174

Measure the UUT for more than 30 minutes following the channel close/move time to verify that the UUT does not resume any transmissions on this Channel.

30 Minute Non-Occupancy Period (using Type 1 radar)

Page No: 144 of 174

7. Statistical Performance Check

The steps below define the procedure to determine the minimum percentage of detection when a radar burst with a level equal to the DFS Detection Threshold + 1dB (-63dBm) is generated on the Operating Channel of the U-NII device.

A U-NII device operating as a Client Device will associate with the UUT (Master) at 5300 MHz. Stream the MPEG test file from the Master Device to the Client Device on the selected Channel for the entire period of the test.

The Radar Waveform generator sends the individual waveform for each of the radar types 1-6 at -63dbm. Statistical data will be gathered to determine the ability of the device to detect the radar test waveforms. The device can utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trial runs. The percentage of successful detection is calculated by:

 $\frac{\textit{TotalWaveformDetections}}{100} \times 100 \text{ = Probability of Detection Radar Waveform}$ **TotalWaveformTrials**

The Minimum number of trails, minimum percentage of successful detection and the average minimum percentage of successful detection are found in the Radar Test Waveforms section.

Page No: 145 of 174

Type 1 Radar Statistical Performance

Trial		PRI		1=Detection
#	Pulse Width (us)	(us)	Pulses/Burst	Blank=No Detection
1	1	1428	18	1
2	1	1428	18	1
3	1	1428	18	1
4	1	1428	18	
5	1	1428	18	1
6	1	1428	18	1
7	1	1428	18	1
8	1	1428	18	1
9	1	1428	18	1
10	1	1428	18	1
11	1	1428	18	1
12	1	1428	18	
13	1	1428	18	
14	1	1428	18	1
15	1	1428	18	1
16	1	1428	18	1
17	1	1428	18	
18	1	1428	18	1
19	1	1428	18	1
20	1	1428	18	1
21	1	1428	18	1
22	1	1428	18	1
23	1	1428	18	1
24	1	1428	18	1
25	1	1428	18	1
26	1	1428	18	1
27	1	1428	18	1
28	1	1428	18	1
29	1	1428	18	1
30	1	1428	18	1
		Dete	ction Percentage	87% (>60%)

Page No: 146 of 174

Type 2	Radar Statistica	Performance

Trial	Pulses/Burst	Pulse Width (us)	PRI (us)	1=Detection Blank=No Detection
1	25	3.3	186	1
2	25	2.2	193	1
3	29	1.8	194	1
4	29	2.4	230	1
5	23	1.1	207	1
6	27	1.9	187	1
7	27	3.3	164	1
8	23	4.5	197	1
9	26	3.9	188	1
10	26	2.0	199	1
11	28	4.2	190	1
12	29	2.9	204	1
13	26	5.0	175	1
14	28	4.0	191	1
15	27	2.0	208	1
16	28	3.9	197	1
17	25	1.7	205	1
18	29	1.0	180	1
19	23	4.4	171	1
20	27	3.6	228	
21	24	1.0	159	1
22	25	4.1	191	1
23	25	3.8	170	1
24	29	1.0	222	1
25	28	2.0	229	1
26	23	1.0	208	1
27	28	2.2	154	1
28	28	1.8	230	1
29	23	1.8	166	1
30	25	2.1	226	1
		Detection P	Percentage	97% (>60%)

Trial				1=Detection
#	Pulses/Burst	Pulse Width (us)	PRI (us)	Blank=No Detection
1	18	7.5	460	1
2	16	7.4	424	1
3	16	7.4	240	1
4	16	6.0	288	1
5	16	9.8	329	1
6	16	9.2	378	1
7	18	9.8	223	1
8	17	8.0	362	1
9	17	6.1	373	
10	16	8.7	461	
11	16	6.9	376	1
12	17	8.9	308	1
13	18	9.9	471	1
14	17	9.3	355	1
15	18	6.1	446	1
16	16	6.9	478	1
17	18	7.6	482	1
18	16	6.8	403	1
19	17	6.5	405	1
20	16	6.5	285	1
21	17	7.4	316	1
22	16	7.0	427	1
23	18	6.0	266	1
24	16	6.5	230	1
25	17	8.2	489	1
26	16	6.3	267	1
27	16	8.0	370	1
28	16	9.0	354	1
29	18	6.6	284	1
30	16	6.0	390	1
		Detection P	ercentage	93% (>60%)

Trial #	Pulses/Burst	Pulse Width (us)	PRI (us)	1=Detection Blank=No Detection		
1	12	11.2	248	1		
2	12	13.6	204	1		
3	15	15.1	238			
4	13	14.8	429	1		
5	15	18.6	460	1		
6	14	19.0	247	1		
7	12	15.0	211	1		
8	13	12.0	247	1		
9	16	16.7	378	1		
10	14	19.4	417	1		
11	13	15.0	418	1		
12	13	18.8	283	1		
13	12	13.0	226	1		
14	12	14.9	259	1		
15	16	16.1	207			
16	14	16.9	235	1		
17	12	17.1	491			
18	15	17.8	267	1		
19	13	12.5	355	1		
20	14	11.7	425	1		
21	15	12.7	284	1		
22	16	15.2	318	1		
23	13	19.6	346	1		
24	13	13.8	356	1		
25	13	17.0	359	1		
26	14	15.2	473	1		
27	12	16.9	246	1		
28	16	11.2	221	1		
29	13	13.7	345	1		
30	13	13.0	443	1		
	Detection Percentage 90% (>60%)					

In addition an average minimum percentage of successful detection across all four Short pulse radar test waveforms is required and is calculated as follows:

$$\frac{P_d 1 + P_d 2 + P_d 3 + P_d 4}{4} = (87\% + 97\% + 93\% + 90\%)/4 = 91.75\% (>80\%)$$

Page No: 149 of 174

Type 5 Radar Statistical Performance						
Trial		1=Detection				
#	Filename*	Blank=No Detection				
1	Bin5Statistics_1	1				
2	Bin5Statistics_2	1				
3	Bin5Statistics_3					
4	Bin5Statistics_4	1				
5	Bin5Statistics_5	1				
6	Bin5Statistics_6	1				
7	Bin5Statistics_7	1				
8	Bin5Statistics_8	1				
9	Bin5Statistics_9	1				
10	Bin5Statistics_10	1				
11	Bin5Statistics_11	1				
12	Bin5Statistics_12	1				
13	Bin5Statistics_13	1				
14	Bin5Statistics_9	1				
15	Bin5Statistics_15	1				
16	Bin5Statistics_16	1				
17	Bin5Statistics_17	1				
18	Bin5Statistics_18	1				
19	Bin5Statistics_19	1				
20	Bin5Statistics_20	1				
21	Bin5Statistics_21	1				
22	Bin5Statistics_22	1				
23	Bin5Statistics_23	1				
24	Bin5Statistics_24	1				
25	Bin5Statistics_25	1				
26	Bin5Statistics_26	1				
27	Bin5Statistics_27					
28	Bin5Statistics_28	1				
29	Bin5Statistics_29	1				
30	Bin5Statistics_30	1				
Det	ection Percentage	93% (>80%)				

Type 5 Radar Statistical Performance

*See the Bin5 Radar Characteristics at the end of this report.

