

FCC CFR47 PART 15 SUBPART E CERTIFICATION

TEST REPORT

FOR

802.11 a/b/g ACCESS POINT

MODEL NUMBER: AIR-AP1131AG-A-K9

FCC ID: LDK102054E

REPORT NUMBER: 06U10108-1, Revision C

ISSUE DATE: MARCH 2, 2006

Prepared for CISCO SYSTEMS, INC. 170 WEST TASMAN DRIVE SAN JOSE, CA 95134

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

REPORT NO: 06U10108-1C EUT: 802.11 a/b/g ACCESS POINT

Revision History

Rev.	Revisions	Revised By
А	Initial Issue	DG
В	Corrected typo in model number	DG
С	Corrected FCC ID per customer request	DG

Page 2 of 60

TABLE OF CONTENTS

TES	EST RESULT CERTIFICATION	4
TES	EST METHODOLOGY	5
FAC	ACILITIES AND ACCREDITATION	5
EU	UT DESCRIPTION	6
CA	ALIBRATION AND UNCERTAINTY	7
5.1.	MEASURING INSTRUMENT CALIBRATION	7
5.2.	MEASUREMENT UNCERTAINTY	7
5.3.	TEST AND MEASUREMENT EQUIPMENT	7
SET	TUP OF EQUIPMENT UNDER TEST	9
API	PPLICABLE LIMITS AND TEST RESULTS	11
7.1.	CHANNEL TESTS FOR THE 5470 TO 5725 MHz BAND	11
7.1.	1.1. EMISSION BANDWIDTH	11
7.1.2	I.2. PEAK POWER	
7.1.	I.3. MAXIMUM PERMISSIBLE EXPOSURE	
7.1.4		
7.1.	1.5. AVERAGE POWER	
7.1.3	I.8. CONDUCTED SPURIOUS EMISSIONS	
7 2	RADIATED EMISSIONS	39
MH		
		51
7.3.	POWERLINE CONDUCTED EMISSIONS	53
SET	СТИР РНОТОЅ	56
	TI FA EU CA CA CA CA CA CA CA CA CA CA CA CA CA	TEST METHODOLOGY FACILITIES AND ACCREDITATION EUT DESCRIPTION CALIBRATION AND UNCERTAINTY <i>1. MEASURING INSTRUMENT CALIBRATION 2. MEASUREMENT UNCERTAINTY 3. TEST AND MEASUREMENT EQUIPMENT</i> SETUP OF EQUIPMENT UNDER TEST APPLICABLE LIMITS AND TEST RESULTS <i>1. CHANNEL TESTS FOR THE 5470 TO 5725 MHz BAND</i> 7.1.1 EMISSION BANDWIDTH 7.1.2 PEAK POWER 7.1.3 MAXIMUM PERMISSIBLE EXPOSURE 7.1.4 CO-LOCATED MAXIMUM PERMISSIBLE EXPOSURE 7.1.5 AVERAGE POWER 7.1.6 PEAK POWER SPECTRAL DENSITY 7.1.7 PEAK EXCURSION 7.1.8 CONDUCTED SPURIOUS EMISSIONS <i>2. RADIATED EMISSIONS 7.2.1</i> LIMITS AND PROCEDURES <i>7.2.2</i> TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ FOR 5470 MF MHz 42 <i>7.2.3</i> WORST-CASE BELOW 1 GHZ

Page 3 of 60

1. TEST RESULT CERTIFICATION

	APPLICABLE STANDARDS
DATE TESTED:	JUNE 30 – JULY 29, 2004
MODEL:	AIR-AP1131AG-A-K9
EUT DESCRIPTION:	802.11 a/b/g Access Point
COMPANY NAME:	CISCO SYSTEMS, INC. 170 WEST TASMAN DRIVE SAN JOSE, CA 95134

STANDARDTEST RESULTSFCC PART 15 SUBPART ENO NON-COMPLIANCE NOTED

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

DAVID GARCIA ENGINEERING MANAGER COMPLIANCE CERTIFICATION SERVICES

Vare

YAN ZHENG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 60

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4/2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

Page 5 of 60

4. EUT DESCRIPTION

The EUT is an 802.11a/b/g access point. There are two radios, one for the 2.4 GHz band and the other for the 5 GHz bands. These two radio transmitters may operate simultaneously.

The 5 GHz transmitter has a maximum peak conducted output power as follows:

Frequency Band	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
5500 - 5700	802.11a	16.44	44.06

The5 GHz radio utilizes two identical internal inverted F antennas for diversity, each with a maximum gain of 4 dBi.

Page 6 of 60

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5.3. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	Cal Due		
EMI Test Receiver	R & S	ESIB40	4/24/2174	11/21/2004		
Power Meter	Agilent	E4416A	GB41291160	11/7/04		
Peak / Average Power Sensor	Agilent	E9327A	US40440755	11/7/04		
30MHz 2Ghz	Sunol Sciences	JB1 Antenna	A121003	12/22/04		
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	11/21/04		
RF Filter Section	HP	85420E	3705A00256	11/21/04		
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	9001-3245	2/4/05		
Antenna, Horn, 18 ~ 26 GHz	ARA	MWH-1826/B	1013	2/4/05		
Antenna, Horn 26 ~ 40 GHz	ARA	MWH-2640/B	1029	12/3/04		
Amplifier 1-26GHz	MITEQ	NSP2600-SP	924342	4/25/05		
PreAmplifier 26-40 GHz	Miteq	NSP4000-SP2	924343	6/1/05		
Spectrum Analyzer	Agilent	E4446A	M Y43360112	1/13/05		

Page 7 of 60

The following test and measurement equipment was utilized for the radiated emissions below 1GHz and AC line conducted tests documented in this report:

Equip#	Manufacturer/	Description	Last Cal	Next Due	Test
	Model				Number(s)
005678	Hewlett Packard/	Spectrum Analyzer	18-AUG- 2003	18-AUG- 2004	[11186],
	E7401A		2003	2004	[11189], [11193],
					[11216]
005680	Hewlett Packard/	Spectrum Analyzer	11-SEP-2003	11-SEP-2004	[11173],
000000	E7405A	Speetrum Analyzer	11-021-2000	11-021-2004	[11174],
	2110071				[11217]
005682	Hewlett Packard/	RF Filter Section	11-JUL-2003	11-JUL-2004	[11173],
	85460A				[11174],
					[11217]
005684	Hewlett Packard/	EMI Receiver RF Section	11-JUL-2003	11-JUL-2004	[11173],
	85462A				[11174],
					[11217]
007056	Schaffner-Chase/	Bilog Antenna	23-OCT-2003	23-OCT-	[11173],
	CBL6112B			2004	[11174], [11217]
007705	Fischer Custom	LISN		26-AUG-	[11186],
007705	Communications/	LISIN	2003	2004	[11189],
	FCC-LISN-50/250-		2003	2004	[11216]
	50-2-01				[]
007893	EMC Test Systems/	Log Periodic Antenna	Cal Not	N/A	[11176]
	3144		Required		
008111	Unifield 5m	Unifield 5m Chamber	12-MAR-	12-MAR-	[11176],
	Chamber/		2004	2005	[11207]
	Unifield 5m				
000400	Chamber		40.404.0004	40.4414.0005	1444701
008136	Huber + Suhner/	7m Sucoflex cable	16-JAN-2004	16-JAN-2005	[11176],
018313	SF106A Heweltt Packard/	RF Preamplifier	30-DEC-2003	30-DEC-	[11207]
010313	8447D	RF Preampiller	30-DEC-2003	2004	[11173]
018719	Rohde & Schwarz/	EMI Test Receiver, 9kHz-	28-AUG-	28-AUG-	[11186],
010710	ESCS30	2.75GHz	2003	2004	[11189],
					[11193],
					[11216]
020646	Microwave	N Type Line Coax Switch	17-AUG-	17-AUG-	[11186],
	Associates/		2003	2004	[11189],
	7524-PND				[11193],
					[11216]
021676	Amplifier Research/	Directional Coupler, 0.8-	15-MAR-	15-MAR-	[11207]
	DC7144	4.2GHz, 40dB Coupling	2004	2005	

Page 8 of 60

6. SETUP OF EQUIPMENT UNDER TEST

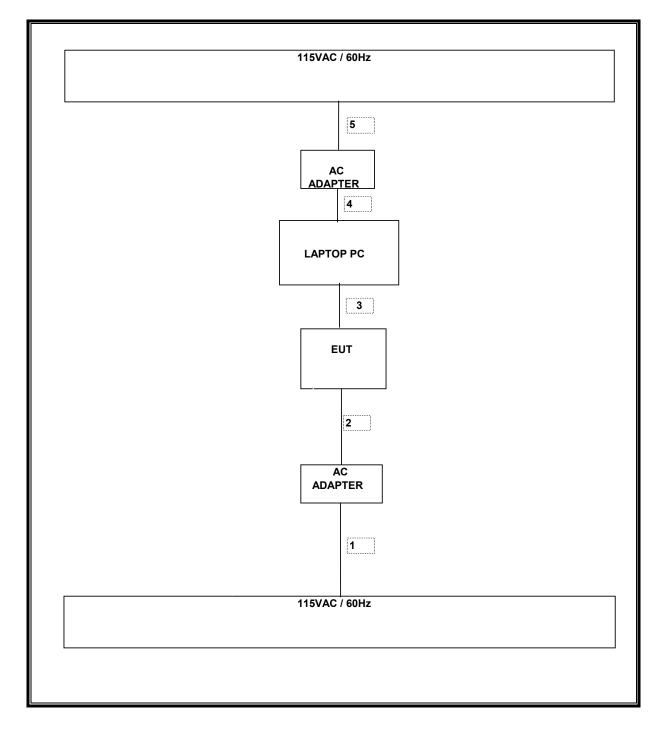
SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST								
Description Manufacturer Model Serial Number								
Laptop PC	IBM	T20	78-F2737					
AC Adapter	IBM	AA21131	N/A					
AC Adapter	Cisco	PSA18U-480C	N/A					

I/O CABLES

	I/O CABLE LIST								
Cable	Port	# of	Connector	Cable	Cable	Remarks			
No.		Identical	Туре	Туре	Length				
		Ports							
1	AC	1	AC	Unshielded	1.8	N/A			
2	DC	1	DC	Unshielded	1.5	N/A			
3	Serial	1	dB9 to RJ45	Unshielded	1.5	N/A			
4	DC	1	DC	Unshielded	1.5	N/A			
5	AC	1	AC	Unshielded	1.8	N/A			

The following support equipment was utilized for the radiated emissions below 1GHz and AC line conducted tests documented in this report:


Sample Number	Equipment Details	Serial Number	Part Number
S01	AIR-AP1131G-x-K9	FHH08202078	
S02	AIR-PWRINJ3	FOC0750M0PK	
S03	AC Adapter	PHI07390EL8	34-1977-03
S04	IBM T20 Laptop	78-F2668	
S05	TBM T20 with AIR-CB21AG		
S06	IBM T20 with AIR-CB21AG		

TEST SETUP

The EUT is a stand-alone access point. It was connected to a laptop PC and test software was used to exercise the radio.

