

Test Report Electromagnetic Compatibility

Product	Collaboration end-point, with an integrated audio/video codec (encoder/decoder), integrated camera and loudspeakers for videoconferencing		
Name and address of the applicant	Cisco Systems Norway AS Philip Pedersens vei 1, 1366 Lysaker, NORWAY		
Name and address of the manufacturer	Cisco Systems, Inc. 170 West Tasman Drive, San Jose, CA 95134, USA		
Model	TTC4-01		
Rating	2.0-1.5A, 100-240V AC, 50-60Hz		
Trademark	Cisco		
Additional information	The tested device contains following radio modules: BLE/BT, 2.4GHz wi-fi, 5GHz wi-fi and 6E wi-fi Internal power supply: FSP Group Inc. type: FSP141-3F01 (Input: 100-240V AC, 50-60Hz, 2.0-1.5A)		
Tested according to	ETSI EN 301 489-01:V2.2.3 ETSI EN 301 489-03:V2.1.1 ETSI EN 301 489-17:V3.2.4 EN 55032:2015 + AC:2016 + A11:2020 EN 55035:2017 + A11:2020 FCC CFR 47 Subpart 15B ISED Canada ICES-003, Issue 7		
Order number	PRJ0019248		
Tested in period	2023-03-06 to 2023-04-17		
Issue date	2023-05-22		
Name and address of the testing laboratory	Nemko Scandinavia AS Philip Pedersens vei 11, 1366 Lysaker, Norway An accredited technical test executed under the Norwegian accreditation scheme		
	førn Gustausen Fog Bugs		
	Prepared by [Jørn Gustavsen] Approved by [Roger Berget]		

REPORT REVISIONS

Revision #	Date	Project #	Description
REP008144A	2023-05-22	PRJ0019248	First issued

THIS REPORT APPLIES ONLY TO THE ITEM(S) AND CONFIGURATION(S) TESTED.

It is the manufacturer's responsibility to assure the additional production units of this product are manufactured with identical electrical and mechanical components. The manufacturer is responsible to the authorities for any modifications made to the product, which result in non-compliance to the relevant regulations.

Nemko authorizes the above named Customer to reproduce this report provided it is reproduced in its entirety. Any reproduction of parts of this report requires approval in writing from Nemko.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko accepts no responsibility for damages suffered by any third party as a result of decisions made or actions based on this report.

Opinions expressed within this report regarding general assessments and qualifications for PASS or FAIL to the standards limits and requirements, are not part of the current accreditation. Neither is opinions expressed regarding model variants covered by the testing performed in this report.

Deviations from, additions to, or exclusions from the test specifications are described in "Test Report Summary".

This report was originally distributed electronically with digital signatures. For more information contact Nemko.

DESCRIPTION OF TESTED ITEM(S)

Product description:	The equipment under test (EUT) is a collaboration end-point, with an integrated audio/video codec (encoder/decoder), integrated camera and loudspeakers for videoconferencing. The EUT is supplied from a separately approved internal power supply. Operation of the EUT is via an external touch panel

Model/type:	1104-01	
Serial number:	FOC2701JDQZ	
Operating voltage:	100-240V AC	
Maximum power/current:	2.0-1.5A	
Insulation class:	Class I	
Highest clock frequency:	2.5GHz	
Hardware version:	Rev. C	
Software version:	CE11.3.0.dev 7b939fbdfd3	
Mounting position:	Table top equipment	
	Wall/ceiling mounted equipment	
	Floor standing equipment	
	Handheld equipment	
	Rack mounted equipment	
	Console equipment	
	Other: Mounted on top or bottom of screen	

CRITICAL MODULES/PARTS

Description	Manufacturer	Туре
Internal PSU	FSP Group Inc.	FSP141-3F01

ACCESSORIES USED DURING TEST

Description	Manufacturer	Туре
Display	Samsung	U28E590DSL
PoE microphone	Cisco	TTC5-17
PoE microphone	Cisco	TTC5-17
Microphone	Cisco	TTC5-14
Microphone	Cisco	TTC5-14
Touch panel	Cisco	TTC5-15
Wireless bluetooth headset	Sony	WH-1000XM4
Wireless bluetooth headset	Bose	QC45
Cellphone	Huawei	CLT-L29
PC	Lenovo	ThinkPad P15s Gen 2

INPUT/OUTPUT PORTS

Port name and description	Cable		
	Longer than 3m	Attached during test	Shielded
AC mains supply	\boxtimes	\boxtimes	
HDMI out 1		\boxtimes	\boxtimes
HDMI out 2			
HDMI out 3			
HDMI in		\boxtimes	\boxtimes
USB-C	\boxtimes	\boxtimes	\boxtimes
USB-A 1			
USB-A 2			
Ethernet	\boxtimes	\boxtimes	
PoE 1	\boxtimes	\boxtimes	
PoE 2	\boxtimes	\boxtimes	
PoE 3	\boxtimes	\boxtimes	
Audio output		\boxtimes	
Audio input 1	\boxtimes	\boxtimes	
Audio input 2	\boxtimes	\boxtimes	
Micro-USB (debug only)			

OPERATING MODES

OP no.	Description		Applied for testing	
		Emissions	Immunity	
OP1	In-call using ethernet	\boxtimes	\boxtimes	
OP2	In-call using wireless (2.4GHz or 5GHz and 6GHz)	\boxtimes	\boxtimes	
OP3	Idle			

POWER SUPPLY CONDITIONS

The following nominal power supply conditions have been tested:

PC no.	Voltage	Frequency	Туре	Ground terminal
PC1	100 V	🗆 AC 50Hz / 🖂 AC 60Hz / 🗆 DC	🗆 3AC / 🗆 3ACN / 🗆 PoE	$oxtimes$ PE / \Box GND / \Box None
PC2	240 V	🖾 AC 50Hz / 🗌 AC 60Hz / 🗌 DC	□ 3AC / □ 3ACN / □ PoE	$oxtimes$ PE / \Box GND / \Box None
PC3	115 V	□ AC 50Hz / ⊠ AC 60Hz / □ DC	□ 3AC / □ 3ACN / □ PoE	$oxtimes$ PE / \Box GND / \Box None

PHOTOS AND DRAWINGS

Photo of the test item:	
Front view	
Rear view	

OTHER INFORMATION

Modifications:	None
Additional information:	None

Note: This equipment has been tested with certain cable types and cable configurations. Any changes to these parameters when installed may influence on the EMC properties of this equipment.

TEST ENVIRONMENT

Test laboratory:	KJELLER	(Instituttveien 6, N-2007 Kjeller, Norway)	
	⊠ LYSAKER	(Philip Pedersens vei 11, N-1366 Lysaker, Norway)	
Laboratory accreditation :		Norsk Akkreditering – TEST 033 P06 – Electromagnetic Compatibility EDITATION EST 033	
Environmental conditions:	The climatic conditions during the tests are within limits specified by the manufacturer for the operation of the product and the test equipment. The climatic conditions during tests are within the following limits:		
	Ambient ten Relative hun Atmospherio	mperature: $15 - 35 ^{\circ}\text{C}$ midity: $25 - 75 ^{\circ}\text{RH}$ ic pressure: $86 - 106 ^{\circ}\text{kPa}$	
	climatic conditio	ons are recorded and documented separately in this test report.	
Calibration:	All instruments u international sta basis by interme calibrated levels. The instrumenta	used in the tests of this test report are calibrated and traceable to national or andards. Between calibrations test set-ups are controlled and verified on a regular ediate checks to ensure, with 95% confidence that the instruments remain within their s. ation accuracy is within limits agreed by the IECEE/CTL and defined by Nemko.	
Measurement uncertainties:	Uncertainty in El measurement ur with CISPR 16-4- Uncertainties for emission uncerta For Harmonics a same principles a Uncertainties for standard. Further informat	EMC emission measurements stated in this report are calculated from the standard uncertainties multiplied by the coverage factor k=2. It was determined in accordance l-2. The true value is in the corresponding interval with a probability of 95%. For continuous immunity tests are calculated based on the same principles as for EMC tainties. and Flicker measurements the measurement uncertainty is calculated based on the same on the same on the same for EMC emission uncertainties. For transient immunity are kept within the requirements of the relevant basic attain the same tainties are calculated is provided on request.	
Decision rules :	As specified by C compliance is de indicated, and no limits hence "FAI For continuous in levels. Tests are are based on bel For transient imm the requirement the test standard For Harmonics a measurements a been considered Further informat	CISPR 16-4-2; if our measurement uncertainty U _{LAB} is less than or equal to U _{CISPR} , eemed to occur if no measured disturbance level exceeds the limit hence "PASS" is non-compliance is deemed to occur if any measured disturbance level exceeds the AIL" is indicated. immunity tests, uncertainties are not considered when applying the calibrated test e performed at the test levels specified by the test standard. PASS and FAIL decisions ehaviour observations of the specimen. Immunity tests, uncertainties are not considered if the test equipment is kept within ets of the relevant basic standard. Tests are performed at the test levels specified by rd. PASS and FAIL decisions are based on behaviour observations of the specimen. and Flicker measurements the measurement uncertainty is considered, and are marked if necessary. In doing so, the associated uncertainty of measurement has d. attion about decision rules is provided on request.	