Page No: 150 of 174

Trial				1=Detection	
#	Pulses/Hop	Pulse Width (us)	PRI (us)	Blank=No Detection	
1	9	1	333	1	
2	9	1	333	1	
3	9	1	333	1	
4	9	1	333	1	
5	9	1	333	1	
6	9	1	333	1	
7	9	1	333	1	
8	9	1	333	1	
9	9	1	333	1	
10	9	1	333		
11	9	1	333	1	
12	9	1	333	1	
13	9	1	333	1	
14	9	1	333	1	
15	9	1	333	1	
16	9	1	333	1	
17	9	1	333	1	
18	9	1	333	1	
19	9	1	333	1	
20	9	1	333	1	
21	9	1	333	1	
22	9	1	333	1	
23	9	1	333	1	
24	9	1	333	1	
25	9	1	333	1	
26	9	1	333	1	
27	9	1	333	1	
28	9	1	333	1	
29	9	1	333	1	
30	9	1	333	1	
	Detection Percentage 97% (>70%)				

Page No: 151 of 174

			Bin5Statis	tics 1.txt	
Burst#	Pulses	Chirp(MHz)	PW(uS)	_ Inter-pulse spacing/s(uS)	Pulse Start(S)
1	2	9	55	1521	0.246287
2	3	6	80	1262,1901	0.924482
3	3	10	85	1824,1637	1.872273
4	1	8	100	NA	2.431316
5	1	8	95	NA	3.889790
6	3	15	95	1758,1730	4.753358
7	3	9	80	1413,1222	5.572570
8	3	17	50	1397,1158	5.918443
9	2	10	80	1977	6.557103
10	2	5	90	1861	7.522707
11	3	19	65	1983,1770	8.486594
12	1	12	60	NA	9.389964
13	2	11	85	1563	9.784574
14	1	16	60	NA	10.783674
15	1	5	90	NA	11.594683
			Bin5Statis		
Burst#	Pulses	Chirp(MHz)	PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	1	18	90	NA	0.452644
2	1	9	75	NA	2.099265
3	3	13	65	1031,1696	2.807488
4	1	5	60	NA	3.741491
5	3	16	65	1325,1857	5.409811
6	3	19	60	1880,1092	5.760215
7	1	17	80	NA	7.027694
8	1	12	100	NA	7.661985
9	1	15	55	NA	8.771149
10	3	20	55	1119,1195	10.351116
11	3	14	90	1713,1583	11.494393
			Bin5Statis	tics 3.txt	
Burst#	Pulses	Chirp(MHz)	PW(uS)	 Inter-pulse spacing/s(uS)	Pulse Start(S)
1	1	13	65 [´]	NA	0.134358
2	1	10	70	NA	1.712318
3	1	12	60	NA	2.950198
4	1	17	55	NA	4.063267
5	1	17	70	NA	4.800903
6	3	20	50	1071,1420	6.241647
7	3	11	65	1105,1203	7.291000
8	1	20	65	NA	9.476822
9	1	12	90	NA	10.744746
10	1	12	70	NA	11.877409

Page No: 152 of 174

			Bin5Statistics	s_4.txt	
Burst#	Pulses	Chirp(MHz)	PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	3	17	50	1414,1793	0.392262
2	1	5	65	NA	1.300813
3	1	10	75	NA	2.058838
4	2	19	60	1624	2.330585
5	1	14	60	NA	3.349062
6	3	17	75	1448,1433	4.190149
7	1	8	55	NA	4.395628
8	1	17	95	NA	5.162492
9	2	14	50	1559	5.927574
10	3	18	65		6.684199
11	3	15	55	1005,1949 1215,1314	7.609330
12	2	9	90	1884	8.071826
13	2	12	50	1199	8.541376
14	1	20	65	NA	9.435895
15	2	17	65	1220	9.896956
16	1	13	50	NA	10.784747
17	1	5	75	NA	11.375583
			DinEStatiation	o	
Burst#	Pulses		Bin5Statistics	Inter-pulse spacing/s(uS)	Dulas Start(S)
1 Dui St#	ruises 3	Chirp(MHz) 7	PW(uS) 75	1345,1830	Pulse Start(S) 0.942297
2	3	11	85	1011,1989	1.958298
2	2	16	60	1584	3.230325
4	2	7	90	NA	5.367928
4 5	2	9	90 95	1087	6.574788
6	1	18	80	NA	8.239984
7	3	9	60	1749,1221	9.783378
8	3	15	50	1548,1840	11.741036
0	0	10	00	1040,1040	11.741000
			Bin5Statistics	s_6.txt	
Burst#	Pulses	Chirp(MHz)	PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	1	5	100	NA	0.790197
2	1	7	85	NA	2.410497
3	3	12	75	1405,1036	3.244272
4	2	7	100	1699	5.742278
5	3	8	95	1639,1341	6.693310
6	1	16	75	NA	8.333037
7	2	18	80	1640	9.014737
8	1	11	80	NA	11.871922

Page No: 153 of 174

			Bin5Statist	ics_7.txt	
Burst#	Pulses	Chirp(MHz)	PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	3	15	60	1595,1224	0.457801
2	3	11	100	1591,1089	1.061580
3	3	9	90	1977,1765	1.603406
4	2	15	65	1343	2.203330
5	2	9	70	1295	2.494725
6	2	5	60	1401	3.520407
7	3	16	60	1062,1661	3.616961
8	3	19	100	1836,1737	4.207720
9	1	16	60	NA	5.103347
10	3	11	55	1814,1493	5.988766
11	1	15	65	NA	6.186605
12	1	7	70	NA	6.803399
13	3	13	60	1535,1037	7.441443
14	3	6	100	1270,1482	7.827951
15	1	14	75	NA	8.731000
16	3	18	90	1053,1161	9.234468
17	2	10	70	1130	9.958936
18	2	5	95	1793	10.364713
19	2	14	50	1217	11.052249
20	3	20	55	1154,1427	11.882144
			D' 501 1' 1'		
Dunali	Dulara		Bin5Statisti		$\mathbf{D}_{\mathrm{rel}} = \mathbf{O}_{\mathrm{rel}} + \mathbf{I}_{\mathrm{rel}} $
Burst#	Pulses	Chirp(MHz)	PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	3	16	90	1456,1571	0.353281
2	1	14	90	NA	0.836312
3	1	15	75	NA	1.382728
4	1	9	70	NA	2.185795
5	3	6	75	1297,1226	2.662728
6	1	13	95	NA	3.564776
7	2	6	100	1594	3.971332
8	3	8	50	1825,1923	4.508699
9	2	14	95	1836	5.361428
10	1	16	50	NA	5.536490
11	3	13	60	1234,1066	6.349730
12	2	20	60	1446	7.019008
13	2	12	100	1467	7.789912
14	2	14	55	1591	7.924687
15	3	6	50	1128,1434	8.825602
16	1	19	60	NA	9.028199
17	2	20	80	1513	9.790945
18	1	12	65	NA	10.756373
19	3	6	65	1892,1028	11.244397
20	2	10	80	1695	11.693240
			-		