Page 9 of 60

SETUP DIAGRAM FOR TESTS

Page 10 of 60

7. APPLICABLE LIMITS AND TEST RESULTS

7.1. CHANNEL TESTS FOR THE 5470 TO 5725 MHz BAND

7.1.1. EMISSION BANDWIDTH

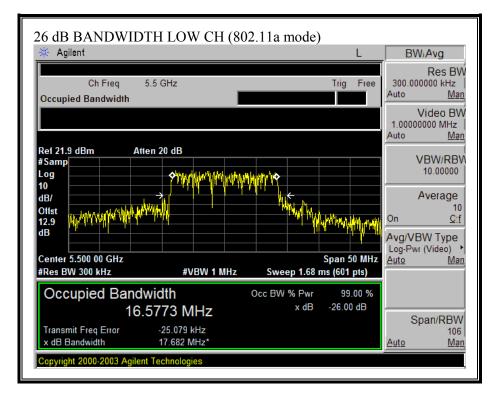
<u>LIMIT</u>

§15.403 (i) <u>Emission bandwidth.</u> For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolutions bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

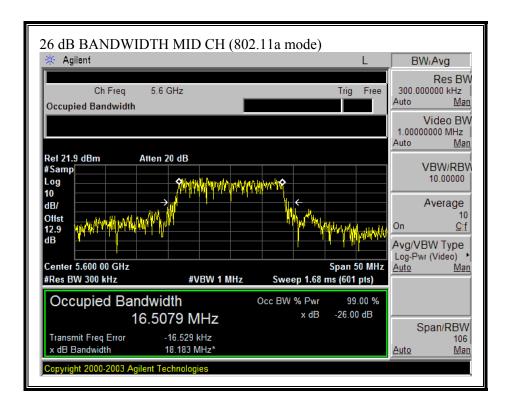
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 3% of the 26 dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.

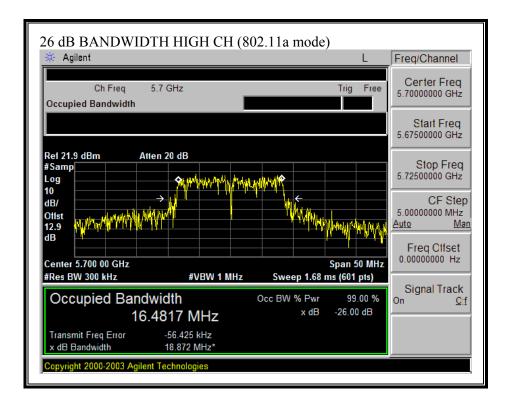
RESULTS


No non-compliance noted:

802.11a Mode


Channel	Frequency	В	10 Log B	
	(MHz)	(MHz)	(dB)	
Low	5500	17.68	12.48	
Middle	5600	18.18	12.60	
High	5700	18.87	12.76	

Page 11 of 60


26 dB EMISSION BANDWIDTH (802.11a MODE)

Page 12 of 60

Page 13 of 60

Page 14 of 60

7.1.2. PEAK POWER

<u>LIMIT</u>

§15.407 (a) (2) For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the peak transmit power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EIRP LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

Page 15 of 60

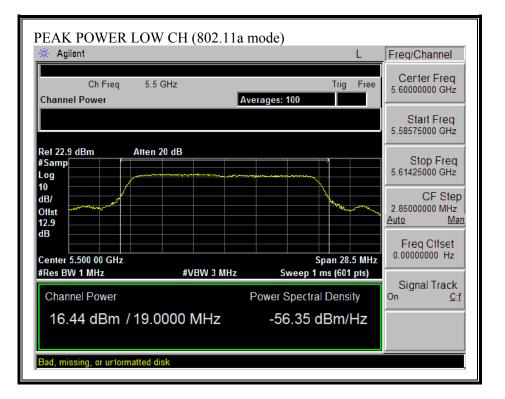
LIMITS AND RESULTS

No non-compliance noted:

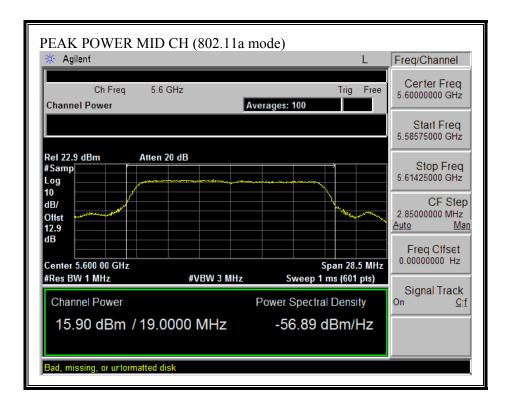
Limit

Channel	Frequency	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5500	24	17.682	23.48	4.00	23.48
Mid	5600	24	18.183	23.60	4.00	23.60
High	5700	24	18.872	23.76	4.00	23.76

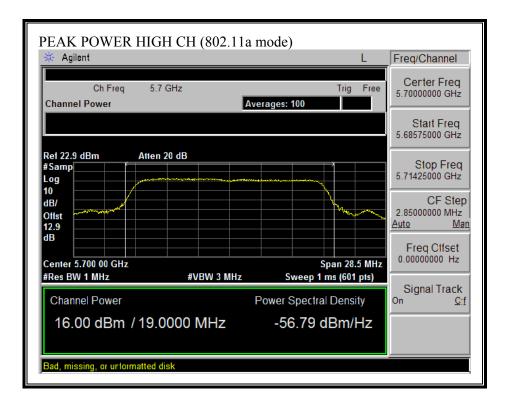
802.11a mode Results


Channel	Frequency	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5500	16.44	23.48	-7.04
Middle	5600	15.90	23.60	-7.70
High	5700	16.00	23.76	-7.76

802.11a mode Maximum EIRP Results


Channel	Frequency (MHz)	Power (dBm)	Antenna Gain (dBi)	EIRP (dBm)
Low	5500	16.44	4.00	20.44
Middle	5600	15.90	4.00	19.90
High	5700	16.00	4.00	20.00

Page 16 of 60


PEAK POWER (802.11a MODE)

Page 17 of 60

Page 18 of 60

Page 19 of 60

7.1.3. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0	614	1.63	*(100)	6
3.0–30	1842/f	4.89/f	*(900/f2)	6
30–300	61.4	0.163	1.0	6
300–1500			f/300	6
1500–100,000			5	6
(B) Limits	for General Populati	ion/Uncontrolled Exp	posure	
0.3–1.34	614	1.63	*(100)	30
1.34–30	824 <i>/</i> f	2.19/f	*(180/f ²)	30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

f = frequency in MHz
 * = Plane-wave equivalent power density
 NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided the or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure.

exposure or can not exercise control over their exposure.