EVALUATION OF PERFORMANCE

PERFORMANCE TESTS

Performance checks:	Transmission signal (audio/video) exchange between two video conferential units. Via Ethernet and wi-fi link. Bluetooth connection to headphone.				
Performance tests:	Video conferential function was verified before, after and during tests via Ethernet and wi-fi link. Bluetooth connection to headphone.				
Monitoring during tests:	Visually monitored video signal on display, and audio signal was monitored. Also pinging with laptop.				
Note 1: Performance check is a short functional test carried out during or after a technical test to confirm that the equipment operates. Note 2: Performance test is a measurement or a group of measurements carried out during and/or after a technical test to confirm that the equipment complies with selected parameters as defined in the equipment standard					

Note 3: Monitoring during tests describes which functions were monitored and how.

GENERAL PERFORMANCE CRITERIA

In order to pass each test, the specimen shall meet the following general criteria:

During test	After test
Performance criterion A: Operate as intended. No loss of function. No unintentional responses.	Performance criterion A: Operate as intended. No loss of function. No degradation of performance.
Performance criterion B: May be loss of function (one or more). No unintentional responses.	Performance criterion B: Operate as intended. Lost function(s) shall be self-recoverable. No degradation of performance. No loss of stored data or user programmable functions.
Performance criterion C: May be loss of function (one or more).	Performance criterion C: Lost function(s) shall be recoverable by the operator. Operate as intended after recovering. No degradation of performance.

TRANSMITTER PERFORMANCE CRITERIA

In order to pass each test, the transmitter functions shall meet the following criteria:

During continuous tests	During transient tests
Performance criterion CT: During and after the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer when the apparatus is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance. During the test the EUT shall not unintentionally transmit or change its actual operating state and stored data. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.	Performance criterion TT: After the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer, when the apparatus is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance. During the EMC exposure to an electromagnetic phenomenon, a degradation of performance is, however, allowed. No change of the actual mode of operation (e.g. unintended transmission) or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.
Modification by the manufacturer: Not modified	Modification by the manufacturer: Not modified

RECEIVER PERFORMANCE CRITERIA

In order to pass each test, the receiver functions shall meet the following criteria:

During continuous tests	During transient tests
Performance criterion CR : During and after the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer when the apparatus is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance. During the test the EUT shall not unintentionally transmit or change its actual operating state and stored data. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.	Performance criterion TR : After the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer, when the apparatus is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance. During the EMC exposure to an electromagnetic phenomenon, a degradation of performance is, however, allowed. No change of the actual mode of operation (e.g. unintended transmission) or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.
Modification by the manufacturer: Not modified	Modification by the manufacturer: Not modified

Note: In the subsequent test sections of this report, the required and actual specimen performance during immunity testing is indicated by the nomenclatures as given by the tables above (A or B and CT, TT, CR or TR).

SUMMARY OF TESTING

APPLIED STANDARDS

Standards	Titles
ETSI EN 301 489-01:V2.2.3	Electromagnetic compatibility and Radio spectrum Matters (ERM); Electromagnetic compatibility (EMC) standard for radio equipment and services; Part 1: Common technical requirements
ETSI EN 301 489-03:V2.1.1	Electromagnetic compatibility and Radio spectrum Matters (ERM); Electromagnetic compatibility (EMC) standard for radio equipment and services; Part 3: Specific conditions for Short-Range Devices (SRD) operating on frequencies between 9 kHz and 246 GHz
ETSI EN 301 489-17:V3.2.4	Electromagnetic compatibility and Radio spectrum Matters (ERM); ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 17: Specific conditions for Broadband Data transmission systems
EN 55032:2015 + AC:2016 + A11:2020	Electromagnetic compatibility of multimedia equipment - Emission requirements
EN 55035:2017 + A11:2020	Electromagnetic compatibility of multimedia equipment - Immunity requirements
FCC CFR 47 Subpart 15B	Digital devices - Unintentinal radiators, Class B Digital Device
ISED Canada ICES-003, Issue 7	Spectrum Management and Telecommunications Policy. Interference-Causing Equipment Standard. Information Technology Equipment (Including Digital Apparatus - Limits and Methods of Measurement (Issue 7, June 2020)

TEST SUMMARY

Requirements – Tests	Reference standards	Verdict
Conducted Emissions	ETSI EN 301 489-01:V2.2.3 ETSI EN 301 489-03:V2.1.1 ETSI EN 301 489-17:V3.2.4 EN 55032:2015 + AC:2016 + A11:2020 FCC CFR 47 Subpart 15B:0 ISED Canada ICES-003, Issue 7:0 CISPR 16-2-1:2017, Ed.3.1	PASS
Conducted Emissions (Telecom Port)	EN 55032:2015 + AC:2016 + A11:2020 CISPR 16-2-1:2017, Ed.3.1	PASS
Radiated Emissions (Below 1GHz)	ETSI EN 301 489-01:V2.2.3 ETSI EN 301 489-03:V2.1.1 ETSI EN 301 489-17:V3.2.4 EN 55032:2015 + AC:2016 + A11:2020 FCC CFR 47 Subpart 15B:0 ISED Canada ICES-003, Issue 7:0 CISPR 16-2-3:2019, Ed.4.1	PASS
Radiated Emissions (Above 1GHz)	ETSI EN 301 489-01:V2.2.3 ETSI EN 301 489-03:V2.1.1 ETSI EN 301 489-17:V3.2.4 EN 55032:2015 + AC:2016 + A11:2020 FCC CFR 47 Subpart 15B:0 ISED Canada ICES-003, Issue 7:0 CISPR 16-2-3:2019, Ed.4.1	PASS

Requirements – Tests	Reference standards	Verdict
Harmonic Current Emissions	ETSI EN 301 489-01:V2.2.3 ETSI EN 301 489-03:V2.1.1 ETSI EN 301 489-17:V3.2.4 EN IEC 61000-3-2:2021, Ed.5.1	PASS
Voltage Variations/Fluctuations/Flicker	ETSI EN 301 489-01:V2.2.3 ETSI EN 301 489-03:V2.1.1 ETSI EN 301 489-17:V3.2.4 EN 61000-3-3:2019, Ed.3.1	PASS
Electrostatic Discharge (ESD) Immunity	ETSI EN 301 489-01:V2.2.3 ETSI EN 301 489-03:V2.1.1 ETSI EN 301 489-17:V3.2.4 EN 55035:2017 + A11:2020 EN 61000-4-2:2009, Ed.2.0	PASS
Radiated RF Disturbance Immunity	ETSI EN 301 489-01:V2.2.3 ETSI EN 301 489-03:V2.1.1 ETSI EN 301 489-17:V3.2.4 EN 55035:2017 + A11:2020 EN 61000-4-3:2020, Ed.4.0	PASS
Electric Fast Transients Immunity	ETSI EN 301 489-01:V2.2.3 ETSI EN 301 489-03:V2.1.1 ETSI EN 301 489-17:V3.2.4 EN 55035:2017 + A11:2020 EN 61000-4-4:2012, Ed.3.0	PASS
Surge Immunity	ETSI EN 301 489-01:V2.2.3 ETSI EN 301 489-03:V2.1.1 ETSI EN 301 489-17:V3.2.4 EN 55035:2017 + A11:2020 EN 61000-4-5:2017, Ed.3.1	PASS
Conducted RF Disturbance Immunity	ETSI EN 301 489-01:V2.2.3 ETSI EN 301 489-03:V2.1.1 ETSI EN 301 489-17:V3.2.4 EN 55035:2017 + A11:2020 EN 61000-4-6:2014, Ed.4.0	PASS
Power Frequency Magnetic Field Immunity	EN 55035:2017 + A11:2020 EN 61000-4-8:2010, Ed.2.0	PASS
Voltage Dips and Interruptions Immunity	ETSI EN 301 489-01:V2.2.3 ETSI EN 301 489-03:V2.1.1 ETSI EN 301 489-17:V3.2.4 EN 55035:2017 + A11:2020 EN IEC 61000-4-11:2020, Ed.3.0	PASS

PASS	:	Tested and complied with the requirements
FAIL	:	Tested and failed the requirements
N/A	:	Test not relevant to this specimen (evaluated by the test laboratory)
-	:	Test not performed (instructed by the applicant)
*	:	An asterisk (*) placed after the verdict in the Result column indicates test items that are not within Nemko's scope of accreditation
#	:	A grid (#) placed after the verdict in the Result column indicates test items that are only partly covered by Nemko's scope of
		accreditation. Further information is detailed in the test section

NOTES

Note 1: Product standards with dated references to basic standards may have been performed by Nemko AS according to the newest edition of the basic standard. This may impact the compliance criteria or technical performance of the test, still this is considered to be adequate as long as the test is expected to confirm compliance to the intention of the product standard. The table above lists the actual editions of the basic standards which have been used during testing.

Note 2: The choice of immunity test levels could be higher than those specified by the reference standards when we take into account the nature of the specimen and its intended use, or based on customer requests.

TEST REPORT Report No. REP008144

Test Results

CONDUCTED EMISSIONS

TEST DESCRIPTION

Method

The reference method for this test is listed in the table under clause TEST SUMMARY.

Set-up

The measurement was performed at the power supply terminal of the specimen. Nominal supply voltage was provided. The specimen was energized and in normal operating mode during the measurement.

- \Box The specimen and its cables were elevated 10 cm above a ground plane.
- □ The specimen and its cables were elevated 40 cm above a ground plane.
- ⊠ The specimen and its cables were placed 40 cm from a vertical ground plane, 80 cm over ground plane.

 \Box The specimen was mounted directly on, and bonded to a ground plane. Cables and auxiliary equipment were elevated by 1 cm

⊠ The specimen was connected to an Artificial Mains Network (AMN) by its power supply cable, which was adjusted to 100cm length by folding.

□ The specimen was connected to an Artificial Mains Network (AMN) by a 0.8 m shielded power supply cable directly connected to the AMN

Conditions

- □ Frequency range was 9kHz 30MHz.
- □ Frequency range was 10kHz 30MHz.
- ⊠ Frequency range was 150kHz 30MHz.