Page No: 154 of 174

Burst# Pulses Chirp(MHz) PW(uS) Inter-pulse spacing/s(uS) Pulse Start(S) 1 3 10 65 1319,1320 0.123725 2 1 13 95 NA 0.679258 3 2 10 55 1710 1.561018 4 2 9 95 1460 2.029640 5 3 8 85 1586,1947 2.816176 6 2 17 90 1359 3.488058 7 2 19 60 1523 3.833848 8 1 10 75 NA 4.600990 9 2 16 70 1207 5.355715 10 3 12 75 1803,1524 6.203642 12 2 9 60 1267 7.149198 13 1 18 70 NA 7.380846 14 3 17 60 1
2 1 13 95 NA 0.679258 3 2 10 55 1710 1.561018 4 2 9 95 1460 2.029640 5 3 8 85 1586,1947 2.816176 6 2 17 90 1359 3.488058 7 2 19 60 1523 3.833848 8 1 10 75 NA 4.600990 9 2 16 70 1207 5.355715 10 3 12 60 1776,1186 5.565856 11 3 12 75 1803,1524 6.203642 12 2 9 60 1267 7.149198 13 1 18 70 NA 7.380846 14 3 11 55 1636,1448 8.090914 15 1 6 65 NA 8.597364
3 2 10 55 1710 1.561018 4 2 9 95 1460 2.029640 5 3 8 85 1586,1947 2.816176 6 2 17 90 1359 3.488058 7 2 19 60 1523 3.83344 8 1 10 75 NA 4.600990 9 2 16 70 1207 5.355715 10 3 12 60 1776,1186 5.565856 11 3 12 75 1803,1524 6.203642 12 2 9 60 1267 7.149188 13 1 18 70 NA 7.380846 14 3 11 55 1636,1448 8.090914 15 1 6 65 NA 8.597364 16 3 7 70 1461,1760 9.466593
4 2 9 95 1460 2.029640 5 3 8 85 1586,1947 2.816176 6 2 17 90 1359 3.488058 7 2 19 60 1523 3.833848 8 1 10 75 NA 4.600990 9 2 16 70 1207 5.355715 10 3 12 60 1776,1186 5.65856 11 3 12 75 1803,1524 6.203642 12 2 9 60 1267 7.149198 13 1 18 70 NA 7.380846 14 3 11 55 1636,1448 8.090914 15 1 6 65 NA 8.597364 16 3 7 70 1461,1760 9.466593 17 2 19 60 1302,1156 10.395089
5 3 8 85 1586,1947 2.816176 6 2 17 90 1359 3.488058 7 2 19 60 1523 3.833848 8 1 10 75 NA 4.600990 9 2 16 70 1207 5.355715 10 3 12 60 1776,1186 5.565856 11 3 12 75 1803,1524 6.203642 12 2 9 60 1267 7.149198 13 1 18 70 NA 7.380846 14 3 11 55 1636,1448 8.090914 15 1 6 65 NA 8.597364 16 3 7 70 1461,1760 9.466593 17 2 19 60 1302,1156 10.395089 19 2 15 75 1416 10.95621
6 2 17 90 1359 3.488058 7 2 19 60 1523 3.833848 8 1 10 75 NA 4.600990 9 2 16 70 1207 5.355715 10 3 12 60 1776,1186 5.565856 11 3 12 75 1803,1524 6.203642 12 2 9 60 1267 7.149198 13 1 18 70 NA 7.380846 14 3 11 55 1636,1448 8.090914 15 1 6 65 NA 8.597364 16 3 7 70 1461,1760 9.466593 17 2 19 60 1501 9.961888 18 3 17 60 1302,1156 10.395089 19 2 15 75 1416 10.956211 </td
7 2 19 60 1523 3.833848 8 1 10 75 NA 4.600990 9 2 16 70 1207 5.355715 10 3 12 60 1776,1186 5.565856 11 3 12 75 1803,1524 6.203642 12 2 9 60 1267 7.149198 13 1 18 70 NA 7.380846 14 3 11 55 1636,1448 8.090914 15 1 6 65 NA 8.597364 16 3 7 70 1461,1760 9.466593 17 2 19 60 1501 9.961888 18 3 17 60 1302,1156 10.395089 19 2 15 75 1416 10.956211 20 3 15 70 1654,1259 11.4
8 1 10 75 NA 4.600990 9 2 16 70 1207 5.355715 10 3 12 60 1776,1186 5.565856 11 3 12 75 1803,1524 6.203642 12 2 9 60 1267 7.149198 13 1 18 70 NA 7.380846 14 3 11 55 1636,1448 8.090914 15 1 6 65 NA 8.597364 16 3 7 70 1461,1760 9.466593 17 2 19 60 1501 9.961888 18 3 17 60 1302,1156 10.395089 19 2 15 75 1416 10.956211 20 3 15 70 1654,1259 11.461361 Bin5Statistics_10.txt Burst# <
9 2 16 70 1207 5.355715 10 3 12 60 1776,1186 5.565856 11 3 12 75 1803,1524 6.203642 12 2 9 60 1267 7.149198 13 1 18 70 NA 7.380846 14 3 11 55 1636,1448 8.090914 15 1 6 65 NA 8.597364 16 3 7 70 1461,1760 9.466593 17 2 19 60 1501 9.961888 18 3 17 60 1302,1156 10.395089 19 2 15 75 1416 10.956211 20 3 15 70 1654,1259 11.461361 2 3 5 85 1636,1035 2.737162 3 2 20 85 1185 <
10 3 12 60 1776,1186 5.565856 11 3 12 75 1803,1524 6.203642 12 2 9 60 1267 7.149198 13 1 18 70 NA 7.380846 14 3 11 55 1636,1448 8.090914 15 1 6 65 NA 8.597364 16 3 7 70 1461,1760 9.466593 17 2 19 60 1501 9.961888 18 3 17 60 1302,1156 10.395089 19 2 15 75 1416 10.956211 20 3 15 70 1654,1259 11.461361 Burst# Pulses Chirp(MHz) PW(uS) Inter-pulse spacing/s(uS) Pulse Start(S) 1 3 20 100 1337,1945 0.917037 2 3 5
11 3 12 75 1803,1524 6.203642 12 2 9 60 1267 7.149198 13 1 18 70 NA 7.380846 14 3 11 55 1636,1448 8.090914 15 1 6 65 NA 8.597364 16 3 7 70 1461,1760 9.466593 17 2 19 60 1501 9.961888 18 3 17 60 1302,1156 10.395089 19 2 15 75 1416 10.956211 20 3 15 70 1654,1259 11.461361 Burst# Pulses Chirp(MHz) PW(uS) Inter-pulse spacing/s(uS) Pulse Start(S) 1 3 20 100 1337,1945 0.917037 2 3 5 85 1636,1035 2.737162 3 2 20 85 1185 3.893494 4 2 11 80 1808
12 2 9 60 1267 7.149198 13 1 18 70 NA 7.380846 14 3 11 55 1636,1448 8.090914 15 1 6 65 NA 8.597364 16 3 7 70 1461,1760 9.466593 17 2 19 60 1501 9.961888 18 3 17 60 1302,1156 10.395089 19 2 15 75 1416 10.956211 20 3 15 70 1654,1259 11.461361 Burst# Pulses Chirp(MHz) PW(uS) Inter-pulse spacing/s(uS) Pulse Start(S) 1 3 20 100 1337,1945 0.917037 2 3 5 85 1636,1035 2.737162 3 2 20 85 1185 3.893494 4 2 11 80 1808 5.542858 5 1 6 55
13 1 18 70 NA 7.380846 14 3 11 55 1636,1448 8.090914 15 1 6 65 NA 8.597364 16 3 7 70 1461,1760 9.466593 17 2 19 60 1501 9.961888 18 3 17 60 1302,1156 10.395089 19 2 15 75 1416 10.956211 20 3 15 70 1654,1259 11.461361 Bin5Statistics_10.txt Burst# Pulses Chirp(MHz) PW(uS) Inter-pulse spacing/s(uS) Pulse Start(S) 1 3 20 100 1337,1945 0.917037 2 3 5 85 1636,1035 2.737162 3 2 20 85 1185 3.893494 4 2 11 80 1808 5.542858 5 1 6 55 NA 6.082829
14 3 11 55 1636,1448 8.090914 15 1 6 65 NA 8.597364 16 3 7 70 1461,1760 9.466593 17 2 19 60 1501 9.961888 18 3 17 60 1302,1156 10.395089 19 2 15 75 1416 10.956211 20 3 15 70 1654,1259 11.461361 Bin5Statistics_10.txt Burst# Pulses Chirp(MHz) PW(uS) Inter-pulse spacing/s(uS) Pulse Start(S) 1 3 20 100 1337,1945 0.917037 2 3 5 85 1636,1035 2.737162 3 2 20 85 1185 3.893494 4 2 11 80 1808 5.542858 5 1 6 55 NA 6.082829 6 2 14 60 1234 8.796411
15 1 6 65 NA 8.597364 16 3 7 70 1461,1760 9.466593 17 2 19 60 1501 9.961888 18 3 17 60 1302,1156 10.395089 19 2 15 75 1416 10.956211 20 3 15 70 1654,1259 11.461361 Bin5Statistics_10.txt Bin5Statistics_10.txt Burst# Pulses Chirp(MHz) PW(uS) Inter-pulse spacing/s(uS) Pulse Start(S) 1 3 20 100 1337,1945 0.917037 2 3 5 85 1636,1035 2.737162 3 2 20 85 1185 3.893494 4 2 11 80 1808 5.542858 5 1 6 55 NA 6.082829 6 2 14 60 1234 8.796411
16 3 7 70 1461,1760 9.466593 17 2 19 60 1501 9.961888 18 3 17 60 1302,1156 10.395089 19 2 15 75 1416 10.956211 20 3 15 70 1654,1259 11.461361 Bir5Statistics_10.txt Bir5Statistics_10.txt Burst# Pulses Chirp(MHz) PW(uS) Inter-pulse spacing/s(uS) Pulse Start(S) 1 3 20 100 1337,1945 0.917037 2 3 5 85 1636,1035 2.737162 3 2 20 85 1185 3.893494 4 2 11 80 1808 5.542858 5 1 6 55 NA 6.082829 6 2 14 60 1234 8.796411
172196015019.96188818317601302,115610.3950891921575141610.95621120315701654,125911.461361Bin5Statistics_10.txtBurst# PulsesChirp(MHz)PW(uS)Inter-pulse spacing/s(uS)Pulse Start(S)13201001337,19450.917037235851636,10352.73716232208511853.89349442118018085.54285851655NA6.08282962146012348.796411
18 3 17 60 1302,1156 10.395089 19 2 15 75 1416 10.956211 20 3 15 70 1654,1259 11.461361 Bin5Statistics_10.txt Burst# Pulses Chirp(MHz) PW(uS) Inter-pulse spacing/s(uS) Pulse Start(S) 1 3 20 100 1337,1945 0.917037 2 3 5 85 1636,1035 2.737162 3 2 20 85 1185 3.893494 4 2 11 80 1808 5.542858 5 1 6 55 NA 6.082829 6 2 14 60 1234 8.796411
1921575141610.95621120315701654,125911.461361Bin5Statistics_10.txtBurst#PulsesChirp(MHz)PW(uS)Inter-pulse spacing/s(uS)Pulse Start(S)13201001337,19450.917037235851636,10352.73716232208511853.89349442118018085.54285851655NA6.08282962146012348.796411
20 3 15 70 1654,1259 11.461361 Bin5Statistics_10.txt Burst# Pulses Chirp(MHz) PW(uS) Inter-pulse spacing/s(uS) Pulse Start(S) 1 3 20 100 1337,1945 0.917037 2 3 5 85 1636,1035 2.737162 3 2 20 85 1185 3.893494 4 2 11 80 1808 5.542858 5 1 6 55 NA 6.082829 6 2 14 60 1234 8.796411
Bin5Statistics_10.txtBurst#PulsesChirp(MHz)PW(uS)Inter-pulse spacing/s(uS)Pulse Start(S)13201001337,19450.917037235851636,10352.73716232208511853.89349442118018085.54285851655NA6.08282962146012348.796411
Burst#PulsesChirp(MHz)PW(uS)Inter-pulse spacing/s(uS)Pulse Start(S)13201001337,19450.917037235851636,10352.73716232208511853.89349442118018085.54285851655NA6.08282962146012348.796411
Burst#PulsesChirp(MHz)PW(uS)Inter-pulse spacing/s(uS)Pulse Start(S)13201001337,19450.917037235851636,10352.73716232208511853.89349442118018085.54285851655NA6.08282962146012348.796411
13201001337,19450.917037235851636,10352.73716232208511853.89349442118018085.54285851655NA6.08282962146012348.796411
235851636,10352.73716232208511853.89349442118018085.54285851655NA6.08282962146012348.796411
32208511853.89349442118018085.54285851655NA6.08282962146012348.796411
42118018085.54285851655NA6.08282962146012348.796411
51655NA6.08282962146012348.796411
6 2 14 60 1234 8.796411
7 1 9 70 NA 9.529375
8 2 9 100 1877 10.700461
Bin5Statistics_11.txt
Burst# Pulses Chirp(MHz) PW(uS) Inter-pulse spacing/s(uS) Pulse Start(S)
1 1 14 60 NA 0.990167
2 3 9 70 1406,1986 2.244706
3 3 8 90 1106,1488 2.960573
4 3 15 50 1739,1038 4.509384
5 1 19 90 NA 5.033382
6 3 6 85 1678,1959 6.756751
7 1 9 70 NA 7.485086
8 1 8 90 NA 8.784489
9 2 14 50 1147 10.581212
10 2 10 65 1020 11.289374
Page No: 155 of 174