Page 20 of 60

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

where

and

E = Field Strength in Volts/meter

P = Power in Watts

 $S = E^{2}/3770$

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 andd (cm) =100 * d (m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

 $P (mW) = 10 ^ (P (dBm) / 10) and G (numeric) = 10 ^ (G (dBi) / 10)$

yields

 $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$ where

d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi S = Power Density Limit in mW/cm^2

Rearranging terms to calculate the power density at a specific distance yields

 $S = 0.0795 * 10^{(P+G)} / 10) / (d^2)$

Page 21 of 60

LIMITS

From \$1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

RESULTS

No non-compliance noted: (MPE distance equals 20 cm)

Mode	MPE	Output	Antenna	Power
	Distance	Power	Gain	Density
	(cm)	(dBm)	(dBi)	(mW/cm^2)
802.11a	20.0	16.44	4.00	0.02

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 22 of 60

7.1.4. CO-LOCATED MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30	614 1842/f	1.63 4.89/f	*(100) *(900/f²)	6
30–300	61.4	0.163	1.0 f/300	6 6
1500-100,000			5	6
(B) Limits	for General Populati	on/Uncontrolled Ex	posure	
0.3–1.34 1.34–30	614 824 <i>i</i> f	1.63 2.19/f	*(100) *(180/f ²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

f = frequency in MHz
 * = Plane-wave equivalent power density
 NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided the or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure.

exposure or can not exercise control over their exposure.

Page 23 of 60

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

where

and

E = Field Strength in Volts/meter

P = Power in Watts

 $S = E^{2}/3770$

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P (mW) = P (W) / 1000 and d (cm) =100 * d (m) $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

yields

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

For multiple colocated transmitters operating simultaneously the total power density can be calculated by summing the Power * Gain product of each transmitter.

yields

 $d = 0.282 * \sqrt{(P1 * G1) + (P2 * G2) + ... + (Pn * Gn)) / S}$ where d = distance in cmPk = Power in mW of the kth transmitterGk = Numeric antenna gain of the kth transmitter $S = Power Density in mW/cm^{2}$

Rearranging terms to calculate the power density at a specific distance yields

 $S = 0.0795 * 10^{((P1 * G1) + (P2 * G2) + ... + (Pn * Gn)) / 10) / (d^2)$

Page 24 of 60

In the table below, Power and Gain are entered in units of dBm and dBi respectively, then these are converted to their linear forms prior to the summation function.

LIMITS

From §1.1310 Table 1 (B), S = 1.0 mW/cm^2

RESULTS

No non-compliance noted: (MPE distance equals 20 cm)

Mode	MPE Distance (cm)	Output Power (dBm)	Antenna Gain (dBi)	Power Density (mW/cm^2)
802.11g		25.64	4.00	
802.11a		17.31	4.00	
Combined	20.0			0.21

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

NOTE: The highest 802.11a output power was measured at 5260 MHz and is represented in the above table.

Page 25 of 60

7.1.5. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 12.9 dB (including 10 dB pad and 2.9 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11a Mode

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	5500	17.10
Middle	5600	17.00
High	5700	16.90

Page 26 of 60

7.1.6. PEAK POWER SPECTRAL DENSITY

<u>LIMIT</u>

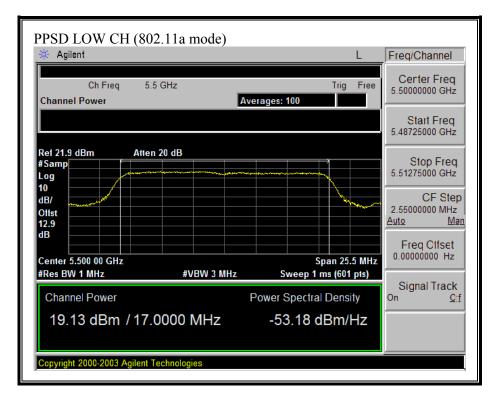
§15.407 (a) (2) For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the peak power spectral density shall not exceed 11 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain = 4.0 dBi, therefore there is no reduction due to antenna gain.

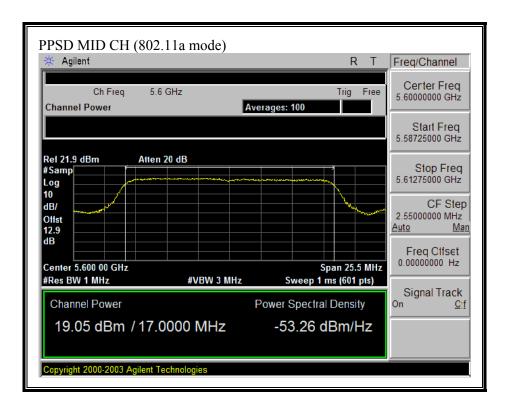
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

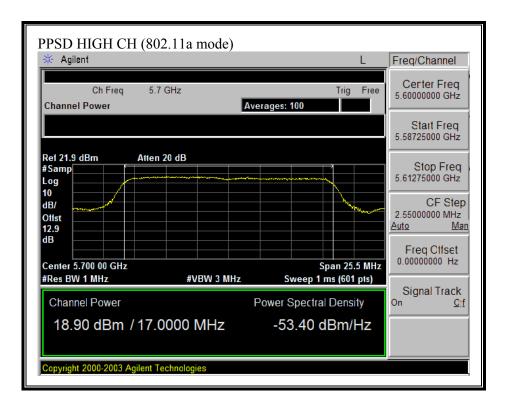
RESULTS


No non-compliance noted:

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)
Low	5500	6.76	11.00	-4.24
Middle	5600	7.37	11.00	-3.64
High	5700	6.83	11.00	-4.17


802.11a Mode

Page 27 of 60


PEAK POWER SPECTRAL DENSITY (802.11a MODE)