The measuring bandwidth is 200Hz in the frequency range 9 kHz – 150 kHz. Measurement was made with a 100 Hz step size and 100 ms dwell time.

The measuring bandwidth is 9 kHz in the frequency range 150 kHz – 30 MHz. Measurement was made with a 4.5 kHz step size and 20 ms dwell time.

Measurement uncertainty: ± 3.7 dB (9 kHz - 150 kHz); ± 3.3 dB (150 kHz - 30 MHz)

Instruments used during measurement

Instrument list: AMN: R&S / ENV432 (N-5171) (09/2024) EMI Receiver: R&S / ESR 7 (N-4757) (01/2024)

Conformity

Verdict: Test engineer: PASS Jørn Gustavsen

EMISSION SPECTRUM – 100VAC 60HZ, CISPR LIMITS

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)			(dB)
0.250000		35.03	66.00	30.97	1000.0	9.000	L1	OFF	10.0
0.250000	38.04		79.00	40.96	1000.0	9.000	L1	OFF	10.0
0.262000	34.58		79.00	44.42	1000.0	9.000	Ν	OFF	10.0
0.262000		28.09	66.00	37.91	1000.0	9.000	Ν	OFF	10.0
0.318000	41.53		79.00	37.47	1000.0	9.000	Ν	OFF	10.0
0.318000		35.77	66.00	30.23	1000.0	9.000	Ν	OFF	10.0
0.502000		29.77	60.00	30.23	1000.0	9.000	Ν	OFF	10.0
0.502000	38.69		73.00	34.31	1000.0	9.000	Ν	OFF	10.0
0.974000		28.16	60.00	31.84	1000.0	9.000	Ν	OFF	10.0
0.974000	34.36		73.00	38.64	1000.0	9.000	Ν	OFF	10.0
0.982000		27.97	60.00	32.03	1000.0	9.000	Ν	OFF	10.0
0.982000	34.33		73.00	38.67	1000.0	9.000	Ν	OFF	10.0
1.302000	36.23		73.00	36.77	1000.0	9.000	Ν	OFF	10.0
1.302000		29.20	60.00	30.80	1000.0	9.000	Ν	OFF	10.0
1.818000	33.90		73.00	39.10	1000.0	9.000	Ν	OFF	10.1
1.818000		25.86	60.00	34.14	1000.0	9.000	Ν	OFF	10.1
9.614000	56.31		73.00	16.69	1000.0	9.000	L1	OFF	10.2
9.614000		48.05	60.00	11.95	1000.0	9.000	L1	OFF	10.2
9.694000	54.50		73.00	18.50	1000.0	9.000	L1	OFF	10.2
9.694000		47.30	60.00	12.70	1000.0	9.000	L1	OFF	10.2
9.914000		47.84	60.00	12.16	1000.0	9.000	Ν	OFF	10.2
9.914000	55.30		73.00	17.70	1000.0	9.000	Ν	OFF	10.2

EMISSION SPECTRUM – 240VAC 50HZ, CISPR LIMITS

Full Spectrum

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Filter	Corr.
(11112)	(ασμν)	(ασμν)	(ασμν)	(ab)	(ms)	(кпz)			(ab)
8.594000		49.96	60.00	10.04	1000.0	9.000	Ν	OFF	10.2
8.594000	58.89		73.00	14.11	1000.0	9.000	N	OFF	10.2
8.662000	58.49		73.00	14.51	1000.0	9.000	L1	OFF	10.2
8.662000		49.10	60.00	10.90	1000.0	9.000	L1	OFF	10.2
8.726000	57.57		73.00	15.43	1000.0	9.000	Ν	OFF	10.2
8.726000		49.91	60.00	10.09	1000.0	9.000	Ν	OFF	10.2
8.742000	59.07		73.00	13.93	1000.0	9.000	L1	OFF	10.2
8.742000		49.81	60.00	10.19	1000.0	9.000	L1	OFF	10.2
8.786000		50.41	60.00	9.59	1000.0	9.000	Ν	OFF	10.2
8.786000	58.89		73.00	14.11	1000.0	9.000	Ν	OFF	10.2
9.202000	55.03		73.00	17.97	1000.0	9.000	L1	OFF	10.2
9.202000		47.99	60.00	12.01	1000.0	9.000	L1	OFF	10.2

EMISSION SPECTRUM – 115VAC 60HZ, FCC LIMITS

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)			(dB)
2.514000	53.75		73.00	19.25	1000.0	9.000	Ν	OFF	10.1
2.514000		50.99	60.00	9.01	1000.0	9.000	Ν	OFF	10.1
9.886000	58.58		73.00	14.42	1000.0	9.000	L1	OFF	10.2
9.886000		50.66	60.00	9.34	1000.0	9.000	L1	OFF	10.2
9.986000	53.89		73.00	19.11	1000.0	9.000	Ν	OFF	10.2
9.986000		46.66	60.00	13.34	1000.0	9.000	Ν	OFF	10.2
10.014000	58.40		73.00	14.60	1000.0	9.000	L1	OFF	10.2
10.014000		51.07	60.00	8.93	1000.0	9.000	L1	OFF	10.2
10.238000		49.60	60.00	10.40	1000.0	9.000	L1	OFF	10.2
10.238000	56.64		73.00	16.36	1000.0	9.000	L1	OFF	10.2
10.442000		50.62	60.00	9.38	1000.0	9.000	L1	OFF	10.2
10.442000	57.78		73.00	15.22	1000.0	9.000	L1	OFF	10.2

EMISSION SPECTRUM – 115VAC 60HZ, FCC LIMITS (ONLY RADIO)

Final_Result CAV

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)			(dB)
0.174000		46.25	54.77	8.51	15000.0	9.000	L1	OFF	9.7
0.174000	47.25		64.77	17.52	15000.0	9.000	L1	OFF	9.7
0.306000		39.91	50.08	10.17	15000.0	9.000	Ν	OFF	9.7
0.306000	47.76		60.08	12.32	15000.0	9.000	Ν	OFF	9.7
0.350000	48.30		58.96	10.66	15000.0	9.000	L1	OFF	9.7
0.350000		43.88	48.96	5.08	15000.0	9.000	L1	OFF	9.7
4.894000		27.60	46.00	18.40	15000.0	9.000	L1	OFF	9.8
4.894000	33.72		56.00	22.28	15000.0	9.000	L1	OFF	9.8
11.954000	36.85		60.00	23.15	15000.0	9.000	L1	OFF	9.9
11.954000		33.09	50.00	16.91	15000.0	9.000	L1	OFF	9.9
13.482000		31.00	50.00	19.00	15000.0	9.000	Ν	OFF	9.7
13.482000	33.93		60.00	26.07	15000.0	9.000	Ν	OFF	9.7

CONDUCTED EMISSIONS (TELECOM TERMINAL)

TEST DESCRIPTION

Method

The reference method for this test is listed in the table under clause TEST SUMMARY.

Set-up

The measurement was performed at the power supply terminal of the specimen. Nominal supply voltage was provided. The specimen was energized and in normal operating mode during the measurement.

 \Box The specimen and its cables were elevated 10 cm above a ground plane.

□ The specimen and its cables were elevated 40 cm above a ground plane.

☑ The specimen and its cables were placed 40 cm from a vertical ground plane, 80 cm above floor.

The specimen was connected to an Artificial Mains Network (AMN) by its power supply cable, which was adjusted to 100cm length by folding.

A T-ISN was placed on the reference ground plane and the telecom cable from the specimen was connected via the T-ISN to the auxiliary equipment. The length of the telecom cable between specimen and T-ISN was 100 cm.

Transmission speeds investigated:

 \Box 10BaseT Ethernet.

□ 100BaseT Ethernet.

 \boxtimes 1000BaseT Ethernet.

Measurement methods used: ☑ ISN-T method (unshielded) □ ISN-ST method (shielded) □ Current probe method □ Capacitive voltage probe method

Conditions

⊠ Frequency range was 150 kHz – 30 MHz.

The measuring bandwidth is 9 kHz in the frequency range 150 kHz – 30 MHz. Measurement was made with a 4.5 kHz step size and 20 ms dwell time.