			Bin5Statis	stics_12.txt	
Burst#	Pulses	Chirp(MHz)	PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	3	19	95	1225,1231	0.033670
2	2	13	75	1867	0.761849
3	1	17	50	NA	2.105049
4	3	12	90	1445,1620	2.436484
5	1	17	60	NA	3.322861
6	2	6	65	1156	4.041820
7	3	11	75	1341,1667	4.559879
8	1	14	80	NA	5.605528
9	3	17	55	1303,1906	6.491394
10	3	13	80	1016,1672	7.064682
11	1	10	70	NA	8.238815
12	3	18	80	1536,1619	8.671898
13	3	9	80	1852,1505	9.459053
14	3	7	50	1699,1838	10.434823
15	1	6	50	NA	10.937071
16	1	7	65	NA	11.572879
D ///	D 1			tics_13.txt	
Burst#	Pulses	Chirp(MHz)	PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	3	5	100	1994,1657	0.212483
2	2	7	65	1908	1.737974
3	1	11	80	NA	1.850478
4	1	19	50	NA	3.154995
5	2	6	75	1708	4.606621
6	3	8	60	1760,1885	5.508717
7	2	10	100	1403	5.784591
8	2	12	55	1734	7.043373
9	2	20	80	1130	8.202944
10	1	12	95	NA	8.338472
11	3	11	65	1894,1082	9.662044
12	3	19	65	1257,1910	10.352585
13	3	18	65	1564,1246	11.820741

Page No: 156 of 174

			Bin5Statis	tics_14.txt	
Burst#	Pulses	Chirp(MHz)	PW(uS)	_ Inter-pulse spacing/s(uS)	Pulse Start(S)
1	1	14	85	NA	0.398389
2	3	15	95	1630,1500	1.151616
3	2	10	95	1005	2.037676
4	1	5	90	NA	3.273951
5	2	15	75	1491	3.766544
6	1	12	80	NA	4.569432
7	3	8	50	1942,1764	5.498577
8	1	12	50	NA	6.731193
9	2	12	55	1555	7.270068
10	3	17	100	1643,1419	8.408891
11	1	7	85	NA	9.260391
12	3	7	75	1258,1416	9.544812
13	1	18	95	NA	10.915297
14	3	7	90	1623,1394	11.162282
			Bin5Statis	tics 15.txt	
Burst#	Pulses	Chirp(MHz)	PW(uS)	_ Inter-pulse spacing/s(uS)	Pulse Start(S)
1	2	18	100	1847	0.549291
2	3	11	80	1095,1664	1.710120
3	1	5	100	NA	2.092751
4	3	8	70	1790,1146	3.084616
5	2	16	50	1299	4.423566
6	1	15	70	NA	4.956382
7	1	12	85	NA	5.711146
8	2	14	50	1063	6.999373
9	1	20	70	NA	7.949971
10	1	7	55	NA	8.698228
11	3	20	90	1628,1382	9.364847
12	3	12	85	1857,1720	10.478761
13	3	17	80	1133,1861	11.374023
			Bin5Statis	stics_16.txt	
Burst#	Pulses	Chirp(MHz)	PW(uS)	_ Inter-pulse spacing/s(uS)	Pulse Start(S)
1	2	20	95	1972	0.982727
2	1	18	100	NA	1.266440
3	2	14	90	1898	3.517665
4	1	20	55	NA	4.497820
5	3	11	80	1861,1717	5.106569
6	2	12	60	1660	7.073856
7	3	7	55	1645,1085	8.323434
8	2	15	55	1694	9.512301
9	2	18	55	1434	10.480360
10	2	12	80	1088	11.621332
			Раде	No: 157 of 174	