Page 28 of 60

Page 29 of 60

Page 30 of 60

7.1.7. PEAK EXCURSION

<u>LIMIT</u>

§15.407 (a) (6) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

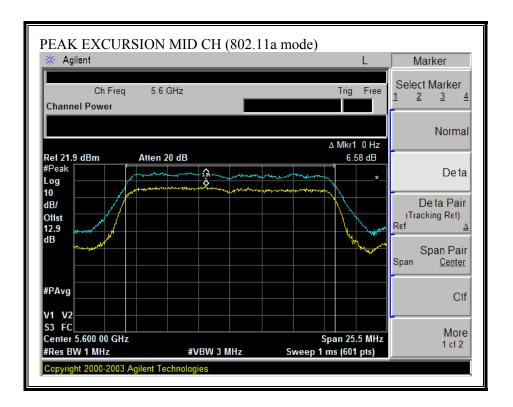
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

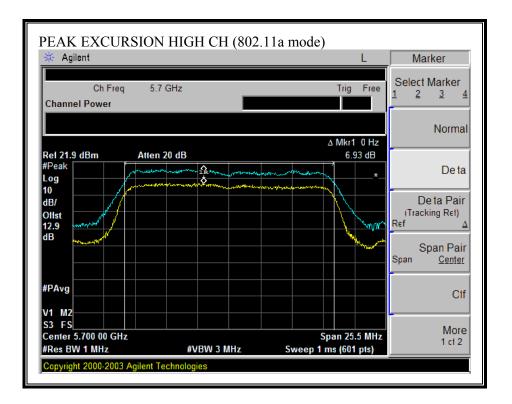
RESULTS

No non-compliance noted:

802.11a Mode							
Channel	Frequency Peak Excursion		Limit	Margir			
	(MHz)	(dB)	(dB)	(dB)			
Low	5500	7.10	13	-5.90			
Middle	5600	6.58	13	-6.42			
High	5700	6.93	13	-6.07			


802.11a Mode

Page 31 of 60


PEAK EXCURSION (802.11a MODE)

Page 32 of 60

Page 33 of 60

Page 34 of 60

7.1.8. CONDUCTED SPURIOUS EMISSIONS

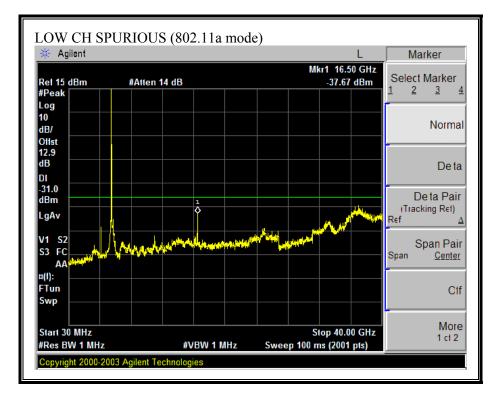
LIMITS

15.407 (b) (3) For transmitters operating in the 5.47–5.725 GHz band: all emissions outside of the 5.47–5.725 GHz band shall not exceed an EIRP of -27 dBm / MHz.

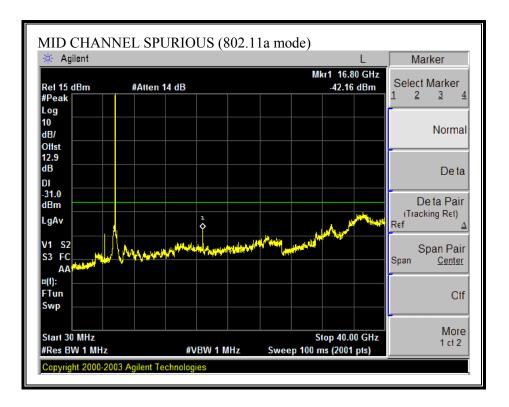
TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

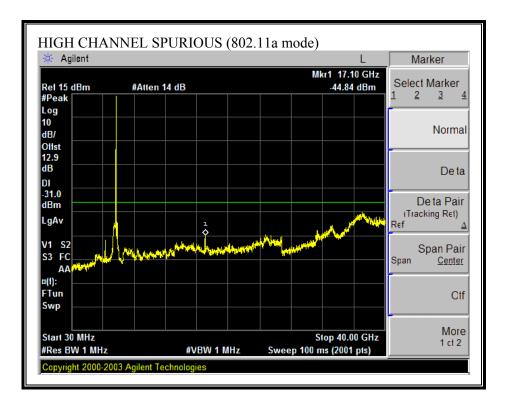
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to the average EIRP limit, adjusted for the maximum antenna gain. If necessary, additional average detection measurements are made.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

RESULTS


No non-compliance noted:

Page 35 of 60


SPURIOUS EMISSIONS (802.11a MODE)

Page 36 of 60

Page 37 of 60

Page 38 of 60

7.2. RADIATED EMISSIONS

7.2.1. LIMITS AND PROCEDURES

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$(^{2})$
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page 39 of 60

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 40 of 60

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

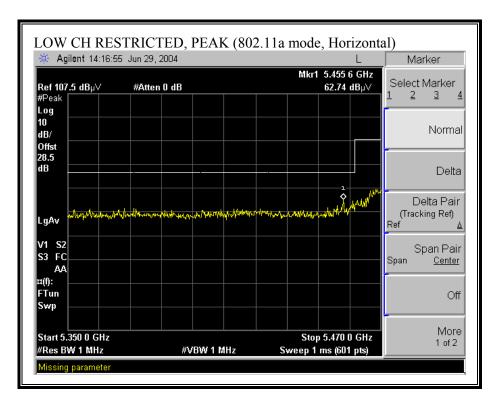
The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels of each band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

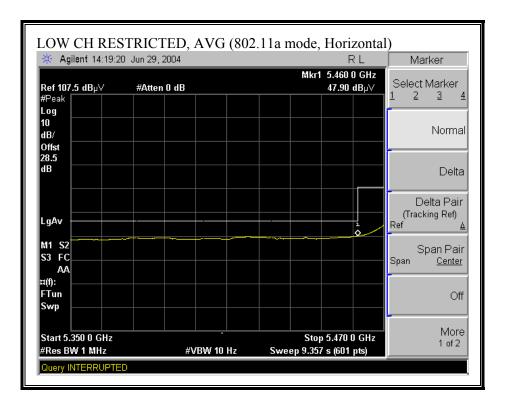
RESULTS

No non-compliance noted:

Page 41 of 60

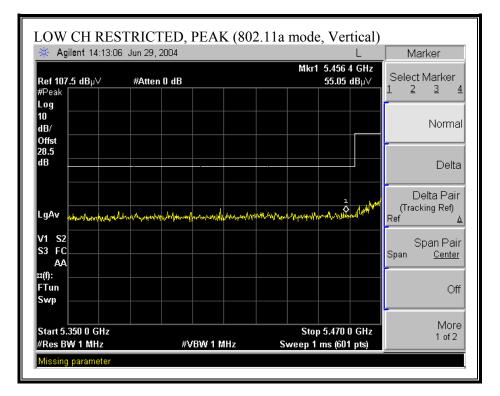

7.2.2. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ FOR 5470 MHz TO 5725 MHz

REPORTING NOTES


The nearby restricted band stops 10 MHz below the authorized band. A single plot is taken to show both restricted band emission levels and out-of-band radiated spurious emission levels at and near the lower authorized bandedge. The out-of-band spurious limits of -7 dBm Peak EIRP and -27 dBm Average EIRP are converted to the equivalent 3 meter field strengths of 88.2 dBuV/m Peak and 68.2 dBuV/m Average, respectively, for reporting purposes.

The out-of- band radiated spurious emission levels at and near the upper authorized bandedge are reported as EIRP values.

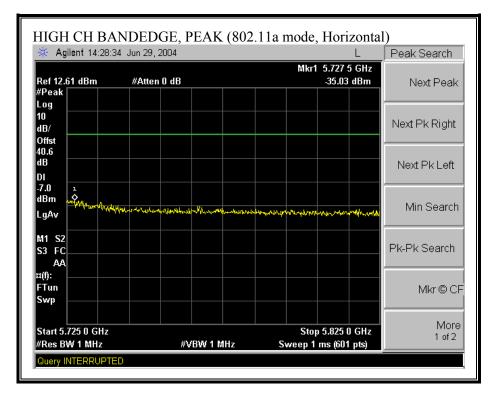
RESTRICTED BAND & BANDEDGE (802.11a MODE, LOW CHANNEL, HORIZONTAL)



Page 42 of 60

Page 43 of 60

RESTRICTED BAND & BANDEDGE (802.11a MODE, LOW CHANNEL, VERTICAL)

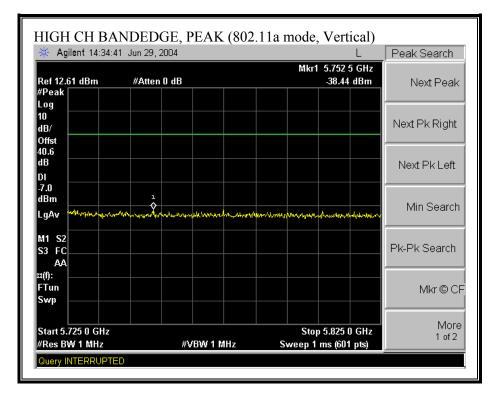


Page 44 of 60

🔆 Agilent 14:03:1	5 Jun 29, 2004	, i i i i i i i i i i i i i i i i i i i		L	Marker
Ref 107.5 dBµ∨	#Atten 0 dB		Mk	r1 5.460 0 GHz 44.04 dBµ∨	Select Marker
#Peak Log					
10 dB/					Norma
Offst 28.5 dB					Delta
					Deita
LgAv					Delta Pair (Tracking Ref) Ref ≜
M1 S2	_				Span Pair Span Center
AA					
¤(f): FTun Swp					Off
3wp					
Start 5.350 0 GHz			St	op 5.470 0 GHz	More
#Res BW 1 MHz	#	VBW 10 Hz		57 s (601 pts)	1 of 2

Page 45 of 60

BANDEDGE (802.11a MODE, HIGH CHANNEL, HORIZONTAL)



Page 46 of 60

🔆 Agilent 14:29:2	25 Jun 29, 2004		L Peak Search
Ref 12.61 dBm #Peak	#Atten 0 dB	Mkr1 5.725 0 -46.56	
Log 10 dB/			Next Pk Right
dB/ Offst 40.6 dB			
DI			Next Pk Left
dBm LgAv 1 ¢			Min Search
M1 S2 S3 FC AA			Pk-Pk Search
¤(f): FTun Swp			Mkr © Cł
Start 5.725 0 GHz #Res BW 1 MHz	#VBW 10 I	Stop 5.825 0 1z Sweep 7.797 s (601 p	

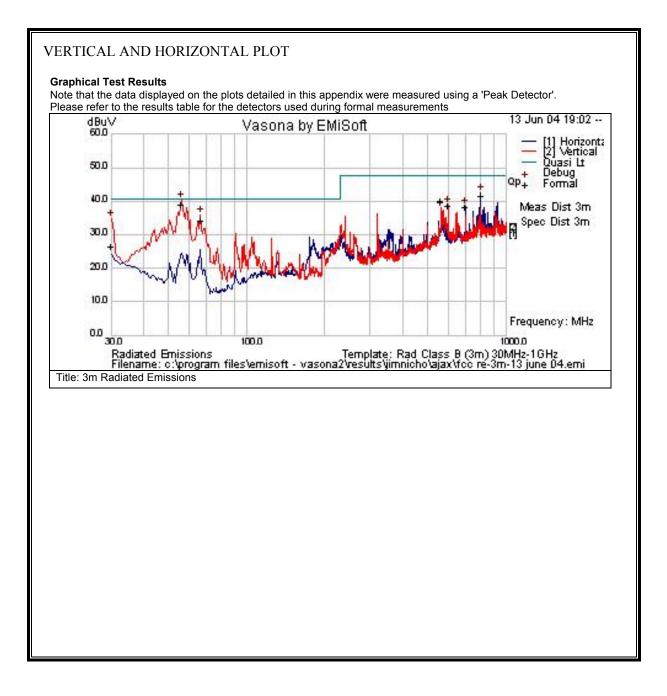
Page 47 of 60

BANDEDGE (802.11a MODE, HIGH CHANNEL, VERTICAL)