Measurement uncertainty: \pm 4.6 dB (ISN-Cat5 method); \pm 5.0 dB (ISN-Cat6 method); \pm 3.4 dB (ISN-S method); \pm 2.7 dB (Current probe method); \pm 3.7 dB (CVP method)

Instruments used during measurement

Instrument list: EMI Receiver: R&S / ESR 7 (N-4757) (01/2024) ISN: Schwarzbeck / ISN S8 (N-4875) (06/2023)

Conformity	
Verdict:	
Test engineer:	

Jørn Gustavsen

PASS

EMISSION SPECTRUM, LAN PORT – 100VAC 60HZ, CISPR LIMITS

Full Spectrum

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)		(dB)
0.196100		53.73	81.77	28.04	15000.0	9.000	Telecom line	9.5
0.196100	60.92		94.77	33.86	15000.0	9.000	Telecom line	9.5
0.333900		52.18	77.35	25.17	15000.0	9.000	Telecom line	9.5
0.333900	58.39		90.35	31.97	15000.0	9.000	Telecom line	9.5
1.131800		47.76	74.00	26.24	15000.0	9.000	Telecom line	9.5
1.131800	57.01		87.00	29.99	15000.0	9.000	Telecom line	9.5
1.329150		47.91	74.00	26.09	15000.0	9.000	Telecom line	9.5
1.329150	58.86		87.00	28.14	15000.0	9.000	Telecom line	9.5
2.118300		45.82	74.00	28.18	15000.0	9.000	Telecom line	9.6
2.118300	57.78		87.00	29.22	15000.0	9.000	Telecom line	9.6
2.600000		50.64	74.00	23.36	15000.0	9.000	Telecom line	9.6
2.600000	58.26		87.00	28.74	15000.0	9.000	Telecom line	9.6
10.030750		50.22	74.00	23.78	15000.0	9.000	Telecom line	9.7
10.030750	57.88		87.00	29.12	15000.0	9.000	Telecom line	9.7
12.709800		52.30	74.00	21.70	15000.0	9.000	Telecom line	9.7
12.709800	57.90		87.00	29.10	15000.0	9.000	Telecom line	9.7

EMISSION SPECTRUM, LAN PORT – 240VAC 50HZ, CISPR LIMITS

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)		(dB)
0.419050		50.13	75.47	25.33	15000.0	9.000	Telecom line	9.5
0.419050	63.16	-	88.47	25.30	15000.0	9.000	Telecom line	9.5
0.562900		42.10	74.00	31.90	15000.0	9.000	Telecom line	9.5
0.562900	59.56		87.00	27.44	15000.0	9.000	Telecom line	9.5
0.924650		51.19	74.00	22.81	15000.0	9.000	Telecom line	9.5
0.924650	60.78		87.00	26.22	15000.0	9.000	Telecom line	9.5
2.585900		50.42	74.00	23.58	15000.0	9.000	Telecom line	9.6
2.585900	59.37		87.00	27.63	15000.0	9.000	Telecom line	9.6
9.316050		54.34	74.00	19.66	15000.0	9.000	Telecom line	9.7
9.316050	62.70		87.00	24.30	15000.0	9.000	Telecom line	9.7
9.457000		54.57	74.00	19.43	15000.0	9.000	Telecom line	9.7
9.457000	63.52		87.00	23.48	15000.0	9.000	Telecom line	9.7
9.632000		55.20	74.00	18.80	15000.0	9.000	Telecom line	9.7
9.632000	63.10		87.00	23.90	15000.0	9.000	Telecom line	9.7

EMISSION SPECTRUM, POE PORT – 100VAC 60HZ, CISPR LIMITS

Full Spectrum

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.304700		59.59	78.11	18.52	15000.0	9.000	Telecom line	9.5
0.304700	63.41		91.11	27.71	15000.0	9.000	Telecom line	9.5
0.512750		53.45	74.00	20.55	15000.0	9.000	Telecom line	9.5
0.512750	59.39		87.00	27.61	15000.0	9.000	Telecom line	9.5
1.130300		49.34	74.00	24.66	15000.0	9.000	Telecom line	9.5
1.130300	58.71		87.00	28.29	15000.0	9.000	Telecom line	9.5
2.112350		42.46	74.00	31.54	15000.0	9.000	Telecom line	9.6
2.112350	57.54		87.00	29.46	15000.0	9.000	Telecom line	9.6
3.165700		45.31	74.00	28.69	15000.0	9.000	Telecom line	9.6
3.165700	57.64		87.00	29.36	15000.0	9.000	Telecom line	9.6
9.624200		51.39	74.00	22.61	15000.0	9.000	Telecom line	9.7
9.624200	59.23		87.00	27.77	15000.0	9.000	Telecom line	9.7
16.170200		52.59	74.00	21.41	15000.0	9.000	Telecom line	9.7
16.170200	58.45		87.00	28.55	15000.0	9.000	Telecom line	9.7
16.228050		54.89	74.00	19.11	15000.0	9.000	Telecom line	9.7
16.228050	60.43		87.00	26.57	15000.0	9.000	Telecom line	9.7

EMISSION SPECTRUM, POE PORT – 240VAC 50HZ, CISPR LIMITS

Full Spectrum

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)		(dB)
0.311450		57.63	77.93	20.30	15000.0	9.000	Telecom line	9.5
0.311450	62.94		90.93	28.00	15000.0	9.000	Telecom line	9.5
0.519900		51.58	74.00	22.42	15000.0	9.000	Telecom line	9.5
0.519900	59.53		87.00	27.47	15000.0	9.000	Telecom line	9.5
0.831750		46.23	74.00	27.77	15000.0	9.000	Telecom line	9.5
0.831750	58.92		87.00	28.08	15000.0	9.000	Telecom line	9.5
1.118300		47.08	74.00	26.92	15000.0	9.000	Telecom line	9.5
1.118300	58.11		87.00	28.89	15000.0	9.000	Telecom line	9.5
2.166300		45.91	74.00	28.09	15000.0	9.000	Telecom line	9.6
2.166300	58.54		87.00	28.46	15000.0	9.000	Telecom line	9.6
9.893650		48.19	74.00	25.81	15000.0	9.000	Telecom line	9.7
9.893650	56.17		87.00	30.83	15000.0	9.000	Telecom line	9.7

RADIATED EMISSIONS (BELOW 1GHZ)

TEST DESCRIPTION

Method

The reference method for this test is listed in the table under clause TEST SUMMARY.

Set-up

The measurements were performed in a semi-anechoic chamber (SAC). Nominal supply voltage was provided. The specimen was energized and in normal operating mode during the measurement.

 \Box The specimen and its cables were elevated 10 cm above the site ground plane and placed in the centre of the turntable.

🗵 The specimen and its cables were placed on a table 80 cm above the site ground plane and placed in the centre of the turntable.

 \square Ferrite clamps type CMAD were applied to cables leaving the test volume.

 \Box A CDNE was applied to the power supply cable.

Antenna type = Hybrid bilog antenna Antenna elevation = 100-400 cm above the ground reference plane. Specimen rotation = 0-360^o.

Frequency range:	Measurement distance:
🗌 30-300MHz	⊠ 3m
🗵 30-1000MHz	🗆 5m
□ Other:	🗆 10m

Conditions

Instrument list:

The measuring bandwidth is 120 kHz in the frequency range 30 MHz – 1000 MHz. Frequency sweeps with RBW = 120 kHz and VBW = 1 MHz was applied with a sweep time of 20 ms (step size resolution < 60 kHz).

Measurement uncertainty: ± 4.9 dB (3m distance in SAC10); ± 4.6 dB (3m distance in SAC3); ± 4.6 dB (10m distance in SAC10)

Instruments used during measurement

Antenna, Hybrid: Sunar / JB1 (N-4839) (05/2023) EMI Receiver: R&S / ESR26 (N-4871) (01/2024) Preamplifier: Sonoma / 317 (N-4955) (11/2023)

Conformity

Verdict: Test engineer: PASS Jørn Gustavsen

EMISSION SPECTRUM – 240VAC 50HZ, CISPR LIMITS

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)
47.798034	31.92	50.00	18.08	15000.0	120.000	142.0	V	254.0	-21.3
147.453502	45.35	50.00	4.65	15000.0	120.000	204.0	Н	349.0	-18.2
221.181384	38.00	50.00	12.00	15000.0	120.000	126.0	Н	1.0	-20.2
466.937912	39.96	57.00	17.04	15000.0	120.000	237.0	V	274.0	-12.8
491.514336	37.96	57.00	19.04	15000.0	120.000	200.0	н	349.0	-12.3
890.984780	44.08	57.00	12.92	15000.0	120.000	130.0	V	22.0	-6.8

EMISSION SPECTRUM – 115VAC 60HZ, FCC LIMITS

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)
35.281614	31.59	49.10	17.51	15000.0	120.000	100.0	V	154.0	-14.5
45.757668	34.32	49.10	14.78	15000.0	120.000	105.0	V	50.0	-21.3
66.857300	25.12	49.10	23.98	15000.0	120.000	146.0	V	231.0	-23.3
147.454528	44.94	53.50	8.56	15000.0	120.000	208.0	Н	343.0	-18.0
221.181456	38.53	56.40	17.87	15000.0	120.000	150.0	н	1.0	-19.5
466.937930	39.15	56.40	17.25	15000.0	120.000	235.0	V	275.0	-12.7
491.513526	37.34	56.40	19.06	15000.0	120.000	228.0	Н	341.0	-12.2
663.543358	40.51	56.40	15.89	15000.0	120.000	108.0	Н	306.0	-9.6
666.245480	40.42	56.40	15.98	15000.0	120.000	109.0	V	211.0	-9.6
890.988020	36.13	56.40	20.27	15000.0	120.000	133.0	V	106.0	-7.0

RADIATED EMISSIONS (ABOVE 1GHZ)

TEST DESCRIPTION

Method

The reference method for this test is listed in the table under clause TEST SUMMARY.

Set-up

Nominal supply voltage was provided. The specimen was energized and in normal operating mode during the measurement.

⊠ The measurements were performed in a semi-anechoic chamber (SAC3) (calibrated volume: D=2.0m / H=2.0m).

⊠ The measurements were performed in a semi-anechoic chamber (SAC10) (calibrated volume: D=1.5m / H=2.0m).

 \Box The measurements were performed in a fully anechoic room (FAR) (calibrated volume: D=1.2m / H=2.0m).

 \Box The specimen and its cables were elevated 10 cm above the site ground plane, and placed in the centre of the turntable. \boxtimes The specimen and its cables were placed on a table 80 cm above the site ground plane, and placed in the centre of the turntable.

The reference ground plane was covered with ferrite absorbers in the reflecting area between the specimen and the measuring antenna.

Measurement distance = \boxtimes 3m. Antenna elevation = fixed at centre of specimen height. Specimen rotation = 0-360°.

Measurements were performed with a double-ridged guide horn antenna.