			Bin5Statisti	cs_17.txt	
Burst#	Pulses	Chirp(MHz)	PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	2	9	75	1153	1.088453
2	3	9	60	1680,1359	2.051927
3	1	20	90	NA	3.327541
4	1	13	90	NA	4.183652
5	3	9	100	1795,1157	4.880381
6	1	15	75	NA	7.126289
7	2	10	85	1748	7.231523
8	2	19	75	1952	8.469657
9	3	12	100	1492,1044	10.544474
10	3	11	80	1069,1485	11.068740
			Bin5Statisti	cs_18.txt	
Burst#	Pulses	Chirp(MHz)	Bin5Statisti PW(uS)	cs_18.txt Inter-pulse spacing/s(uS)	Pulse Start(S)
Burst# 1	Pulses 2	Chirp(MHz) 16			Pulse Start(S) 0.627796
		• • •	PW(uS)	Inter-pulse spacing/s(uS)	• •
1	2	16	PW(uS) 90	Inter-pulse spacing/s(uS) 1354	0.627796
1 2	2 1	16 13	PW(uS) 90 50	Inter-pulse spacing/s(uS) 1354 NA	0.627796 2.059322
1 2 3	2 1 1	16 13 14	PW(uS) 90 50 55	Inter-pulse spacing/s(uS) 1354 NA NA	0.627796 2.059322 2.936790
1 2 3 4	2 1 1 2	16 13 14 8	PW(uS) 90 50 55 50	Inter-pulse spacing/s(uS) 1354 NA NA 1956	0.627796 2.059322 2.936790 3.778622
1 2 3 4 5	2 1 1 2 2	16 13 14 8 12	PW(uS) 90 50 55 50 50	Inter-pulse spacing/s(uS) 1354 NA NA 1956 1240	0.627796 2.059322 2.936790 3.778622 4.658820
1 2 3 4 5 6	2 1 1 2 2 2	16 13 14 8 12 15	PW(uS) 90 50 55 50 50 95	Inter-pulse spacing/s(uS) 1354 NA NA 1956 1240 1193	0.627796 2.059322 2.936790 3.778622 4.658820 5.525153
1 2 3 4 5 6 7	2 1 2 2 2 1	16 13 14 8 12 15 20	PW(uS) 90 50 55 50 50 95 70	Inter-pulse spacing/s(uS) 1354 NA NA 1956 1240 1193 NA	0.627796 2.059322 2.936790 3.778622 4.658820 5.525153 6.558312
1 2 3 4 5 6 7 8	2 1 2 2 2 1 1	16 13 14 8 12 15 20 13	PW(uS) 90 50 55 50 50 95 70 100	Inter-pulse spacing/s(uS) 1354 NA NA 1956 1240 1193 NA NA	0.627796 2.059322 2.936790 3.778622 4.658820 5.525153 6.558312 8.618717

CISCO SYSTEMS

Page No: 158 of 174

			Bin5Statist	ics_19.txt	
Burst#	Pulses	Chirp(MHz)	PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	1	11	50	NA	0.295058
2	3	13	60	1022,1096	0.758336
3	3	7	65	1560,1592	1.890348
4	1	13	85	NA	1.896963
5	3	8	95	1398,1163	2.846130
6	1	14	65	NA	3.378350
7	1	15	90	NA	3.973148
8	3	15	100	1633,1157	4.970687
9	1	11	95	NA	5.125884
10	3	16	70	1508,1771	5.712335
11	1	12	70	NA	6.943145
12	2	14	65	1297	7.392205
13	1	12	75	NA	7.639831
14	1	15	55	NA	8.491171
15	3	6	90	1495,1376	9.295285
16	2	10	100	1741	9.504974
17	1	9	75	NA	10.468330
18	2	5	50	1507	11.065044
19	3	9	80	1833,1428	11.864814
			Bin5Statis	tics 20.txt	
Burst#	Pulses	Chirp(MHz)	PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	2	16	50	2000	0.372643
2	3	6	50	1398,1499	1.232612
3	1	19	85	NA	1.514363
4	3	16	65	1298,1593	2.532303
5	3	19	65	1035,1000	3.017801
6	3	11	80	1954,1369	3.878699
7	1	20	80	NA	5.075896
8	2	5	80	1283	5.919874
9	1	6	85	NA	6.424047
10	1	6	65	NA	7.294505
11	3	5	80	1858,1520	8.236850
12	2	9	80	1698	8.526208
13	2	10	50	1800	9.562765
14	3	11	80	1997,1651	9.780188
15	1	20	65	NA	10.823517
16	1	19	55	NA	11.918558

Page No: 159 of 174

Bin5Statistics_21.txt					
Burst#	Pulses	Chirp(MHz)	PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	2	15	95	1090	0.154670
2	2	12	60	1730	1.754179
3	3	10	95	1166,1941	2.618319
4	3	19	75	1018,1841	3.538059
5	3	15	85	1744,1809	4.435161
6	2	16	90	1586	5.604252
7	1	9	100	NA	6.358547
8	2	7	70	1314	7.562533
9	3	18	65	1257,1357	8.731204
10	3	12	50	1838,1221	9.004081
11	1	17	100	NA	10.311876
12	1	14	80	NA	11.492352
			Bin5Statist	ics 22.txt	
Burst#	Pulses	Chirp(MHz)	PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	2	15	50	1833	0.733368
2	3	10	100	1150,1568	1.357979
3	3	10	80	1095,1252	2.800413
4	2	11	100	1497	4.247862
5	3	20	70	1680,1707	5.373839
6	3	10	70	1391,1656	5.793849
7	3	15	85	1604,1732	6.726478
8	2	10	85	1101	8.529162
9	2	6	75	1019	9.002649
10	2	10	85	1399	10.746289
11	2	12	60	1828	11.618874
Bin5Statistics_23.txt					
Burst#	Pulses	Chirp(MHz)	PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	3	16	80	1819,1773	0.192466
2	2	13	50	1535	1.405143
3	3	11	55	1221,1185	2.761553
4	2	8	85	1826	4.020767
4 5	3	20	60	1872,1156	5.491484
6	3	8	50	1633,1412	7.137450
7	3	17	90	1066,1569	8.263974
8	5 1	8	100	NA	10.072129
9	1	19	60	NA	10.765613
Э	1	19	00	INA	10.703013

Page No: 160 of 174

			Bin5Statis	stics_24.txt	
Burst#	Pulses		PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	3	Chirp(MHz) 9	85	1613,1283	0.346674
2	3	11	100	1622,1911	1.009025
3	2	12	75	1469	2.027916
4	3	11	70	1410,1545	3.007877
5	3	17	90	1960,1422	3.903858
6	2	19	65	1064	4.374226
7	1	16	70	NA	5.303858
8	2	10	65	1650	5.729172
9	2	10	50	1238	6.960769
10	3	15	80	1055,1798	7.350575
11	2	7	60	1901	8.479697
12	1	9	60	NA	9.023576
13	3	8	55	1646,1897	10.114573
14	1	17	80	NA	11.155209
15	1	17	85	NA	11.327446
				stics_25.txt	
Burst#	Pulses	Chirp(MHz)	PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	2	8	90	1881	0.114491
2	3	16	100	1391,1864	1.879320
3	1	20	65	NA	2.885220
4	2	19	80	1770	3.593760
5	1	20	95	NA	4.424549
6	2	19	90	1307	5.594003
7	1	11	65	NA	6.153904
8	2	6	95	1302	7.160734
9	2	13	50	1485	8.404539
10	3	13	70	1797,1591	9.319933
11	3	13	60	1768,1822	10.480072
12	2	6	85	1218	11.280752
			Bin5Statist	ics_26.txt	
Burst#	Pulses	Chirp(MHz)	PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	1	8	80	NA	0.304141
2	1	15	80	NA	1.507392
3	2	16	85	1112	3.216967
4	3	20	95	1968,1181	5.328848
5	3	13	60	1429,1737	6.022028
6	3	8	90	1385,1562	7.551800
7	1	8	70	NA	9.405552
8	1	10	60	NA	10.827510