Page 48 of 60

🔆 Agilent 14:33:2	23 Jun 29, 2004			L	Peak Search
Ref 12.61 dBm	#Atten 0 dB		M	cr1 5.725 0 GHz -50.64 dBm	Next Peak
#Peak Log					
10 dB/					Next Pk Right
Offst 40.6 dB					Next Pk Left
DI					INEXLERK LEIL
-27.0 dBm					Min Search
LgAv					With Ocdrein
M1 S2 S3 FC AA					Pk-Pk Search
¤(f): FTun					Mkr © CF
Swp					
Start 5.725 0 GHz #Res BW 1 MHz	#\/BM	√ 10 Hz		top 5.825 0 GHz 797 s (601 pts)	More 1 of 2

Page 49 of 60


HARMONICS AND SPURIOUS EMISSIONS (802.11a MODE)

	crip.:	Dual Band 2. AIR-AP1131	.4 / 5 GHz Acce	ess Point											
UT M/N est Targ ode Op	get:	FCC CLASS TX mode, 5.:	в												
-	ipment:														
ЕМСО	Horn 1	-18GHz	Spec	trum Ana	lyzer		Pre-am	olifer 1-2	26GHz	Pre-am	difer 26-40G	Hz		Horn > 18	8GHz
T60; S/	N: 2238	@3m 🖵	Agilent H	4446A A	nalyzer	•	T87 Mit			T88 Mi	teq 16-40GH	۲ <mark>ـ ـ</mark>			-
- Hi Freq	uency Cab ft)		✓ (4 ~ 6 ft)	▼ (12 ft)							Peak Meas 1 MHz Reso 1 MHz Video	lution Bandw	idth		e <mark>asurements:</mark> ution Bandwidth Bandwidth
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim	Pk Mar dB	Avg Mar dB	Notes
hannel	5500 N	ИНz										dBuV/m			
180 180	9.8 9.8	53.8 54.8	50.8 52.2	32.7 32.7	4.0 4.0	-44.1 -44.1	0.0	1.5	47.9 48.9	44.9 46.3	74.0 74.0	54.0 54.0	-26.1 -25.1	-9.1 -7.7	<u>V</u> Н
.000	9.8	46.3	34.4	38.1	7.4	-40.9	0.0	1.5	52.4	40.5	74.0	54.0	-21.6	-13.5	V
.000	9.8	46.4	35.8	38.1	7.4	-40.9	0.0	1.5	52.5	41.9	74.0	54.0	-21.5	-12.1	Н
hannel 247	5600 N 9.8	/IHz 52.6	48.8	32.8	4.1	-44.2	0.0	1.5	46.7	42.9	74.0	54.0	-27.3	-11.1	v
247	9.8	56.1	54.0	32.8	4.1	-44.2	0.0	1.5	50.2	48.1	74.0	54.0	-23.8	-5.9	Н
.200	9.8 9.8	45.3 45.6	33.4 34.8	38.3 38.3	7.5 7.5	-41.1 -41.1	0.0	1.5 1.5	51.5 51.8	39.6 41.0	74.0 74.0	54.0 54.0	-22.5 -22.2	-14.4 -13.0	V H
			34.0	30.5	7.5	-41.1	0.0	1.5	51.0	41.0	/4.0	54.0	-22.2	-13.0	п
hannel 313	5700 N 9.8	/IHz 51.4	47.9	32.8	4.1	-44.3	0.0	1.5	45.5	42.0	74.0	54.0	-28.5	-12.0	v
313	9.8	56.4	54.4	32.8	4.1	-44.3	0.0	1.5	50.5	48.5	74.0	54.0	-23.5	-5.5	н
.400	9.8	44.9	33.5	38.6	7.6	-41.4	0.0	1.5	51.1	39.7	74.0	54.0	-22.9	-14.3	V
.400	9.8	45.5	33.9	38.6	7.6	-41.4	0.0	1.5	51.7	40.1	74.0	54.0	-22.3	-13.9	Н
	f Dist		ent Frequenc	у		Amp	Preamp							Field Strengt d Strength Li	
	Dist Read	Distance to Analyzer F				D Corr Avg			et to 3 mete Strength @					s. Average L	
	AF	Antenna Fa				Peak			k Field Stre					s. Peak Limit	
	CL	Cable Loss	5			HPF	High Pas	s Filte	r						

Page 50 of 60

7.2.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL AND HORIZONTAL)

Page 51 of 60

Test Results Table

Frequency	Raw	Cable	AF dB	Level	Туре	Pol	Hgt	Azt	Limit	Margin	Pass /Fail	Comments
MHz	dBuV	Loss dB		dBuV	•••		cm	Deg	dBuV	dB		
30	5.3	0.6	18.6	24.6	Qp	V	98	359	40.5	-15.9	Pass	
56	29.5	0.8	7	37.4	Qp	V	123	204	40.5	-3.2	Pass	
66.272	24.8	0.9	6.6	32.4	Qp	V	163	86	40.5	-8.1	Pass	
560	16.5	2.5	19.2	38.2	Qp	V	98	66	47.5	-9.2	Pass	
600	15.2	2.6	19	36.8	Qp	V	104	96	47.5	-10.7	Pass	
700	14.4	2.8	19.3	36.4	Qp	Н	307	62	47.5	-11	Pass	
800	16.5	3	20.1	39.6	Qp	H	198	220	47.5	-7.9	Pass	

Page 52 of 60

7.3. POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

\$15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted I	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 "
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