Frequency range:	Highest internal frequency of specimen:
🗌 1-2 GHz	🗆 Below 108MHz
🗌 1-5 GHz	Between 108MHz and 500MHz
🗌 1-6 GHz	Between 500MHz and 1000MHz
🖾 1-12 GHz	🖾 Above 1000MHz

The measuring bandwidth is 1 MHz in the above frequency range. Frequency sweeps with RBW = 1 MHz and VBW = 1 MHz was applied with a sweep time of 100 ms (proper segmentation of the frequency range was applied to obtain step size resolution < 500 kHz).

Measurement uncertainty: ± 5.1 dB

Instruments used during measurement

Instrument list:

Antenna, Horn: R&S / HF907 (N-4885) (06/2025) EMI Receiver: R&S / ESR26 (N-4871) (01/2024) Preamplifier: Schwarzbeck / BBV 9718 C (N-4945) (11/2023)

Antenna, Horn: ETS / 3117 (LR-1717) (12/2027) EMI Receiver: R&S / ESU40 (LR-1639) (01/2024) Preamplifier: ETS / 3117-PA (LR-1757) (08/2023)

Conformity

Verdict: Test engineer: PASS

Jørn Gustavsen

EMISSION SPECTRUM (HORIZONTAL POLARIZATION) – 100VAC60HZ, CISPR LIMITS

Frequency	MaxPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)		(deg)	(dB/m)
1187.781120	48.18		76.00	27.82	1000.0	1000.000	Н	103.0	-7.4
1187.800000		36.68	56.00	19.32	1000.0	1000.000	Н	103.0	-7.4
1484.760960	52.49		76.00	23.51	1000.0	1000.000	Н	132.0	-5.9
1485.000000		40.39	56.00	15.61	1000.0	1000.000	Н	132.0	-5.9
1781.900000		36.89	56.00	19.11	1000.0	1000.000	н	129.0	-3.8
2963.100000		33.81	56.00	22.19	1000.0	1000.000	Н	112.0	0.5
2963.293120	54.89		76.00	21.11	1000.0	1000.000	Н	114.0	0.5
2982.160000	53.76		76.00	22.24	1000.0	1000.000	Н	111.0	0.6
2982.300000		31.00	56.00	25.00	1000.0	1000.000	Н	109.0	0.6
3331.227040	56.70		80.00	23.30	1000.0	1000.000	Н	102.0	1.9
3331.300000		48.65	60.00	11.35	1000.0	1000.000	н	102.0	1.9
4454.960000	53.94		80.00	26.06	1000.0	1000.000	Н	254.0	5.0
4455.200000		38.64	60.00	21.36	1000.0	1000.000	Н	253.0	5.0
5013.400000		50.09	60.00	9.91	1000.0	1000.000	Н	191.0	6.5
5013.439680	54.59		80.00	25.41	1000.0	1000.000	Н	200.0	6.5
5996.211840	54.58		80.00	25.42	1000.0	1000.000	Н	140.0	8.2
5996.300000		49.17	60.00	10.83	1000.0	1000.000	Н	141.0	8.2

EMISSION SPECTRUM (VERTICAL POLARIZATION) - 100VAC60HZ, CISPR LIMITS

Full Spectrum

Frequency	MaxPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)		(deg)	(dB/m)
1188.200000		37.65	56.00	18.35	1000.0	1000.000	V	298.0	-7.4
1399.600000		29.24	56.00	26.76	1000.0	1000.000	V	186.0	-6.2
1399.781920	51.77		76.00	24.23	1000.0	1000.000	V	186.0	-6.2
1781.780320	51.48		76.00	24.52	1000.0	1000.000	V	275.0	-3.8
1781.800000		40.21	56.00	15.79	1000.0	1000.000	V	275.0	-3.8
1927.800000		31.61	56.00	24.39	1000.0	1000.000	V	130.0	-3.0
1927.916160	54.57		76.00	21.44	1000.0	1000.000	V	120.0	-3.0
2965.760000	44.12		76.00	31.88	1000.0	1000.000	V	170.0	0.5
2966.000000		27.70	56.00	28.30	1000.0	1000.000	V	170.0	0.5
5013.400000		47.69	60.00	12.31	1000.0	1000.000	V	205.0	6.5
5013.424960	51.53		80.00	28.47	1000.0	1000.000	V	205.0	6.5

EMISSION SPECTRUM (HORIZONTAL POLARIZATION) – 240VAC 50HZ, CISPR LIMITS

Frequency	MaxPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)		(deg)	(dB/m)
1188.160000	47.92		76.00	28.08	1000.0	1000.000	Н	101.0	-7.4
1188.400000		35.48	56.00	20.52	1000.0	1000.000	Н	101.0	-7.4
1312.600000		28.26	56.00	27.74	1000.0	1000.000	Н	152.0	-6.6
1312.840000	51.04		76.00	24.96	1000.0	1000.000	Н	167.0	-6.6
1782.300000		35.95	56.00	20.05	1000.0	1000.000	н	187.0	-3.8
2951.800000		32.78	56.00	23.22	1000.0	1000.000	Н	109.0	0.5
2952.040000	57.49		76.00	18.51	1000.0	1000.000	Н	110.0	0.5
2953.724320	54.34		76.00	21.66	1000.0	1000.000	Н	101.0	0.5
2953.900000		33.94	56.00	22.06	1000.0	1000.000	Н	110.0	0.5
2956.833920	55.55	-	76.00	20.45	1000.0	1000.000	Н	110.0	0.5
2957.000000		33.76	56.00	22.24	1000.0	1000.000	н	109.0	0.5
4455.000000		40.07	60.00	19.93	1000.0	1000.000	Н	246.0	5.0
5013.439200	55.01		80.00	24.99	1000.0	1000.000	Н	204.0	6.5
5013.700000		51.02	60.00	8.98	1000.0	1000.000	Н	204.0	6.5
5996.207520	52.34		80.00	27.66	1000.0	1000.000	Н	135.0	8.2
5996.360000	52.72		80.00	27.28	1000.0	1000.000	Н	135.0	8.2
5996.500000		45.54	60.00	14.46	1000.0	1000.000	Н	136.0	8.2

EMISSION SPECTRUM (VERTICAL POLARIZATION) – 240VAC 50HZ, CISPR LIMITS

MEASUREMENTS DATA

Frequency	MaxPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)		(deg)	(dB/m)
1188.100000		39.28	56.00	16.72	1000.0	1000.000	V	66.0	-7.4
1188.287360	50.35		76.00	25.65	1000.0	1000.000	V	69.0	-7.4
1484.900000		38.17	56.00	17.83	1000.0	1000.000	V	115.0	-5.9
1485.065280	51.28	-	76.00	24.72	1000.0	1000.000	V	137.0	-5.9
1782.200000		38.65	56.00	17.35	1000.0	1000.000	V	158.0	-3.8
1886.303840	52.44		76.00	23.56	1000.0	1000.000	V	126.0	-3.2
1887.505440	52.52	-	76.00	23.48	1000.0	1000.000	V	126.0	-3.2
1887.600000		30.73	56.00	25.27	1000.0	1000.000	V	126.0	-3.2
2951.997280	50.15		76.00	25.85	1000.0	1000.000	V	122.0	0.5
2952.100000		30.05	56.00	25.95	1000.0	1000.000	V	122.0	0.5
3331.228640	49.62		80.00	30.38	1000.0	1000.000	V	170.0	1.9
3331.400000		40.98	60.00	19.02	1000.0	1000.000	V	169.0	1.9
5013.425760	52.70		80.00	27.30	1000.0	1000.000	V	213.0	6.5
5013.700000		46.83	60.00	13.17	1000.0	1000.000	V	206.0	6.5

Full Spectrum

EMISSION SPECTRUM 1-6GHZ (HORIZONTAL POLARIZATION) - 115VAC 60HZ, FCC LIMITS

Frequency	MaxPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)		(deg)	(dB/m)
1484.720000	54.46		79.50	25.04	1000.0	1000.000	Н	131.0	-5.9
1484.800000		40.81	59.50	18.69	1000.0	1000.000	Н	130.0	-5.9
1781.979680	56.41		79.50	23.09	1000.0	1000.000	Н	195.0	-3.8
1782.200000		43.32	59.50	16.18	1000.0	1000.000	Н	195.0	-3.8
2331.700000		43.55	59.50	15.95	1000.0	1000.000	н	144.0	-1.8
2331.859040	50.35		79.50	29.15	1000.0	1000.000	Н	140.0	-1.8
2951.900000		33.28	59.50	26.22	1000.0	1000.000	Н	106.0	0.5
2952.087680	56.65		79.50	22.85	1000.0	1000.000	Н	107.0	0.5
3331.240160	48.06		79.50	31.44	1000.0	1000.000	Н	142.0	1.9
3331.500000		49.08	59.50	10.42	1000.0	1000.000	Н	123.0	1.9
5013.600000		52.06	59.50	7.44	1000.0	1000.000	Н	196.0	6.5
5996.204160	54.78		79.50	24.72	1000.0	1000.000	Н	140.0	8.2
5996.400000		47.69	59.50	11.82	1000.0	1000.000	Н	139.0	8.2