Page No: 161 of 174

			Bin5Statisti	cs_27.txt	
Burst#	Pulses	Chirp(MHz)	PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	2	12	75	1663	0.487285
2	2	19	90	1709	2.135252
3	1	6	85	NA	3.140017
4	1	5	55	NA	4.745021
5	1	17	95	NA	6.916680
6	3	5	85	1265,1022	7.778005
7	1	6	55	NA	9.109545
8	3	6	75	1828,1069	11.041950
			Bin5Statisti	ns 28 tyt	
Burst#	Pulses	Chirp(MHz)	PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	2	20	50	1059	0.911509
2	2	7	95	1195	1.350836
3	1	20	100	NA	2.522307
4	1	16	95	NA	4.131000
4 5	2	19	95 95	1262	5.239877
6	2	15	95 70	1067	5.899036
7	2 3	20	55	1507,1757	6.678873
8	2	10	100	1352	8.059416
8 9	2	19	70	NA	9.811315
9 10	2	19	70 50	1679	10.878139
10	2	12	90		
11	3	12	90	1242,1078	11.549879
			Bin5Statisti	—	
Burst#	Pulses	Chirp(MHz)	PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	1	15	55	NA	0.404580
2	1	16	55	NA	1.449394
3	3	20	75	1789,1807	2.016031
4	1	14	80	NA	2.689175
5	3	19	50	1661,1776	3.206599
6	2	14	55	1729	4.169881
7	3	9	50	1293,1404	5.284722
8	2	19	60	1509	6.331572
9	3	14	60	1354,1849	6.652558
10	3	13	70	1692,1200	7.263614
11	3	14	90	1071,1318	8.162366
12	3	13	90	1674,1911	8.972822
13	1	17	90	NA	10.125491
14	2	20	90	1832	10.821064
15	2	19	50	1753	11.824729

Page No: 162 of 174

			Bin5Statisti	cs_30.txt	
Burst#	Pulses	Chirp(MHz)	PW(uS)	Inter-pulse spacing/s(uS)	Pulse Start(S)
1	2	10	70	1462	0.127083
2	1	19	85	NA	0.873202
3	1	16	55	NA	1.779357
4	3	13	55	1589,1655	2.026120
5	1	6	70	NA	2.682897
6	2	13	75	1694	3.166846
7	3	7	65	1747,1684	4.166501
8	2	6	90	1731	4.819822
9	3	18	60	1798,1544	5.434693
10	2	5	70	1242	6.174259
11	1	11	90	NA	6.819444
12	3	12	50	1506,1289	7.399999
13	2	5	90	1364	7.886215
14	1	6	95	NA	8.322875
15	3	19	70	1146,1661	9.416912
16	2	15	85	1949	9.509949
17	3	14	50	1280,1797	10.731485
18	3	7	90	1925,1662	10.760541
19	2	5	65	1162	11.509563

Page No: 163 of 174

Appendix C: Abbreviation Key and Definitions

The following table defines abbreviations used within this test report.

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	٥C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
TAP	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control System	Qp	Quasi Peak
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak
Cal	Calibration	kHz	Kilohertz (1x10 ³)
EN	European Norm	MHz	MegaHertz (1x10 ⁶)
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)
CISPR	International Special Committee on Radio Interference	Н	Horizontal
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization Network	dB	decibel
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³)
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)
L2	Line2	А	Amp
L3	Line 3	μA	Micro Amp (1x10 ⁻⁶)
DC	Direct Current	mS	Milli Second (1x10 ⁻³)
RAW	Uncorrected measurement value, as indicated by the measuring device	μS	Micro Second (1x10 ⁻⁶)
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)
SLCE	Signal Line Conducted Emissions	m	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
Ν	Neutral Line	R	Return
S	Supply	AC	Alternating Current

Appendix D: Radiated Emissions Test Procedure

The following is a summary of the actual test procedure used by Cisco Systems (Doc No: ENG-36583)

Pre-Assessment

The object of the Pre-Assessment Testing is to identify emissions that must be evaluated against the specification limit, under conditions called out in the applicable specification. During this type of testing the repeatability of the test setup and the worst-case layout of the EUT are also determined..

- 1. Arrange the EUT in the chamber as defined in the configuration section of ENG-36583, the TAP and the appropriate specification.
- 2. Where the EUT cannot be configured in accordance with the specification then carry out the following:
 - i. Set the equipment up as close as possible to the requirements.
 - ii. Note within the logbook any deviations from the ard.
 - iii. Use only non-metallic supports.
 - iv. Ensure that the set up used is repeatable.
 - v. Evaluate the effect of the configuration upon the test results.
- 3. Set the antenna to EUT distance to the appropriate test distance.
- 4. An initial scan of the frequency ranges should be undertaken to ensure that all emissions emanate from the EUT and are not ambient (from mobile phones, support equipment etc).
- 5. The EUT should be evaluated in the mode(s) of operation defined in the TAP.
- 6. Measure the emissions profile of the EUT over the required frequency range using the Automated test software
- 7. Once an initial preview scan has been performed the emissions profile of the EUT should be maximized in accordance with the specification.
- 8. Repeat the preview scan after maximizing (unless the overhead cable rack has been utilized). Compare the results with the initial scan to ensure that the worst-case profile has been obtained. *IMPORTANT* If the obtained profiles are considerably different an investigation should be undertaken to ensure that there is not an intermittent problem with the EUT or its cabling.
- 9. If the obtained profiles are similar all emissions within 6dB of the test specification should be identified for formal measurements. If the test software is used to do this then the results must be confirmed manually. Where there are <6 emissions within 6dB of the specification, the worst six emissions should be identified.</p>
- 10. Where the frequencies of emissions are close together care must be taken to ensure that the actual worst case emission has been chosen for the formal measurement. This can usually only be confirmed by

Page No: 165 of 174

maximizing the emission profile. If in doubt identify both (or all) suspect emissions near the center frequency identified by the preview software.

- 11. During testing the overload indicator of the test Rx should be monitored to ensure that the testing is valid. Where an overload condition is suspected this can normally be confirmed by the use of an external attenuator or the Rx linearity function.
- 12. If no signals are within 20dB of the specification limit no formal measurements are required. If this happens the equipment setup should be re-checked to ensure that that it has not developed a fault. When testing to CNS13438 the worst 6 emissions should be recorded regardless
- 13. Repeat the preceding for the remaining Modes and Configurations defined by the TAP or until a worst-case configuration has been obtained. Plots must be made of the worst case emission profile for inclusion in the test report. Plots may also be taken of other representative profiles.