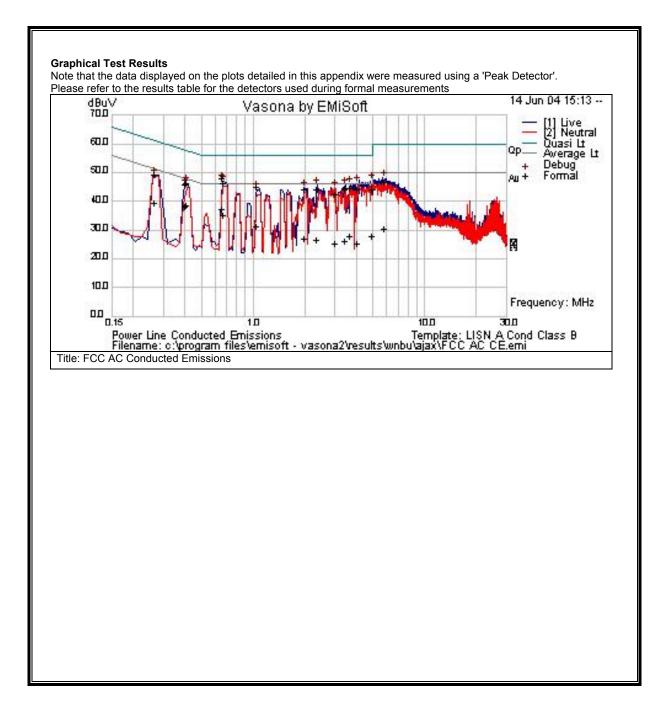
The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

No non-compliance noted:

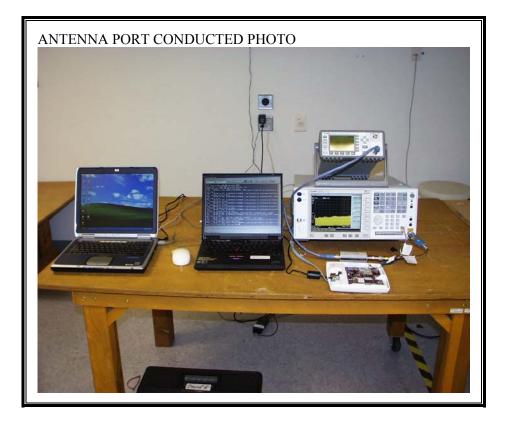
Page 53 of 60


WORST EMISSIONS

Test Results Table

	Raw	Cable		Level	Туре	Line	Limit	Margin	Pass /Fail	Comments
	dBuV			dBuV			dBuV	dB		
0.266				37.5						
0.266							-			
0.268				37.5		N			Pass	
0.268		20.2	0	47.2	Qp	N	61.2	-14	Pass	
0.406	23.5	20.1	0	43.6	Qp	N	57.7	-14.1	Pass	
0.406	15.8	20.1	0	35.9	Av	N	47.7	-11.8	Pass	
0.41	24	20.1	0	44.1	Qp	L	57.6	-13.5	Pass	
0.41	16.6	20.1	0	36.7	Av	L	47.6	-11	Pass	
0.662	15.3	20	0	35.4	Av	L	46	-10.6	Pass	
0.662	25.7	20	0	45.8	Qp	L	56	-10.2	Pass	
0.677	13.1	20	0	33.2	Av	N	46	-12.8	Pass	
0.677	24.3	20	0	44.4	Qp	N	56	-11.6	Pass	
1.06	22.8	20	0	42.9	Qp	L	56	-13.1	Pass	
1.06	9.1	20	0	29.1	Av	L	46	-16.9	Pass	
2.002	22	20	0	42.1	Qp	L	56	-13.9	Pass	
2.002	4.7	20	0	24.8	Av	L	46	-21.2	Pass	
2.362	22.1	20	0	42.2	Qp	L	56	-13.8	Pass	
2.362	4.4	20	0	24.5	Av	L	46	-21.5	Pass	
3.021	2.9	20.1	0	23	Av	N	46	-23	Pass	
3.021	20.1	20.1	0	40.2	Qp	N	56	-15.8	Pass	
3.436	3.8	20.1	0	24	Av	L	46	-22	Pass	
3.436	21.8	20.1	0	41.9	Qp	L	56	-14.1	Pass	
3.689	22.2	20.1	0	42.4	Qp	L	56	-13.6	Pass	
3.689	5.6	20.1	0	25.8	Av	L	46	-20.2	Pass	
4.059	21.9	20.1	0	42	Qp	N	56	-14	Pass	
4.059	3.3	20.1	0	23.4	Av	N	46	-22.6	Pass	
4.97	22	20.1	0.1	42.2	Qp	N	56	-13.8	Pass	
4.97	5.6	20.1	0.1	25.8	Av	N	46	-20.2	Pass	
5.89	24.3	20.2	0.1	44.5	Qp	L	60	-15.5	Pass	
5.89	8.3	20.2	0.1	28.5	Av	L	50	-21.5	Pass	
						_	50			

Page 54 of 60


LINE 1 AND LINE 2 RESULTS

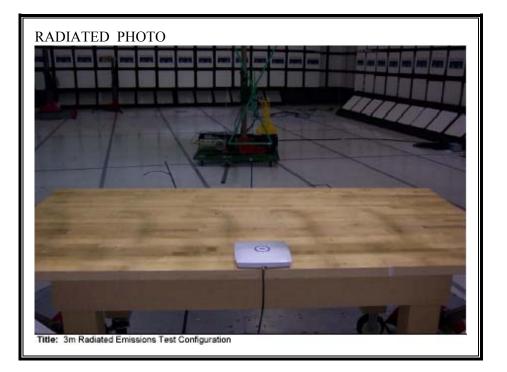
Page 55 of 60

8. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

Page 56 of 60

RADIATED RF MEASUREMENT SETUP, FRONT


Page 57 of 60

RADIATED RF MEASUREMENT SETUP, BACK

Page 58 of 60

RADIATED RF MEASUREMENT SETUP, BELOW 1GHz

Page 59 of 60

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

END OF REPORT

Page 60 of 60