EMISSION SPECTRUM 1-6GHZ (VERTICAL POLARIZATION) – 115VAC 60HZ, FCC LIMITS

MEASUREMENTS DATA

Frequency	MaxPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)		(deg)	(dB/m)
1188.300000		38.45	59.50	21.05	1000.0	1000.000	V	-2.0	-7.4
1188.540000	48.00		79.50	31.50	1000.0	1000.000	V	10.0	-7.4
1485.000000		37.98	59.50	21.52	1000.0	1000.000	V	136.0	-5.9
1485.256000	51.90		79.50	27.60	1000.0	1000.000	V	116.0	-5.9
1782.164960	51.03		79.50	28.47	1000.0	1000.000	V	188.0	-3.8
1782.200000		32.39	59.50	27.11	1000.0	1000.000	V	189.0	-3.8
1903.377760	53.23		79.50	26.27	1000.0	1000.000	V	132.0	-3.1
1955.800000		33.17	59.50	26.33	1000.0	1000.000	V	126.0	-2.9
1955.878720	50.82		79.50	28.68	1000.0	1000.000	V	115.0	-2.9
2951.900000		29.75	59.50	29.75	1000.0	1000.000	V	116.0	0.5
2952.000160	50.57		79.50	28.93	1000.0	1000.000	V	116.0	0.5
2955.553600	49.11		79.50	30.39	1000.0	1000.000	V	116.0	0.5
3331.231360	49.77		79.50	29.73	1000.0	1000.000	V	168.0	1.9
3331.300000		41.61	59.50	17.89	1000.0	1000.000	V	168.0	1.9
5013.460000	53.22		79.50	26.28	1000.0	1000.000	V	212.0	6.5
5013.600000		48.13	59.50	11.37	1000.0	1000.000	V	208.0	6.5

Full Spectrum

EMISSION SPECTRUM 6-12GHZ(HORIZONTAL POLARIZATION) – 115V AC 60HZ, FCC LIMITS

Full Spectrum

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
8909.911200	56.97		80.00	23.04	15000.0	1000.000	100.0	Н	302.0	5.3
8910.000000		46.97	60.00	13.03	15000.0	1000.000	100.0	Н	302.0	5.3

EMISSION SPECTRUM 6-12GHZ (VERTICAL POLARIZATION) – 115V AC 60HZ, FCC LIMITS

Full Spectrum

Frequency	MaxPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)
7424.700000		36.37	59.50	23.13	15000.0	1000.000	100.0	V	107.0	2.5
7424.827200	51.04		79.50	28.46	15000.0	1000.000	100.0	V	107.0	2.5
8909.700000		41.92	59.50	17.58	15000.0	1000.000	100.0	V	107.0	5.3
10361.100000		37.88	59.50	21.62	15000.0	1000.000	100.0	V	107.0	6.9

HARMONIC CURRENT EMISSIONS

TEST DESCRIPTION

Method

The reference method for this test is listed in the table under clause TEST SUMMARY.

Limit Classification

□ The specimen has rated power of 75W or less, thus no limits are specified in the reference standard.

 \boxtimes Class A

 \Box Class B

- \Box Class C with active input power > 25W
- \Box Class C with active input power \leq 25W
- \Box Class C with active input power \leq 25W (second requirement)
- Class D

Set-up

The specimen was connected to the Power Analyser system. A steady and undistorted AC mains was supplied to the specimen from a power supply matrix.

Procedure

10 seconds after the energizing of the specimen, the current harmonics analysis was started and measurements were performed for 2.5 minutes.

Measurements were performed on all active phases at the AC supply port, searching for current harmonics 1st to 40th of the mains frequency (50 Hz or 60 Hz).

Measurement uncertainty (CI15003iX system): \pm 6.2 % Measurement uncertainty (CI10001iX system): \pm 6.2 % Measurement uncertainty (Netwave system): \pm 3.1 %

Instruments used during measurement

Instrument list: Power Analyzer: EMTest / DPA 503N (N-4777) (07/2024) Power Supply: EMTest / NetWave 60.2-400 (N-4776) (04/2024)

Conformity

Verdict: Test engineer: PASS Jørn Gustavsen

MEASUREMENT DATA

	Average and Maximum harmonic current results									
Hn			Average				Maximum		Harmonic	
	Ieff [A]	of Limit [%]	Limit [A]	Result	Ieff [A]	of Limit [%]	Limit [A]	Result	Result	
1	0,200				0,205					
2	0,001	0,100	1,080	n/a	0,001	0,076	1,620	n/a	PASS	
3	0,071	3,069	2,300	PASS	0,072	2,083	3,450	PASS	PASS	
4	0,001	0,190	0,430	n/a	0,001	0,153	0,645	n/a	PASS	
5	0,021	1,809	1,140	PASS	0,021	1,242	1,710	PASS	PASS	
6	0,001	0,199	0,300	n/a	0,001	0,153	0,450	n/a	PASS	
7	0,018	2,350	0,770	PASS	0,018	1,582	1,155	PASS	PASS	
8	0,001	0,230	0,230	n/a	0,001	0,173	0,345	n/a	PASS	
9	0,011	2,850	0,400	PASS	0,012	1,974	0,600	PASS	PASS	
10	0,000	0,257	0,184	n/a	0,001	0,191	0,276	n/a	PASS	
11	0,007	2,054	0,330	PASS	0,007	1,390	0,495	PASS	PASS	
12	0,000	0,262	0,153	n/a	0,000	0,200	0,230	n/a	PASS	
13	0,005	2,186	0,210	n/a	0,005	1,481	0,315	n/a	PASS	
14	0,000	0,284	0,131	n/a	0,000	0,216	0,197	n/a	PASS	
15	0,009	5,857	0,150	PASS	0,009	3,946	0,225	PASS	PASS	
16	0,000	0,343	0,115	n/a	0,000	0,264	0,173	n/a	PASS	
17	0,004	3,035	0,132	n/a	0,004	2,188	0,199	n/a	PASS	
18	0,000	0,446	0,102	n/a	0,001	0,337	0,153	n/a	PASS	
19	0,005	4,326	0,118	PASS	0,005	2,917	0,178	PASS	PASS	
20	0,000	0,460	0,092	n/a	0,000	0,355	0,138	n/a	PASS	
21	0,003	3,086	0,107	n/a	0,003	2,093	0,161	n/a	PASS	
22	0,000	0,438	0,084	n/a	0,000	0,338	0,125	n/a	PASS	
23	0,006	6,059	0,098	PASS	0,006	4,081	0,147	PASS	PASS	
24	0,000	0,480	0,077	n/a	0,000	0,374	0,115	n/a	PASS	
25	0,003	3,732	0,090	n/a	0,004	2,661	0,135	n/a	PASS	
26	0,000	0,517	0,071	n/a	0,000	0,399	0,106	n/a	PASS	
27	0,003	3,975	0,083	n/a	0,003	2,730	0,125	n/a	PASS	
28	0,000	0,605	0,066	n/a	0,000	0,459	0,099	n/a	PASS	
29	0,003	3,569	0,078	n/a	0,003	2,476	0,116	n/a	PASS	
30	0,000	0,602	0,061	n/a	0,000	0,462	0,092	n/a	PASS	
31	0,004	5,926	0,073	n/a	0,004	4,102	0,109	n/a	PASS	
32	0,000	0,686	0,058	n/a	0,000	0,526	0,086	n/a	PASS	
33	0,003	3,944	0,068	n/a	0,003	2,678	0,102	n/a	PASS	
34	0,000	0,670	0,054	n/a	0,000	0,502	0,081	n/a	PASS	
35	0,003	4,129	0,064	n/a	0,003	2,887	0,096	n/a	PASS	
36	0,000	0,832	0,051	n/a	0,000	0,614	0,077	n/a	PASS	
37	0,003	4,195	0,061	n/a	0,003	2,924	0,091	n/a	PASS	
38	0,000	0,766	0,048	n/a	0,000	0,586	0,073	n/a	PASS	
39	0,003	5,572	0,058	n/a	0,003	3,982	0,087	n/a	PASS	
40	0.000	0.892	0.046	n/a	0.000	0.691	0.069	n/a	PASS	

Note: Harmonic currents less than 0.6 % of the input current measured under the test conditions, or less than 5 mA, whichever is greater, are disregarded.

EMISSION SPECTRUM

VOLTAGE CHANGES/FLUCTUATIONS/FLICKER

TEST DESCRIPTION

Method

The reference method for this test is listed in the table under clause TEST SUMMARY.

Set-up

The specimen was connected to the Power Analyser system. A steady and undistorted AC supply was provided to the specimen from an ideal power supply unit. The power supply unit provided standardized supply impedance by means of synthetic programmable impedances.

Equipment control method

⊠ Without additional conditions

□ Switched manually, or switched automatically more frequently than twice per day, and also has either a delayed restart (the delay not less than a few tens of seconds), or manual restart, after a power supply interruption

Attended whilst in use (for example: hair dryers, vacuum cleaners, kitchen equipment such as mixers, garden equipment such as lawn mowers, portable tools such as electric drills), or switched on automatically, or is intended to be switched on manually, no more than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds) or manual restart, after a power supply interruption

Procedure

Measurements were performed to monitor the required flicker parameters on all active phases at the AC supply port.

The measuring time depends on which parameters are measured:

- □ 1 minute (manual Dmax only)
- \boxtimes 10 minutes
- □ 120 minutes

 \Box 24 times switching according to Annex B

A measurement table and a graphic presentation of the probability function of Short Time Flicker during this session (if measured) are presented in the report.

Measurement uncertainty (CI15003iX system): ± 7.5 % Measurement uncertainty (CI10001iX system): ± 5,9 % Measurement uncertainty (Netwave system): ± 4,7 %

Instruments used during measurement

Instrument list:

Impedance network: EMTest / AIF 503N63.1 (N-4778) (04/2024) Power Analyzer: EMTest / DPA 503N (N-4777) (07/2024) Power Supply: EMTest / NetWave 60.2-400 (N-4776) (04/2024)

Conformity

Verdict: Test engineer: PASS Jørn Gustavsen

MEASUREMENT DATA

Parameter	Limit	Measured	Result
Dmax	4 %	< 0.2 %	PASS
Dc	3.3 %	0 %	PASS
Dt	500 msec	0 msec	PASS
Pst	Pst 1.0		PASS

FLICKER PROBABILITY

Short-term Flicker Severity (Pst) (Line 1)

Measure Index

ELECTROSTATIC DISCHARGE (ESD) IMMUNITY

TEST DESCRIPTION

Method

The reference method for this test is listed in the table under clause TEST SUMMARY.