Formal Testing:

The object of Formal/Final measurements is to formally measure the emissions highlighted during the pre-assessment phase against the appropriate specification limits. Maximization of the configuration of the EUT should not be performed during this phase as maximizing the profile at one frequency may change the profile at another and as such invalidate the preview results

- 1. In the **worst case configuration** each emission identified in the pre-assessment phase should be measured against the appropriate specification limit with the appropriate detector:
 - i. Quasi-Peak detector for emissions from 30 MHz to 1GHz
 - ii. Peak detector and average detector for emissions above 1GHz
- 2. Fine Tune the frequency of the emission.
- 3. The emissions should be observed for a sufficient period of time to allow the EUT to undergo a full exercising routine.
- 4. Maximize the amplitude of the emission by rotating the EUT, changing the antenna polarity and scanning the receive antenna height.
- If the emission varies in amplitude with respect to the specification limit, the emission should be observed for at least 15 seconds and the highest reading shall be recorded, with the exception of any brief isolated high reading.
- During testing the overload indicator of the test Rx should be monitored to ensure that the testing is valid., where an overload condition is suspected this can normally be confirmed by the use of external attenuation or the Rx linearity function.
- 7. If the EUT fails to meet the specification, investigations should be undertaken to ensure that the EUT has sufficient isolation from its support equipment and/ or ambient interference.
- 8. Above 1GHz Emissions that do not meet the average specification limit with a peak detector should be compared against the peak limit and re-measured with an Average detector.

Page No: 166 of 174

- 9. Repeat steps 2 to 8 on the remaining emissions identified in the pre-assessment phase.
- 10. Record all relevant data in the eRAT.

Page No: 167 of 174

Appendix E: Conducted Emissions Test Procedure

The following is a summary of the actual test procedure used by Cisco Systems (Doc No: ENG-36541)

Pre-Assessment

The object of the Pre-Assessment Testing is to identify emissions that must be evaluated against the specification limit, under conditions called out in the applicable standard. During this type of testing the repeatability of the test setup and the worst-case layout of the EUT are also determined..

- 1. Arrange the EUT in the chamber as defined in the configuration section of ENG-36541, the TAP and the appropriate Specification
- 2. If drive/support equipment is located outside of the shielded enclosure, care must be taken to adequately filter cables coming into the chamber to reduce any potential ambient noise.
- 3. An initial investigation should be undertaken to ensure that ambient interference from external sources or support equipment are not affecting the measured results of the EUT.
- 4. The EUT should be connected to the LISN via an appropriate length of mains power cord as defined in the Specification.
- 5. Investigations should be made to assess possible effects of I/O cables on the measured emission profile. Such investigations should remain within the boundaries of acceptable configurations defined in the Specification. The main purpose of this investigation is to check for cabling problems and for repeatability. I/O cables should not come within 80cm of the LISN (AMN) This information should be recorded in JLS.
- 6. Ensure that there is a pulse limiter in the measurement path to the input of the spectrum analyzer. Ensure that unused ports of the LISN are terminated in 50 ohms.
- 7. The emission profile of the EUT should be measured across the required frequency range.
- Maximize the emission profile of the EUT over the entire frequency range. The following issues should be considered during the maximization process:
 i. Cable placement and EUT location (within the boundaries of the Specification)
 ii. EUT operating modes (allow for full EUT Cycle times)
- 9. Once the maximum configuration has been discovered, the emission profile should be compared with the most stringent limit from the appropriate Specification.
- 10. If no signals are within 20dB of the Specification limit no formal measurements are required. If this happens the equipment setup should be re-checked to ensure that that it has not developed a fault. When testing to CNS13438 the worst 6 emissions should be recorded regardless.
- 11. Make a Plot of the entire emission profile.
- 12. Repeat steps 9 to 11on the remaining lines.
- 13. Identify all emissions that fail to meet the most stringent limit. These emissions should be formally measured.

Page No: 168 of 174

14. Where the emission profile meets the most stringent limit, the six worst-case emissions should be identified for formal measurements. If the emission profile is broadband in Nature (i.e. switch mode PSU noise) it may be necessary to identify more than 6 emissions to adequately assess the EUT.

Formal Testing:

The object of Formal/Final measurements is to formally measure the emissions highlighted during the pre-assessment phase against the appropriate Specification limits.

- 1. Each emission identified in the pre-assessment phase should be measured against the appropriate Specification limit with a Quasi-Peak detector.
- 2. The emissions should be observed for a sufficient period of time to allow the EUT to undergo a full exercising routine.
- 3. Where the emission varies in amplitude with respect to the Specification limit the emission should be observed for an extended time period (normally 15 seconds). The highest level observed within this 15 second period should be recorded with the exception of any brief isolated transients.
- 4. If the EUT meets the most stringent limit (e.g. the average limit) with the Quasi-Peak detector, measurements with an average detector are not necessary.
- 5. If the EUT fails to meet the most stringent limit with the Quasi-Peak detector the emission should be measured with an Average detector.
- 6. Repeat the measurements on all available power supply conductors.
- 7. If the results are within 3dB of the Specification when measured at 120V 60HZ AC measurements should also be performed at 100V 60/50Hz AC to satisfy VCCI requirements.
- 8. If the EUT fails to meet the Specification, investigations should be undertaken to ensure that the EUT has sufficient isolation from its support equipment and/ or ambient interference.
- 9. If the EUT fails to meet the CFR47 limit, investigations should be undertaken to determine if the emission is a broadband in nature. If the difference between the results obtained with the average detector and the results obtained with quasi peak detector are >6dB the emission is deemed to be broadband and the quasi peak reading can be reduced by a factor of 13dB.

Appendix F: Test Procedures

Test procedures are summarized below

6dB Bandwidth	EDCS # - 422115
26dB Bandwidth	EDCS # - 422115
Average Output Power	EDCS # - 422117
Co-Located Transmitter	EDCS # - 422118
Conducted Spurious Test	EDCS # - 422119
Peak Transmit Power Measurement	EDCS # - 422123
Power Spectral Density	EDCS # - 422113
Peak Excursion Test	EDCS # - 422121
Radiated Band Edge	EDCS # - 422124
Radiated Spurious Test	EDCS # - 422125
Extreme Test Condition	EDCS # - 450056
Equivalent Isotropic Radiated Power	EDCS # - 450047
Frequency Tolerance	EDCS # - 462996
Power per MHz	EDCS # - 463000

Page No: 170 of 174

Appendix G: Scope of Accreditation: A2LA certificate number 1178-01

The Cisco Systems Scope of Accreditation for EMC testing can be found on the following web page:

http://www.a2la2.net/scopepdf/1178-01.pdf

Summary:

EMC/EMI

Building P:	GR 1089, Issue 3 (2002): Sections 2 to 4 (excluding section 4.6.10-17, 4.8) CISPR 22 (1997) CISPR 22, KN 22 (RRL No. 2004-69, September 22, 2004) EN 55022 (1998) EN 55022 CNS 13438 AS/NZS CISPR22 CFR 47, Part 15, Subpart B, using ANSI C63.4 (RRL No. 2004-70, September 22, 2004) IEC 61000-4-2, KN 61000-4-2 IEC 61000-4-3, KN 61000-4-3 IEC 61000-4-4, KN 61000-4-4 IEC 61000-4-5, KN 61000-4-5 IEC 61000-4-6 (2001), KN 61000-4-6 IEC 61000-4-8, KN 61000-4-8 IEC 61000-4-11 (1995), KN 61000-4-11 (A2LA Cert. No. 1178.01) 10/04/05 Page 5 of 6
Building 16:	GR 1089: Issue 3 (2002): Sections 2 to 4 (excluding section 3.2.1 below 30 MHz, 4.6.10-17, 4.8) CISPR 22 (1997) CISPR 22, KN 22 EN 55022 (1998) EN 55022 CNS 13438 (conducted emissions only) AS/NZS CISPR 22 CFR 47, Part 15, Subpart B, using ANSI C63.4 IEC 61000-4-2, KN 61000-4-2 IEC 61000-4-3, KN 61000-4-3 IEC 61000-4-4, KN 61000-4-4 IEC 61000-4-5, KN 61000-4-5 IEC 61000-4-6 (2001), KN 61000-4-6 IEC 61000-4-8, KN 61000-4-8 IEC 61000-4-11 (1995), KN 61000-4-11
Building N, I & 7:	GR 1089: Issue 3 (2002): Sections 2 to 4 (excluding section 3.2.1 below 30 MHz, 3.3.1, 4.6.10-17 & 4.8) CISPR 22 (1997)
	Page No: 171 of 174