Set-up

The specimen was energized and in normal operating condition.

- \square Floor standing equipment. Specimen was elevated 10 cm above the ground reference plane.
- \square Table top equipment. Specimen was placed on a test table 80 cm above the reference ground plane. A horizontal coupling plane (HCP) of 160x80 cm was placed on the test table, just beneath the specimen, and connected to the reference plane via a cable with two 470kΩ resistors located one in each end of the cable. The specimen was separated from the HCP by a 0.5mm insulating support.

A vertical coupling plane (VCP) of 50x50 cm was placed 10 cm from the specimen exterior. This VCP is connected to the reference plane via a cable with two $470k\Omega$ resistors located one in each end of the cable.

The ESD generator's reference ground was connected to the reference ground plane.

Procedure

- \boxtimes Indirect contact discharges were applied to the mid edge of the VCP.
- oxtimes Indirect contact discharges were applied to the mid edge of the HCP.
- Direct contact discharges were applied to various selected test points of the specimen at conductive surfaces,
- ☑ Direct air discharges were applied to various selected test points of the specimen at non-conductive surfaces.

Discharges were applied at increasing levels to each test point.

Uncertainty figures: Peak voltage: ± 10 %; Transient shape: ± 30 %

A functional test was performed before and after the exposure. The specimen was observed during exposure in order to detect unintended responses.

Instruments used during measurement

Instrument list: ESD Generator: AMETEK / Dito (N-5035) (11/2023)

Temperature:	20.5 ºC
Humidity:	52.8 %RH
Atmos. pressure:	1021.4 hPA

Conformity

Verdict: Test engineer:

Jørn Gustavsen

PASS

TEST REPORT Report No. REP008144

PHOTO OF SELECTED TEST POINTS

Contact discharge points
Air discharge points

DETAILED TEST LOG

Test Point	Applied Level [kV]	Discharge Type	Discharges per test level	Required Criteria	Complied Criteria	Result
Front panel	±4, ±8kV	Air	ND	В	А	PASS
Camera house	±4, ±8kV	Air	ND	В	А	PASS
Plastic Enclosure	±4, ±8kV	Air	ND	В	А	PASS
Metal Parts	±2, ±4kV	Contact	10	В	А	PASS
Cable shields	±2, ±4kV	Contact	10	В	А	PASS
Screws	±2, ±4kV	Contact	10	В	А	PASS
НСР	±2, ±4kV	Contact	10	В	А	PASS
VCP	±2, ±4	Contact	10	В	А	PASS

Note: ND = No Discharge, indicates discharge attempts, which have given no actual observable discharge.

OBSERVATIONS

No malfunctions were recorded during or after the applied test(s). Observations showed following unintended responses during test(s).

RADIATED RF DISTURBANCE IMMUNITY

TEST DESCRIPTION

Method

The reference method for this test is listed in the table under clause TEST SUMMARY.

Set-up

The tests were performed at 3 meter antenna distance in an anechoic chamber.

 \Box The specimen was placed on a Styrofoam support 10 cm above the floor.

 \boxtimes The specimen was placed on a Styrodur/styrofoam table 80 cm above the floor.

Modulation:

🛛 80% AM @ 1000Hz

🗌 80% AM @ 400Hz

🗆 50% PM @ 217Hz

The specimen was placed within the calibrated volume, and the cables connected to the specimen was arranged so that 100 cm of each cable was exposed to the electromagnetic field.

Interconnecting cables specified \leq 300 cm whose length exceeded 100 cm were bundled to achieve 100 cm length. Interconnecting cables specified > 300 cm and other cables connected to the specimen are exposed for 100 cm, and the remaining cable length was decoupled with the use of ferrites.

Procedure

The specimen was exposed to the RF electromagnetic field generated by one or more antennas. The polarization of the field requires testing each side of the specimen twice, once with the antenna horizontally and again with the antenna vertically. The antenna height during test was 150 cm.

Exposed side of the specimen:								
🖾 0º (front)	🗌 Top (handheld)							
⊠ 90º	□ Bottom (handheld)							
⊠ 180º (rear)								
⊠ 270º								

Frequency sweep rate: \square 1% step with 3 sec dwell time \square 1.5x10⁻³ decades/sec (80 - 1000MHz) \square 0.5x10⁻³ decades/sec (1000 - 2000MHz) \square Other:

- Frequency range: □ 80MHz – 1000MHz □ 1400MHz – 2000MHz
- 🗌 2000MHz 2700MHz
- 🗌 80MHz 2000MHz
- 🛛 80MHz 6000MHz

A functional test was performed before and after the exposure. The specimen was observed during exposure in order to detect unintended responses.

Instruments used during measurement

Instrument l	ist:
--------------	------

Amplifier, GF: Bonn / BLMA 1060-200/100DS (N-4879) (N/A) Amplifier, RF: Bonn / BLWA 0810-1000/400 (N-4878) (N/A) Antenna: Schwarzbeck / STLP 9129 (N-4872) (N/A) Audio Analyzer: R&S / UPP800 (N-4936) (N/A) Field Probe: LumiLoop / LSProbe 1.2 (N-4856) (04/2023) Generator, RF: R&S / SMB100A (N-4877) (04/2025) Power Sensor: R&S / NRP8SN (N-4842) (03/2023) Power Sensor: R&S / NRP8SN (N-4841) (03/2023)

Conformity

Verdict: Test engineer: PASS

Uncertainty figures:

Field level: ± 2.4 dB

Jørn Gustavsen

DETAILED TEST LOG

Frequency range [MHz]	Field strength [V/m]	Polarization	Required Criteria	Complied Criteria	Result
80 - 1000	3	HOR	А	А	PASS
80 - 1000	3	VER	А	А	PASS
1000 – 6000	3	HOR	А	А	PASS
1000 – 6000	3	VER	А	А	PASS

Additional tests were performed at discrete spot frequencies with 3V/m test level. Spot frequencies which were tested: 1800 MHz, 2600 MHz, 3500 MHz, and 5000 MHz

OBSERVATIONS

No malfunctions were recorded during or after the applied test(s).

Observations showed levels of demodulated audio within the acceptance criteria at the receiving end (see logs). No other unintended responses observed during test(s).

AUDIO BREAKTHROUGH LOGS

ELECTRIC FAST TRANSIENTS IMMUNITY

TEST DESCRIPTION

Method

The reference method for this test is listed in the table under clause TEST SUMMARY.

Set-up

Mains power was supplied to the specimen via the coupling network. The specimen was energized and in normal operating condition.

 \boxtimes The specimen and its cables were elevated 10 cm above the reference ground plane. \Box Artificial hand was applied during test (for location see photos).

Procedure

Transients were applied at increasing levels to each single line at the AC or DC input port using a coupling network, and to relevant signal ports using a capacitive coupling clamp.

Duration:

 \Box 1 minute \boxtimes 2 minutes

 \square 5 minutes

Repetition frequency: ⊠ 5kHz □ 100kHz

Uncertainty figures: Peak voltage: ± 10 % Transient shape: ± 30 %

A functional test was performed before and after the exposure. The specimen was observed during exposure in order to detect unintended responses.

Instruments used during measurement

Instrument list:

Coupling Clamp, EFT/B: EMTest / CCI (N-4918) (N/A) Generator: EMTest / UCS 500 N7 (N-4561) (06/2023)

Conformity

Verdict: Test engineer: PASS Jørn Gustavsen

DETAILED TEST LOG

Port	Applied Level [kV]	Injection Method	Required Criteria	Complied Criteria	Result
AC Input Port (N+L1+PE)	±0.5kV	CDN	В	А	PASS
AC Input Port (N+L1+PE)	±1kV	CDN	В	А	PASS
Signal Port (Mic in)	±0.5kV	CLAMP	В	А	PASS
Signal Port (LAN)	±0.5kV	CLAMP	В	А	PASS
Signal Port (PoE)	±0.5kV	CLAMP	В	А	PASS
Signal Port (HDMI in)	±0.5kV	CLAMP	В	А	PASS
Signal Port (HDMI out)	±0.5kV	CLAMP	В	А	PASS
Signal Port (USB C)	±0.5kV	CLAMP	В	А	PASS
Signal Port (Mic in)	±0.5kV	CLAMP	В	А	PASS
Signal Port (LAN)	±0.5kV	CLAMP	В	А	PASS

OBSERVATIONS

No malfunctions were recorded during or after the applied test(s). Observations showed the following unintended responses during test(s).

SURGE IMMUNITY

TEST DESCRIPTION

Method

The reference method for this test is listed in the table under clause TEST SUMMARY.

Set-up

The specimen was energized and in normal operating condition. The specimen and its cables were elevated 10 cm above the reference ground plane

Procedure for supply ports

- $oxed{B}$ Differential mode surges were applied line-to-neutral on AC supply port, with a source impedance of 2 Ω .
- \Box Differential mode surges were applied line-to-line on 3-phase AC supply port, with a source impedance of 2 Ω .
- \boxtimes Common mode surges were applied line-to-ground and neutral-to-ground on AC supply port, with a source impedance of 12 Ω .
- \Box Differential mode surges were applied line-to-line on DC supply ports, with a source impedance of 2 Ω .
- \Box Differential mode surges were applied line-to-line on DC supply ports, with a source impedance of 42 Ω .
- \Box Common mode surges were applied line-to-ground on DC supply ports, with a source impedance of 12 Ω .
- \Box Common mode surges were applied line-to-ground on DC supply ports, with a source impedance of 42 Ω .