	CISPR 22, KN 22
	EN 55022 (1998)
	EN 55022
	CNS 13438 (conducted emissions only)
	AS/NZS CISPR 22
	CFR 47, Part 15, Subpart B, using ANSI C63.4
	(RRL No. 2004-70, September 22, 2004)
	IEC 61000-4-2, KN 61000-4-2
	IEC 61000-4-3, KN 61000-4-3
	IEC 61000-4-4, KN 61000-4-4
	IEC 61000-4-5, KN 61000-4-5
	IEC 61000-4-6 (2001), KN 61000-4-6
	IEC 61000-4-8, KN 61000-4-8
	IEC 61000-4-11 (1995), KN 61000-4-11
Building B:	GR 1089: Issue 3 (2002): Sections 2 to 4 (excluding section 3.2.1, 3.3.1,
	4.6.10-17 & 4.8)
	CISPR 22 (1997)(conducted emissions only)
	CISPR 22 (conducted emissions only), KN 22
	EN 55022 (1998)(conducted emissions only)
	EN 55022 (conducted emissions only)
	CNS 13438 (conducted emissions only)
	AS/NZS CISPR 22 (conducted emissions only)
	CFR 47, Part 15, Subpart B, using ANSI C63.4 (conducted emissions only)
	(RRL No. 2004-70, September 22, 2004)
	IEC 61000-4-2, KN 61000-4-2
	IEC 61000-4-3, KN 61000-4-3
	IEC 61000-4-4, KN 61000-4-4
	IEC 61000-4-5, KN 61000-4-5
	IEC 61000-4-6 (2001), KN 61000-4-6
	(A2LA Cert. No. 1178.01) 10/04/05 Page 6 of 6
	IEC 61000-4-8, KN 61000-4-8
	IEC 61000-4-11 (1995), KN 61000-4-11

On the following products or types of products :

Information Technology Equipment (ITE), Telecommunications Network Equipment (TNE)

Page No: 172 of 174

Appendix H: Test Equipment/Software Used to perform the test

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due	Test Number(s)
025001	Micro-Coax/ UFB197C-1-0240-5 04504	RF Coaxial Cable, to 18GHz, 24 in	06-MAY-200 5	06-MAY-200 6	[20076], [20097], [20100], [20121]
025654	Micro-Coax/ UFB311A-1-0840-5 04504	RF Coaxial Cable, to 18GHz, 84 in	28-MAR-200 5	28-MAR-200 6	[20076], [20097], [20100], [20121]
030442	Micro-Coax/ UFB311A-0-4800-5 20520	RF Coaxial Cable, to 18GHz, 480 In.	28-MAR-200 5	28-MAR-200 6	[20076], [20097], [20100], [20121]
030565	Micro-Coax/ UFB311A-1-3510-5 04504	Rf Coaxial Cable to 18GHz	28-MAR-200 5	28-MAR-200 6	[20076], [20097], [20100], [20121]
031700	Micro-Tronics/ BRC50705	Notch Filter, SB:5.725-5.875GHz, to 12 GHz	07-FEB-2006	07-FEB-2007	[20100], [20121]
032671	Cisco/ TH0118	Mast Mount Preamplifier Array, 1-18GHz	20-JUN-2005	20-JUN-2006	[20076], [20097], [20100], [20121]
034188	Micro-Tronics/ BRC50703-02	Notch Filter, SB:5.150-5.350GHz, to 11GHz	22-JUN-2005	22-JUN-2006	[20100], [20121]
034189	Micro-Tronics/ BRC50704-02	Notch Filter, SB:5.470-5.725GHz, to 12GHz	22-JUN-2005	22-JUN-2006	[20100], [20121]
034304	Micro-Tronics/ BRM50702-02	Notch Filter, SB:2.4-2.5GHz, to 18GHz	22-JUN-2005	22-JUN-2006	[20121]
034972	Midwest Microwave/ ATT-0640-20-29M-0 2	Attenuator, 20dB, DC-40GHz	06-APR-2005	06-APR-2006	[20076], [20097]
035040	Micro-Tronics/ HPM50112-02	High pass Filter, 6.4-18GHz	22-JUN-2005	22-JUN-2006	[20100], [20121]
035267	Agilent/ E4440A	Precision Spectrum Analyzer	08-APR-2005	08-APR-2006	[20076], [20097], [20100], [20121]
035285	ETS-Lindgren/ 3117	Double Ridged Waveguide Horn Antenna	20-MAY-200 5	20-MAY-200 6	[20076], [20097], [20100], [20121]
037065	Midwest Microwave/ ADT-2588-MF-NNN -02	Port Saver	Cal Not Required	N/A	[20076], [20097], [20100], [20121]

Software used in the tests

A:Vasona File Version

Vasona File Version	Used in Subtests
4.194	[20097 - 1, 20097 - 2, 20097 - 3, 20097 - 4, 20097 - 5, 20097 - 6, 20097 - 7, 20097 - 8, 20097 - 9, 20097 - 10, 20097 - 11, 20097 - 12, 20097 - 13, 20097 - 14, 20100 - 1, 20100 - 2, 20100 - 3, 20100 - 4, 20100 - 5, 20100 - 6, 20100 - 7, 20100 - 8, 20100 - 9, 20100 - 10, 20100 - 11, 20100 - 12, 20100 - 13, 20100 - 14, 20100 - 15, 20100 - 16, 20100 - 17, 20100 - 18, 20100 - 19, 20100 - 20, 20100 - 21, 20100 - 22, 20100 - 23, 20100 - 24, 20100 - 25, 20100 - 26, 20100 - 27, 20100 - 28, 20100 - 29, 20100 - 30, 20100 - 31, 20100 - 32, 20100 - 33, 20100 - 34, 20100 - 35, 20100 - 36, 20100 - 37, 20100 - 38, 20100 - 39, 20100 - 40, 20100 - 41, 20100 - 42, 20076 - 1, 20076 - 2, 20076 - 3, 20076 - 4, 20076 - 5, 20076 - 6, 20076 - 7, 20076 - 8, 20076 - 9, 20076 - 10, 20076 - 11, 20076 - 12, 20076 - 13, 20076 - 14, 20121 - 1, 20121 - 2, 20121 - 3, 20121 - 4, 20121 - 5, 20121 - 6, 20121 - 7, 20121 - 8, 20121 - 9, 20121 - 10, 20121 - 11, 20121 - 12, 20121 - 13, 20121 - 14, 20121 - 15, 20121 - 16, 20121 - 17, 20121 - 18, 20121 - 19, 20121 - 20]

B:Other Software Used

Software Name	Version	Vendor	Description	Start Date	End Date
ECAT - BurstWare	4.23	Thermo Keytek	EFT/Burst Test Software	01-JAN-2000	Current
ECAT - PQFWare	2.1.3	Thermo Keytek	Voltage Dips and Interrupts Test Software	01-JAN-1997	Current
ECAT - SurgeWar e	4.23	Thermo Keytek	Surge Test Software	01-JAN-2000	Current
ECAT - SurgeWar e	5.30	Thermo Keytek	Voltage Protection Coordination Software	04-FEB-2004	Current
HFTS	B.00.01	Agilent Technologies	Harmonics/Flic ker Test System Software	02-JUL-2001	Current
CTS	3.0.19	California Instruments	Harmonics/Flic ker Test System Software	26-APR-2004	Current
CEWare32	4.00	Thermo Keytek	EMC Pro surge, EFT/B, VDI, Mag Immunity test software.	21-JUL-2004	Current

Page No: 174 of 174