Procedure for signal ports

- \Box Common mode surges were applied line-to-ground on non-shielded signal ports, with a source impedance of 42 Ω .
- \Box Common mode surges were applied shield-to-ground on shielded signal ports, with a source impedance of 2 Ω .

Phase angles for AC:	Repetition rate:	Impulses per test level:	Uncertainty figures:
⊠ 0° ⊠ 90°	□ 20 sec.	⊠ 5 impulses	Peak voltage: ± 10 %
⊠ 180° ⊠ 270°	⊠ 60 sec.	🗆 Other:	Rise time: ± 30 %
No AC ports	□ Other:		Duration: ± 20 %

A functional test was performed before and after the exposure. The specimen was observed during exposure in order to detect unintended responses.

Instruments used during measurement

Instrument list:

Generator: EMTest / UCS 500 N7 (N-4561) (06/2023)

Conformity

Verdict: Test engineer:

PASS Jørn Gustavsen

DETAILED TEST LOG

Line	Source impedance	CDN	Applied Level [kV]	Required Criteria	Complied Criteria	Result
AC Input Port (N to PE)	12Ω	MCN	±0.5kV	В	А	PASS
AC Input Port (N to PE)	12Ω	MCN	±1kV	В	А	PASS
AC Input Port (N to PE)	12Ω	MCN	±2kV	В	А	PASS
AC Input Port (L1 to PE)	12Ω	MCN	±0.5kV	В	А	PASS
AC Input Port (L1 to PE)	12Ω	MCN	±1kV	В	А	PASS
AC Input Port (L1 to PE)	12Ω	MCN	±2kV	В	А	PASS
AC Input Port (N to L1)	2Ω	MCN	±0.5kV	В	А	PASS
AC Input Port (N to L1)	2Ω	MCN	±1kV	В	А	PASS

Note: MCN = Mains coupling network; ICN = Coupling network for interconnecting lines; D = Direct coupling (shielded lines)

OBSERVATIONS

No malfunctions were recorded during or after the applied test(s). Observations showed no unintended responses during test(s).

CONDUCTED RF DISTURBANCE IMMUNITY

TEST DESCRIPTION

Method

The reference method for this test is listed in the table under clause TEST SUMMARY.

Set-up

Mains power was supplied to the specimen via the coupling network. The specimen was energized and in normal operating condition.

 \boxtimes The specimen was elevated 10 cm above the reference ground plane.

 \boxtimes Cables were elevated 5 cm above the reference ground plane.

□ Artificial hand was applied during test (for location see photos).

All specimen ports, which are not subject to testing, are furnished with decoupling networks to achieve RF isolation of the specimen during test. A return path was created according to the priority given in §7.2 of the reference standard.

Procedure

Disturbance was applied via a coupling/decoupling network (CDN) or an electromagnetic coupling clamp (EM Clamp) to each port separately.

Frequency range:	Modulation:
🗵 150kHz – 80MHz	🗵 80% AM @ 1000Hz
🗌 150kHz – 230MHz	🗆 80% AM @ 400Hz
Spot frequencies	🗆 50% PM @ 217Hz

Frequency sweep rate: ⊠ 1% step with 3 sec dwell time □ 1.5x10⁻³ decades/sec □ Other:

Measurement uncertainty: ± 1.7dB (CDN method); ± 3.2dB (EM Clamp method); ± 3.3dB (BCI method)

A functional test was performed before and after the exposure. The specimen was observed during exposure in order to detect unintended responses.

Instruments used during measurement

Instrument list:

Amplifier, RF: R&S / BBA150-A125 (N-5017) (N/A) Attenuator: Diconex / 16-6763 (N-5043) (N/A) Audio Analyzer: R&S / UPP800 (N-4936) (N/A) CDN: Teseq / T8-10 (N-4725) (N/A) CDN: FCC / FCC-801-6-M3 (N-3599) (N/A) CDN: Schaffner / USB/c (N-4276) (N/A) EM Clamp: FCC / F-2031 EM (N-3438) (N/A) Generator, RF: R&S / SMC100A (N-4891) (06/2024) Power Sensor: R&S / NRP-Z91 (N-4924) (11/2023)

Conformity

Verdict: Test engineer:

PASS Jørn Gustavsen

DETAILED TEST LOG

Tested Port	Injection Method	Return Path	Applied Level [Vrms]	Required Criteria	Complied Criteria	Result
AC Input Port	CDN-M3	CDN-USB	3Vrms	А	А	PASS
Signal Port (Mic in)	EM CLAMP	CDN-M3	3Vrms	А	А	PASS
Signal Port (LAN)	CDN-T8	CDN-M3	3Vrms	А	А	PASS
Signal Port (PoE)	CDN-T8	CDN-M3	3Vrms	А	А	PASS
Signal Port (HDMI in)	EM CLAMP	CDN-M3	3Vrms	А	А	PASS
Signal Port (HDMI out)	EM CLAMP	CDN-M3	3Vrms	А	А	PASS
Signal Port (USB C)	EM CLAMP	CDN-M3	3Vrms	А	А	PASS

OBSERVATIONS

No malfunctions were recorded during or after the applied test(s).

Observations showed levels of demodulated audio within the acceptance criteria at the receiving end (see logs). No other unintended responses observed during test(s).

AUDIO BREAKTHROUGH LOGS

Note: Limit recalculated pr CISPR35 to consider 3V test level in the entire range, instead of 3-1V level.

POWER FREQUENCY MAGNETIC FIELDS IMMUNITY

TEST DESCRIPTION

Method

The reference method for this test is listed in the table under clause TEST SUMMARY.

Set-up

The specimen was energized during test.

The tests were performed with a single squared 100x100 cm coil. The specimen was placed in the centre of the coil above a ground reference plane.

Procedure

The specimen was exposed to the magnetic field of a magnitude and frequency as specified below. Then the coil orientation was changed to repeat the testing in the 3 orthogonal axes (X, Y and Z).

Duration:

- \Box 1 minute
- \boxtimes 5 minutes

 $\hfill\square$ Time necessary for a full operating cycle:

Uncertainty figures: Field level: ± 2.5 % Frequency: ± 1 % Distortion: <2%

A functional test was performed before and after the exposure. The specimen was observed during exposure in order to detect unintended responses.

Instruments used during measurement

Instrument list:

Magnetic Coil: EMTest / MS100N (N-4561.04) (N/A) Transformer: EMTest / MC2630 (N-4561.06) (N/A) Variac m.skilletrafo: Nemko / MF-var (N-3149) (N/A)

Conformity

Verdict:

Test engineer:

Jørn Gustavsen

PASS

DETAILED TEST LOG

Axis [X/Y/Z]	Field Strength [A/m]	Field Frequency	Required Criteria	Complied Criteria	Result
Х	1	AC 50Hz	А	А	PASS
γ	1	AC 50Hz	А	А	PASS
Z	1	AC 50Hz	А	А	PASS

OBSERVATIONS

No malfunctions were recorded during or after the applied test(s). Observations showed no unintended responses during test(s).

VOLTAGE DIPS AND INTERRUPTIONS IMMUNITY

TEST DESCRIPTION

Method

The reference method for this test is listed in the table under clause TEST SUMMARY.

Set-up

Only the general laboratory conditions were applied. No special requirements are defined for the configuration of the specimen. The main supply port of the specimen was connected to the power simulator system which generates the dips and interruptions. The specimen was energized and in normal operating condition.

Procedure

The specimen was subject to voltage reductions a given number of times, separated by a sufficient interval for the specimen to recover. The reductions were fired at different phase angles according to the requirements of the test standard.

Repetition rate:

Instrument list:

☑ 10 sec.
☑ 20 sec.
☑ Other:

Repetitions: ⊠ 3 occurrences. □ Other: Phase angle: □ N/A (DC supply). □ Only at 0º. ⊠ Only at zero crossings (0º and 180º). □ 0-270º; each 90º. □ 0-315º; each 45º.

Measurement uncertainty: Voltage level: ± 5 %; Zero crossing control: ± 10°; Phase relationship: ± 10°

A functional test was performed before and after the exposure. The specimen was observed during exposure in order to detect unintended responses.

Instruments used during measurement

Generator: EMTest / UCS 500 N7 (N-4561) (06/2023) Motorized Variac: EMTest / MV2616 (N-4561.03) (06/2024)

Conformity

Verdict: Test engineer: PASS Jørn Gustavsen

DETAILED TEST LOG

Voltage Reduction	Voltage Levels		Duration	Required	Complied	Dec. H
	Nominal	Test	[cycles]	Criteria	Criteria	Result
30% Dip	240	168	25	С	А	PASS
30% Dip	100	70	25	С	C1	PASS
>95% Dip	230	0	0.5	В	А	PASS
100% Interruption	230	0	250	С	C ¹	PASS

OBSERVATIONS

No malfunctions were recorded during or after the applied test(s).

Observations showed the following unintended responses during test(s).

1: Units powers down during test, and self-recovers after voltage is restored. Manual re-establishing of communication is necessary.

TEST REPORT Report No. REP008144

Annexes

PHOTOS

Test set-up for Radiated emissions measurements (6-12GHz, FCC)

Test set-up for Radiated emissions measurements (6-12 GHz, FCC)

